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In a recent article Humphreys has developed an intriguing proposal for making sense
of emergence. The crucial notion for this purpose is what he calls “fusion” and his
paradigm for it is quantum nonseparability. In what follows, we will develop this po-
sition in more detail, and then discuss its ramifications and limitations. Its ramifications
are quite radical; its limitations are substantial. An alternative approach to emergence
that involves quantum physics is then proposed.

1. Introduction. In developing his notion of emergence, Humphreys intro-
duces an assumption concerning the existence of distinct ontological levels
(Humphreys 1997). He regards this as a simplifying assumption that will
likely have to be jettisoned ultimately. Nevertheless, it plays a crucial role
in his analysis, and will be used in what follows. The level-assumption,
denoted “L” following Humphreys, is this:

(L) There is a hierarchy of levels of properties L0,L1, . . .Ln, . . . of
which at least one distinct level is associated with the subject matter
of each special science, and Lj cannot be reduced to Li for any i � j.

A property Pi is said to be an “i-level property” if i is the lowest level at
which instances of the property occur. A set of properties { } isi iP ,...,P ,...1 m

associated with each level i, where denotes the m-th property at i-level.iPm

The same goes for the entity xi and the set of entities { .} Ini ix ,...,x ,...1 m

general, i-level entities may have j-level properties for i � j.
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1. We wish to remain neutral with respect to this issue, and we regard the translation
to an explicit property instance notation as being relatively straightforward.

2. The entanglement of states becomes manifest in the statistics of nonlocal measure-
ments that are made on the system. The measurements are nonlocal in the sense that
they involve two spatially separated measuring devices that are configured so that the
pair of measurement events on each system are spacelike separated. Entangled states
exhibit correlations in nonlocal measurements in such a way that joint probabilities for
the outcomes of the components of the pair of measurement events cannot be factored
into single probabilities.

In characterizing the property-fusion operation, Humphreys introduces
the cumbersome notation , which denotes an instantiation ofi iP (x )(t)m r

property by the entity at time t. He does so because he regardsi iP xm r

property instances as being more fundamental than properties. We use a
simpler notation that does not involve explicit reference to specific indi-
viduals or times. This is done purely for the sake of convenience. It is not
in any way to be construed as regarding properties as being more funda-
mental, from an ontological point of view, than property instances.1 Also,
the fusion operation [.*.] is regarded by Humphreys as a process that
combines two i-level properties and to form an (i�1)-level propertyi iP Pm n

[ ]. It could just as well be represented as the property but wei i i�1P *P Pm n m,n

choose not to adopt this notation below.
Humphreys claims that the interactions that give rise to entangled states

in quantum mechanics lend themselves to the fusion treatment described
just above. He explains that the essentially relational interactions between
the constituents of an entangled pair have exactly the features required
for fusion. His emphasis is on the product of the interaction, a nonsepa-
rable quantum state.2 The emergent phenomenon remains intact so long
as the state is nonseparable, and that can be so after the interaction ceases.
By contrast, we emphasize the importance of the interaction itself, and
stress that the persistence of the interaction is essential for emergence.
These suggestions are developed more fully below using pairs of two-state
systems.

2. Aspects of Quantum States, Observables, and Evolutions. In Quantum
Mechanics, the three basic elements of a quantum system are its states, its
properties, and its evolution. What follows is a formal presentation of
these elements for two-state systems (such as spin-1/2 systems or photon
polarization), and then for pairs of two-state systems. States, properties,
and evolutions of two-state systems are represented in a two-dimensional
complex vector space, and those of pairs of two-state systems in a four-
dimensional complex vector space.

Two-dimensional vectors (two-by-one matrices) having complex num-
bers as components represent states of a two-state system. Such vectors
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are normalized to unity in order to facilitate a probabilistic interpretation
of states. So, the general form of a state � of a two-state system is this:

φ =






a

b

where aa* � bb* � 1 (this is the normalization condition). The asterisk
denotes the complex conjugate. All vectors having this form are regarded
as a possible physical state of a two-state system.

Two-by-two matrices having specific symmetry features represent prop-
erties and evolutions. To characterize these features, it is useful to intro-
duce the notion of the adjoint of a matrix. If M is a matrix with compo-
nents mij, then the adjoint of M is the matrix M* whose components are
nij, where nij � . The use of the complex conjugate indicates that them*ji
components of matrices representing properties and evolutions are com-
plex numbers.

In quantum mechanics, property matrices must be self-adjoint, mean-
ing that aij � where aij is the matrix element at the intersection of row-a*ji
i and column-j. So, the general form of a property matrix A for a two-
state system is this:

A
a b

b c
=





∗

The occurrence of a and b in A is not in any way related to their occurrence
above in �. The symmetry feature of properties (self-adjointness) entails
that a,c��. All matrices having the form indicated above are regarded as
corresponding to a possible property of a two-state system.

An example of a property that has this form is SZ, the spin in the
z-direction of a spin-–1

2 system. A matrix representation of this property is

Sz = 



−

1 0

0 1
. Such a system can have one of two possible values for

SZ: �1 and �1. It can also have a probabilistic propensity to exhibit one
of these two values when a measurement for this property is made on the

system. If the state of the system is φ =










1

2

1

2

, then the probabilistic pro-

pensity for yielding the result �1 for a measurement for SZ is –12 , and that
for yielding the result –1 for this measurement is also –12 .

In quantum mechanics, an evolution matrix U must be unitary, mean-
ing that its adjoint is its inverse. V is the inverse of U if and only if UV
� VU � I, where I is the identity matrix (which has components dij such
that dij � 1 for i � j and dij � 0 for i � j). The inverse of a matrix U is
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3. This exponential matrix operation is by definition the power series for the exponential
function, with ordinary powers replaced by matrix powers. This operation is perfectly
well defined for all finite dimensional cases. This is so in the infinite-dimensional case
only for bounded operators. An operator is bounded, if there is a positive real number
such that the norm of the vector obtained when the operator is applied to any given
vector in the Hilbert space is less than this number.

denoted as U�1. So, U is a unitary operator if and only if U* � U�1. The
general form of an evolution matrix U for a two-state system is this:

iAtU � e

where A is a self-adjoint operator and t is a time parameter.3 All matrices
having the form indicated above are regarded as corresponding to a pos-
sible evolution of a two-state system. The inverse matrix is simply the
matrix counterpart of the complex conjugate of U, meaning that U�1 �
e�iAt (since A may be thought of as the matrix counterpart of a real
number).

For pairs of two state systems, the key operation that enables the cor-
rect representation of the possible states, properties, and evolutions of
such pairs is the tensor product operation. This operation corresponds to
a physical relation between the states, properties, and evolutions of the
component systems. The tensor product in quantum mechanics is to be
contrasted with its counterpart, the direct sum, in classical mechanics. The
tensor product operation is characterized in the next section; the direct
sum is discussed in the section after the next one. It is the linearity of the
equations of motion and the nonseparability of states, properties, and
evolutions that makes it necessary to use the tensor product operation
rather than the direct sum in quantum mechanics.

3. Aspects of Quantum Nonseparability (Entanglement). Consider a pair of

two-state vectors {�1,�2} where �1 �
a

b






and �2 �
c

d





. The tensor prod-

uct of this pair is denoted as �1��2, and it corresponds to the four-
dimensional state vector as indicated below:

a

b

c

d

ac

ad

bc

bd







⊗






=



















Each vector in the four-dimensional complex vector space is regarded as
corresponding to a possible state of the associated pair of two-state sys-
tems. It is easy to find vectors in this four-dimensional space that cannot
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4. The factor of 1

2
does not in any way contribute to the occurrence of the nonsepa-

rability of the above state. It is present in order to satisfy the normalization condition
mentioned above when quantum states were first introduced.

be expressed as a tensor product of a pair of state vectors from the asso-
ciated two-dimensional vector spaces. Those that can be so expressed are
said to be “separable” or “unentangled,” those that cannot are “nonsep-
arable” or “entangled.” We use the terms “separable” and “nonseparable”
in what follows. An example of a nonseparable four-dimensional state
vector (nonseparable with respect to two-state pairs) is �1�2 below:

φ1 2 1

2

1

0

0

1

+ =



















It is clearly nonseparable since ad � 0 if and only if a � 0 or d � 0, but
if a � 0 then ac � 0 and if d � 0 then bd � 0.4 It will be shown in the
next section that a state vector in a four-dimensional tensor product space
is either a tensor product vector, or a (nontrivial) superposition of tensor-
product vectors. The significance for emergence will also be discussed in
that section.

To characterize the tensor product operation for N two-state systems
when N � 2, it will suffice to consider a triplet of two-state systems. Con-
sider the vectors, �1 and �2, above that are associated with a pair of two-

state systems, and the state vector �3 �
e

f






that is associated with a third

two-state system. The tensor product of this triplet is denoted as
�1��2��3, and it corresponds to the eight-dimensional state vector ob-
tained in the manner indicated by the following equation (in light of the
above):

ac

ad

bc

bd

e

f

ace

acf

ade

adf

bce

bcf

bde

bdf



















⊗






=






























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5. This conclusion also depends on an assumption that we regard as being uncontro-
versial; namely, that any situation in which there is emergence is also one in which there
are distinct ontological levels.

If the states of three two-state systems are �1, �2 and �3 respectively, then
the state of the associated composite system is �1��2��3. Of course, it is
possible for vectors in the associated eight-dimensional space to be non-
separable—a case in point is the vector with 1

2
at the top and bottom slots

with zeros in the remaining six slots (similar to �1�2 above). Finally, it is
worth noting that the state of N two-state systems corresponds to a vector
in a 2N-dimensional tensor product space, which may or may not be sep-
arable.

The considerations above suggest that for each N, there are states of
the composite that cannot be represented as a tensor product of the states
of its subsystems. If there is an intimate tie between emergence and non-
separability, which is the main thesis of this essay, then it follows that the
hierarchy of levels is actually quite large and may even be countably in-
finite.5 This would then show the shortcomings of assumption L—an as-
sumption to which Humphreys is not ultimately committed, as noted ear-
lier. That is to say, there are numerous levels within physics, and it is
completely unclear whether there is a distinct boundary between physics
and chemistry or whether there is a broad area of overlap between them.
Both options leave open the possibility of a distinct domain of chemistry;
but the analysis offers nothing that clarifies which is the more likely pos-
sibility or what is the distinctive characteristic of chemistry.

To discuss separability for property and evolution matrices, it is useful
to begin by specifying the general condition for the separability of a four-
by-four matrix into two two-by-two matrices. Consider a pair of two-by-

two matrices {M1,M2}, where M1 �
a b

c d






and M2 �
e f

g h





. The tensor

product of this pair is denoted as M1�M2. It corresponds to the following
four-by-four matrix M1�2:

a b

c d

e f

g h

ae af be bf

ag ah bg bh

ce cf de df

cg ch dg dh







⊗






=



















It is easy to find a four-by-four property matrix that cannot be expressed
as a tensor product of a pair of two-by-two property matrices. As in the
case with state vectors, property matrices that can be so expressed are said
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to be “separable,” those that cannot are “nonseparable.” An example of
a nonseparable property matrix is A1�2 below:

A1 2

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

+ =

−



















A1�2 is a property matrix since it is self-adjoint. It is nonseparable since
ah � 0 if and only if a � 0 or h � 0, but if a � 0 then ae � 0 and if h
� 0 then dh � 0. It is not necessary to characterize the tensor product
operation for properties corresponding to N two-state systems when N �
2, since the manner of this operation is sufficiently characterized by the
corresponding case for states. It is, however, worth pointing out that A1�2

is a superposition of tensor product properties—the significance of which
is emphasized above in connection with states and need not be repeated
here—as indicated below:

A1 2 1

2

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1
+ =

−






⊗






+






⊗
−













For evolutions, the situation is very similar to that for properties. The
only difference is that a specification of the explicit general form of a two-
by-two unitary matrix in terms of an arbitrary self-adjoint matrix intro-
duces needless complexities. It will suffice in what follows to work with
diagonal matrices. A matrix is said to be diagonal if all of its elements are
zero, except for those along the diagonal from the upper left-hand corner
of the matrix to its lower right-hand corner. Consider the following di-
agonal matrix:

U

e

e

e

e

i t

i t

i t

i t

1 2

0 0 0

0 0 0

0 0 0

0 0 0

+ =



















α

β

γ

δ

It is easy to verify that U1�2 is a unitary matrix. Its adjoint is obtained
simply by replacing “i” with “�i.” It is easily shown that the adjoint of
U1�2 is its inverse, and that U1�2 is nonseparable. In order for U1�2 to be
separable into two two-by-two matrices, it must be the case that b � 0, c
� 0, f � 0, and g � 0. Four conditions then follow: ae � ei�t, ah � eibt,
de � eict, and dh � eidt, and these four can be satisfied if and only if � �
d � b � c. The latter clearly need not hold in general. If U1�2 is not
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6. For an account of these terms and their origin, see Brian McLaughlin’s (1992), a
superb discussion of the British emergentists, particularly section 3 (58–68).

7. Note that for classical state vectors, subscripts are used rather than superscripts to
denote component and composite vector states. Also, the vectors are oriented horizon-
tally to further distinguish classical state vectors from quantum state vectors—the latter
are oriented vertically in what has preceded and in what follows.

separable into two two-by-two matrices, it cannot be separable into two
such unitary matrices.

4. Additivity, Nonseparability, and Fusion. According to the British emer-
gentists, there are two fundamental types of properties of composite sys-
tems: resultant and emergent.6 Resultant properties are additive, emergent
properties are not. The paradigm guiding what was meant by additivity
is scalar and vector addition in Newtonian mechanics. It is helpful to begin
by considering the additivity of scalar quantities. Fundamental scalar
quantities in Newtonian mechanics are mass, length, and time. The mass
of a composite body is the sum of the masses of its components. It is well
known that the additivity of mass fails in nature. Four hydrogen atoms
combine to form an atom of helium in the sun. A helium atom has less
mass than the sum of the masses of four hydrogen atoms. The missing
mass is converted to energy in the process of nuclear fusion. In relativity
theory, additivity is restored by treating mass and energy as interchange-
able (as characterized by Einstein’s famous formula). The associated fun-
damental additive scalar quantity in relativity is mass-energy.

In Newtonian mechanics, there are many vector quantities. The asso-
ciated vectors have three components, and so they are often referred to as
three-vectors. The best known three-vector quantities are position, veloc-
ity, acceleration, and force. All of these quantities are additive according
to Newtonian mechanics. But, it is now well known that the additivity of
these quantities fails in nature. For example, the velocity of massive bodies
cannot be additive since that would enable massive bodies to go faster
than the speed of light. Additivity is restored in relativity theory by using
four-vector quantities such as position in spacetime (the corresponding
four-vectors have three spatial components and one temporal component)
and mom-energy (having three momentum components and one energy
component).

It is instructive to consider the addition of forces in Newtonian me-
chanics.7 Suppose that a body is acted on by two forces, F and G, where
F � (fx fy fz) and G � (gx gy gz). For simplicity, Cartesian coordinates are
used here and in what follows. The total force acting on the body is then
F�G, which is defined as F � G � (fx � gx fy � gy fz � gz). That is to
say, forces are added by adding together their respective components. The
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force F�G is referred to as the “resultant force” acting on the body. The
British emergentists were inspired by this notion from classical mechanics.
It led them to introduce the notion of a resultant property, and use that
notion to characterize the notion of emergent property by way of contrast.
An emergent property is any property that is not a resultant property.

It is helpful to introduce another type of additivity that occurs in clas-
sical mechanics to explain more fully the manner in which quantum non-
separability is non-additive. This notion of additivity arises in connection
with phase space representations of states of composite systems. The state
of a single particle is represented in a six-dimensional phase space. Three
of the dimensions are for position and the other three are for momentum
as in the vector V � (x y z px py pz).

For a composite system consisting of a pair of particles, the associated
state is represented by a vector V1�2 obtained by taking the direct sum V1

� V2 of the vectors V1 and V2 corresponding to the states of its compo-
nents. So, let Vi � (xi yi zi

pxi
pyi

pzi
) for i � 1,2. The direct sum V1 � V2

of V1 and V2 may then be defined as follows:

V V x y z x y z p p p p p px y z x y z1 2 1 1 1 2 2 2 1 1 1 2 2 2
⊕ = ( )

So, the state of a system consisting of a pair of point particles corre-
sponds to a vector in a twelve-dimensional phase space. More generally,
the state of a composite system consisting of N point particles cor-
responds to a vector in a 6N-dimensional phase space. This may be con-
trasted with the situation in quantum mechanics where the state of a com-
posite system consisting of N two-state systems corresponds to a vector
in a 2N-dimensional tensor-product space. For N M-state systems, states
correspond to vectors in a MN-dimensional tensor-product space.

The situation above in classical mechanics will now be contrasted with
that in quantum mechanics with regards to additivity and emergence. Be-
cause the direct sum is used in classical mechanics to define the states of
a composite system in terms of its components, rather than the tensor
product operation as in quantum mechanics, there are no nonseparable
states in classical mechanics. There are nonseparable Hamiltonians in clas-
sical mechanics—the Hamiltonian corresponds to the total energy of the
system and is related to the time evolution of the system. This type of
nonseparability is the result of nonlinear terms in the equations of motion.
Perhaps a kind of emergence can be associated with it. Some measure of
plausibility is given to this claim since a classical system can exhibit chaotic
behavior only if its Hamiltonian is nonseparable. This suggests that the
British emergentists may have placed too much emphasis on the Newto-
nian formulation of classical physics in motivating their metaphysical doc-
trine by regarding forces as fundamental, and then developing their meta-
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8. The superscripts used in the previous section to distinguish states and properties of
the components of a composite is somewhat redundant—the position in the tensor
product is already an indication of this—and will not be used in what follows.

physics by analogy with the way in which forces behave—this is suggested
by McLaughlin (1992, 53–54). If they had modeled their metaphysical
doctrines on the Hamiltonian formulation of classical mechanics, in which
energies (both kinetic and potential) are fundamental, the associated meta-
physical doctrine may have had a very different character. Poincaré was
aware of chaotic classical models, and that they involved nonseparable
Hamiltonians; but it is unclear whether the British emergentists were fa-
miliar with them. In any case, these issues will not be considered further
here. The focus of this discussion is emergence and additivity in quantum
mechanics.

The key for discussing emergence and additivity in quantum mechanics
revolves around the use of the tensor product operation to characterize
states, properties, and evolutions of composite systems rather than the
direct sum. It must be emphasized, however, that it is not the tensor prod-
uct operation alone that gives rise to the nonseparability of states. A tensor
product state vector is separable. An additive operation is also needed in
order to get a nonseparable state. That is to say, each nonseparable state
vector is a (nontrivial) superposition of tensor product state vectors—this
claim and related claims in this paragraph will be explained below. A
similar situation exists for properties. A tensor product of property ma-
trices is not an emergent property matrix. But, each nonseparable property
matrix is a (nontrivial) superposition of tensor product property matrices.

In light of the above, it appears that a central claim of the British
emergentists, that additivity is the mark of resultant (i.e., non-emergent)
properties, is wrong. The irony is compounded by noting that the mark
of a non-emergent property of composite systems in quantum mechanics
crucially involves a multiplicative operation, factorizability into tensor
product vectors (in the case of states) or matrices (in the case of proper-
ties), rather than an additive one. The situation is different for evolutions.
A nonseparable evolution is a product rather than a superposition of
tensor-product evolutions. This may provide a way to partially vindicate
the British emergentists.

The claim above that each nonseparable state vector is a superposition
of tensor product state vectors will now be illustrated for pairs of two-

state systems. To facilitate doing so, let � �
1

0







and b �
0

1






. It is easily

shown that {� � �, � � b, b � �, b � b} is a basis for the four-dimensional
tensor product space.8 That is to say, any vector in this space can be
represented as a superposition of the vectors of this set. It turns out that
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the associated superposition has a particularly simple form as indicated
below:

a

b

c

d

a b c d



















= ⊗ + ⊗ + ⊗ + ⊗α α α β β α β β

So, it is the tensor product operation together with the requirement that
the space of states associated with a composite system must be a vector
space that gives rise to nonseparable states. That requirement entails that
the space of states is closed under vector addition and scalar-vector mul-
tiplication, meaning a superposition of tensor product states must be a
possible state of the pair of two-state systems. Thus, a vector sum of tensor
product states gives rise to a nonseparable state, and similarly for prop-
erties. In what follows, we shall show that tensor products of Hamiltonians
do not give rise to emergent properties, and that nonseparable sums of
Hamiltonians do give rise to emergent properties.

The claim above that each nonseparable property matrix is a super-
position of tensor product property matrices may also be illustrated

for pairs of two-state systems. To facilitate doing so, let P1 �
1 0

0 0







and P2 �
0 0

0 1






. It follows that each diagonal four-by-four matrix A that

has elements of a set {a, b, c, d} of real numbers along the diagonal is a
superposition of a set of {P1 � P1, P1 � P2, P2 � P1, P2 � P2} of property
matrices:

A � aP � P � bP � P � cP � P � dP � P1 1 1 2 2 1 2 2

In this case, {a, b, c, d} is the set of eigenvalues of the property matrix A.
Each four-by-four property matrix has such a set and may be represented
in this manner. This is also the case for property matrices of any vector
space having a finite number of dimensions. It is not so in general for
property matrices of the infinite-dimensional vector spaces that are used
in quantum mechanics. “Position” and “momentum” are key properties
that are represented in such a vector space, and they have no eigenvalues.

The reason that a nonseparable evolution is a product of tensor-product
evolutions rather than a superposition of tensor-product evolutions fol-
lows from the exponentiation operation that is used in defining evolutions
in terms of property matrices (as indicated in the previous section). Using
the property matrix A above, the evolution matrix U � eiAt may be char-
acterized as follows:
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iAtU � e
i(aP �P �bP �P �cP �P �dP �P )t1 1 1 2 2 1 2 2� e
iaP �P t ibP �P t icP �P t idP �P t1 1 1 2 2 1 2 2� e e e e

The third equation holds because members of the set {P1 � P1, P1 � P2,
P2 � P1, P2 � P2} are mutually commuting. Finally, a partial vindication
of the emergentists’ claim concerning additivity might be developed on the
grounds that nonseparable evolutions are primary, and that nonseparable
states and properties are derivative upon these. This perspective would
have to be developed from an ontological point of view—from a mathe-
matical point of view evolution matrices are derivative from property ma-
trices. Perhaps it could be suitably developed (or re-enforced) with a strong
process-based metaphysics that gives primacy to process over structure.
This point will not be developed further here.

So, how do the considerations above shed light on the fusion operation?
They do so by serving to explain how Humphreys’ schematic character-
ization of this operation plays out in quantum mechanics, which is the
underlying basis for his characterization of it. The specific models that he
mentions, superconductivity and superfluidity, are rather complicated for
reasons to be discussed below. We will instead consider simpler models
from chemistry. Before doing so, we continue to elaborate on the fusion
operation. The explanation above has served to reveal surprising conse-
quences involving additivity. These revelations may be connected more
explicitly with Humphreys’ characterization of fusion.

As indicated above, Humphreys characterizes the fusion operation [.*.]
as a process that combines two i-level properties and to form ani iP Pm n

(i�1)-level property [ * ]. We have explored how this operation mighti iP Pm n

be implemented within quantum mechanics. What is revealed by the anal-
ysis of properties of composite quantum systems is that i-level properties

and are associated with tensor product property matrices (usingi iP Pm n

identity operators), the “*” corresponds to matrix sum, and the brackets
indicate that the matrix sum is nonseparable.

So, if level-1 corresponds to the properties of individual two-state sys-
tems, then properties of pairs (triplets, quadruplets, etc.) of two-state sys-
tems that can be represented as a tensor product of properties of its com-
ponents are also at level-1. Properties of pairs (triplets, quadruplets, etc.)
that cannot be represented as a tensor product of its components are at
level-2 (level-3, level-4, etc.). Now consider the property matrix A1�2 that
was introduced above. Let and denote the tensor product properties1 1P Pm n

1
2

1 0

0 1

1 0

0 1−







⊗ 





and 1
2

1 0

0 1

1 0

0 1







⊗ 



−
, respectively. Since A1�2 �

and A1�2 is nonseparable, we may write [ ] and thereby1 1 1 1P � P P * Pm n m n
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M  M*

 P  P*

 Supervenience
 Relations

 Causal Process

 Pseudo-Process

 Mental

 Physical

 t →

Figure 1.

indicate that A1�2 is a level-2 property. It is worth noting that there are
actually six level-1 properties involved in the construction of the emergent
property A1�2: two properties for system-1, two for system-2, and two for
the composite system-(1�2).

5. Exclusion and the Fine-Grained Hierarchy. In recent literature on phi-
losophy of mind, Kim’s exclusion argument has received a fair amount of
discussion (Kim 1998). The following diagram, Figure 1, is an attempt to
capture the essential structure of the argument. In chapter 2 of the above,
Kim argues that the causal closure of the physical and the supervenience
of the mental on the physical together entail that the evolution P r P* is
the only real casual process, and that the evolution M r M* is a pseudo
process (meaning that it is entirely epiphenomenal).

The view of emergence developed by Humphreys is radically different
from the picture characterized above. Given assumption L and the exis-
tence of emergence, the picture that follows involves causal processes oc-
curring at various levels, with possible causal process occurring at lower
levels (except, of course, in the case of physics). Levels above biology, such
as psychology and sociology, are not included in the diagram below (Fig-
ure 2), in order to keep the diagram simple. Three assumptions are in-
volved in Figure 2. They are extrapolated from the views expressed by
Humphreys. First, there is for a given system at a given time a highest
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Physics

 t→

Chemistry

Biology

 Emergence  Submergence

 Actual
 Causal Process

 Possible
 Causal Process

 .
 .
 .

Figure 2.

level of organizational complexity. Second, this system can have subsys-
tems that causally evolve at a lower level in a manner that is independent
from other subsystems of the given system. Third, for at least some systems
undergoing a causal process at a level higher than physics, there are time
intervals during which there are no independently-evolving lower-level
subsystems for some (and possibly all) of the lower levels.

Humphreys indicates, in characterizing assumption L, that at least one
level may be associated with each of the special sciences. This is a bit of
an understatement. In light of the discussion in the previous section, it
seems that there will be an immense number of levels associated with each
of the special sciences. Before justifying this claim, it will be helpful to
consider a simple example.

A triplet of two-state systems, which was briefly described in the pre-
vious section, may be unentangled (level-1), partially entangled (level-2),
or completely entangled (level-3). Suppose that the triplet is initially unen-
tangled, they evolve independently for a time, and then become partially
entangled. The partial entanglement is the result of an interaction between
just two members of the triplet—the interaction corresponds to a nonsep-
arable time-evolution operator that is generated by a nonseparable Ham-
iltonian. The elements of the triplet then evolve independently for a time,
and then become completely entangled by way of a triply entangled Ham-
iltonian (or by way of an entangled Hamiltonian involving the unentan-
gled system and one of the entangled systems). The evolution is then re-
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.

.

Figure 3.

versed. The evolution of the triple just described is characterized
graphically below in Figure 3. In general, a Hamiltonian can produce
emergence from level-i to level-(i�j) if and only if it can produce sub-
mergence from level-(i�j) to level-i.

Crystals are often represented as a lattice consisting of a large number
of two-state systems. Often, nearest neighbor interactions are assumed.
But such interactions are all that is needed in order for the crystal system
to evolve to a nonseparable state involving a large number of its compo-
nents. Is the crystal a physical system, or is it a chemical system, or is it
both? If textbooks may serve as a guide, then the only reasonable conclu-
sion can be that crystals belong to both areas of science. Physics will study
lattice structures to understand matters such as phase transitions (e.g.,
Ising ferromagnets and magnetic critical points), and chemistry does so in
order to understand chemical properties (e.g., ionic bonds and relatively
high melting points). It is not unreasonable to suppose that some aspects
of crystals are biological, since there are protein crystals.

6. A Possible Objection and Two Responses. One criticism that might be
raised against a notion of emergence based on the nonseparability of the
Hamiltonian in quantum mechanics is this. It takes too literally the notion
of resultant (i.e., non-emergent) forces in classical mechanics. That is to
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9. Force is regarded as a paradigm causal factor. Energy is as well, if not more so;
indeed, in fundamental theories, such as quantum field theory, it is the Langrangian
and Hamiltonian formulations (in which kinetic and potential energies play the primary
roles in characterizing the structure and dynamics of physical systems) that predomi-
nate.

say, the British emergentists intended vector addition as merely an ex-
ample of what is required to show that a combination of causal compo-
nents is non-emergent; namely, the existence of a simple algorithm for
combining causal factors. Thus, vector additivity of forces should not be
regarded as the definitive characterization of resultant causal features;
rather, it is merely a paradigm for showing what must be provided in order
to undermine the claim of emergence. This means that despite the sub-
stantial differences between the quantum and classical algorithms for com-
bining causal factors of component systems, the crucial feature is present
in the quantum case: there is a relatively simple algorithm for combining
causal factors.9 The kinetic and potential energy terms of the components
and the interaction terms involving those components are the causal ele-
ments in the quantum context, and they are combined using the tensor
product operation and the addition of linear operators—matrix addition
is a case in point. This is a relatively simple mathematical operation and
its simplicity, one might conclude, is sufficient to regard the corresponding
combination of quantum causal factors as non-emergent.

The argument above for not regarding the nonseparability of the Ham-
iltonian as emergent seems to be rather persuasive. But, there are two
serious problems with it. It turns out that the second is the more substan-
tial of the two. First, although the algorithm for forming a nonseparable
Hamiltonian is simple, the task of providing a solution to the associated
equations of motion is usually an intractable problem. That is to say, the
toy models introduced above are rather misleading with regards to the
more general situation. One might take them to imply that there is a cor-
responding simplicity with regards to providing a solution to the resulting
equations of motion. The toy models may be characterized as having a
finite number of degrees of freedom for which each degree of freedom has
a finite dimension. For such models, it is a simple matter to solve Schrö-
dinger’s equation (an eigenvalue problem involving finite matrices) and to
demonstrate the nonseparability of the Hamiltonian. This is not so in
general. Most models in quantum mechanics have either a finite number
of degrees of freedom where at least some of those degrees are infinite
dimensional, or an infinite number of degrees of freedom—each degree
may be either finite or infinite dimensional. This goes for most physical
systems modeled in quantum mechanics that are more complex than the
hydrogen atom. Such models cannot be solved exactly (or even quasi-
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10. This brief discussion of the standard treatment of many electron atoms in quantum
chemistry is abstracted from Chapter 11 of the fifth edition of Levine’s superb quantum
chemistry textbook (Levine 2000). There are many other texts worth consulting includ-
ing Atkins and Friedman 1997, Bader 1990, McQuarrie 1983, and Gasiorowicz 1974.

exactly) due to the nonseparability of the Hamiltonian. Numerical meth-
ods can be used to make some headway with these models, but these
methods usually involve very significant (and rather questionable) ad hoc
assumptions.

Second, the simplicity of the algorithm and the complexity of solving
the resulting equations of motion are primarily epistemic considerations,
and focusing on them directs attention away from crucial ontological fea-
tures of quantum models that have nonseparable Hamiltonians. Ulti-
mately, it is not the simplicity or complexity of the algorithm that is cru-
cial. What is crucial is what the resulting structure shows about the
relationships existing between the causal features of the components.
More to the point, the causal features remain independent in their action
in the classical case involving forces. By contrast, the causal features in
the quantum models discussed above become inextricably linked due to a
continual essential interaction. It may be that such links are so robust that
it is no longer meaningful to talk about components that are parts of a
compound, meaning that there are components only with reference to
what existed prior to the interaction and what exists after the interaction
has ceased. This extreme view is akin to Humphreys’ own position. We
adopt a mitigated position in what follows—see the concluding section.

7. Elaboration of the First Response: The Intractability Issue. It is possible
to solve Schrödinger’s equation exactly for the hydrogen atom. What this
means is that it is possible to find all of the eigenvalues and eigenvectors
of the Hamiltonian for the hydrogen atom. For slightly more complicated
systems, such as the helium atom and the hydrogen molecule H2, this is
no longer the case. Approximation methods can be used rather effectively
for these simple systems to calculate eigenvalues and eigenvectors, but
their effectiveness in that regard quickly diminishes for multi-electron at-
oms and simple polyatomic molecules. The key mathematical feature that
serves to explain these limited successes and ultimate failures is the non-
separability of the Hamiltonian.

Consider first multi-electron atoms.10 Let Z be the charge of the nucleus,
ê be the proton charge in Gaussian units, rk the distance from the nucleus
to kth electron, and rij � |ri � rj|. Rather than introduce the complete
Hamiltonian H, an approximate Hamiltonian Ĥ is typically formulated.
The nucleus is assumed to be infinitely heavy, which is justified on the
grounds that electron mass is at least three orders of magnitude smaller
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than nucleon mass. Interactions other than the interelectron repulsion
terms (such as spin-orbit interactions and relativistic interactions, which
are typically very small) are also omitted. The approximate Hamiltonian
Ĥ for an n-electron atom then takes the following form:

Ĥ
m
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The first term on the right is the sum of kinetic energy terms associated with
each electron. The second is the sum of potential energy terms due to the
attraction between the nucleus and the electrons, and the third is the sum
of interelectron repulsion terms—an n-electron atom has n(n�1)/2
interelectronic repulsion terms. It is the interelectron repulsion terms that
make the Ĥ nonseparable, and it is the nonseparability of Ĥ that neces-
sitates the use of approximation methods to solve Schrödinger’s equation.
The standard approximation method is the Hartree SCF (self-consistent
field) method. The electron state function is assumed to be a tensor prod-
uct of spatial state functions, one per electron. Spatial state functions of
single electrons are referred to as “orbitals.” The orbital associated with
an electron is “improved upon” by averaging the associated state functions
of the other electrons into a static charge distribution—this yields a sum
of Coulomb integrals. The resulting one-electron Schrödinger equation
may then be solved to obtain an improved orbital for the chosen electron.
This orbital provides a new and improved charge distribution for the elec-
tron when the next electron is treated. This process is done for each elec-
tron in the atom, and then the process is repeated until a fixed point is
reached. The Hartree method may be improved upon by introducing spin
explicitly and then anti-symmetrizing the state with respect to electron
exchange. This is necessary in order to satisfy Pauli’s exclusion principle.
The standard anti-symmetrization technique is to use Slater determinants
of one-electron spin orbitals. This improvement is known as the Hartree-
Fock SCF method. As before, one obtains a one-electron Schrödinger
equation, but it is more complicated than that obtained using Hartree’s
method: there are exchange integrals in the effective Hamiltonian in ad-
dition to the Coulomb integrals. Moreover, if the atom is not a closed
subshell atom or an atom with a single electron outside the closed sub-
shells, then the Hartree-Fock wave function contains more than one Slater
determinant, and the effective Hamiltonian is even more complicated.
Standard numerical and algebraic methods—especially the Roothan ex-
pansion procedure—are used to complement the Hartree-Fock method.
Errors associated with energies calculated using the Hartree-Fock method
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11. This discussion of molecules in quantum chemistry is abstracted from Chapters 13–
17 of Levine 2000.

are typically about –12 %, which is too large for chemists. A standard tech-
nique for going beyond the Hartree-Fock method is to suppose that there
are “configuration-interactions,” meaning that the electron state function
is assumed to be a superposition of configuration functions corresponding
to various excited electron configurations. It takes many configurations to
give a truly accurate wave function. Unfortunately, configuration-inter-
action calculations are very time consuming, even on supercomputers, for
systems with more than a few electrons.

Now consider small molecules.11 The notation introduced above for
multi-electron atoms is supplemented as follows: �, b are nuclei indices,
Z� is the charge of nucleus �, r�b is the distance between nuclei � and b,
and ri� is the distance between electron i and nucleus �. As before, an
approximate Hamiltonian is formulated, meaning in this case that inter-
actions other than the interelectron repulsion, internucleon repulsion, and
nucleon/electron attraction are ignored. The approximate molecular Ham-
iltonian Ĥ then takes the following form:
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For the purposes of calculating the electron configurations and energies,
it is assumed that the nuclei are fixed. The nucleon kinetic energies dis-
appear, and the nucleon repulsion term becomes a constant. This means
that it is only necessary to solve the Schrödinger equation for the purely
electronic Hamiltonian:
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The constant does not substantially affect the solution of the Schrödinger
equation—the wave functions are the same, the eigenvalues are reduced
by that constant. The resulting approximation is known at the Born-
Oppenheimer approximation, and it is justified on the grounds that the
electrons move much faster than the nuclei (since the nuclei are much
heavier than the electrons). The upshot is that electron and nucleon mo-
tions are treated as separable (meaning that the wave function for a mol-
ecule is a tensor product of a wave function for electronic motion and
another for nuclear motion). It should be clear, however, that the (molec-
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12. For further discussion of these issues and related issues, see (Hendry forthcoming,
1998; Amann and Müller-Herold 1999; Ogilvie 1994; Bader 1990; Primas 1983; and
Pfeifer 1980).

ular) electron Hamiltonian is more nonseparable than the multi-electron
atom Hamiltonian. This means that the Hartree-Fock approximation
(which comes into play after the Born-Oppenheimer approximation) and
more sophisticated variants of Hartree-Fock loose their efficacy more
quickly than the atomic case (with increasing electron number). Semi-
empirical methods help, but this is quite far from first principles.

Substantial complaints have been voiced about the Born-Oppenheimer
approximation on similar grounds. Much structure has to be put in before
structure comes out. That is to say, the Born-Oppenheimer approximation
elucidates structure, but does not predict it. Moreover, it is a gross exag-
geration to claim that molecular structure may be derived from first prin-
ciples. For example (one of numerous examples), no one has a clue as to
how to use quantum mechanics to explain the different isomers (different
molecular structure that correspond to the same chemical formula) of
C6H6 (Woolley 1991). At best, this is a semi-classical theory, meaning that
a good bit of classical structure of the nuclei (bond lengths, bond angles,
dihedral angles of rotation about single bonds) must be put in before
quantum structure (of energy levels and orbitals) comes out.12

8. Elaboration of the Second Response: The Inextricability Issue. Given the
state of a compound system, one obtains a density operator for one of its
components by tracing out the degrees of freedom associated with its other
components. That density operator provides the most complete informa-
tion possible concerning any measurement that can be made on that com-
ponent, if the state of the compound system is a pure state. If the state of
the compound system is a nonseparable pure state, then its components
are entangled. In that case the density operator associated with an entan-
gled component is a mixed density operator, which is not a pure state.
Moreover, the mixed density operator cannot in general be interpreted as
a mixture, meaning that one cannot suppose that the component system
is in some unknown pure state; for this reason, such density operators are
sometime referred to as “improper mixtures.” The upshot is that there is
no pure state that can be associated with the component of an entangled
pair, according to quantum mechanics.

The nonseparability of the state of a composite system is one degree of
inextricability, but it is not the most robust form to be found in quantum
mechanics. A greater degree is to be found when the Hamiltonian of the
compound systems is nonseparable. In that case, the time evolution of the
density operator that is associated with a part of a composite system can-

https://doi.org/10.1086/341056 Published online by Cambridge University Press

https://doi.org/10.1086/341056


    344

13. In relativistic contexts, this relation is to be understood as being reference-frame
dependent due to the relativity of simultaneity.

not in general be characterized in a way that is independent of the time
evolution of the whole. If the Hamiltonian is separable, then the time
evolution of the density operator associated with a part can in general be
characterized independently of the time evolution of the whole.

The statements made in the previous paragraph may be made explicit
as follows. Let S1,S2 denote two components of a compound system S,
and suppose that S is initially in the state q � |w��w|, where |w� � Rici|�ibi�,
and ci � ��ibi|w�. Let U(t) be the time evolution operator for S during the
time interval [0,t]. It follows that S is in the state q(t) � |w(t)��w(t)| at time
t, where |w(t)� � U(t)|w�. If the Hamiltonian of S is separable, then U(t)
can be placed in tensor product form, U(t) � U1(t) � U2(t). In that case,
the density operator q1(t) corresponding to S1 takes the following form:

(2)q (t) � Tr (q(t))1

� Rp |� (t)��� (t)|i i i i

� Rp (t)|� ��� |i i i i

where pi, � |ci|2, |�i(t)� � Ui(t)|�i�, and pi(t) � |��i(t)bi|w�|2. Similarly for
S2. If the Hamiltonian of S is nonseparable, then U(t) cannot be placed in
tensor product form and q1(t) takes the following form:

(2)q (t) � Tr (q(t))1

� Rq (t)|� ��� |i i i i

where qi(t) � |��ibi|w(t)�|2. Again, similarly for S2. The reason that the
nonseparable Hamiltonian provides a greater degree of inextricability is
now evident. If the Hamiltonian is separable, the nonseparable state is
only needed at one time in order to describe the time evolution of the
component systems, as indicated in pi(t); whereas, the nonseparable state
is required at each instant of time to describe the time evolution of the
component systems, as indicated in qi(t).

9. Conclusion. There are at least three ways in which philosophers could
develop a metaphysical account of emergence in mereological terms. To
specify these accounts it is useful to introduce two notions: that of an
independent characterization of an entity, and that of contemporaneous
parts. A characterization of an entity is an exhaustive list of the properties
that are instantiated by the entity. A characterization is independent if the
elements of the list make no essential reference to some other entity. An
entity is said to be a contemporaneous part of some whole if that part
exists while the whole does.13 With these notions in mind, we can now list
three possible metaphysical accounts of emergence.

https://doi.org/10.1086/341056 Published online by Cambridge University Press

https://doi.org/10.1086/341056


    345

14. McLaughlin (1992) makes a good case that the British Emergentists fall victim to
the second of these problems.

15. Humphreys says “. . . when emergence occurs, the lower level property instancecs
go out of existence in producing the higher level emergent instances” (1997, 10). It is
not at all clear that his paradigm example involving nonseperable states requires this
extreme view, and at times he seems to suggest a less radical view that is more akin
to the third view that follows in the text above. He says just before the passage cited
above that “. . . i-level property instances no longer have an independent existence
within the fusion.” Paul Teller is a proponent of this less radical view with regards to
nonseparable states (Teller 1989). Thanks to an anonymous referee for suggesting this
reference to us.

Prototypical Emergence: Every whole consists entirely of contem-
poraneous parts that have independent characterizations. There is
some suitable criterion for distinguishing between part-whole rela-
tions that are emergent from those that are resultant. As an example,
the British Emergentists introduced the criterion of additivity of forces
to distinguish between emergent and resultant wholes. In their view,
wholes involving additive forces are resultant, and those involving
non-additive (or “configurational”) forces are emergent. A problem
facing proponents of this line is that it is difficult to come up with an
appropriate criterion that avoids trivializing the notion of emergence
by countenancing either too wide (virtually everything) or too narrow
(nothing) as the range of emergent phenomena.14

Radical Emergence: Only resultant wholes have contemporaneous
parts, emergent wholes do not. Emergent wholes are produced by a
fusion of certain entities that can be likened to parts. However, these
part-like entities cease to exist upon fusion—they only exist when the
whole does not, and vice versa. The view that Humphreys sketches
can perhaps be regarded as a case in point. He attempts to implement
this view by regarding fusion as the formation of a nonseparable state,
though it is not clear at all that this is a suitable example.15 Indeed,
the problem facing proponents of this line is that it is difficult to come
up with any example of a natural phenomenon that actually satisfies
this model of emergence.

Dynamic Emergence: Emergent wholes have contemporaneous
parts, but these parts cannot be characterized independently from
their respective wholes. Emergent wholes are produced by an essential,
ongoing, interaction of its parts. These are the central features of the
new view sketched above; the nonseparable Hamiltonian constitutes
an essential ongoing interaction.

By adopting the third metaphysical view, we can say that it does not make
sense to talk about reducing an emergent whole to its parts, since the parts
are in some sense constructs of our characterization of the whole. There
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16. The term “identical particles” is being used in the physicists’ sense. There are two
distinct types of identical particles: fermions (spin-1/2 particles such as electrons) and
bosons (spin-1 particles such as photons). There is an ongoing controversy in the phil-
osophical literature as to whether the existence of such particles constitutes a violation
of Leibniz law.

17. It is not necessary to adopt such a radical ontological thesis with regards to identical
particles. Van Fraassen explains that each boson may be individuated by its history
(an empirically vacuous non-quantum characteristic), and that fermions may be
individuated by value-states that involve only quantum quantities (meaning that the
eigenvector-eigenvalue link is rejected). See §§11–12 of van Fraassen 1991. This inter-
pretive approach (involving hidden-variables) runs against the grain of most philoso-
phers of physics.

is no genuine explanation produced by referring to a drug’s dormative
powers when trying to account for how that drug puts patients to sleep.
Similarly, there is no genuine mereological reduction of X produced by a
description of the parts of X that makes an ineliminable reference to X.

The third view falls somewhere between the first and the second. Emer-
gent wholes do have parts, as in the first view but not in the second;
however, there is no characterization of these parts that is independent of
that of the whole to which it belongs, unlike the first view. The third view
is less extreme than the second in that an essential interaction of the parts
causes them to go out of existence, as in the second view; but new parts
arise that are dependent on the whole, unlike the second view.

In almost every case of relevance, “identical particles” are involved.16

Special care must be taken whenever this is so. Emergent wholes are pro-
duced by an essential ongoing interaction of its parts, and when that in-
teraction ensues the independent particles become dependent. But, if some
of those parts are identical particles, then they cannot be identified with
those that existed prior to the interaction, as a result of Pauli’s exclusion
principle. That is to say, the independent parts cease to exist and the de-
pendent parts come into existence. The density operators for identical
parts will be identical, except for the label. The label assists in indicating
how many identical particles are present in the system, but it does not
denote a particular particle in the set of identical particles. Margenau puts
it this way: “. . . number becomes an observable despite the indistinguish-
ability of the numbered entities” (1950, 441).17
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