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Abstract:An assessment is made of the ability of the CoupledModel Intercomparison Project 5 (CMIP5)
models to represent the seasonal cycles of biogeochemistry of the Ross Sea over the late twentieth
century. In particular, sea surface temperature, sea ice concentration, surface chlorophyll a, nitrate,
phosphate and silicate, and the depth of the seasonal thermocline (measuring vertical mixing) are
examined to quantify the physical-biogeochemical capabilities of each model, and to provide for
‘ranked’ model ensembles. This permits critical assessment of modelled Ross Sea biogeochemical
cycling, including less well observed variables such as iron and vertically integrated primary production.
The assessment enables determination of model output confidence limits; these confidence limits are used
to examine future model scenario projections for consideration of potential ecosystem changes. The
future scenarios examined are the representative concentration pathways rcp4.5 and rcp8.5. Our study
suggests that by the end of the twenty-first century under rcp4.5 and/or rcp8.5 that there will be average
increases in sea surface temperature, surface chlorophyll a, integrated primary production and iron,
average decreases in surface nitrate, phosphate and silicate, and relatively large decreases in the depth of
the seasonal thermocline and percentage coverage by sea ice in the Ross Sea.
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Introduction

Numerical model output for the Ross Sea can provide for
an integrated picture of potential relationships between
the oceanic flow and the distributions of species. As
highlighted by Brandt et al. (2014), regular and routine
measurement of both the physical and biological
components of the Ross Sea remains an on-going
challenge. This is particularly apparent for the deepest
waters of the Ross Sea, not only in terms of establishing
present day baselines but also in terms of the impact of
likely future stresses (changes in temperature,
acidification, phytoplankton deposition, etc.) on the
deep sea communities.

In this context, Constable et al. (2014) used projections
from the most recent generation of Earth System Models
(ESMs) in the Coupled Model Intercomparison Project 5
(CMIP5) to look at potential future impacts on Southern
Ocean biota. This is the first time that ESMs have been
included in the CMIP archive, and clearly represents a
first step for ESM development. Nevertheless, the ESMs
in CMIP5 do include projections via representative
concentration pathways (rcps), and the future
projections rcp4.5 and rcp8.5 (Moss et al. 2010, van
Vuuren et al. 2011) are used in particular to look at
potential changes over the coming century.

Bowden et al. (2011) also used a combination of model
output and satellite data to explain observed variations in
benthic communities between isolated seamounts in the
Ross Sea. Smith et al. (2014b) used output from a climate
model (ECHAM5 in CMIP3, predecessor of the MPI
models in CMIP5) to produce regional downscaled
solutions for the present day and the future for the Ross
Sea region. As shown later, the broad range of solutions
of the climate scale models for the Ross Sea suggests care
has to be taken in translating processes at the relatively
large scale of these models to the regional scales.
Nevertheless, it is apparent that the climate models are
useful for filling in the observational gaps for the present
day, to provide for hypothesis testing for species
distributions, and then to extrapolate forward for future
scenarios.

Part of the focus here on the Ross Sea is motivated by
initiatives aimed at producing an ‘end to end’ trophic
model of the region in order to try to identify potential
impacts of, for example, fishing and/or future changes in
climate on the Ross Sea ecosystem. Such a trophic/
foodweb model is reported by Pinkerton & Bradford-
Grieve (2014) building on earlier developments by
Pinkerton et al. (2010). The base of the trophic model is
determined by the phytoplankton, and the integrated or
net primary production (Intpp or NPP), i.e. the amount of
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carbon produced per square metre per day over the
Ross Sea.

As Pinkerton & Bradford-Grieve (2014) note, ‘the
importance of phytoplankton in the Ross Sea is clear and
changes to the magnitude or characteristics (e.g. spatial
patterns, seasonal progression and/or prymnesiophyte–
diatom balance) of Ross Sea phytoplankton are likely to
have considerable consequences for regional ecosystem
structure and function’. Therefore, it is critical to provide
best estimates of phytoplankton and NPP distributions
(both seasonally and spatially) for the present day, and
under future pathways. In this context, we seek to provide
guidance on the best estimates of these parameters from
the CMIP5 models.

The Ross Sea part of the Southern Ocean is also known
to be the most productive. In their synthesis of Southern
Ocean primary production from satellite data and in situ
measurements, Arrigo et al. (2008) note values of between
13 and 237mmol C m-2 d-1 from 95 samples over the Ross
Sea. The synthesis is then used to build up annual primary
production rates over the 1997–2006 satellite period, the
main summaries given in tables 4 & 5 in Arrigo et al.
(2008). The results show that of the total mean production
over the Southern Ocean shelves of 66.1 Tg C yr-1, by far
the largest proportion, at 35% of that total, comes from
the Ross Sea shelf.

In terms of model assessment, Bopp et al. (2013) looked
at ecosystem stressors in global CMIP5 projections, and
tried to place a measure of ‘robustness’ on the model
predictions. From their fig. 14 it is apparent that the Ross
Sea region is not assigned robust indicators for changes in
sea surface temperature (SST), surface pH, Intpp and sub-
surface O2. Anav et al. (2013) also analysed CMIP5
ESMs to assess their representation of the present day
land and ocean carbon cycles, and proposed a set of
metrics to determine a ranked set of the models. They
noted that their analysis focused on variables central to

carbon fluxes, and that other variables (such as
chlorophyll a (hereafter chlorophyll) concentration)
could be used in such an assessment. They also noted
that ‘there is a level of subjectivity in all such assessments,
partly due to the variables chosen and partly from the
choice of observational data’ and suggest that ‘users of
the CMIP5 models need to assess each model
independently for their regions of interest, against those
variables that are important for their specific subject of
research’. Their analysis is based on a pdf-derived skill
score, which they suggest enables a quantification of
model ability to simulate ranges of behaviour including
the mean, interannual variability and trend, but that these
measures are not necessarily ‘definitive’.

Cabré et al. (2014) provide for a complementary
analysis to those of Anav et al. (2013) and Bopp et al.
(2013) by looking at the full suite of CMIP5 ESMs in the
context of quantifying model predictions regarding
changes to global primary and export production. Their
analysis considers a number of physically based
ecological biomes to divide up the globe, and a multi-
model averaged biome map at the bottom of their fig. 2
shows the Ross Sea included within a ‘marginal sea ice
biome’ (light green). Their analysis uses a bootstrap
statistical technique to assess the significance of future
trends in the multi-model mean fields, and hence get a
measure of the most consistent signal from the model
output. They also note (parallel to Anav et al. 2013) that
further work is needed to obtain improved metrics for
robustness in such multi-model assessments.

Boyd et al. (2015) use rotated factor analysis to
examine projections from one of the CMIP5 ESMs
(model 2, CESM1BGC, in Table I) in order to expose
regional variations across the globe of the potential
impact of biologically important multi-stressors. The
analysis shows complex regional responses, thus
providing not only for important interpretation of multi-
stressor impacts within the models themselves, but also
providing guidance toward field and laboratory
experimental design. Clearly, the advent of the CMIP5
ESMs presents a challenge to attribution and verification
in the marine biological context.

The main aim of this study was to try to place some
confidence limits on the CMIP5 ESMs by examining their
representation of the present day state of the Ross Sea
compared to climatological datasets and in situ
observations. These confidence limits can provide advice
on the probable changes to the Ross Sea induced by the
rcps. Present day and scenario model output can then be
used to drive the lower levels of the foodweb models for
more complete trophic assessments of the present day state,
and further potential future impacts. Our analysis
complements that of Anav et al. (2013), Bopp et al. (2013),
Boyd et al. (2015) and Cabré et al. (2014) by attempting to
provide a ranking for the model biogeochemical outcomes

Table I. CMIP5 Earth System Models used in this study with their
respective biogeochemical (BGC) models and the primary macro-
nutrients included in each BGC model.

Model
number Model BGC model NO3 PO4 SiO3 Fe

1 CANESM2 CMOC ✓ x x x
2 CESM1BGC BEC ✓ ✓ ✓ ✓
3 CMCC-CESM PELAGOS ✓ ✓ x ✓
4 CNRM-CM5 PISCES ✓ ✓ ✓ ✓
5 GFDL-ESM2G TOPAZ2 ✓ ✓ ✓ ✓
6 GFDL-ESM2M TOPAZ2 ✓ ✓ ✓ ✓
7 GISS-E2-H-CC NOBM ✓ x ✓ ✓
8 GISS-E2-R-CC NOBM ✓ x ✓ ✓
9 HadGEM2-CC Diat-HadOCC ✓ x ✓ ✓
10 HadGEM2-ES Diat-HadOCC ✓ x ✓ ✓
11 IPSL-CM5A-LR PISCES ✓ ✓ ✓ ✓
12 IPSL-CM5A-MR PISCES ✓ ✓ ✓ ✓
13 IPSL-CM5B-LR PISCES ✓ ✓ ✓ ✓
14 MPI-ESM-LR HAMOCC5.2 ✓ ✓ ✓ ✓
15 MPI-ESM-MR HAMOCC5.2 ✓ ✓ ✓ ✓
16 MRI-ESM1 MRI.COM3+NPZD ✓ ✓ x x
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Fig. 2. Monthly mean surface chlorophyll from SeaWiFS 1997–2005 (mg Chl m-3, left column) and sea ice concentration (% conc.,
right column) from HadISST (Rayner et al. 2003) for 1976–2005 for November to March over region ROSS (see Fig. 1). Note the
non-uniform scale for chlorophyll. Black contour lines show bathymetry at 1000 and 3000m.

Fig. 1. Colour contour plot of the bathymetry (in metres) of the Ross Sea region (from GEBCO, www.ngdc.noaa.gov/mgg/gebco).
The area within the black outline, referred to as region ROSS, is used for the data and model analysis, and spans 171°E to 160°W
in longitude and 76°S to 69°S in latitude. Region ROSS samples the Ross Sea continental shelf (< 1000m) and off-shelf waters
(> 1000m) of the Ross Sea environs. Red contours show isobaths at 1000 and 3000m.
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for the Ross Sea region alone, and thus limits on the future
predictions implied by the rcps critical to the kind of
assessments reported by Constable et al. (2014).

The observational datasets and the numerical models
to be analysed, along with the specific metrics, are
detailed in the next section. The model analysis is
divided into present day comparisons and model
projections, followed by a comprehensive summary.

Methods: models and observational data

Here 16 full ESMs from a total of ~ 60 models from 28
modelling centres whose output has been archived for
CMIP5 are analysed. These 16 ESMs span a range of
biogeochemical components and pathways. Table I lists
the models used in this study, with a reference to their
biogeochemical model and an indication of the primary
macronutrients that each model simulates. Note that not
only do the biogeochemical models vary in their levels of
sophistication, but also in the number of nutrients they
contain.

As biogeochemistry is a focus here, it is relevant to list
the biogeochemical models for reference. There are nine
biogeochemical models sampled since CNRM-CM5
(model 4 in Table I) and the IPSL models (11, 12 and
13) use PISCES (Aumont & Bopp 2006, Séférian et al.

2013). CANESM2 (1) uses CMOC (Zahariev et al. 2008,
Christian et al. 2010), CESM1BGC (2) uses BEC (see
Moore et al. 2013 and references therein), CMCC-CESM
(3) uses PELAGOS (Vichi et al. 2007), the GFDL models
(5 and 6) use TOPAZ2 (see the technical description
provided in the supplement to Dunne et al. 2013), the
GISS models (7 and 8) use NOBM (Gregg 2008), the
Hadley Centre models (9 and 10) Diat-HadOCC (Palmer
& Totterdell 2001) and the MPI models (14 and 15)
HAMOCC5.2 (Ilyina et al. 2013). The biogeochemical
model used in MRI-ESM1 (model 16) is outlined in
Adachi et al. (2013), combining their dynamical
component MRI.COM3 with a NPZD ecosystem model
based on Oschlies (2001).

The 16 models have been assessed in terms of their
representation of ‘present day climate’ or ‘historical
period’, taken to be the period 1976 to 2005 of the model
run. This assessment is used to give likelihood estimates on
the model future projections under rcp4.5 and rcp8.5, and
as a way to construct boundary conditions for downscaling
of future states in a high resolution numerical model.
At the time of writing the 16 models used had archived
most (but not quite all) of the relevant physical and
biogeochemical variables for the historical period and
for both the rcps that we were able to post-process
and analyse. Gaps in model output (in particular

Fig. 3a. Satellite (black circles) and
individual model monthly mean area
averaged surface chlorophyll (mg Chl m-3).
b. Monthly mean area averaged
surface chlorophyll (mg Chl m-3)
expanded around satellite data.
c. Averaged November to March
historical period root-mean-square
error (RMSE) ( + ) and bias (BIAS)
(model data) (□) metrics of area
averaged surface chlorophyll per model.
BIAS greater/less than zero plotted
green/blue. The red triangle shows
mean model area average surface
chlorophyll, the red vertical line shows
one standard deviation about the mean.
The horizontal dashed line shows the
November to March satellite average
(0.75mg Chl m-3). Inner/outer ensemble
and multi-model mean/median
ensemble metrics (see text) are labelled
I/O and Mn/Md, respectively.
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associated with the rcps) arise because either the run was
never performed, or the relevant model output was never
archived.

Figure 1 contours the bathymetry of the Ross Sea
region. Within this region a common domain for analysis
of observations and model output is shown as the black
bounding box. This bounding box has been chosen to
capture some of the shelf and deeper waters associated
with the Ross Sea gyre, and to avoid inter-model coastline
inconsistencies associated with differences in the
horizontal spatial resolution between the CMIP5
models, particularly along the front of the Ross Ice Shelf
(noting that the present generation of CMIP5 models do
not explicitly represent ice shelf processes). We refer to
this common domain as region ROSS.

Figure 2 shows monthly mean averages for November
to March over region ROSS of surface chlorophyll (left
column) derived from the satellite data averaged over
1997–2005 from the NASA Sea-viewing Wide Field-
of-view Sensor (SeaWiFS) instrument (with the white
regions missing data), and sea ice concentration (SIC)
(right column) from HadISST (Rayner et al. 2003)
averaged over 1976–2005. According to the
supplementary evidence of Pinkerton & Bradford-
Grieve (2010) to the Pinkerton et al. (2010) paper, there
is evidence of satellite underestimate of the in situ
chlorophyll in the Ross Sea by ~ 13%, and this is
accounted for in the satellite data used here. Further, the
range of interannual variation is between 0.4 and 1.6 of
each monthly mean estimate, and these values are used as
a variance measure around the mean. The ROSS region
overlaps with that used by Pinkerton & Bradford-Grieve
(2014), and the present estimates of average surface
chlorophyll over the respective domains are similar to
those reported in the Pinkerton & Bradford-Grieve (2010)
supplementary evidence.

Compared to the surface chlorophyll images from
the wider domain in fig. 2 in Smith et al. (2012), region
ROSS misses some of the high intensity signals on the
shelf close to the Ross Ice Shelf, but does capture the large
amplitude chlorophyll over the shelf break to the east of
the domain in December and January. Monthly area
averages (not shown) reveal that ROSS matches the
timing of the Smith et al. (2012) domain seasonal cycle,
except perhaps underestimating early growth in
November, and captures ~ 60% of the total integrated
surface chlorophyll.

The HadISST monthly averages for SIC show the
emergence of the Ross Sea polynya from November into
January, followed by the wider expanse of open water
formation in February and the subsequent regrowth from
the east and south of region ROSS during March.
Compared to fig. 2 in Smith et al. (2012) it is again
apparent that region ROSS is capturing most of the
important SIC seasonal signal.

Data representing the historical period are from the
World Ocean Atlas (WOA) 2009 database for salinity
(Antonov et al. 2010), temperature (Locarnini et al.
2010), and the nutrients nitrate, phosphate and silicate
(Garcia et al. 2010), and SIC from HadISST (Rayner
et al. 2003). These sources provide spatial and temporal
best fits to in situ observations, and are, therefore, best
suited for assessment of climate model output in which we
are looking for a statistical comparison of spatial and
seasonal patterns averaged over the historical period,
rather than a direct match to the individual observations
themselves.

For themajor circulation factors in the Southern Ocean
we consider the Drake Passage transport, and the peak
circulation in the sub-polar gyres. Values for the present

Fig. 4. Score and ranking per variable for all models in region
ROSS (see Table I). The numbers plotted are the model
numbers. Models are ranked by score from lowest (the
‘best’) to highest (‘worst’). ‘All’ combines the scores from all
of the other variables to obtain an estimate of an overall
ranking.
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day Drake Passage transport are obtained from long-term
measurements (as indicated by Meijers et al. (2012) in
their analysis of CMIP5 models in reference to
Cunningham et al. (2003) and Griesel et al. (2012))
spanning a range of 134–164 Sv. The peak sub-polar Ross
Sea and Weddell Sea gyre transports are from the
Southern Ocean State Estimate (SOSE; Mazloff et al.
2010) numerical model re-analysis, estimated to be 20 and
40 Sv, respectively.

For an assessment of Intpp there are sparse (in space
and time) in situ measurements of primary production in
the Ross Sea (see e.g. Pinkerton & Bradford-Grieve
2010 and references therein), but these have typically
been used to derive products for global estimates of Intpp.
One such product is the so-called vertically generalized
production model (VGPM; Behrenfeld & Falkowski
1997), and output from the VGPM has been used here
to construct monthly means and standard deviations over
region ROSS. Following Pinkerton & Bradford-Grieve
(2010) we adjust the VGPM values by calibration of area
averaged surface chlorophyll values, and independent
estimates of annual production rates. These adjustments
account for the different areas of the Ross Sea over which
the estimates are made. In particular Pinkerton &
Bradford-Grieve (2010) use the annual production rate
of 140 g Cm-2 y-1 fromArrigo & vanDijken (2004) for the
latter’s study area (region AVD, which is largely over the
continental shelf). Over the growing season, the satellite
data suggests that the ratio of average chlorophyll
concentration between regions ROSS and AVD is 0.47,
thus we estimate a calibrated annual production over
region ROSS to be 66 g C m-2 y-1. Over region ROSS,
VGPMpredicts the annual production to be ~ 55gCm-2 y-1,
hence we scale the VGPM values by 1.2 (VGPM*).

Throughout this paper the spatial grids associated with
the reference datasets are used as templates for the
assessment. Model output is interpolated to the spatial
grid associated with the data, and then the relevant
statistics are computed. This interpolation can lead to
some misrepresentation of the true model coastline,
especially where there are relatively large geometrical
and spatial differences between the data and model grids.
For example, the native horizontal resolution of WOA
2009 is 1° on a regular longitude-latitude grid, while the
model grids can have local resolutions smaller or larger,
and can be on less standard projections (such as rotated
poles etc.). Also, the satellite observations of surface
chlorophyll over the Ross Sea contain missing data due to
a mixture of low solar elevation, cloud and sea ice (as is
apparent in Fig. 2). Any of the computed statistics will be
based on the target grid and missing data distribution of
the respective reference dataset.

Our statistics are based on area averages, such that the
area average Aave of function Ai, where i labels the grid
points within the area, is:

Aave =
X

AidSi =
X

dSi; (1)

where dSi is the grid cell area, and the summation is over
all grid cells with non-missing data. The results will be
presented in terms of area averages of the observed and
model values of interest (e.g. temperature, salinity, etc.),
the standard deviation of the values of interest
(if available), a root-mean-square error (RMSE)
measure of the difference between the observed and
model values, and a bias (BIAS) taken as (model–
observations).

Fig. 5. Examples of model monthly mean
sea ice concentration (SIC) for
comparison with HadISST for models
a. 5, b. 2, c. 10 and d. 4. The black and
blue/yellow curves are for model and
HadISST monthly mean and variance
over the period 1976–2005, respectively.
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Present day comparisons

From the satellite data, monthly mean area average
surface chlorophyll values have been calculated for region
ROSS and are plotted on Fig. 3a & b as black circles.
Note that the month ordering has been rotated to put the
Ross Sea summer months at the middle of the axis. The
monthly mean values over the historical period from each
of the models are also plotted as the coloured lines.
Models 3, 14 and 15 have been plotted in red (model 3

distinguished by a peak shifted to March), the remainder
in blue to green. An anomalously low solution associated
with model 1 is the dark blue curve. In Fig. 3a the scale
accommodates the excess amplitudes predicted by models
14 and 15. The scale is reduced to focus on most of
the model solutions in Fig. 3b. Most of the models predict
a peak in surface chlorophyll between November and
January, with evidence of chlorophyll into April and
May beyond that suggested by the light-limited satellite
data.

Fig. 6. Spatial pattern of model monthly mean sea ice concentration for December to March for comparison with HadISST for
models 5, 2, 10 and 4.
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Figure 3c plots the RMSE and BIAS per model
(numbered 1–16) averaged over November to March
compared to the satellite data. Our assessment of
(relative) model skill will consider spatial (over region
ROSS) and temporal (over a season) components
combined, and so estimation of the time dependence of
the spatial errors in terms of RMSE and BIAS represents a
potential set of metrics (e.g. see the discussion in Jolliff
et al. (2009) about alternatives). In this instance, despite the
poor solution of model 1, the RMSE and BIASmetrics are
not the worst; however, the actual solution ofmodel 1 is the
worst as the average value (the red triangle) is well below
the data average (the horizontal dashed line). Models 14
and 15 are clear outliers, with excess RMSE and BIAS.
Model 3 has a relatively low overall BIAS but not so
favourable RMSE, despite its misplaced peak.

Using the RMSE and BIAS from Fig. 3c, we can rank
all models for surface chlorophyll. For example, the
RMSE value is used to rank the models from 1 to 16, and
similarly for the BIAS; the ‘score’ for each model is then
simply taken to be the average of its RMSE and BIAS
positions, and the lower the overall score the better
ranked the model is taken to be. The result of this process
is shown in the top frame (labelled ‘Chl’) in Fig. 4. As
expected, models 14 and 15 rank the worst, while the
relatively anomalous models 1 and 3 rank tenth and
ninth, respectively. The next six frames repeat the exercise
for SST, the surface nutrients nitrate (NO3), phosphate
(PO4) and silicate (Si), an estimate of a mixed-layer depth
(or depth of the seasonal thermocline, DST), and SIC.
A mixed-layer depth is defined to be the depth at which
the potential density changes by 0.125 kg m-3 from its
value at the surface (the potential density reconstructed from
the monthly mean model values of potential temperature
and salinity) and shares properties with the ‘mixed-layer
depth’, although given the monthly mean model output
timescales is perhaps better associated with a seasonal scale

than the relatively rapid dynamics of a ‘mixed-layer depth’
(hence our reference to it as DST). As an indicator of
overall performance using the chosen metrics, the bottom
frame (‘All’) combines the previous seven rankings by
simply summing and averaging each model’s ranking per
variable, noting that this mixes physical with
biogeochemical variables and models do not all sample
the same number of parameters (see the comparably short
PO4 list, for example). This combined ranking shows that
models 14 and 15 rank the worst. Therefore, we have
defined an initial set of ‘worst fit’models to form an ‘outer
ensemble’ which are models 14 and 15, to which models 1
and 3 are added due to their poor surface chlorophyll
representations. The remaining models define an ‘inner
ensemble’ of the better ranked models.

Examination of the SIC ranking in Fig. 4 reveals that the
models split into four approximate groupings. The first
group (for the best models) comprises models 5, 8, 1 and 7;
these models capture the annual seasonal cycle well, and of
these, model 5 captures the February minimum amplitude
the best. The annual cycle of area averaged SIC over region
ROSS for model 5 is shown in Fig. 5a as the black curve,
with the vertical lines indicating the model standard
deviation. The HadISST data is shown as the blue circles,
with the yellow band the data standard deviation. Apart
from slight underestimates in March and April, model 5
matches the data well. Models 2 and 3 form the next group,
with good timing of the annual cycle compared to the data
(see Fig. 5b formodel 2), but neither of thesemodels capture
the summer minimum values. Models 10, 9, 11 and 6 form
the next group, each typically capturing the February
minimum well, but tending to grow too slowly over the
autumn period (see Fig. 5c for model 10). The final (worst)
group comprises models 4, 12, 15, 14 and 13; these models
have too little sea ice over the summer period, and also
underestimate the autumn regrowth, typically not matching
the data until around July (see Fig. 5d for model 4).

Fig. 7. Normalized satellite (blue-yellow),
inner ensemble (red), outer ensemble
(green), and Mn (black circles) and Md
(black triangles) monthly mean area
averaged surface chlorophyll (mg Chl m-3)
for region ROSS for a. all models and
b. excluding outer ensemble models 3,
14 and 15, and anomalously low model
1. Normalization factor is shown at the
top left. The yellow band shows satellite
variance about the mean using 0.4 and
1.6 estimates, and the blue lines show
satellite variance based on satellite
spatial standard deviations per month.
Coloured bands for the model
ensembles indicate ensemble spread
(see text) about ensemble mean.

334 GRAHAM RICKARD & ERIK BEHRENS

https://doi.org/10.1017/S0954102016000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0954102016000122


The monthly mean spatial patterns of SIC for models 5,
2, 10 and 4 are shown in Fig. 6 for comparison with the
HadISST data in Fig. 2. In December, model 5 shows a
relatively weak Ross Sea polynya emergence in about the
right location. In January the opening continues, but tends
to spread too far to the east compared to the data, resulting
in the relative underestimate in February. The regrowth
arises in March with development along the southern part
of the domain. For model 2, the Ross Sea polynya
emergence and subsequent development matches well the
data spatial patterns (in particular the east to west gradient
over region ROSS), but as expected the area averaged
model amplitude tends to be too high. For model 10, the
Ross Sea polynya over region ROSS is not apparent, with
the seasonal progression suggesting sea ice thinning at the
northern part of the domain. In February and March,
model 10 resembles model 5. Finally for model 4, its Ross
Sea polynya compares well with the data in December (but
perhaps a little underestimated to the east), but clearly has
too little ice over region ROSS in January and February,
and only a very weak recovery in March.

Note that the rankings for SIC in Fig. 4 reflect both the
model temporal and spatial patterns (in Figs 5 & 6,
respectively). Consistent with our ‘outer ensemble’
models, 14 and 15 fall into the last grouping for SIC,
whereas models 1 and 3 rank relatively well.

The reconstructed surface chlorophyll monthly means
from the inner (red) and outer (green) ensembles are shown
in Fig. 7. Figure 7a includes the outer ensemble solution,
while Fig. 7b does not. For each ensemble the spread about
the mean is shown, where the spread is taken to be the
average root-mean-square distance between the ensemble
members and the ensemble mean. The blue curve with
circles shows the mean satellite data, with the yellow band
the satellite variance about the mean based on the 0.4 and
1.6 estimates. For comparison, the blue lines are area
averaged values obtained from subtracting or adding the

monthly mean standard deviation patterns from the
SeaWiFS data over the period 1997–2005 to the mean,
giving surface chlorophyll lower and upper bound
estimates, respectively. The yellow band spans the blue
lines, suggesting a consistent measure of the surface
chlorophyll interannual variability. In Fig. 7a, the impact
of models 14 and 15 to the outer ensemble peak and the
shift due to model 3 are clear. In Fig. 7b, it is apparent that
the inner ensemble solution matches the data well in terms
of the timing with the model spread spanning the data
variance, but the ensemble mean is typically in excess of the
data mean, at least based on these area average metrics.

Also shown in Fig. 7 are the multi-model (using all 16
models) mean (‘Mn’, black circles) and median (‘Md’,
black triangles) values. For surface chlorophyll, Mn is
typically in excess of the data mean, especially in
December and January, whereas Md tracks the data
mean very well except for a slight underestimate in
October. The respective RMSE and BIAS scores for the
inner, outer, and Mn and Md are included in Fig. 3 for
comparison with the individual models. The outer and
Mn metrics are in excess of the inner and Md equivalents,
and as expected Md represents the mean the best (the red
triangle), whereas the inner ensemble produces the lowest
BIAS score and a relatively lower RMSE value.

The low sample size of 16 models, coupled with the
uncertainty regarding the statistical distribution of the
model solutions, makes choosing the relevant parametric
(or loosely ‘mean-based’) or non-parametric (or loosely
‘median-based’) statistical sampling problematic. The
assessment and ranking process for the inner and outer
ensembles is both for estimation of the ‘best’ solution and
for trying to pick apart why we might need to exclude the
outer models from such estimation. For surface
chlorophyll the inner solution provides for a working
‘best’ solution (based on our metrics) compared to Mn
and Md, and we shall use the inner solution to base

Fig. 8. Reconstructed ensembles from Fig. 7 for December, January and February (rows top to bottom). a., d. & g. Satellite mean,
b., e. & h. inner ensemble and c., f. & i. outer ensemble for surface chlorophyll (mg Chl m-3). Note that the colour scale is
extended to 6.4mg Chl m-3 compared to the scale in Fig. 2.
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assessments of the other variables. However, for reference
we shall also provide the Mn and Md values for each
variable in the historical data comparisons and also for
consideration of model future projections.

Examples of monthly mean surface chlorophyll
patterns are presented in Fig. 8 for December to
February (from top to bottom). The left column is the
satellite data from Fig. 2, the middle column is the inner
ensemble, and the right the outer ensemble (noting that
the colour scale has been extended to 6.4mg Chl m-3 to
accommodate the larger outer ensemble amplitudes). For
each month the missing data (white) are from the satellite
record. For December the inner ensemble (Fig. 8b)
captures the elevated band of surface chlorophyll
around 75°S in the data (Fig. 8a), with the band
extending from the Ross Sea continental shelf, across
the shelf break and into the deeper water (the black lines
showing the 1000 and 3000m isobaths). The inner
ensemble also captures the northward reduction seen in
the data across the continental shelf, with the lower
amplitudes arising on the shelf break around 173°E, 71°S.
The mean is typically in excess of the data mean but
within the variance (see Fig. 7) comprising underestimates
along 75°S compared to the data, and overestimates
elsewhere, but the spatial pattern is consistent with the
data. In comparison, the outer ensemble (Fig. 8c) shows
the enhanced chlorophyll signature across most of the
shelf, which is even more extensive by January (Fig. 8f)
compared to the data (Fig. 8d) and the inner ensemble
(Fig. 8e). As before, the inner ensemble tends to
underestimate the chlorophyll signature to the south,
and overestimate elsewhere, but overall the spatial
pattern is consistent with the data and results in the
reasonable fit in Fig. 7. By February all three frames
(Fig. 8g–i) show a similar average surface chlorophyll
amplitude across the entire domain (both on and off the
shelf). In fact it might be argued that the outer ensemble
(Fig. 8i) is capturing some of the higher chlorophyll
signatures in the data across the shelf slope for February
better than the inner ensemble, but the metric in Fig. 7
cannot readily distinguish the solutions.

Figure 8 provides evidence that the inner models are
able to represent the seasonal and spatial surface
chlorophyll variations and patterns seen in the data.
This suggests that our discrimination on the basis of the
metrics used here is enabling a satisfactory fit from the
available models. The data contains fine scale features not
captured by the models (for example, Fig. 8g shows a

number of off-shelf high intensity chlorophyll regions not
seen in either of the ensembles), and this is perhaps not
surprising given the relatively coarse spatial resolution of
the models. Nevertheless, the evidence suggests the inner
models are representing some of the important broader
scale signatures seen in the data.

Figure 9 compares monthly means, medians and
variances for SST (Fig. 9a), SIC (Fig. 9b), the surface
macronutrients nitrate (Fig. 9c), phosphate (Fig. 9d),
silicate (Fig. 9e) and iron (Fig. 9f), and the integrated (or
net) primary production (Fig. 9g). The reference area
averages are plotted as blue circles, with yellow bands for
the temporal variance where available. As before the
inner and outer ensemble means are red and green,
respectively, and Mn and Md are the black circles and
triangles, respectively. Each graph is normalized to the
value at the bottom left of each frame. For SST, the
scaling factors are the minimum, maximum and range.

Figure 9a for SST shows that all the ensembles overlap
fairly closely over most of the year, except from January
to March where the outer ensemble (green) suggests
relatively cooler SSTs. Compared to the SST data, the
model solutions represent the seasonal cycle well,
but overestimate the summer SST peak by ~ 1.5°C
(a signature perhaps of the tendency toward a warm bias
in the Southern Ocean in CMIP5 coupled models as
highlighted in, for example, Wang et al. (2014)). The
lower bounds of the outer ensembles do a better job of
approximating the summer SST data, and this is reflected
in the good ranking scores for models 1 and 3 in Fig. 4. All
ensembles tend not to capture some of the coldest average
temperatures seen in the data.

For SIC in Fig. 9b all the ensembles capture the timing
of the summer minimum in February, but have the
tendency to underestimate the regrowth from March to
June seen in the data. The SIC rankings in Fig. 4 show
that the outer ensemble models are distributed across the
positions and when combined with the different responses
illustrated in Fig. 5 result in the range of solutions being
blended together.

In Fig. 9c for surface nitrate the anomalously low
model 3 solution has been omitted from the outer
ensemble. The mean values of each ensemble follow the
seasonal cycle and amplitude of the data relatively well,
capturing the dip in the December to March period, and
returning to similar winter values. However, the spread in
the outer ensemble solution is clearly much broader
than that of the inner model, perhaps reflecting the

Fig. 9. Normalized area averaged monthly mean plots over region ROSS for a. sea surface temperature (SST), b. sea ice concentration
(SIC), c. nitrate (NO3), d. phosphate (PO4), e. silicate (Si), f. dissolved iron (DFe) and g. integrated primary production (Intpp) for
the historical period. Data are indicated by the blue circles or squares, and the estimated data variance is represented by the yellow
band (where available). Inner, outer, Mn and Md ensemble values are shown by red, green, black circles and black triangles,
respectively. Normalization factors are shown at the bottom left. For SST the factors are minimum, maximum and range,
respectively. Outlier model 3 was removed from the NO3 and PO4 outer ensembles, and similarly model 1 for Intpp.
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comparative spreads in the surface chlorophyll solutions
in Fig. 7a, and that the outer ensemble models are ranked
the worst for nitrate (see Fig. 4). Further, the inner
ensemble spread is relatively narrow, and its mean
matches Mn and Md across the seasonal cycle.

For surface phosphate in Fig. 9d the anomalously large
model 3 solution has been excluded from the outer
ensemble, and also note (see Table I) that model 1 does
not include phosphate in its biogeochemical model. The
result is a distinct separation between the inner and outer

Fig. 10a., c. & e. Variable rankings per model and overall score (black circles), with respective ordered overall ranking in b., d. & f.
using 1976–2005 averages. Model number is plotted on b., d. & f. Symbols A, R and W show Drake Passage transport, peak Ross
Sea gyre transport and peak Weddell Sea gyre transport rankings, respectively. Symbols C, T, N, P, S, D and I label surface
chlorophyll, sea surface temperature, nitrate, phosphate and silicate, depth of the seasonal thermocline, and sea ice concentration,
respectively, for root-mean-square error (RMSE) (red) and bias (BIAS) (green) rankings.
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ensembles, with the outer ensemble amplitude lower than
the inner ensemble, especially over the summer months.
Note that the relatively narrow outer ensemble band
presumably results from the outer ensemble models 14
and 15 being from the same modelling centre. Compared
to surface nitrate, the phosphate solution for the inner and
Md ensembles overlap each other and the data fairly well
over the seasonal cycle, but Mn is too large (reflecting the
influence of anomalously large model 3 phosphate).

Figure 9e is for surface silicate. Again the inner and
outer ensembles are distinct for most of the year, but this
time the inner ensemble lies below the outer band, and
there is slightly more of an overlap between August to
November. As before for surface nitrate, the inner, Md
and Mn ensembles match the datapoints remarkably well
across the seasonal cycle. Note that the outer ensemble
is again only composed of models 14 and 15, as
models 1 and 3 do not cycle silicate explicitly in their
biogeochemical models.

Note that Smith et al. (2014a) observe that the surface
macronutrients nitrate, phosphate and silicate are
generally not depleted during the phytoplankton
growing season, and the inner model solutions are
consistent with this picture with proportionately small
drops in their values over November to March compared
to the rest of the year (see Fig. 9c–e).

The models also predict other less well observed
variables of interest biogeochemically. For example,
Fig. 9f shows a reconstruction of the monthly mean area
average surface iron concentration. Unlike the other
nutrients, all the iron ensembles strongly overlap, each
ensemble having a seasonal maximum around October
and a minimum in January. In the absence of an iron
climatology for the oceans, comparison can be made with
the in situ data compilation of Tagliabue et al. (2012), in
particular their fig. 4c for the upper 100m iron seasonal
cycle for their Ross Sea region (a broad zone spanning
155°W to 180°W and south of 45°S) based on 240
observations over 1990–2008. The median values from
fig. 4c are plotted here as the blue circles, and the first and
third quartiles provide the yellow band about each value.
Figure 9f shows that the models have a summer minimum
in January of ~ 2×10-1 nM, and rising over the year to
mean peak values of ~ 7× 10-1 nM in September to
October. Apart from February, the data compilation and
model amplitudes match reasonably well, even though the
respective regions do not overlap too well. However, the
models are insistent on a drop in values over the summer,
at variance with the observations. Tagliabue et al. (2012)
suggest that their elevated February values might be
associated with sampling near fast ice melt as opposed to
indicating a seasonal trend; they also note that the ‘low
throughout the period October to January’ might well
signal utilization of winter reserves, which is consistent
with the model realization. Also, the model iron is only

for the model surface layer (typically ~ 10m) compared
to the upper 100m values from Tagliabue et al. (2012).

For Intpp (mmol C m-2 d-1) in Fig. 9g the anomalously
low model 1 has been omitted from the outer ensemble.
The blue circles with the yellow variance are the averages
from VGPM*, and the blue squares with yellow variance
are the values from Pinkerton & Bradford-Grieve (2010)
for their larger domain that also includes the relatively
less productive northern waters. In January, the outer
ensemble solution (green) has the highest production rate,
consistent with the elevated surface chlorophyll in Fig. 7a.
Compared to VGPM* all ensemble solutions fall below
the November data estimates, but for December to
March the inner, Mn and Md solutions compare well.
For comparison, the inner ensemble has an average
annual production rate for region ROSS of 60.7 g Cm-2 y-1

underestimating the 66 and 85g C m-2 y-1 from VGPM*
and Pinkerton & Bradford-Grieve (2010), respectively.

If the conditions determining the wider circulation in the
ROSS region are relevant to the biogeochemical outcomes
(and presumably they are) then Fig. 10a & b rank the
models based on major circulation characteristics in the
Southern Ocean, viz the transport in the Antarctic
Circumpolar Current (ACC), and the peak transports in
the Ross and Weddell Sea sub-polar gyres, with the
individual ranked transports plotted as the blue symbols
A, R and W, respectively. Best observational estimates of
the Drake Passage (ACC) transport, and the peak Ross
and Weddell gyre transports are centred around (149, 20,
40) Sv, respectively. Figure 10a shows the ranking of each
model per transport measure, and the black circle indicates
an overall score based on the radial distance from the
observed values. Figure 10b takes the overall scores and
now plots the individual models in rank order. The higher
the location of a symbol or the black circle, the lower the
confidence in the model estimate relative to the other
models in the sample. In this case, Fig. 10b shows that
model 2 provides the relatively best combined estimates of
the transport values, and model 8 relatively the worst; the
A/R/W rankings are clustered around low ranking values
for model 2, whereas model 8 has a moderate ranking
for W, but equal worst values for A and R. Model 1 from
the outer ensemble actually ranks well, whereas models
14 and 15 are at the lower end.

Figure 10c shows the rankings based on the RMSE
(in red) and BIAS (in green) scores for the surface
chlorophyll (C), temperature (T), nitrate (N), phosphate
(P), silicate (S), DST (D) and SIC (I). It is these individual
rankings per variable that were used to obtain Fig. 4. The
RMSE ranking per variable is plotted to the left of the
vertical dotted line locating each individual model, the
BIAS ranking to the right, with the black circle on the line
the overall model score as before. The overall score is
based on taking equal contributions from each variable.
Based on this combination of metrics, model 16 ranks
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well for nitrate, phosphate and DST, relatively poorly for
the chlorophyll bias (in green), but overall ranks the best
(although note that this model does not explicitly cycle
silicate or iron biogeochemically). In contrast, model 1,
that only cycles nitrate, scores poorly for the
biogeochemical components chlorophyll and nitrate,
and thus ranks as one of the weaker overall models.
Models 14 and 15 rank the lowest in Fig. 10d, and model
3 is in the outer ensemble as a result of its poor seasonal
solution for surface chlorophyll (see Fig. 3), even though
its ranking scores for SST and DST are relatively good.

Comparing Fig. 10b and 10d a degree of overlap
between the relative ranking of each model is apparent,
e.g. models 8, 14 and 15 rank poorly in both and suggest a
potential link between the wider dynamics and the
processes in the Ross Sea. However, this does not
explain all the rankings, e.g. models 1 and 16 swap their
relative rankings between these frames. The transport
estimates in Fig. 10a can be combined with the variables
in Fig. 10c to produce the ranking shown in Fig. 10e. As
before, each variable is assumed to contribute equally to
the overall score. This combined ranking confirms that
indeed the biogeochemical outcomes of models 14 and 15
are probably influenced by their relatively poor
representation of the large scale circulation, and as
Fig. 10a shows it is not their ACC transport that scales
poorly but rather the individual strengths of each of the
sub-polar gyres relative to the other models. On the other
hand, the dynamical solution of model 1 is relatively
good; therefore, perhaps in this case it is the
biogeochemical model that leads to relatively poor
outcomes for region ROSS. Comparing Fig. 10b and
10d it is apparent that the model ranking based on the
transport estimates alone (Fig. 10b) separates the model
ranking scores more widely than the relatively mixed
physical and biogeochemical rankings (Fig. 10d). In

terms of the combined estimate in Fig. 10f, it is perhaps
not surprising that models 8, 14 and 15 are the least well
ranked models. Models 1 and 3 end up with combined
rankings that place them toward the weaker end of the
ranking. Note that the equal weighting per variable
means that the wider spread in Fig. 10b is flattened
somewhat by the relatively more even spread of Fig. 10d.

Based on Fig. 10 and the preceding analyses, the
separation of the CMIP5 models into inner and outer
ensembles seems to have a degree of consistency. In
developing potential future physical and biogeochemical
downscaling for region ROSS, we would consider
excluding the outer models 3, 14 and 15, and model 1
due to its anomalously low surface chlorophyll, and use
the remaining models comprising the inner ensemble. The
metrics of RMSE and BIAS applied to area averaged
satellite chlorophyll estimates and surface nutrients from
WOA 2009 show that the inner ensemble is able to
capture the seasonal cycle rather well in both phase and
amplitude. This consistency also applies to the Intpp
values compared to the derived primary production
estimates that capture the phase well but perhaps
underestimate the total production. Surface iron and
SIC both show a degree of overlap between their
respective ensembles. Such an assessment is useful as
it allows a measure of confidence to be applied to the
model results, especially when considering model
reconstructions of relatively unobserved parameters
(such as Intpp and surface iron).

Another dynamical issue associated with CMIP5 model
representation of the Antarctic gyres has been recently
documented by Heuzé et al. (2013). Bottom water
formation around Antarctica for the present day is
associated with dense water creation on the continental
shelves that is then exported via shelf overflows to the
lowest levels of the Southern Ocean. The analysis of Heuzé

Fig. 11. Ensemble reconstruction for inner
(red), outer (green), and Mn (black
circles) and Md (black triangles) of
monthly mean area averaged depth of
the seasonal thermocline (DST) in
metres (plotted logarithmically) for
region ROSS. Data values are shown as
blue circles. a. Includes all models,
while b. excludes models 14 and 15
from the outer ensemble, and models 8,
9, 10, 11 and 12 from the inner
ensemble.
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Fig. 12. Model projections 1, 2, 3 and 4 (see text) for region ROSS for changes in a. sea surface temperature (SST), b. depth of the
seasonal thermocline (DST), c. sea ice concentration (SIC), d. surface chlorophyll, e. integrated primary production (Intpp),
f. dissolved iron (DFe), g. nitrate (NO3), h. phosphate (PO4), i. silicate (Si) relative to model historical average. Red/green
indicates inner/outer models, the symbols represent individual model values and the circles represent ensemble averages. Black
circles/triangles show Mn/Md changes, respectively. Symbols left of each DST centreline show reduced model sets (see text).
Vertical dashes separate projections. Horizontal dashes locate zero change. T and K show the 95% confidence level significance
for Student’s t-test and Kolmogorov-Smirnov test, respectively.
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et al. (2013) finds that 10 of the 15 CMIP5 models do
indeed generate dense water on the shelf but that this water
is not exported to depth, i.e. none of the models analysed
generate Southern Ocean bottom water in the expected
manner. Around half of the models actually generate
bottom water via in situ convection events rather than the
advective pathway occurring in nature. Furthermore, some
of these models have relatively extensive convection zones
which seem to result in strong sea ice seasonality, so that
there appear to be dynamical ramifications of this
anomalous process. Any process that exaggerates the
seasonality is likely to impact the biogeochemical
response; in that context we examine the rankings we
have obtained in the light of the Heuzé et al. (2013) results.

From figs 1 and 2 in Heuzé et al. (2013), the models that
overlap with our study are 1, 4, 5, 6, 8, 10, 11 and 14. Using
their metrics, models 1, 5, 10, 11 and 14 are found to have an
acceptable bottom temperature representation compared to
present day climatology, while models 1, 5, 8, 10 and 14 do
likewise for bottom density. However, Heuzé et al. (2013)
note that models 5, 6 and 8 have extensive areas of deep
convection, while models 10, 11 and 14 exhibit this
convection only within the sub-polar gyres. Model 4 has
no apparent deep convection resulting in too light dense
water; model 1 behaves similarly, but nevertheless seems to
support deep water of about the right properties. It is
apparent that our choice of inner and outer ensembles
cannot simply be explained on the basis of the dynamical
properties detailed by Heuzé et al. (2013), mirroring the
earlier consideration of the ACC and gyre transports.

As an example of the potential impact, Fig. 11 plots the
logarithm of the monthly mean area averaged DST for
region ROSS. In comparison to the data (in blue), all
ensembles have significantly larger depths from June to
November, and underestimates compared to the data
from December to March, but each accurately captures
the timing of the summer minimum in January. The
spread in model solutions is also large, particularly for the
inner ensemble (in red) from April to November. The
individual models 8, 9, 10, 11 and 12 from the inner
ensemble, and models 14 and 15 from the outer ensemble
have maximum DSTs in excess of 800m; if we consider
these models as DST outliers and exclude each from their
respective ensembles we get the solutions shown in
Fig. 11b. Now the model variance in both the inner and
outer ensembles is reduced over winter, and their mean
values are much closer to the data in October to
November and May to June. In the summer, the
reduced outer ensemble now more accurately tracks the
data compared to the inner, Mn and Md which remain
relatively low over this period.

In comparison with the properties discussed by Heuzé
et al. (2013), our DST outlier models 10, 11 and 14 overlap
in terms of their DST perhaps capturing deep convection
within the sub-polar gyres. Models 5 and 6 have extensive

convection regions, but not over region ROSS, whereas
model 8 does, hence a DST outlier. Also, models 1 and 4
are not excluded, consistent with not being DST outliers.
On this basis, models 14 and 15 might point to their
inclusion in the outer ensemble because of these convective
events; however, this is clearly not the complete
explanation for model 1. Therefore, a metric based on the
Heuzé et al. (2013) results does not uniquely determine a
best-fit biogeochemical ensemble for region ROSS. The
reason may simply be that potentially anomalous DST
dynamics in the winter do not have a detrimental impact
on the summer biogeochemical growth, and are perhaps
associated with the relatively narrow range of DST
solutions obtained by all of the models in summer.

Model projections

Given some confidence intervals on the model solutions
for the ‘present day’, it is possible to look at future
predictions based on the so-called rcp scenarios
associated with the IPCC 5th Assessment Round (AR5).
Here rcp4.5 and rcp8.5 are examined for their changes
relative to the present day means for averages over the
periods 2036–2055 and 2081–2100, such that projections
1 and 2 are for rcp4.5 for 2036–2055 and 2081–2100, and
projections 3 and 4 are for rcp8.5 for 2036–2055 and
2081–2100, respectively. Examples of such future
predictions are plotted in Fig. 12 for the area average
changes over region ROSS relative to the present day.
Inner and outer models are shown in red and green,
respectively, with each individual model number labelled.
The inner and outer ensemble average changes are shown
by the red and green circles, respectively, and the black
circles and triangles show the respective changes in Mn
and Md. Individual model numbers have been spread
horizontally to make them more readable, and vertical
dotted lines separate the different projections.

Along the bottom of each frame in Fig. 12 there are
symbols ‘T’ and ‘K’ plotted for each projection. The presence
of T shows that the distribution of all of the model changes
for that projection lead to a mean that is different from zero
at the 95% confidence level based on the two-sided Student’s
t-test. The presence of K shows that > 50% of the individual
model interannual 20 year time series over the projection
period differs from that model’s interannual 30 year time
series over the historical period at the 95% confidence level
based on the two-sample Kolmogorov-Smirnov (K-S)
statistical test. The K-S test is used here to give a measure
of how distinct the respective interannual time series are, and
50% is arbitrarily chosen to flag that there are indeed a
proportion of the samples contributing to the overall mean
that are measurably distinct.

For the SST changes in Fig. 12a it is clear that (apart from
model 4 that suggests quite large SST changes, and model 5
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which has reductions in SST for projections 1 to 3) the
ensemble averages actually predict quite similar outcomes, in
particular something like a 0.15°C annual average SST rise
by the end of the century for projections 1 to 3, with 0.3 and
0.4°C rises for projection 4 forMd andMn, respectively. All
projections are labelled with T, and 1 and 4 with K, showing
a good degree of statistical significance.

For DST in Fig. 12b the mean annual values down the
projection centreline use the full ensembles, while those to
the left of each centreline are based on reduced ensembles
from eliminating models with excessive convection. In all
cases there is considerable shallowing of DST. For the full
ensemble there are decreases of ~ 50–70m over projections
1 to 3, with decreases of between 90 and 190m for
projection 4. For the reduced ensembles the changes
remain significant but smaller, ranging between 70 and
130m of shallowing. Note that all projections pass the
Student’s t-test (and are labelled with T). Note that for DST
we have not presently reconstructed the full annual time
series using the annual average three dimensional values of
temperature and salinity, hence cannot yet ascribe a K
confidence level.

The SIC changes in Fig. 12c have a similar pattern to
DST, with projections 1 to 3 showing annual average
reductions of 2–7%, with the reduction rising to 8–11% for
the ensemble means for projection 4. Again all projections
are labelled with T and projection 4 with K. Note that
model 4 has excessive reductions in concentration
consistent with the projected changes in SST.

In comparison, Fig. 12d for surface chlorophyll shows
a relatively distinct separation between the inner and
outer ensemble projections, with the outer ensemble
suggesting increases of ~ 0.18mg Chl m-3 by the end of
the century compared to much smaller increases from the
inner ensemble of ~ 0.04mg Chl m-3 (with some of the
inner ensemble models predicting a potential fall). These
contrast with the annual average value of ~ 0.31mgChlm-3

for the present day (see Fig. 7). The overall average suggests
increases in surface chlorophyll in the future, most
significantly for projection 4.

Figure 12e for changes in Intpp shows another broad
spread in model solutions, with both sets of ensemble
members generally showing increases of Intpp for each
projection, although there are some predicting future
decreases. By the end of the century both averages
of the ensembles predict annual Intpp increases of
~ 1.7mmol C m-2 d-1 compared to the annual average
derived for the present day (see Fig. 9g) of ~ 16.0mmol C
m-2 d-1. Consistent with the surface chlorophyll changes,
Intpp is most significant for projection 4.

The individual model solutions for surface iron in
Fig. 12f show a broad spread in predicted changes. As a
result, only projection 2 passes the t-test to suggest changes
statistically different from zero, and in this case the average
increase is 0.03 nM compared to the present day model

average of ~ 0.325 nM. In comparison, the changes in the
surface macronutrients nitrate, phosphate and silicate in
Fig. 12g, h & i, respectively, show a general decline toward
the end of the century, with the falls in the inner ensemble
average values larger than those of the outer ensemble
(especially for model 13). In particular for projection 4, the
surface nitrate, phosphate and silicate fall by ~ 2, 0.1 and
5mmol m-3 compared to present day annual averages of
26.4, 1.8 and 60.2mmol m-3 (from Fig. 9c–e), respectively.
Note that phosphate passes theK-S test for each projection,
but not the Student’s t-test, whereas the nitrate and silicate
changes are significant over nearly all projections.

The projection 4 changes based on the ensemble mean
(the black circles in Fig. 12) are summarized in Table II as
the annual means. The seasonal means are based on
November to March over the growing season. Also listed
are the respective means from the data, and the percentage
change over projection 4 compared to the data mean. The
DST changes are from the reduced ensembles that
eliminate the excessive convection models, since the latter
models are generally found to stop convecting over this
period (see De Lavergne et al. 2014) and provide
exaggerated changes relative to present day. The overall
picture is of significant area averaged warming over region
ROSS, consistent with decreases in sea ice cover and DST
(hence increased stratification). The biological response is
an area averaged increase in surface chlorophyll and Intpp,
accompanied by reductions in surface nitrate, phosphate
and silicate, and relatively smaller increases in surface iron.

Summary

Using metrics based on area averages over a region
covering the Ross Sea sector of the Southern Ocean

Table II. Model projection 4 changes per variable presented in terms of
the annual mean (the black circle in Fig. 12) and a seasonal mean
(November to March). Integrated primary production data values from
VGPM* (see text).

Projection 4
change Data mean Percent change

Variable Annual Seasonal Annual Seasonal Annual Seasonal

SST (°C) 0.4 0.85 -1.42 -1.14 28.0% 75.0%
DST (m) -70.0 -34.0 74.0 66.0 -95.0% -52.0%
SIC (% conc.) -10.0 -10.7 74.3 46.5 -13.5% -23.0%
Chl (mg Chl m-3) 0.08 0.37 0.31 0.75 26.0% 49.3%
Intpp
(mmol C m-2 d-
1)

2.0 4.3 16.0 38.4 12.5% 11.2%

DFe (nM) 0.01 0.0024 0.2 0.43 5.0% 0.6%
NO3 (mmol m-3) -2.0 -2.4 26.4 24.8 -7.6% -9.7%
PO4 (mmol m-3) -0.16 -0.16 1.92 1.83 -8.3% -8.7%
Si (mmol m-3) -7.0 -7.7 60.7 59.9 -11.5% -12.9%

DFe: dissolved iron, DST: depth of the seasonal thermocline, Intpp:
integrated primary production, SIC: sea ice concentration, SST: sea
surface temperature.
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(referred to as region ROSS), a consideration of the
biogeochemical outcomes of 16 CMIP5 models has been
made compared to present day observations. The
consideration suggests that we can split the models into an
inner and outer ensemble based on their general
representation of the observations (where the inner
ensemble models provide for a measurably better fit to the
data, in this case with a focus on the surface chlorophyll,
compared to the outer ensemble models). Models MPI-
ESM-LR (14) and MPI-ESM-MR (15) perform relatively
poorly overall compared to all the other models for region
ROSS, model CANESM2 (1) is the next poorest in the
overall ranking (with an anomalously low amplitude of
surface chlorophyll and consequently low Intpp), while
model CMCC-CESM (3) generates anomalously large
surface phosphate, low nitrate and has a shifted peak in
surface chlorophyll. These models 1, 3, 14 and 15 are,
therefore, referred to as our outer ensemble.

The selection of these ensembles clearly separates the
solutions for the surface chlorophyll and the surface
nutrients nitrate, phosphate and silicate; the inner
ensembles overlap the observations in amplitude and
phase, whereas the outer ensembles tend to be clearly
either too high or too low. For surface iron, the ensemble
solutions tend to overlap each other with comparable
seasonal cycles, whereas for the Intpp the outer ensemble
again overestimates in comparison to the derived
estimates (perhaps consistent with the model surface
chlorophyll solutions). For many of the variables
analysed, the mean inner model solution overlaps the
multi-model median solution; however, this is not as
clear for surface chlorophyll, and times in the seasonal
cycle where the solutions diverge for the DST and
Intpp.

Comparison with larger scale dynamical properties of
the sub-polar gyres suggests that there is no single answer
that explains the split into our inner and outer ensembles.
Certainly models MPI-ESM-LR (14) andMPI-ESM-MR
(15) produce sub-polar gyral transports in excess of many
of the other models, which may explain their relatively
poor overall performance. However, this is not apparent
for models CANESM2 (1) and CMCC-CESM (3), so it
may fall to the nature of their specific biogeochemical
models rather than purely dynamics. This is also true for
the recent analysis by Heuzé et al. (2013) looking at the
model generation of bottom water; poor performance can
partly explain our ensemble choice, but not completely.
Indeed, our analysis of DST in region ROSS shows that
anomalous DST models overlap the inner and outer
ensembles, so again it would appear no single factor is at
play in discriminating the models.

This is also true for the SIC comparisons, with
members of the outer ensemble distributed right across
the rankings. Recent papers have examined the broader
Antarctic sea ice representation in the CMIP5 models, in

particular Turner et al. (2013) and Shu et al. (2015). The
general conclusion is that the models do a generally poor
job of realizing the satellite observations of SIC over the
historical period, with nearly all the models showing a
decreasing trend in SIC at variance with the observations.
Shu et al. (2015) expand the 18 models studied by Turner
et al. (2013) to encompass 49 of the CMIP5 models, and
come to much the same conclusions regarding SIC, but do
find that some of the models are able to capture observed
trends in sea ice extent (SIE) and volume (SIV) over the
satellite period. The models that Shu et al. (2015) found to
perform best from our sample are 3, 8, 12, 13 and 15 for
SIE, and 3, 12, 13 and 15 for SIV. A comparison with our
SIC regional rankings in Fig. 4 shows models 3 and 8
performing relatively well, but models 12, 13 and 15 not
so. On this basis, the dynamical link between the broader
Antarctic sea ice representation and the other variables is
not immediately apparent. This does not mean, of course,
that there is not a link, rather the present analysis and set
of metrics is not able to reveal it.

On average the ensembles predict an increase in surface
temperature over region ROSS by the end of the century,
with smaller relative increases in surface chlorophyll and
potentially larger relative increases in Intpp based on
rcp4.5 and rcp8.5. For surface chlorophyll and Intpp, the
average ensemble solutions do tend to separate, with the
outer ensemble projected changes typically larger than
those of the inner ensemble. There are also significant
reductions in SIC and DST over this period.

However, the model generation of open ocean
convection in the Southern Ocean models described by
Heuzé et al. (2013) certainly complicates the analysis of
predictive skill from the CMIP5 models. As has recently
been highlighted by Stössel et al. (2015), models
are sensitive to the distribution of freshwater over the
SouthernOcean (in particular in enablingmodel behaviour
to transition from convecting to non-convecting),
consolidating similar results found in the studies of
Martin et al. (2013) and Pierce et al. (1995), for example.
Stössel et al. (2015) found that improved ACC transport in
their model was also probably linked to changes in the
Southern Ocean density and meridional density gradients
(again with reference to the work of Martin et al. (2013)
and Pierce et al. (1995)). Furthermore, the analysis of
future CMIP5 model pathways by De Lavergne et al.
(2014) suggests that models described by Heuzé et al.
(2013) that are deemed convecting for the historical period
will actually transition to non-convecting mode under
rcp8.5. Our results, while not attributing any specific cause,
certainly show how such competition between modelled
Southern Ocean processes is consistent with a wide
spectrum of CMIP5 model responses.

An assessment of this sort is generally focused around a
particular outcome, in this case the seasonal
biogeochemical response. However, the complete

344 GRAHAM RICKARD & ERIK BEHRENS

https://doi.org/10.1017/S0954102016000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0954102016000122


solution is of course ‘coupled’ via all the dynamical
variables that drive the system (and more so for a polar
region such as the Ross Sea because of the direct
cryospheric influences such as sea ice, ice shelves, etc.).
Thus in reality the production of a ‘best’ ensemble solution
will require a broader inclusion of forcing influences.
Nevertheless, the assessment here shows that separation
into inner and outer biogeochemical ensembles can result
in a consistent solution compared to the observations
within the biogeochemical context (and some of the
dynamical constraints). This discrimination is then useful
in assessing both less well observed present day variables
(e.g. in situ iron and Intpp), and placing confidence
levels on future projections. Bopp et al. (2013) in their
conclusions urge continuation of inter-model comparisons
such as these due to the high uncertainties in model
projections, as well as signalling caution when attempting
downscaling with single CMIP5 model outputs. This study
is intended to progress such work, and although we may
not be able to explain the processes resulting in our choices
and conclusions, the results as we have them are useful in
providing guidance on the quality of the regional solutions
from the CMIP5 models for the Ross Sea.
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