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Abstract. We refine the recent local rigidity result for the marked length spectrum
obtained by the first and third author in [GL19] and give an alternative proof using the
geodesic stretch between two Anosov flows and some uniform estimate on the variance
appearing in the central limit theorem for Anosov geodesic flows. In turn, we also
introduce a new pressure metric on the space of isometry classes, which reduces to
the Weil–Petersson metric in the case of Teichmüller space and is related to the works
[BCLS15, MM08].

Key words: Anosov geodesic flows, rigidity, marked length spectrum
2020 Mathematics Subject Classification: 37C27, 37D35, 37D40 (Primary)

1. Introduction
Let M be a smooth closed n-dimensional manifold. We denote by M the Fréchet manifold
consisting of smooth metrics on M. We denote by Mk,α the set of metrics with regularity
Ck,α , k ∈ N, α ∈ (0, 1). We fix a smooth metric g0 ∈ M with Anosov geodesic flow ϕg0

t

and define the unit tangent bundle by Sg0M := {(x, v) ∈ TM | |v|g0 = 1}. Recall that
being Anosov means that there exists a flow-invariant continuous splitting

T (Sg0M) = RX ⊕ Es ⊕ Eu,
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Geodesic stretch, pressure metric and marked length spectrum rigidity 975

such that

‖dϕg0
t (w)‖ ≤ Ce−λt‖w‖ for all w ∈ Es , for all t ≥ 0,

‖dϕg0
t (w)‖ ≤ Ce−λ|t |‖w‖ for all w ∈ Eu, for all t ≤ 0,

where the constants C, λ > 0 are uniform and the norm here is the one induced by the
Sasaki metric of g0. Such a property is satisfied in negative curvature.

1.1. Geodesic stretch and marked length spectrum rigidity. The set of primitive free
homotopy classes C of M is in one-to-one correspondence with the primitive conjugacy
classes of π1(M , x0) (where x0 ∈ M is arbitrary). When g0 is Anosov, there exists a unique
closed geodesic γg0(c) in each primitive free homotopy class c ∈ C (see [Kli74]). This
allows us to define the marked length spectrum of the metric g0 by

Lg0 : C → R+, Lg0(c) = �g0(γg0(c)),

where �g0(γ ) denotes the g0-length of a curve γ ⊂ M computed with respect to g0. The
marked length spectrum can alternatively be defined for the whole set of free homotopy
classes, but it is obviously an equivalent definition. Given c ∈ C, we will write δg0(c) to
denote the probability Dirac measure carried by the unique g0-geodesic γg0(c) ∈ c.

It was conjectured by Burns and Katok [BK85] that the marked length spectrum of
negatively curved manifolds determines the metric up to isometry in the sense that two
negatively curved metrics g and g0 with the same marked length spectrum (namely Lg =
Lg0 ) should be isometric. Although the conjecture was proved for surfaces by Croke and
Otal [Cro90, Ota90]) and in some particular cases in higher dimension (for conformal
metrics by Katok [Kat88] and when (M , g0) is a locally symmetric space by the work
of Hamenstädt and of Besson, Courtois and Gallot [BCG95, Ham99]), it is still open in
dimension higher than or equal to 3 and open even in dimension 2 in the more general
setting of Riemannian metrics with Anosov geodesic flows. The same type of problems
can also be posed for billiards, and we mention recent results on this problem by Avila, De
Simoi and Kaloshin [ADSK16] and De Simoi, Kaloshin and Wei [DSKW17] for convex
domains close to ellipses (although the Anosov case would rather correspond to the case
of hyperbolic billiards). Recently, the first and last author obtained the following result on
the Burns–Katok conjecture.

THEOREM 1.1. (Guillarmou and Lefeuvre [GL19]) Let (M , g0) be a smooth Riemannian
manifold with Anosov geodesic flow, and further assume that its curvature is non-positive
if dimM ≥ 3. Then there exists k ∈ N depending only on dimM and ε > 0 small enough
depending on g0 such that the following statement holds: if g ∈ M is such that ‖g −
g0‖Ck ≤ ε and Lg = Lg0 , then g is isometric to g0.

One of the aims of this paper is to further investigate this result from different
perspectives: new stability estimates and a refined characterization of the condition under
which the isometry may hold. More precisely, we can relax the assumption that the two
marked length spectra of g and g0 exactly coincide to the weaker assumption that they
‘coincide at infinity’ and still obtain the isometry. In what follows, we say thatLg/Lg0 → 1
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976 C. Guillarmou et al

when

lim
j→+∞

Lg(cj )

Lg0(cj )
= 1, (1.1)

for any sequence (cj )j∈N of primitive free homotopy classes such that limj→∞ Lg0(cj ) =
+∞, or equivalently limj→∞ Lg(cj )/Lg0(cj ) = 1, if C = (cj )j∈N is ordered by the
increasing lengths Lg0(cj ). We prove in Appendix A that Lg/Lg0 → 1 is actually
equivalent to Lg = Lg0 . As a consequence, by [GL19], if (1.1) holds and if ‖g − g0‖Ck <
ε for some small enough ε > 0, then g is isometric to g0. If we restrict ourselves to metrics
with the same topological entropy, the knowledge of Lg(cj )/Lg0(cj ) for a subsequence so
that the geodesic γg0(cj ) equidistributes is even sufficient; see Theorem 2.9.

We develop a new proof strategy, different from [GL19], which relies on the intro-
duction of the geodesic stretch between two metrics. This quantity was first introduced
by Croke and Fathi [CF90] and further studied by the second author [Kni95]. If g is
close enough to g0, then by Anosov structural stability, the geodesic flows ϕg0 and ϕg

are orbit equivalent via a homeomorphism ψg , that is, they are conjugate up to a time
reparametrization

ϕ
g

κg(z,t)(ψg(z)) = ψg(ϕg0
t (z))

for some time rescaling κg(z, t). The infinitesimal stretch is the infinitesimal func-
tion of time reparametrization ag(z) = ∂tκg(z, t)|t=0: it satisfies dψg(z)Xg0(z) =
ag(z)Xg(ψg(z)) where z ∈ Sg0M and Xg0 (respectively, Xg) denotes the geodesic vector
field of g0 (respectively, g). The geodesic stretch between g and g0 with respect to the
Liouville (normalized with total mass 1) measure μL

g0
of g0 is then defined by

IμL
g0
(g0, g) :=

∫
Sg0M

ag dμ
L
g0

.

The function ag is uniquely defined up to a coboundary [dlLMM86] so that the geodesic
stretch is well defined. (Although this is only used in §5.2, we also point out that the
existence of the conjugacy ψg and of the reparametrization ag is actually global and one
need not assume that the two metrics are close. This is a very particular feature of the
geodesic structure. We refer to Appendix B for a proof of this fact.)

Since obviously 〈δg0(cj ), ag〉 = Lg(cj )/Lg0(cj ), we have

IμL
g0
(g0, g) = lim

j→∞
Lg(cj )

Lg0(cj )
,

if (cj )j∈N ⊂ C is a sequence so that the uniform probability measures (δg0(cj ))j∈N
supported on the closed geodesics of g0 in the class cj converge to μL

g0
in the weak

sense of measures. (The existence of the sequence cj follows from [Sig72, Theorem 1].)
In particular, Lg = Lg0 implies that IμL

g0
(g0, g) = 1 (alternatively, Lg = Lg0 implies that

ag is cohomologous to 1 by Livsic’s theorem). While being of interest in its own right, it
turns out that this method involving the geodesic stretch provides a new estimate which
quantifies locally the distance between isometry classes in terms of this geodesic stretch
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functional (below H−1/2(M) denotes the L2-based Sobolev space of order −1/2 and
α ∈ (0, 1) is any fixed exponent).

THEOREM 1.2. Let (M , g0) be a smooth Riemannian n-dimensional manifold with Anosov
geodesic flow and further assume that its curvature is non-positive if n ≥ 3. There exists
k ∈ N large enough depending only on n, some positive constants C, ε depending on g0

and Cn > 0 depending on n such that for all α ∈ (0, 1), the following statement holds:
for each g ∈ Mk,α with ‖g − g0‖Ck,α(M) ≤ ε, there exists a Ck+1,α-diffeomorphism ψ :
M → M such that

C‖ψ∗g − g0‖2
H−1/2(M)

≤ P
(

− J ug0
− ag +

∫
Sg0M

ag dμ
L
g0

)
+ Cn(IμLg0

(g0, g)− 1)2

≤ |L+(g)| + |L−(g)|
where J ug0

is the unstable Jacobian of ϕg0 , P denotes the topological pressure for the ϕg0

flow defined by (2.11), ag is the reparametrization coefficient relating ϕg0 and ϕg defined
above, and

L+(g) := lim sup
j→∞

Lg(cj )

Lg0(cj )
− 1, L−(g) := lim inf

j→∞
Lg(cj )

Lg0(cj )
− 1.

In particular, if (1.1) holds, then g0 and g are isometric.

Note that g need not have non-positive curvature in the theorem. We also remark that
the curvature condition on g0 can be replaced by the injectivity of the X-ray transform I2
on divergence-free symmetric 2-tensors, and similarly for Theorem 1.3 below. From the
proof one sees that the exponent k can be taken to be k = 3n/2 + 17.

Theorem 1.2 is an improvement over the Hölder stability result [GL19, Theorem 3]
as it only involves the asymptotic behavior of Lg/Lg0 or some natural quantity from
thermodynamic formalism. We insist on the fact that the new ingredient here is the stability
estimate in itself (the rigidity result is not new).

We also emphasize that one of the key facts to prove this theorem still boils down to
some elliptic estimate on some variance operator acting on symmetric 2-tensors, denoted
by �g0

2 in [GL19, Gui17]: indeed, we show that the combination of the Hessians of the
geodesic stretch at g0 and of the pressure functional can be expressed in terms of this
variance operator, which enjoys uniform lower bounds Cg0‖ψ∗g − g0‖H−1/2 for some
Cg0 > 0, at least once we have factored out the gauge (the diffeomorphism action by
pullback on metrics).

We also notice that in Theorem 1.2, although the H−1/2(M) norm is a weak norm,
a straightforward interpolation argument using that ‖g‖Ck,α ≤ ‖g0‖Ck,α + ε is uniformly
bounded shows that an estimate of the form

‖ψ∗g − g0‖Ck′ ≤ C(|L+(g)| + |L−(g)|)δ

holds for any k′ < k − n/2 and some explicit δ ∈ (0, 1/2) depending on k, k′ (C > 0
depending only on g0).
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1.2. Variance and pressure metric. The variance operator appearing in the proof of
Theorem 1.2 can be defined for h1, h2 ∈ C∞(M; S2T ∗M) satisfying the condition∫

M

Trg0(hi) dvolg0 = 0, (1.2)

for i = 1, 2 (see §2.3 for further details on tensor analysis) by

〈�g0
2 h1, h2〉 :=

∫
R

∫
SM

π∗
2h1(ϕ

g0
t (z))π

∗
2h2(z) dμ

L
g0
(z) dt ,

where z = (x, v) ∈ SM and, given a symmetric 2-tensor h ∈ C∞(M; S2T ∗M), we define
the pullback operator

π∗
2h(x, v) := hx(v, v).

The quadratic form 〈�g0
2 h, h〉 corresponds to the variance VarμL(π

∗
2h) for ϕg0

t with respect
to the Liouville measure of the lift π∗

2h of the tensor h to SM (see §2.5 and (2.5)). Note
that the trace-free condition (1.2) is equivalent to∫

SM

π∗
2h(x, v) dμL

g0
(x, v) = 0;

see §2.3. The integral defining �g0
2 then converges (in the L1 sense) by the rapid

mixing of ϕg0 (proved in [Liv04]). The operator �g0
2 is a pseudodifferential operator

of order −1 that is elliptic on divergence-free tensors (see [GL, GL19, Gui17]). As a
consequence, it satisfies elliptic estimates on all Sobolev or Hölder spaces (see Lemma
2.1). More precisely, there is Cg0 > 0 such that, for all h ∈ H−1/2(M; S2T ∗M) which is
divergence-free (that is, Trg0(∇g0h) = 0),

〈�g0
2 h, h〉 ≥ Cg0‖h‖2

H−1/2(M)
, (1.3)

provided g0 is Anosov with non-positive curvature (or simply Anosov if dimM = 2).
We show in Proposition 4.1 that g �→ �

g

2 is continuous with values in 
−1(M) and this
implies that for g0 a smooth Anosov metric (with non-positive curvature if dimM > 2),
(1.3) holds uniformly if we replace g0 by any metric g in a small C∞-neighborhood of g0.
This allows us to obtain a more uniform version of Theorem 1.2.

THEOREM 1.3. Let (M , g0) be a smooth Riemannian n-dimensional manifold with Anosov
geodesic flow and further assume that its curvature is non-positive if n ≥ 3. Then there
exist k ∈ N, ε > 0 and Cg0 depending on g0 such that for all g1, g2 ∈ M such that ‖g1 −
g0‖Ck ≤ ε, ‖g2 − g0‖Ck ≤ ε, there is a Ck- diffeomorphism ψ : M → M such that

‖ψ∗g2 − g1‖2
H−1/2(M)

≤ Cg0(|L+(g1, g2)| + |L+(g2, g1)|)
with

L+(g1, g2) := lim sup
j→∞

Lg2(cj )

Lg1(cj )
− 1.

In particular, if Lg1/Lg2 → 1, then g2 is isometric to g1.
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This result suggests defining a distance on isometry classes of metrics (here we mean
isometries homotopic to the identity) from the marked length spectrum by setting, for two
Ck,α metrics g1, g2,

dL(g1, g2) := lim sup
j→∞

∣∣∣∣ log
Lg1(cj )

Lg2(cj )

∣∣∣∣.
We have the following corollary of Theorem 1.3.

COROLLARY 1.4. The map dL descends to the space of isometry classes of Anosov
non-positively curved metrics and defines a distance near the diagonal.

We also define the Thurston asymmetric distance by

dT (g1, g2) := lim sup
j→∞

log
Lg2(cj )

Lg1(cj )
,

and show that this is a distance on isometry classes of metrics with topological entropy
equal to 1; see Proposition 5.4. This distance was introduced in Teichmüller theory by
Thurston in [Thu98].

The elliptic estimate (1.3) also allows us to define a pressure metric on the open set
consisting of isometry classes of Anosov non-positively curved metrics (contained in
M/D0 if D0 is the group of smooth diffeomorphisms isotopic to the identity) by setting,
for h1, h2 ∈ Tg0(M/D0) ⊂ C∞(M; S2T ∗M),

Gg0(h1, h2) := 〈�g0
2 h1, h2〉L2(M ,d volg0 )

.

We show in §3.3.1 that this metric is well defined and restricts to (a multiple of) the
Weil–Petersson metric on Teichmüller space if dimM = 2: it is related to the construction
of Bridgeman et al [BCLS15, BCS18] and McMullen [MM08], but with the difference
that we work here in the setting of variable negative curvature and the space of metrics
considered here is infinite-dimensional. In a related but different context with infinite
dimension, we note that the variance is used to define a metric on the space of Hölder
potentials by Giulietti et al [GKLM18] and its curvature is studied by Lopes and Ruggiero
[LR18].

We finally notice that, in the study of Katok entropy conjecture near locally
symmetric spaces, the variance was an important tool in the work of Pollicott and
Flaminio [Fla95, Pol94]. In that case, one can use representation theory to analyze this
operator.

2. Preliminaries
2.1. Notation. If H = Ck , Hs , C−∞ etc. is a regularity scale and E → M a smooth
bundle over a smooth compact manifold M, we will use the notationH(M; E) for sections
of E with regularity H, while if N is a smooth manifold, we use the notation H(M , N) for
the space of maps from M to N with regularity H.

https://doi.org/10.1017/etds.2021.75 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.75


980 C. Guillarmou et al

2.2. Microlocal calculus. On a closed manifold M, we will denote by 
m(M; V ) the
space of classical pseudo-differential operators of order m ∈ R acting on a vector bundle
V over M (see [GS94]; the operators could map sections of two distinct vector bundles,
but this will not be needed here). We recall that for fixed m ∈ R, this is a Fréchet space:
indeed, using a fixed smooth cutoff function θ supported in a small neighborhood of
the diagonal, a fixed system of charts, each A ∈ 
m(M; V ) has Schwartz kernel κA
that can be decomposed as θκA + (1 − θ)κA. For the (1 − θ)κA part we can use the
C∞(M ×M; V ⊗ V ∗) topology, while for χκA we can use the semi-norms of the full
symbols of χκA using the local charts and the left quantization in the charts. We also
denote by Hs(M) the L2-based Sobolev space of order s ∈ R, with norm given by fixing
an arbitrary Riemannian metric g0 on M. More precisely, denoting by � the non-negative
Laplacian associated to this metric, we define

‖f ‖Hs(M) := ‖(1 +�)s/2f ‖L2(M ,dvol),

and Hs(M) is the completion of C∞(M) with respect to this norm. This definition is
naturally extended to sections of vector bundles. What is important is that the spaces and
the norm (up to a scaling factor) do not depend on the choice of metric g0. For k ∈ N, α ∈
(0, 1), the spaces Ck,α(M) are the usual Hölder spaces and D′(M) will denote the space
of distributions dual to C∞(M). We will denote by 〈·, ·〉L2 the continuous extension of the
pairing

C∞(M)× C∞(M) � (f , f ′) �→
∫
M

f f̄ ′dvolg0 ,

to the pairing Hs(M)×H−s(M)→ C for each s ∈ R (and likewise for sections of
bundles).

2.3. Symmetric tensors and X-ray transform. In this subsection, we assume that the
metric g is fixed and that its geodesic flow ϕ

g
t is Anosov on the unit tangent bundle

SM of g. We denote by μL the Liouville measure, normalized to be a probability
measure on SM . For the sake of simplicity, we drop the index g in the notation. Given
an integer m ∈ N, we denote by ⊗mT ∗M → M , SmT ∗M → M the respective vector
bundle of m-tensors and symmetric m-tensors on M. Given f ∈ C∞(M; SmT ∗M), we
denote by π∗

mf ∈ C∞(SM) the canonical morphism π∗
mf : (x, v) �→ fx(v, . . . , v). We

also introduce the trace operator Tr : C∞(M; Sm+2T ∗M)→ C∞(M; SmT ∗M) defined
pointwise in x ∈ M by

Tr(f ) =
n∑
i=1

f (ei , ei , ·, . . . , ·),

where (e1, . . . , en) denotes an orthonormal basis of TM in a neighborhood of a fixed point
x0 ∈ M . Observe that, for f = ∑n

i,j=1 fij e
∗
i ⊗ e∗

j ∈ C∞(M; S2T ∗M) defined around x0,
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we have ∫
SM

π∗
2 f dμ

L
g =

∫
M

( ∫
SxM

π∗
2 f (x, v) dSx(v)

)
dvol(x)

=
n∑

i,j=1

∫
M

fij (x)

( ∫
SxM

vivj dSx(v)

)
dvol(x)

= Cn
n∑
i=1

∫
M

fii(x)dvol(x) = Cn
∫
M

Trg(f )dvol,

for some constant Cn = ∫
Sn−1 v

2
1dv depending on n = dimM . This justifies the claim that

the trace-free condition (1.2) was equivalent to the fact that the pullback of the symmetric
tensor to SM was of average 0.

The natural derivation of symmetric tensors is D := σ ◦ ∇, where ∇ is the Levi-Civita
connection and σ : ⊗mT ∗M → SmT ∗M is the operation of symmetrization. This operator
satisfies the important identity

Xπ∗
m = π∗

m+1D, (2.1)

where X denotes the geodesic vector field on SM . The operator D is elliptic [GL, Lemma
2.4] with trivial kernel when m is odd and one-dimensional kernel when m is even, given
by the Killing tensors cσ (g⊗m/2), c ∈ R (this is a simple consequence of (2.1) combined
with the fact that the geodesic flow is ergodic in the Anosov setting). We denote by 〈·, ·〉
the scalar product on C∞(M; SmT ∗M) induced by the metric g (see [GL, §2] for further
details). The formal adjoint of D with respect to this scalar product is D∗ = − Tr ◦∇. We
also denote by the same 〈·, ·〉 the natural L2 scalar product on C∞(SM) induced by the
Liouville measure μL. The formal adjoint of π∗

m with respect to these two scalar products
is denoted by

πm∗ : D′(SM)→ D′(M; SmT ∗M),

where D′ denotes the space of distributions, dual to C∞.
We recall that C, the set of free homotopy classes in M, is in one-to-one correspondence

with the set of conjugacy classes of π1(M , x0) for some arbitrary choice of x0 ∈ M (see
[Kli74]) and for each c ∈ C there exists a unique closed geodesic γ (c) ∈ c. We denote its
Riemannian length with respect to g by L(c) = �g(γ (c)). The X-ray transform on SM is
the operator defined by

I : C0(SM)→ �∞(C), If (c) = 1
L(c)

∫ L(c)

0
f (ϕt (z)) dt ,

where z ∈ γ (c) is any point. This is a continuous linear operator when �∞(C) is endowed
with the sup norm on the sequences. Then the X-ray transform Im of symmetric m-tensors
is simply defined by Im := I ◦ π∗

m. Using (2.1), we immediately have

{Dp | p ∈ C∞(M; Sm−1T ∗M)} ⊂ ker Im ∩ C∞(M; SmT ∗M). (2.2)
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Using the ellipticity of D, any tensor f ∈ C∞(M; SmT ∗M) can be decomposed uniquely
as a sum

f = Dp + h, (2.3)

with p ∈ C∞(M; Sm−1T ∗M) and h ∈ C∞(M; SmT ∗M) is such that D∗h = 0. We call
Dp the potential part of f and h the solenoidal part. The same decomposition holds
in Sobolev regularity Hs(M), s ∈ R, and in Ck,α(M) regularity, k ∈ N, α ∈ (0, 1). We
will write h = πker D∗f and the solenoidal projection πker D∗ := 1 −Dg�−1

g D
∗
g is a

pseudodifferential operator of order 0 [GL, Lemma 2.6] (here �g := D∗
gDg is the

Laplacian on 1-forms). The X-ray transform is said to be solenoidal injective (or s-injective
for short) if (2.2) is an equality. It is conjectured that Im is s-injective as long as the metric
is Anosov, but it is only known in the following cases:
• for m = 0, 1 [DS10];
• for any m ∈ N in dimension 2 [Gui17, PSU14];
• for any m ∈ N, in any dimension in non-positive curvature [CS98].
It is also known that ker Im/ ran D is finite-dimensional for general Anosov geodesic flow
(see [DS03, Theorem 1.5] or [Gui17, Remark 3.7]).

The direct study of the analytic properties of Im is difficult as this operator involves
integrals over the set of closed orbits, which is not a manifold. Nevertheless, in [Gui17],
the second author introduced an operator �m that involves a sort of integration of
tensors over ‘all orbits’, and this space is essentially the manifold SM . The construction
of �m : C∞(M; SmT ∗M)→ D′(M; SmT ∗M) relies on microlocal tools coming from
[DZ16, FS11], but a simpler definition that uses the fast mixing of the flow ϕt is given by

�m := πm∗(�+ 〈·, 1〉)π∗
m with

� : C∞(SM)→ D′(SM), 〈�f , f ′〉 := lim
T→∞

∫ T

−T
〈etXf , f ′〉 dt (2.4)

if 〈f , 1〉 = ∫
SM
f dμL = 0 and �(1) := 0. The convergence of the integral as T → ∞

is ensured by the exponential decay of correlations [Liv04] (but also follows from the
existence of the variance [KS90]). We can thus write, for 〈f , 1〉 = 0,

〈�f , f ′〉 =
∫
R

〈f ◦ ϕt , f ′〉L2(SM) dt .

We note the following useful properties of�, proved in [Gui17, Theorem 1.1]:
• � : Hs(SM)→ H−s(SM) is bounded for all s > 0;
• if f ∈ Hs(SM) with s > 0, then X�f = 0;
• if f and Xf belong to Hs(SM) for s > 0, then �Xf = 0. (In [Gui17], f is assumed

to be in Hs+1(SM), but one can reduce to the case f ∈ Hs(SM) by using a density
argument and [DZ19, Lemma E.45].)

As is well known (see; for example; [KS90, Proof of Proposition 1.2.]), we can make
a link between � and the variance in the central limit theorem for Anosov geodesic
flows. Let us quickly explain this fact by using the fast mixing of the flow. The variance
of ϕt with respect to the Liouville measure μL is defined for u ∈ Cα(SM), α ∈ (0, 1)

https://doi.org/10.1017/etds.2021.75 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.75


Geodesic stretch, pressure metric and marked length spectrum rigidity 983

real-valued, by

VarμL(u) := lim
T→∞

1
T

∫
SM

( ∫ T

0
u(ϕt (z)) dt

)2

dμL(z), (2.5)

under the condition that
∫
SM
u dμL = 0. We observe, since ϕt preserves μL, that

VarμL(u) = lim
T→∞

1
T

∫
SM

∫ T

0

∫ T

0
u(ϕt−s(z))u(z) dtdsdμL(z)

= lim
T→∞

∫ 1

0

∫
R

1[(t−1)T ,tT ](r)〈u ◦ ϕr , u〉L2 dr dt ,

where the L2 pairing is with respect to μL. By exponential decay of correlations [Liv04],
we have, for |r| large,

|〈u ◦ ϕr , u〉L2 | ≤ Ce−ν|r|‖u‖2
Cα

for some α > 0, ν > 0, C > 0 independent of u. Thus, by the Lebesgue theorem,

VarμL(u) = 〈�u, u〉, (2.6)

if 〈u, 1〉 = 0, where 1 denotes the constant function equal to 1, showing that the quadratic
form associated to our operator � is nothing more than the variance. For a symmetric
2-tensor h satisfying 〈h, g〉L2 = ∫

M
Trg(h) dvolg = 0, we have

∫
SM
π∗

2h dμ
L
g = 0 and

〈�2h, h〉 = 〈�π∗
2h, π∗

2h〉 = VarμL(π∗
2h).

We have the following properties for�m.
• �m is a positive self-adjoint pseudodifferential operator of order −1, elliptic on

solenoidal tensors; see [Gui17, Theorem 3.5] and [GL, Lemma 4.3].
• �mD = 0 and D∗�m = 0 (by [Gui17, Theorem 3.5] and Xπ∗

m−1 = π∗
mD).

• If Im is s-injective, then �m is invertible on solenoidal tensors in the sense that there
exists a pseudodifferential operator Q of order 1 such that Q�m = πker D∗ ; see [GL,
Theorem 4.7].

• Conversely, if �m|ker D∗ is injective, then Im is s-injective. Indeed, by [Gui17,
Corollary 2.8], if Imh = 0 then π∗

mh = Xu for some u ∈ C∞(SM) and thus �mh =
πm∗�Xu = 0.

In particular, using the spectral theorem, there is a bounded self-adjoint operator
√
�m on

L2 such that
√
�m

√
�m = �m. We add the following property, the use of which will be

crucial in this paper.

LEMMA 2.1. If (M , g) has Anosov geodesic flow and I2 is s-injective, there exists a
constant C > 0 such that, for all tensors h ∈ H−1/2(M; S2T ∗M),

〈�2h, h〉 ≥ C‖πker D∗h‖2
H−1/2(M)

.

Proof. In [GL, Theorem 4.4 and Lemma 2.2], the principal symbol of �2 was computed
and turned out to be

σ2 := σ(�2) : (x, ξ) �→ |ξ |−1πker iξ A
2
2πker iξ ,

https://doi.org/10.1017/etds.2021.75 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.75


984 C. Guillarmou et al

for some positive definite diagonal endomorphism A2 which is constant on both subspaces
S2

0T
∗M := {h ∈ S2T ∗M| Trg(h) = 0} and Rg = {λg ∈ S2T ∗M | λ ∈ R}. Here iξ is the

interior product with the dual vector ξ� ∈ TxM of ξ with respect to the metric. We intro-
duce the symbol b ∈ C∞(T ∗M) of order −1/2 defined by b : (x, ξ) �→ χ(x, ξ)|ξ |−1/2A2,
where χ ∈ C∞(T ∗M) vanishes near the 0 section in T ∗M and is equal to 1 for
|ξ | > 1, and define B := Op(b) ∈ 
−1/2(M; S2T ∗M), where Op is a quantization on
M. Using that the principal symbol of πker D∗ is πker iξ (see [GL, Lemma 2.6]), we
observe that �2 = πker D∗B∗Bπker D∗ + R, where R ∈ 
−2(M; S2T ∗M). Thus, given
h ∈ H−1/2(M , S2T ∗M),

〈�2h, h〉L2 = ‖Bπker D∗h‖2
L2 + 〈Rh, h〉L2 . (2.7)

By ellipticity of B, there exists a pseudodifferential operator Q of order 1/2 such that
QBπker D∗ = πker D∗ + R′, where R′ ∈ 
−∞(M; S2T ∗M) is smoothing. Thus there is
C > 0 such that, for each h ∈ C∞(M; S2T ∗M),

‖πker D∗h‖2
H−1/2 ≤ ‖QBπker D∗h‖2

H−1/2 + ‖R′h‖2
H−1/2 ≤ C‖Bπker D∗h‖2

L2 + ‖R′h‖2
H−1/2 .

Since Lemma 2.1 is trivial on potential tensors, we can already assume that h is solenoidal,
that is, πker D∗h = h. Recalling (2.7), we obtain that

‖h‖2
H−1/2 ≤ C〈�2h, h〉L2 − C〈Rh, h〉L2 + ‖R′h‖2

H−1/2

≤ C〈�2h, h〉L2 + C‖Rh‖H 1/2‖h‖H−1/2 + ‖R′h‖2
H−1/2 .

(2.8)

Now, assume by contradiction that the statement in Lemma 2.1 does not hold, that is,
we can find a sequence of tensors fn ∈ C∞(M; S2T ∗M) such that ‖fn‖H−1/2 = 1 with
D∗fn = 0 and

‖√�2fn‖2
L2 = 〈�2fn, fn〉L2 ≤ 1

n
‖fn‖2

H−1/2 = 1
n

→ 0.

Up to a subsequence, and since R is of order −2, we can assume thatRfn → v1 inH 1/2 for
some v1, and R′fn → v2 in H−1/2. Then, using (2.8), we obtain that (fn)n∈N is a Cauchy
sequence inH−1/2 which thus converges to an element v3 ∈ H−1/2 such that ‖v3‖H−1/2 =
1 and D∗v3 = 0. By continuity, �2fn → �2v3 in H 1/2 and thus 〈�2v3, v3〉 = 0. Since
v3 is solenoidal, we get

√
�2v3 = 0, thus �2v3 = 0. Since we assumed I2 s-injective,

�2 is also injective by [GL, Lemma 4.6]. This implies that v3 ≡ 0, thus contradicting
‖v3‖H−1/2 = 1.

We note that the same proof also works for tensors of any order m ∈ N. In fact we can
even get a uniform estimate.

LEMMA 2.2. Let (M , g0) be a smooth compact Anosov Riemannian manifold with Ig0
2

being s-injective. There exist a C∞ neighborhood Ug0 of g0 and a constant C > 0 such
that for all g ∈ Ug0 and all tensors h ∈ H−1/2(M; S2T ∗M),

〈�g2h, h〉L2 ≥ C‖πker D∗
g
h‖2
H−1/2(M)

.

Proof. First, let g0 be fixed Anosov metric with Ig0
2 s-injective (in particular, it is the case

if it has non-positive curvature). Proposition 4.1 (which will be proved later) shows that
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the operator�2 = �g2 is a continuous family as a map

g ∈ Ug0 �→ �
g

2 ∈ 
−1(M; S2T ∗M)

where Ug0 ⊂ C∞(M; S2T ∗M) is a C∞-neighborhood of g0 and 
−1(M; S2T ∗M) is
equipped with its Fréchet topology as explained before. Let h ∈ ker D∗

g be a solenoidal
(with respect to g) symmetric 2-tensor, then h = πker D∗

g
h. Let Cg0 > 0 be the constant

provided by Lemma 2.1 applied to the metric g0. We choose Ug0 small enough so that
‖�g2 −�g0

2 ‖H−1/2→H 1/2 ≤ Cg0/3 (this is made possible by the continuity of g �→ �
g

2 ∈

−1). Then

〈�g2h, h〉 = 〈(�g2 −�g0
2 )h, h〉 + 〈�g0

2 h, h〉 ≥ Cg0‖πker D∗
g0
h‖2
H−1/2 − Cg0/3 × ‖h‖2

H−1/2 .

But the map Ug0 � g �→ πker D∗
g

= 1 −Dg�−1
g D

∗
g ∈ 
0 is continuous: this follows from

the fact that one can construct a full parametrix Qg ∈ 
−2(M) of �g modulo smoothing
in a continuous way with respect to g (by standard elliptic microlocal analysis), the fact
that �g is injective since ker Dg = 0 for g Anosov (as Dgu = 0 implies Xπ∗

1 u = 0, thus
π∗

1u has to be constant, thus 0 since π∗
1u(x, −v) = −π∗

1u(x, v)) and the continuity of
composition of pseudodifferential operators. This implies that for g in a possibly smaller
neighborhood Ug0 of g0, using h = πker D∗

g
h,

〈�g2h, h〉 ≥ Cg0‖πker D∗
g
h‖2
H−1/2 − 2Cg0

3
× ‖h‖2

H−1/2 = Cg0

3
‖πker D∗

g
h‖2
H−1/2 .

The proof is complete.

We also observe that the generalization of the previous lemma to tensors of any order is
straightforward. As mentioned earlier, an immediate consequence of the previous lemma
is the following proposition.

PROPOSITION 2.3. Let (M , g0) be a smooth Riemannian n-dimensional Anosov manifold
with Ig0

m s-injective. Then there exists a C∞-neighborhood Ug0 of g0 in M such that, for
any g ∈ Ug0 , for any m ∈ N, Igm is s-injective.

Proof. As mentioned above (before Lemma 2.1), the s-injectivity of Igm is equivalent to
that of �gm on solenoidal tensors and the previous lemma allows us to conclude.

2.4. The space of Riemannian metrics. We fix a smooth metric g0 ∈ M and consider an
integer k ≥ 2 and α ∈ (0, 1). We recall that the space M of all smooth metrics is a Fréchet
manifold. We denote by D0 := Diff0(M) the group of smooth diffeomorphisms on M that
are isotopic to the identity; this is a Fréchet Lie group in the sense of [Ham82, Section
4.6]. The right action

M × D0 → M, (g, ψ) �→ ψ∗g

is smooth and proper [Ebi68, Ebi70]. Moreover, if g is a metric with Anosov geodesic
flow, it is directly seen from ergodicity that there are no Killing vector fields and thus
the isotropy subgroup {ψ ∈ D0 | ψ∗g = g} of g is finite. For negatively curved metrics
it is shown in [Fra66] that the action is free, that is, the isotropy group is trivial. One
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cannot apply the usual quotient theorem [Tro92, pp. 20] in the setting of Banach or Hilbert
manifolds but rather smooth Fréchet manifolds instead (using the Nash–Moser theorem).
Thus, in the setting of the space of smooth metrics with Anosov geodesic flows (the
important fact, to apply Ebin’s slice theorem, is that metrics with Anosov geodesic flows
do not have Killing vector fields, that is, infinitesimal isometries; this is due to the fact
that ker D|C∞(M ,T ∗M) = {0} as mentioned earlier, which itself follows from the ergodicity
of the geodesic flow), which is an open set of a Fréchet vector space, the slice theorem
says that there exist a neighborhood U of g0, a neighborhood V of Id in D0 and a Fréchet
submanifold S containing g0 so that

S × V → U , (g, ψ) �→ ψ∗g (2.9)

is a diffeomorphism of Fréchet manifolds and Tg0S = {h ∈ Tg0M | D∗
g0
h = 0}; see

[Ebi68, Ebi70]. Moreover, S parametrizes the set of orbits g · D0 for g near g0 and
TgS ∩ T (g · D0) = 0.

On the other hand, if one considers Mk,α , the space of metrics with Ck,α regularity
and Dk+1,α

0 := Diffk+1,α
0 (M), the group of diffeomorphisms isotopic to the identity with

Ck+1,α regularity, then both spaces are smooth Banach manifolds. However, the action of
Dk+1,α

0 on Mk,α is no longer smooth but only topological, which also prevents us from
applying the quotient theorem.

Nevertheless, recalling that g0 is smooth, if we consider Ok,α(g0) := g0 · Dk+1,α
0 ⊂

Mk,α , then this is a smooth submanifold of Mk,α and

TgOk,α(g0) = {Dgp | p ∈ Ck+1,α(M; T ∗M)}.
Notice that (2.3) in Ck,α regularity exactly says that given g ∈ Ok,α(g0), we have the
decomposition

TgM = TgOk,α(g0)⊕ ker D∗
g |Ck,α(M ,S2T ∗M). (2.10)

Thus, an infinitesimal perturbation of a metric g ∈ Ok,α(g0) by a symmetric 2-tensor that
is solenoidal with respect to g is actually an infinitesimal displacement transversally to the
orbit Ok,α(g0).

We will need a stronger version of the previous decomposition (2.10) which can be
understood as a slice theorem. Knowledge of it goes back to [Ebi68, Ebi70]; see also
[GL19, Lemma 4.1] for a short proof in the Ck,α category.

LEMMA 2.4. Let k be an integer greater than or equal to 2 and α ∈ (0, 1), let g0 be a
Ck+3,α metric with Anosov geodesic flow. There exists a neighborhood U ⊂ Mk,α of g0 in
the Ck,α-topology such that for any g ∈ U , there exists a unique Ck+1,α-diffeomorphism ψ
such that ψ∗g is solenoidal with respect to g0. Moreover, the following map is C2:

Ck,α(M; S2T ∗M)× Ck+3,α(M; S2T ∗M)→ Dk+1,α
0 (M), (g, g0) �→ ψ .

Remark 2.5. The previous lemma is not stated exactly this way in [GL19, Lemma 4.1].
Indeed, the proof assumes that g0 is smooth and fixed. However, inspecting the proof, it
readily applies to g0 ∈ Ck+3,α and the implicit function theorem used in that proof shows
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the regularity of ψ with respect to g0. We do not include the proof of these details in order
not to burden the discussion.

We also see that we need to use to Ck,α regularity for α �= 0, 1 instead of Ck: this is
due to the fact that the pseudodifferential operator inverting the linearization D∗

g0
Dg0 that

arises naturally in the proof of this lemma (see [GL19, Lemma 4.1]) acts on these spaces
but on Ck , for k ∈ N. Instead, one would have to resort to Zygmund spaces Ck∗ . We refer
to [Tay91, Appendix A] for further details.

2.5. Thermodynamic formalism. Let f be a Hölder-continuous function on Sg0M . We
recall that its pressure [Wal82, Theorem 9.10] is defined by

P(f ) := sup
μ∈Minv

(
hμ(ϕ

g0
1 )+

∫
Sg0M

f dμ

)
, (2.11)

where Minv denotes the set of invariant (by the flow ϕg0 ) Borel probability measures and
hμ(ϕ

g0
1 ) is the metric entropy of the flow ϕg0

1 at time 1. It is actually sufficient to restrict
the sup to ergodic measures Minv,erg [Wal82, Corollary 9.10.1]. Since the flow is Anosov,
the supremum is always achieved for a unique invariant ergodic measure μf (by [BR75,
Theorem 3.3]; see also [HF19, Theorem 9.3.4] and the following discussion therein) called
the equilibrium state of f, and

μf = μf ′ �⇒ f − f ′ = Xg0u+ c for some u Hölder and c constant; (2.12)

see [HF19, Theorem 9.3.16]. The measure μf is also mixing and positive on open sets,
which rules out the possibility of a finite combination of Dirac measures supported on a
finite number of closed orbits. Moreover, μf can be written as an infinite weighted sum of
Dirac masses δg0(cj ) supported over the geodesics γg0(cj ), where cj ∈ C are the primitive
classes (see [Par88] for the case P(f ) ≥ 0 or [PPS15, Theorem 9.17] for the general case).
For example, when P(f ) ≥ 0,∫

u dμf = lim
T→∞

1
N(T , f )

∑
{j |Lg0 (cj )∈[T ,T+1]}

e

∫
γg0 (cj )

f
∫
γg0 (cj )

u, (2.13)

where N(T , f ) := ∑
j ,Lg0 (cj )∈[T ,T+1] Lg0(cj )e

∫
γg0 (cj )

f
. When f = 0, this is the measure

of maximal entropy, also called the Bowen–Margulis measure μBM
g0

; in that case P(0) =
htop(ϕ

g0
1 ) is the topological entropy of the flow. When f = −J ug0

, where J ug0
: x �→

∂t (| det dϕgt (x)|Eu(x))|t=0 is the unstable Jacobian, we obtain the Liouville measure μL
g0

induced by the metric g0; in that case, P(−J ug0
) = 0. If we fix an exponent of Hölder

regularity ν > 0, then the map Cν(Sg0M) � f �→ P(f ) is real analytic (see [Rue04,
Corollary 7.10] for discrete systems and [PP90, Proposition 4.7] for flows).

2.6. Geodesic stretch. We refer to [CF90, Kni95] for the original definition of this
notion.

2.6.1. Structural stability and time reparametrization. We fix a smooth metric g0 ∈ M
with Anosov geodesic flow and we view the geodesic flow and vector fields of any metric
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g close to g0 as living on the unit tangent bundle Sg0M of g0 by simply pulling them back
by the diffeomorphism

(x, v) ∈ Sg0M →
(
x,

v

|v|g
)

∈ SgM .

We fix some constant k ≥ 2 and α ∈ (0, 1). There exist a regularity parameter ν > 0 and a
neighborhood U ⊂ Mk,α of g0 such that, by the structural stability theorem ([dlLMM86,
Appendix A] or [KKPW89, Proposition 2.2] for the Hölder regularity case), for any g ∈ U ,
there exists a Cν Hölder homeomorphism ψg : Sg0M → Sg0M , differentiable in the flow
direction, which is an orbit conjugacy that is such that

dψg(z)Xg0(z) = ag(z)Xg(ψg(z)) for all z ∈ Sg0M , (2.14)

where ag is in Cν(Sg0M). Moreover, the map

U � g �→ (ag , ψg) ∈ Cν(Sg0M)× Cν(Sg0M , Sg0M)

is Ck−2 and ψg is homotopic to the identity. For the proof of Theorem 1.3, we will also
need the continuity of ag = ag0,g and of its g-derivatives of order � ≤ k − 2 as a function
of the base metric g0. This continuity follows essentially from the proof of [KKPW89,
Proposition 2.2]; we give a proof of this fact in Proposition C.1 in the Appendix.

Note that neither ag nor ψg is unique, but ag is unique up to a coboundary and in all the
following paragraphs; adding a coboundary to ag will not affect the results. From (2.14),
we obtain that for t ∈ R, z ∈ Sg0M , ϕgκag (z,t)(ψg(z)) = ψg(ϕg0

t (z)) with

κag (z, t) =
∫ t

0
ag(ϕ

g0
s (z)) ds. (2.15)

If c ∈ C is a free homotopy class, then

Lg(c) =
∫ Lg0 (c)

0
ag(ϕ

g0
s (z)) ds, (2.16)

for any z ∈ γg0(c), the unique g0-closed geodesic in c.

2.6.2. Definition of the geodesic stretch. We denote by M̃ the universal cover of M.
Given a metric g ∈ M on M, we denote by g̃ its lift to the universal cover. Given two
metrics g1 and g2 on M, there exists a constant c > 0 such that c−1g1 ≤ g2 ≤ cg1. This
implies that any g̃1-geodesic is a quasi-geodesic for g̃2. We now assume that the two
metrics g1, g2 are Anosov on M. The ideal (or visual) boundary ∂∞M̃ is independent
of the choice of g and is naturally endowed with the structure of a topological manifold
(see Appendix B) whose regularity inherits that of the foliation (that is, it is at least
Hölder continuous and is C2−ε for any ε > 0 on negatively curved surfaces by [HK90]).
In negative curvature, we refer to [BH99, Ch. H.3] and [Kni02] for further details. For the
general Anosov case, we refer to [Kni12] and Appendix B of the present paper.

We denote by Gg := Sg̃M̃/ ∼ (where z ∼ z′ if and only if there exists a time t ∈ R such
that ϕt (z) = z′) the set of g-geodesics on M̃: this is a smooth 2n-dimensional manifold.
Moreover, there exists a Hölder-continuous homeomorphism �g : Gg → ∂∞M̃ × ∂∞M̃ \
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�, where � is the diagonal in ∂∞M̃ × ∂∞M̃ . Given a point z ∈ Sg̃M̃ , we will denote by
z+, z− ∈ ∂∞M̃ the points (in the future and in the past, respectively) on the boundary at
infinity of the geodesic generated by z.

We now consider a fixed metric g0 on M and a metric g in a neighborhood of g0.
If ψg denotes an orbit equivalence between the two geodesic flows, then ψg induces a
homeomorphism 
g : Gg0 → Gg . The map

�g ◦
g ◦�−1
g0

: ∂∞M̃ × ∂∞M̃ \�→ ∂∞M̃ × ∂∞M̃ \�
is nothing more than the identity.

Given z = (x, v) ∈ Sg0M , we denote by cg0(z) : t �→ cg0(z, t) ∈ M the unique
geodesic (for the sake of simplicity, we identify the geodesic and its arc-length
parametrization) such that cg0(z, 0) = x, ċg0(z, 0) = v. We consider c̃g0(z), a lift of cg0(z)

to the universal cover M̃ , and introduce the function

b : Sg0M × R → R, b(z, t) := dg̃(̃cg0(z, 0), c̃g0(z, t)),

which computes the g̃-distance between the endpoints of the g̃0-geodesic joining c̃g0(z, 0)
to c̃g0(z, t). It is an immediate consequence of the triangle inequality that (z, t) �→ b(z, t)
is a subadditive cocycle for the geodesic flow ϕg0 , that is,

b(z, t + s) ≤ b(z, t)+ b(ϕg0
t (z), s) for all z ∈ Sg0M , for all t , s ∈ R

As a consequence, by the subadditive ergodic theorem (see [Wal82, Theorem 10.1], for
instance), we obtain the following lemma.

LEMMA 2.6. Let μ be an invariant probability measure for the flow ϕg0
t . Then the quantity

Iμ(g0, g, z) := lim
t→+∞ b(z, t)/t

exists for μ-almost every z ∈ Sg0M , Iμ(g0, g, ·) ∈ L1(Sg0M , dμ), and this function is
invariant by the flow ϕg0

t .

We define the geodesic stretch of the metric g, relative to the metric g0, with respect to
the measure μ by

Iμ(g0, g) :=
∫
Sg0M

Iμ(g0, g, z) dμ(z).

When the measure μ in the previous definition is ergodic, the function Iμ(g0, g, ·) is
thus ( μ-almost everywhere) equal to the constant Iμ(g0, g). We recall that δg0(c) is the
normalized measure supported on γg0(c), that is,

δg0(c) : u �→ 1
Lg0(c)

∫ Lg0 (c)

0
u(ϕ

g0
t (z)) dt .

We can actually describe the stretch using the time reparametrization ag .
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LEMMA 2.7. Let μ be an ergodic invariant measure with respect to the flow ϕg0
t . Then,

Iμ(g0, g) =
∫
SMg0

ag dμ = lim
j→+∞

Lg(cj )

Lg0(cj )
,

where (cj )j≥0 ∈ CN is such that (the existence of cj follows from [Sig72, Theorem 1])
δg0(cj ) ⇀j→+∞ μ.

Proof. We first prove the left-hand equality. Let M̃ be the universal covering of M and �
the group of deck transformations. Denote as above by ψ̃g : Sg̃0M̃ → Sg̃M̃ the lift of the
conjugacy between the geodesic flow of the metrics g̃ and g̃0. Then, for all γ ∈ �,

ϕ̃
g

κag (z,t)
(ψ̃g(z)) = ψ̃g(ϕ̃g0

t (z)) and ψ̃g(γ∗z) = γ∗ψ̃g(z).
If π : T M̃ → M̃ is the canonical projection the function dg̃(π(ψ̃g(z)), π(z)) is
�-invariant. This follows since

dg̃(π(ψ̃g(γ∗z)), π(γ∗z)) = dg̃(π(γ∗ψ̃g(z)), π(γ∗z))
= dg̃(γ π(ψ̃g(z)), γπ(z)) = dg̃(π(ψ̃g(z)), π(z)).

Hence, by the compactness of M and the continuity of dg̃(π(ψ̃g(z)), π(z)) there is a
constant C > 0 such that dg̃(π(ψ̃g(z)), π(z)) ≤ C for all z ∈ SM̃ . Using the triangle
inequality, we obtain

|b(z, t)− κag (t , z)| = |dg̃(π(ϕ̃g0
t (z)), π(z))− dg̃(π(ϕ̃gκag (z,t)(ψ̃g(z))), π(ψ̃g(z)))|

= |dg̃(π(ϕ̃g0
t (z)), π(z))− dg̃(π(ψ̃g(ϕ̃g0

t (z))), π(ψ̃g(z)))|
≤ dg̃(π(ϕ̃g0

t (z)), π(ψ̃g(ϕ̃
g0
t (z))))+ dg̃(π(ψ̃g(z)), π(z)) ≤ 2C.

This implies, using (2.15), that

lim
t→+∞ b(z, t)/t = lim

t→+∞ κag (z, t)/t = lim
t→+∞

1
t

∫ t

0
ag(ϕ

g0
s (z)) ds =

∫
Sg0M

ag dμ,

for μ-almost every z ∈ Sg0M , by the Birkhoff ergodic theorem [Wal82, Theorem 1.14]. By
(2.16) we also have∫

Sg0M
ag dμf = lim

j→∞〈δg0(cj ), ag〉 = lim
j→∞

Lg(cj )

Lg0(cj )
,

thus the proof is complete.

As a consequence, we immediately obtain the following corollary.

COROLLARY 2.8. Let g belong to a fixed neighborhood U of g0 in Mk,α , and assume that
for any sequence of primitive free homotopy classes (cj )j≥0 ∈ CN such thatLg0(cj )→ ∞,
we have limj→∞ Lg(cj )/Lg0(cj ) = 1. Then, for any equilibrium state μf with respect to
ϕ
g0
t associated to some Hölder function f, we have Iμf (g0, g) = 1.

Combining this with the results of [GL19, Theorem 1], namely the local rigidity of the
marked length spectrum, we also easily obtain the following theorem.
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THEOREM 2.9. Let (M , g0) be a smooth Riemannian n-dimensional manifold with
Anosov geodesic flow, topological entropy htop(g0) = 1, and assume that its curvature
is non-positive if n ≥ 3. Then there exists k ∈ N large enough, depending only on n, ε > 0
small enough such that the following statement holds: there is C > 0 depending on g0 so
that, for each g ∈ Ck(M; S2T ∗M) with ‖g − g0‖Ck ≤ ε, if

htop(g) = 1, lim
j→+∞

Lg(cj )

Lg0(cj )
= 1,

for some sequence (cj )j∈N of primitive free homotopy classes such that δg0(cj ) ⇀j→+∞
μBM
g0

, then g is isometric to g0.

Proof. Given a metric g, we have by [Kni95, Theorem 1.2] (in [Kni95] the metric is
assumed to be negatively curved, but the argument applies also for Anosov flows, as is
shown in [BCLS15, Proposition 3.8]: it corresponds to Proposition 3.10 below in the case
f := 1 and f ′ = ag) that

htop(g) ≥ htop(g0)

IμBM
g0
(g0, g)

, (2.17)

with equality if and only if ϕg0 and ϕg are, up to a scaling, time-preserving conju-
gate, that is, there exists a homeomorphism ψ such that ψ ◦ ϕctg0

= ϕtg ◦ ψ with c :=
htop(g)/htop(g0).

In particular, restricting to metrics with entropy 1, we obtain that IμBM
g0
(g0, g) ≥ 1

with equality if and only if the geodesic flows are conjugate, that is, if and only if
Lg = Lg0 (by the Livsic theorem). As a consequence, given g0, g with entropy 1 such
that Lg(cj )/Lg0(cj )→j→+∞ 1 for some sequence δg0(cj ) ⇀j→+∞ μBM

g0
, we obtain that

IμBM
g0
(g0, g) = 1, hence Lg = Lg0 . If k ∈ N was chosen large enough at the beginning,

we can then conclude by the local rigidity of the marked length spectrum [GL19,
Theorem 1].

In Theorem 2.9, we assume that g0 has entropy 1. This is actually a harmless assumption
in so far as the same result holds true on metrics of constant topological entropy htop(g) =
λ > 0. Recall that by considering λ2g0 for some constant λ > 0, the entropy scales as
htop(λ

2g0) = htop(g0)/λ [Pat99, Lemma 3.23] and we can thus always reduce to the
previous case htop(g0) = 1. We also observe that the previous theorem implies the local
rigidity of the marked length spectrum: if Lg = Lg0 , then htop(g0) = htop(g) because the
topological entropy htop(g) is the first pole of the Ruelle zeta function [PP90, Theorem 9.1]

ζg(s) :=
∏
c∈C
(1 − e−sLg(c)).

We can then apply Theorem 2.9 to deduce that g is isometric to g0. We will provide an
alternative proof of this fact in the next section without using the proof of [GL19].
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3. A functional on the space of metrics
Given a metric g in a Ck,α-neighborhood U of g0, we define the potential

Vg := J ug0
+ ag − 1 ∈ Cν(Sg0M) (3.1)

for some ν > 0. We remark that U � g �→ Vg ∈ Cν(Sg0M) isCk−2 and, for g = g0, Vg0 =
J ug0

. Consider the map ψ : Mk,α → R, defined for g0 a fixed smooth metric with Anosov
geodesic flow, by


(g) := P
(

− Jug0
− ag +

∫
Sg0M

ag dμ
L
g0

)
= P(−Vg)+ IμLg0

(g0, g)− 1. (3.2)

We also define the maps

F : Mk,α → R, F(g) := P(−Vg), (3.3)

� : Mk,α → R, �(g) = IμLg0
(g0, g)− 1, (3.4)

satisfying 
(g) = F(g)+�(g). We note that 
, �, F are Ck−2 by [Con92]. We also
make the following observation: since P(−J ug0

) = 0 and ag0 is cohomologous to 1, we
have 
(g0) = 0 and

�(g) = −
(

hμLg0
(ϕ
g0
1 )+

∫
Sg0M

(1 − J ug0
− ag) dμLg0

)
≥ −P(1 − J ug0

− ag) = −F(g)
(3.5)

by using the variational definition (2.11) of the pressure. This shows that, for all g ∈ Mk,α ,


(g) ≥ 
(g0) = 0.

Moreover, 
(g) = 0 if and only if the inequality (3.5) becomes an equality, which means
that μLg0

is the equilibrium measure of −J ug0
+ 1 − ag . Since μLg0

is also the equilibrium
measure associated to −J ug0

, we conclude by (2.12) that 1 − ag is cohomologous to a
constant, or equivalently ag is cohomologous to a constant. We have thus shown the
following lemma.

LEMMA 3.1. The map
 satisfies
(g) ≥ 
(g0) = 0, and
(g) = 
(g0) = 0 if and only
if ag is cohomologous to a constant, or equivalently Lg = λLg0 for some λ > 0.

The proof of Theorem 1.2 will be a consequence of the fact that Taylor expansion of

 at g = g0 has leading term given by the Hessian, which turns out to be the variance
operator�2 studied before.

3.1. The proof of Theorem 1.2. In what follows, we will compute the derivatives of the
map 
, �, F . As mentioned earlier, they are Ck−2 by [Con92, Theorem C], and explicit
computations of their derivatives can be found in [PP90, Proposition 4.10] (subshift case)
and [KKPW90, KKW91] (topological entropy case). The first step in the proof is the
following proposition.

https://doi.org/10.1017/etds.2021.75 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.75


Geodesic stretch, pressure metric and marked length spectrum rigidity 993

PROPOSITION 3.2. The non-negative functional
 : Mk,α → R
+ defined in (3.2) satisfies

the following property: there exist a neighborhood U of g0 in C5,α(M , S2T ∗M) and a
constant Cg0 depending on g0 such that, for all g ∈ U ,


(g) ≥ 1
8 (〈�g0

2 (g − g0), (g − g0)〉L2 − 〈(g − g0), g0〉2
L2)− Cg0‖g − g0‖3

C5,α .

Proof. We shall compute the Taylor expansion of 
 at g = g0 to second order. By [PP90,
Proposition 4.10], we have, for h ∈ TgMk,α ,

dFg .h = −
∫
Sg0M

dag .h dmg

where mg is the equilibrium measure of −Vg . In particular, observe that for g = g0, we
have

dFg0 .h = −
∫
Sg0M

dag0 .h dμL
g0

, (3.6)

since mg0 = μL
g0

. Next, we get, for h ∈ Tg0Mk,α ,

d�g0 .h =
∫
Sg0M

dag0 .h dμL
g0

= −dFg0 .h, (3.7)

thus d
g0 .h = 0 for all h ∈ Tg0Mk,α .
Let us next compute the second derivative d2
g0(h, h). First, we have

d2�g0 =
∫
Sg0M

d2ag0(h, h) dμLg0
.

Then, by [PP90, Proposition 4.11] we know that

d2P−Vg0
(dVg0 .h, dVg0 .h) = VarμL

g0
(dVg0 .h− 〈dVg0 .h, 1〉) = 〈�g0dVg0 .h, dVg0 .h〉L2 ,

dP−Vg0
(dVg0 .h) =

∫
Sg0M

dVg0 .h dμL
g0

, (3.8)

where VarμL
g0
(h) is the variance defined in (2.5), equal to 〈�g0h, h〉L2 by (2.6) and

�g0 1 = 0. Therefore,

d2Fg0(h, h) = − dP−Vg0
.d2Vg0(h, h)+ d2 P−Vg0

(dVg0 .h, dVg0 .h)

= − dP−Vg0
.d2ag0(h, h)+ 〈�g0dag0 .h, dag0 .h〉L2 .

All together, we finally get

d2
g0(h, h) = 〈�g0dag0 .h, dag0 .h〉L2 .

To conclude, we claim in Lemma 3.3 below that dag0 .h− 1
2π

∗
2h is a coboundary, so that

d2
g0(h, h) = 〈�g0π∗
2h, π∗

2h〉L2 = 1
4 (〈�g0

2 h, h〉L2 − 〈h, g0〉2
L2).

The statement of the proposition is then simply the Taylor expansion of 
(g) at g = g0,
with h = g − g0. (We need the map to be C3 for the Taylor expansion, hence the need for
the C5,α regularity since we lose two derivatives as mentioned at the beginning of §3.)
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LEMMA 3.3. Consider a smooth deformation (gλ)λ∈(−1,1) of g0 inside Mk,α . Then there
exists a Hölder-continuous function f : Sg0M → R such that

π∗
2 (∂λgλ|λ=0)− 2∂λaλ|λ=0 = Xg0f .

Proof. Let c be a fixed free homotopy class, and let γ0 ∈ c be the unique closed
g0-geodesic in the class c, which we parametrize by unit-speed z0 : [0, �g0(γ0)] → Sg0M .
We define zλ(s) = ψλ(z0(s)) = (αλ(s), α̇λ(s)) (the dot is the derivative with respect to s),
where ψλ is the conjugacy between gλ and g0: this gives a non-unit-speed parametrization
of γλ, the unique closed gλ-geodesic in c. We recall that π : TM → M is the projection.
Using (2.14), we obtain∫ �g0 (γ0)

0
gλ(α̇λ(s), α̇λ(s)) ds

=
∫ �g0 (γ0)

0
gλ(∂s(π ◦ zλ(s)), ∂s(π ◦ zλ(s))) ds

=
∫ �g0 (γ0)

0
gλ(∂s(π ◦ ψλ ◦ z0(s)), ∂s(π ◦ ψλ ◦ z0(s))) ds

=
∫ �g0 (γ0)

0
a2
λ(z0(s)) gλ(dπ(Xgλ(zλ(s))), dπ(Xgλ(zλ(s))))︸ ︷︷ ︸

=1

ds

=
∫ �g0 (γ0)

0
a2
λ(z0(s)) ds.

Since s �→ α0(s) is a unit-speed geodesic for g0, it is a critical point of the energy
functional (with respect to g0). Thus, by differentiating the previous identity with respect
to λ and evaluating at λ = 0, we obtain∫ �g0 (γ0)

0
∂λgλ|λ=0(α̇0(s), α̇0(s)) ds = 2

∫ �g0 (γ0)

0
∂λaλ|λ=0(z0(s)) ds.

As a consequence, π∗
2 (∂λgλ|λ=0)− 2∂λaλ|λ=0 is a Hölder-continuous function in the

kernel of the X-ray transform: by the usual Livsic theorem, there exists a function f (with
the same Hölder regularity), differentiable in the flow direction, such that π∗

2 (∂λgλ|λ=0)−
2∂λaλ|λ=0 = Xg0f .

As a corollary, we obtain the following result.

COROLLARY 3.4. For k ≥ 5, α ∈ (0, 1), there exist a neighborhood U of g0 in
Ck,α(M; S2T ∗M) and constants Cg0 , C′

g0
> 0 depending on g0 such that, for all g ∈ U ,

Cg0‖πker D∗
g0
(g − g0)‖2

H−1/2(M)
≤ 
(g)+ 1

4 〈(g − g0), g0〉2
L2 + C′

g0
‖g − g0‖3

C5,α .

There exist a neighborhood U ′ of g0 in Ck,α(M; S2T ∗M) and a constant C′′
g0
> 0

depending on g0 such that, for all g ∈ U ′, there is a diffeomorphism ψ ∈ Ck+1,α(M) such
that

Cg0‖ψ∗g − g0‖2
H−1/2(M)

≤ 
(g)+ 1
4 〈(ψ∗g − g0), g0〉2

L2 + C′′
g0

‖ψ∗g − g0‖3
C5,α
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Proof. The first inequality follows from Proposition 3.2 and Lemma 2.2. For the second
inequality, we apply the first inequality to ψ∗g, where ψ is the diffeomorphism obtained
from Lemma 2.4, and we use that 
(ψ∗g) = 
(g).

The next step is to control the term 〈(ψ∗g − g0), g0〉L2 by the geodesic stretch. We will
show the following proposition.

PROPOSITION 3.5. There is k ∈ N large enough, depending only on n = dimM , such that
if g0 is smooth with Anosov geodesic flow, and non-positive curvature in the case n > 2,
there exist Cg0 > 0 and Cn > 0, an open neighborhood U in Ck,α(M; S2T ∗M) of g0, such
that. for each g ∈ U , there is a diffeomorphism ψ satisfying

Cg0‖ψ∗g − g0‖2
H−1/2(M)

≤ P
(
− J ug0

− ag +
∫
Sg0M

ag dμ
L
g0

)
+ Cn(IμLg0

(g0, g)− 1)2

≤ P
(
− J ug0

− ag +
∫
Sg0M

ag dμ
L
g0

)
+ Cn( P(−J ug0

− ag + 1))2

≤ P
(
− J ug0

− ag +
∫
Sg0M

ag dμ
L
g0

)
+ (Volg(M)− Volg0(M))

2.

Here Cg0 depends on g0 and Cn on n only.

Proof. We write the Taylor expansion of �(ψ∗g) = �(g) = IμLg0
(g0, g)− 1 at g = g0:

by Lemma 3.6 and Lemma 3.3,

d�g0 .h =
∫
Sg0M

dag0 .h dμLg0
= 1

2

∫
Sg0M

π∗
2h dμ

L
g0

= Cn〈h, g0〉L2

for some Cn > 0 depending only on n = dimM . Then

�(g) = �(ψ∗g) = Cn〈ψ∗g − g0, g0〉L2 + O(‖ψ∗g − g0‖2
C5,α ).

Combining with Corollary 3.4, we obtain

Cg0‖ψ∗g − g0‖2
H−1/2(M)

≤ 
(g)+ 2C−2
n �(g)

2 + C′′
g0

‖ψ∗g − g0‖3
C5,α (3.9)

if ‖ψ∗g − g0‖C5,α is small enough, which is the case if ‖g − g0‖C5,α is small enough by
Lemma 2.4. To obtain the first inequality of Proposition 3.5, we apply Sobolev embedding
and interpolation estimates (the interpolation estimate ‖u‖Hc ≤ ‖u‖tHa‖u‖1−t

Hb
for c =

ta + (1 − t)b is obtained by applying the Hadamard three-line theorem to the holomorphic
function s �→ ∑

j (1 + λj )
s〈u, ej 〉2

L2 on Re(s) ∈ [a, b], where ej is an orthonormal basis
of eigenfunctions of any positive elliptic self-adjoint differential operator of order 2 on
symmetric tensors and λj gives the corresponding eigenvalues) [Tay96, Ch. 4] and get, for
some constants cg0 > 0, c′g0

> 0 depending on g0 only,

‖ψ∗g − g0‖3
C5,α ≤ cg0‖ψ∗g − g0‖3

H(n/2)+5+α′ ≤ c′g0
‖ψ∗g − g0‖2

H−1/2‖ψ∗g − g0‖Hk ,
if k > (3/2)n+ 16 + 3α and α′ > α. This means that if ‖ψ∗g − g0‖Hk is small enough,
depending on the constants Cg0 , C′′

g0
, cg0 , c′g0

, one can absorb the ‖ψ∗g − g0‖3
C5,α term of
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(3.9) into the left-hand side and get the first inequality of Proposition 3.5. The smallness
of ‖ψ∗g − g0‖Hk is implied by the smallness of ‖g − g0‖Ck,α by Lemma 2.4. The same
exact argument applies by replacing �(g) by F(g) using that dFg0 = −dφg0 ; this proves
the second inequality of Proposition 3.5. The last inequality is similar since

Volg(M)− Volg0(M) = 1
2

∫
M

Trg0(h) dvolg0 + O(‖h‖2
C5,α ) = 1

2
〈h, g0〉L2 + O(‖h‖2

C5,α )

for h := g − g0. The proof is complete.

To conclude the proof of Theorem 1.2, we need to estimate �(g) and F(g) in terms of
L±(g). Recall that (see [PPS15, Corollary 9.17])

P(−Vg) = lim
T→∞

1
T

log
∑

c∈C,Lg0 (c)∈[T ,T+1]

e
− ∫

γg0 (c)
Vg

= lim
T→∞

1
T

log
∑

c∈C,Lg0 (c)∈[T ,T+1]

e
− ∫

γg0 (c)
J ug0 eLg0 (c)−Lg(c).

Thus, if we order C = (cj )j∈N by the lengths (that is, Lg0(cj ) ≥ Lg0(cj−1)), and we define

L+(g) := lim sup
j→∞

Lg(cj )

Lg0(cj )
− 1, L−(g) := lim inf

j→∞
Lg(cj )

Lg0(cj )
− 1,

we see that for all δ > 0 small, there is T0 > 0 large so that, for all j with Lg0(cj ) ∈
[T , T + 1] with T ≥ T0,

emin((T+1)(−L+(g)−δ),T (−L+(g)−δ)) ≤ eLg0 (cj )−Lg(cj ) ≤ emax((T+1)(−L−(g)+δ),T (−L−(g)+δ)).

We deduce, using P(−Vg0) = 0, that

−L+(g)− δ ≤ P(−Vg) ≤ −L−(g)+ δ.
Since δ > 0 is arbitrarily small, we obtain |F(g)| ≤ max(|L+(g)|, |L−(g)|). Similarly,
Lemma 2.7 shows that |�(g)| ≤ max(|L+(g)|, |L−(g)|). So the proof of Theorem 1.2 is
complete by combining these bounds with Proposition 3.5 (the right-hand side in the first
and second inequalities of Proposition 3.5 being F(g)+�(g)+ Cn�(g)2 and F(g)+

(g)+ CnF(g)2).

3.2. A submanifold of the space of metrics. It is quite natural to describe the stretch
functional � on the space

N k,α := {g ∈ Mk,α | P(−Vg) = 0} (3.10)

and on N k,α
sol := N k,α ∩ ker D∗

g0
. Indeed, as we shall see, this becomes a strictly convex

functional near g0 ∈ N k,α
sol when restricted to N k,α

sol . It is possible that the map is strictly
convex globally on N k,α

sol , in which case that would prove the global rigidity of the marked
length spectrum.

Given g ∈ N k,α , we denote by mg the unique equilibrium state for the potential
Vg . We will also write N for the case where k = ∞. First we check that these are
(infinite-dimensional) manifolds.
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LEMMA 3.6. There exists a neighborhood U ⊂ Mk,α of g0 such that N k,α ∩ U is a
codimension-one Ck−2-submanifold of U and N k,α

sol ∩ U is a Ck−2-submanifold of U .
Similarly, there is U ⊂ M an open neighborhood so that N ∩ U is a Fréchet submanifold
of M.

Proof. To prove this lemma, we will use the notion of differential calculus on Banach
manifolds as it is stated in [Zei88, Ch. 73]. Note that Mk,α is a smooth Banach manifold
and N k,α ⊂ Mk,α is defined by the implicit equation F(g) = 0 for

F : g �→ P(−Vg) ∈ R. (3.11)

The map F being Ck−2, we need only prove that dFg0 does not vanish by [Zei88, Theorem
73.C]. This will immediately give that Tg0N k,α = ker dFg0 . In order to do so, we need a
deformation lemma. For the sake of simplicity, we write the objects ·λ instead of ·gλ .

We can now complete the proof of Lemma 3.6. We first prove the first part concerning
N k,α . Recall formula (3.6) for dFg0 . Using Lemma 3.3, we obtain

dFg0 .h = −
∫
Sg0M

dag0 .h dμL
g0

= −1
2

∫
Sg0M

π∗
2h dμ

L
g0

= −Cn〈h, g0〉L2 , (3.12)

for some constant Cn > 0 depending on n. This is obviously surjective and we also obtain

Tg0N k,α = ker dFg0 = {h ∈ Ck,α(M; S2T ∗M) | 〈h, g0〉L2 = 0} = (Rg0)
⊥,

where the orthogonal is understood with respect to the L2-scalar product.
We now deal with N k,α

sol . First observe that ker D∗
g0

is a closed linear subspace of Mk,α

and thus a smooth submanifold of Mk,α . By [Zei88, Corollary 73.50], it is sufficient
to prove that ker D∗

g0
and N k,α are transverse at g0. But observe that g0 ∈ ker D∗

g0
�

Tg0 ker D∗
g0

and thus

Tg0 ker D∗
g0

+ Tg0N k,α = Tg0Mk,α ,

showing transversality.
The case of N follows directly from the Nash–Moser theorem: F is obviously a smooth

tame map from C∞(M; S2T ∗M) to R; moreover, dFg has a right inverse Hg since

dFg .g = −
∫
Sg0M

dag .g dmg = −1
2

∫
Sg0M

ag dmg = −1
2
Img (g0, g)

where we use the fact that 2dag .g is cohomologous to ag . This can be seen by
differentiating Lg(c) = ∫

γg0 (c)
ag and applying the Livsic theorem. In particular, the right

inverse is given by Hg .1 := −2g/Img (g0, g). The family of right inverses g �→ Hg is
smooth since g �→ ag and g �→ mg are smooth by [Con92, Theorem C], and it is clearly
also tame, thus we can apply directly [Ham82, Theorem 1.1.3, pp. 172] to deduce that F
has a smooth tame right inverse, which shows that N is a Fréchet submanifold.

We remark that ifLg = Lg0 , then ag is cohomologous to 1, so P(−Vg) = P(−Vg0) = 0
in that case, which means that g ∈ N k,α . From the second inequality in Proposition 3.5,
we obtain the following corollary.
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COROLLARY 3.7. Let g0 be a smooth metric with Anosov geodesic flow, with non-positive
curvature if n > 2. There exist Cg0 > 0 and a neighborhood U ⊂ N k,α such that, for all
g ∈ U , there is a diffeomorphism ψ ∈ Dk+1,α

0 so that

Cg0‖ψ∗g − g0‖2
H−1/2(M)

≤ IμLg0
(g0, g)− 1.

As suggested by this estimate, the functional � turns out to be strictly convex near g0

when restricted on N k,α
sol . First, we have, for h ∈ Tg0N k,α ,

d�g0 .h = −dFg0 .h = 0,

so that � : N k,α → R has a critical point at g0. For the second derivative at g0, the same
computation as in the previous section easily gives the following result.

LEMMA 3.8. The map � : N k,α
sol → R is strictly convex at g0, and there is C > 0 such

that

d2�g0(h, h) = 1
4 〈�g0

2 h, h〉 ≥ C‖h‖2
H−1/2(M)

for all h ∈ Tg0N
k,α
sol .

Proof. The proof follows exactly that of Proposition 3.2, using Tg0N k,α = (Rg0)
⊥.

3.3. The pressure metric on the space of negatively curved metrics. The results of this
paragraph are stated in negative curvature, but it is very likely that one could relax the
assumption to the Anosov case. Again, the only obstruction for the moment is that it is
still not known whether the X-ray transform I2 (hence the operator �2) is injective on
solenoidal tensors in the Anosov case when dim(M) ≥ 3.

3.3.1. Definition of the pressure metric using the variance. On M−, the cone of smooth
negatively curved metrics, we introduce the non-negative symmetric bilinear form

Gg(h1, h2) := 〈�g2h1, h2〉L2(M ,d volg), (3.13)

defined for g ∈ M, hj ∈ TgM � C∞(M; S2T ∗M). It is non-degenerate on TgM ∩
ker D∗

g , namely, Gg(h, h) ≥ Cg‖h‖2
H−1/2 by Lemma 2.2, and the constant Cg turns out

to be locally uniform for g near a given metric g0. Combining these facts, we obtain the
following proposition.

PROPOSITION 3.9. Let g0 ∈ M−. Then the bilinear form G defined in (3.13) produces a
Riemannian metric on the quotient space M−/D0 near the class [g0], where M−/D0 is
identified with the slice S passing through g0 as in (2.9).

Proof. It suffices to show that G is non-degenerate on T S. Let h ∈ TgS and assume that
Gg(h, h) = 0. We can write h = LV g + h′ whereD∗

gh
′ = 0 and V is a smooth vector field

and LV the Lie derivative with respect to V. By Lemma 2.1 we obtain 0 = Gg(h, h) ≥
C‖h′‖H−1/2 . Thus h = LV g, but we also know that TgS ∩ {LV g | V ∈ C∞(M; T ∗M)} =
{0} since S is a slice. Therefore h = 0.
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3.3.2. Definition using the intersection number. We now want to relate the pressure
metric previously introduced to some renormalized intersection numbers involving some
well-chosen potentials. This will be needed to show that the pressure metric coincides
with (a multiple of) the Weil–Petersson metric in the case where M is a surface and
one restricts to hyperbolic metrics. This also makes a relation with recent work of
[BCLS15].

Let us assume that g is in a fixed C2-neighborhood of g0. Since J ug0
> 0, we obtain

that Vg = J ug0
+ ag − 1 > 0 if g is close enough to g0. By [Sam14, Lemma 2.4], there

exists a unique constant hVg ∈ R such that P(−hVgVg) = 0. In particular, N coincides
in a neighborhood of g0 with the set {g ∈ M | hVg = 1}. One can express the constant

hVg as hVg = htop(ϕ
g0,Vg
t ), where ϕ

g0,Vg
t is a time reparametrization of the geodesic flow

of g0 (see [BCLS15, §3.1.1]). More precisely, given a Hölder-continuous positive function
f ∈ Cν(Sg0M) on Sg0M , we introduce the unique real number hf such that P(−hf f ) = 0
and we set

Sg0M × R � (z, t) �→ κf (z, t) :=
∫ t

0
f (ϕ

g0
s (z)) ds.

For a fixed z ∈ Sg0M , this is a homeomorphism on R and thus allows us to define

ϕ
g0,f
κf (z,t)

(z) := ϕg0
t (z). (3.14)

We now follow the approach of [BCLS15, §3.4.1]. Given two Hölder-continuous functions
f , f ′ ∈ Cν(Sg0M) such that f > 0, one can define an intersection number [BCLS15, Eq.
(13)]

Ig0(f , f ′) :=
∫
Sg0M

f ′ dμ−hf f∫
Sg0M

f dμ−hf f

where dμ−hf f is the equilibrium measure for the potential −hf f . We have the following
result, which follows from [BCLS15, Proposition 3.8] stated for Anosov flows on compact
metric spaces:

PROPOSITION 3.10. (Bridgeman, Canary, Labourie and Sambarino [BCLS15]) Let
f , f ′ : Sg0M → R+ be two Hölder-continuous positive functions. Then

Jg0(f , f ′) := hf ′

hf
Ig0(f , f ′) ≥ 1,

with equality if and only if hff and hf′f
′ are cohomologous for the geodesic flow ϕg0

t of
g0. The quantity Jg0(f , f ′) is called the renormalized intersection number.

We apply the previous proposition with f := J ug0
(then hJug0

= 1) and f ′ := Vg .
Without assuming that g ∈ N (that is, we do not necessarily assume that hVg = 1), we

https://doi.org/10.1017/etds.2021.75 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.75


1000 C. Guillarmou et al

have

Jg0(J
u
g0

, Vg) = hVg Ig0(J
u
g0

, Vg) = hVg

∫
Sg0M

(Jug0
+ ag − 1) dμL

g0∫
Sg0M

Jug0
dμL

g0

= hVg
hL(g0)+ IμL

g0
(g0, g)− 1

hL(g0)
≥ 1,

where hL(g0) is the entropy of the Liouville measure for g0. In the specific case where
g ∈ N , hVg = 1 and we find that IμL

g0
(g0, g) ≥ 1 with equality if and only if ag is

cohomologous to 1, that is, if and only if Lg = Lg0 , or alternatively if and only if ϕg and
ϕg0 are time-preserving conjugate. This computation holds as long as J ug0

+ ag − 1 > 0
(which is true in a C2-neighborhood of g0).

In particular, on N , we have the linear relation

Jg0(J
u
g0

, Vg) = 1 +
IμL
g0
(g0, g)− 1

hL(g0)
.

In the notations of [BCLS15, Proposition 3.11], the second derivative computed for the
family (gλ)λ∈(−1,1) ∈ N is

∂2
λJg0(J

u
g0

, Vgλ)|λ=0 = 1
hL(g0)

∂2
λIμL

g0
(g0, gλ)|λ=0 = 〈�g0

2 ġ0, ġ0〉
4 hL(g0)

(3.15)

and is called the pressure form. When considering a slice transverse to the D0 action on
N , it induces a metric called the pressure metric by Lemma 2.1. To summarize, we have
the following lemma.

LEMMA 3.11. Given a smooth metric g0, the metric Gg0 restricted to N can be obtained
from the renormalized intersection number by

Gg0(h, h) = 4hL(g0)∂
2
λJg0(J

u
g0

, Vgλ)|λ=0

where (gλ)λ∈(−1,1) is any family of metrics such that gλ ∈ N and ġ0 = h ∈ Tg0N .

3.3.3. Link with the Weil–Petersson metric. We now assume thatM = S is an orientable
surface of genus at least 2. Let T (S) be the Teichmüller space of S. We show that the
pressure metric coincides with (a multiple of) the Weil–Petersson metric in restriction
to T (S). We fix a hyperbolic metric g0. Given η, ρ ∈ T (S) and gη, gρ the associated
hyperbolic metrics, since T (S) is connected (indeed, a ball in C

3(genus(M)−1)) there is
topological conjugacy between gη, gρ and g0 and one can defined the time rescaling agη
and agρ by using a path of hyperbolic metrics relating g0 to gη or to gρ . The intersection
number is defined as

I(η, ρ) := Ig0(agη , agρ ) =
∫
Sg0M

agρdμη∫
Sg0M

agηdμη
,

where [gη] = η, [gρ] = ρ and μη is the equilibrium state of −hagη agη . Note that hagη =
htop(ϕ

g0,aη
t ) = 1 since ϕg0,aη is conjugate to the geodesic flow of gη, which in turn has
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constant curvature, and by [Sam14, Lemma 2.4], agηdμη/
∫
Sg0M

agηdμη is the measure

of maximal entropy of the flow ϕg0,aη
t , thus also the normalized Liouville measure of gη

(viewed on Sg0M). This number I(η, ρ) is in fact independent of g0 as it can alternatively
be written

I(η, ρ) = lim
T→∞

1
NT (η)

∑
c∈C,Lgη (c)≤T

Lgρ (c)

Lgη(c)
,

where NT = �{c ∈ C |Lgη(c) ≤ T } (see [BCS18, Proof of Theorem 4.3]). In particular,
taking g0 = gη, we have

I(η, ρ) = IμL
gη
(gη, gρ).

As explained in [BCS18, Theorem 4.3], up to a normalization constant c0 depending on
the genus only, the Weil–Petersson metric on T (S) is equal to

‖h‖2
WP = c0∂

2
λI(η, ηλ)|λ=0 = c0∂

2
λIμL

gη
(gη, gηλ)|λ=0, (3.16)

where η̇0 = h and (gηλ)λ∈(−1,1) is a family of hyperbolic metrics such that [gηλ] = ηλ,
η = η0 = [g0]. This fact follows from combined works of Thurston, Wolpert [Wol86] and
McMullen [MM08]: the length of a random geodesic γ on (S, g0) with respect to gηλ has
a local minimum at λ = 0 and the Hessian is positive definite (Thurston), is equal to the
Weil–Petersson norm squared of ġ (Wolpert [FF93, Wol86]) and is given by a variance
(McMullen [MM08]); here random means equidistributed with respect to the Liouville
measure of g0. We can check that the metric G also corresponds to this metric.

PROPOSITION 3.12. The metric G on T (S) is a multiple of the Weil–Petersson metric.

Proof. This follows directly from (3.15), (3.16) and the fact that hL(gη) = 1 if gη has
curvature −1.

Remark 3.13. We notice that the positivity of the metric in the case of Teichmüller space
follows only from some convexity argument in finite dimension. In the case of general
metrics with negative curvature, the elliptic estimate of Lemma 2.1 on the variance is
much less obvious due to the infinite dimensionality of the space. As it turns out, this is
the key for the local rigidity in our results.

4. Uniform elliptic estimates on�2

In this section we prove that the operator �g2 ∈ 
−1(M; S2T ∗M) depends continuously
on g. Let MAn be the space of smooth Riemannian metrics with Anosov geodesic flow.

PROPOSITION 4.1. The map MAn � g �→ �
g

2 ∈ 
−1(M; S2T ∗M) is continuous when

−1(M; S2T ∗M) is equipped with its topology of Fréchet spaces.

Recall that the Fréchet topology was introduced at the beginning of §2.2. We fix a metric
g0 and we work in a neighborhood U of g0 in the C∞ topology. In particular, we will
always assume that this neighborhood U is small enough that any g ∈ U has an Anosov
geodesic flow that is orbit-conjugated to that of g0 by structural stability. We will also see
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the geodesic flows (ϕgt )t∈R as acting on the unit bundle SM := Sg0M for g0 by using the
natural identification SgM → Sg0M obtained by scaling in the fibers. The operator π∗

2
associated to g becomes: for (x, v) ∈ Sg0M ,

(π∗
2h)(x, v) = hx(v, v)|v|−2

g .

4.1. The resolvents of Xg and anisotropic spaces. We first recall the construction of
resolvents of Xg from Faure and Sjöstrand [FS11] (see also [DZ16]) and, in particular, the
version used in Dang et al [DGRS20] that deals with the continuity with respect to the
flow Xg . Let E∗

u/s(g) ⊂ T ∗(SM) be the annihilators of Eu/s(g)⊕ E0(g), that is,

E∗
u(g)(Eu(g)⊕ E0(g)) = 0, E∗

s (g)(Es(g)⊕ E0(g)) = 0.

There are two resolvents bounded on L2 for Xg defined for Re(λ) > 0 by

R±
g (λ) := ±

∫ ∞

0
e−λt e±tXgf dt

for f ∈ L2(SM , dμL
g ). They solve (−Xg ± λ)R±

g (λ) = Id on L2. The following results
are proved in [FS11], and we use here the presentation of [DGRS20, Sections 3.2 and 3.3]
due to the need for uniformity with respect to g: there is c0 > 0 depending only on g, locally
uniform with respect to g (c0 depends only on the Anosov exponents of contraction/dilation
of dϕg1 ), such that for each N0 > 0, N1 > 16N0, R±

g (λ) admits a meromorphic extension
in Re(λ) > −c0N0 as a bounded operator

R−
g (λ) : Hm

N0,N1
g → Hm

N0,N1
g , R+

g (λ) : H−mN0,N1
g → H−mN0,N1

g (4.1)

where H±mN0,N1
g are Hilbert spaces depending onN0 > 0, N1 > 0 satisfying the properties

H 2N1(SM) ⊂ Hm
N0,N1
g ⊂ H−2N0(SM), H 2N0(SM) ⊂ H−mN0,N1

g ⊂ H−2N1(SM)

and defined by

H±mN0,N1
g = (A

m
N0,N1
g

)∓1L2(SM), A
m
N0,N1
g

:= Op(em
N0,N1
g log f ),

and A
m
N0,N1
g

is an invertible pseudo-differential operator with inverse having principal

symbol e−m
N0,N1
g log f . Here Op denotes a quantization (with a fixed small semi-classical

parameter to ensure that Op(em
N0,N1
g log f ) is invertible), while mN0,N1

g ∈ S0(T ∗(SM)),
f ∈ S1(T ∗(SM), [1, ∞)) (the usual classes of symbols) are homogeneous of respective
degree 0 and 1 in |ξ | > R, for some R > 1 independent of g, and constructed from the
lifted flow �gt = ((dϕgt )−1)T acting on T ∗(SM). The function f can be taken depending
only on g0 for g in a small enough C∞ neighborhood U of g0. Moreover, there are small
conic neighborhoods Cu(g0) and Cs(g0) of E∗

u(g0) and E∗
s (g0) such that, for any smaller

open conic neighborhood C′
u(g0) ⊂ Cu(g0) of E∗

u(g0) and C′
s(g0) ⊂ Cs(g0) of E∗

s (g0),

https://doi.org/10.1017/etds.2021.75 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.75


Geodesic stretch, pressure metric and marked length spectrum rigidity 1003

m
N1,N1
g satisfies ⎧⎪⎨

⎪⎩
m
N0,N1
g (z, ξ) ≥ N1, (z, ξ) ∈ C′

s(g0),
m
N0,N1
g (z, ξ) ≥ N1/8, (z, ξ) /∈ Cu(g0),
m
N0,N1
g (z, ξ) ≤ −N0, (z, ξ) ∈ C′

u(g0),
(4.2)

and mg(x, ξ) ∈ [−2N0, 2N1] for all (z, ξ) ∈ T ∗(SM). We note that [DGRS20, Lemma
3.3] shows that mN0,N1

g is smooth with respect to the metric g and that f can be taken to

be independent of g for g close enough to g0. The spaces Hm
N0,N1
g are called anisotropic

Sobolev spaces. The pseudodifferential operators A
m
N0,N1
g

belong to the class 
2N1(SM)

but also to some anisotropic subclass denoted 
m
N0,N1
g (SM) admitting composition

formulas; we refer to [FRS08, FS11] for details.
Eventually, [DGRS20, Proposition 6.1] shows that there is a small open neighborhood

Wδ of the circle {λ ∈ C | |λ| = δ} for some small δ > 0 so that

U ×Wδ � (g, λ) �→ A
m
N0,N1
g

R−
g (λ)(Am

N0,N1
g

)−1 ∈ L(H 1(SM), L2(SM)) (4.3)

is continuous. (In [DGRS20, Proposition 6.1], a small semi-classical parameter h > 0
appears: we can just fix this parameter small enough. It does not play any role here except
in the quantization procedure Op. We also add that in [DGRS20, Proposition 6.1], N1 is
chosen to be equal to 20N0 for notational convenience, but the proof does not use that
fact.)

4.2. The operator �g2 in terms of resolvents. Following [Gui17], the link between �g

and the resolvent is given by the Laurent expansion

�g = R+
g (0)− R−

g (0),

where R+
g (λ) has a pole of order 1, R±

g (0) is defined by

R±
g (λ) = ±λ−1〈·, 1〉 + R±

g (0)+ O(λ),

and R−
g (0) = −(R+

g (0))
∗ where the adjoint is with respect to the Liouville measure.

LEMMA 4.2. Let χ ∈ C∞
c (R) be even and equal to 1 in [−T , T ] and supported in the

interval (−T − 1, T + 1). Then

�g =
∫
R

χ(t)etXg dt − R+
g (0)

∫ +∞

0
χ ′(t)etXg dt

+ R−
g (0)

∫ +∞

0
χ ′(t)e−tXg dt − 〈·, 1〉

∫
R

χ . (4.4)

Proof. For Re(λ) > 0, we can write, by integration by parts,

R±
g (λ) = ±

∫ ∞

0
χ(t)e−t (λ∓Xg)dt ±

∫ ∞

0
(1 − χ(t))e−t (λ∓Xg)dt

= ±
∫ ∞

0
χ(t)e−t (λ∓Xg)dt − R±

g (λ)

∫ ∞

0
χ ′(t)et (±Xg−λ)dt .
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Then taking the limit as λ → 0, we obtain

R±
g (0) = ±

∫ ∞

0
χ(t)e±tXgdt − R±

g (0)
∫ ∞

0
χ ′(t)e±tXgdt ∓

∫ ∞

0
χ(t)dt〈·, 1〉,

and summing gives the result.

Next, we remark that, using that ϕgt (x, −v) = −ϕg−t (x, v) (where multiplication by −1
is the symmetry in the fibers of SM), it is straightforward to check that, for all t ∈ R,

π2∗etXgπ∗
2 = π2∗e−tXgπ∗

2 ,

which also implies that π2∗R+
g (0)e

tXgπ∗
2 = −π2∗R−

g (0)e
−tXgπ∗

2 and thus

�
g

2 = 2π2∗
∫ ∞

0
χ(t)e−tXg dtπ∗

2

+ 2π2∗R−
g (0)

∫ +∞

0
χ ′(t)e−tXg dtπ∗

2 +
(

1 −
∫
R

χ

)
〈·, 1〉. (4.5)

We will prove that these three terms depend continuously on g. Note that(
1 −

∫
R

χ

)
〈f , 1〉 =

(
1 −

∫
R

χ

) ∫
SM

f (z) dμL
g (z)

and thus the g-continuity of this term is immediate. Now, we claim the following result.

LEMMA 4.3. There exist T > 0 large enough and a neighborhood U ′ ⊂ U of g0 in MAn

so that for all x ∈ M and all g ∈ U ′ the exponential map of g in the universal cover M̃ ,

expg̃x : {v ∈ TxM̃; |v|g ≤ T } → M̃ ,

is a diffeomorphism onto its image and �gt (V
∗ ∩ ker ιXg ) ⊂ C′

u(g0) for all t ≥ T , if
�
g
t := ((dϕgt )−1)T is the symplectic lift of ϕgt , V ∗ ⊂ T ∗(SM) is the annihilator of

the vertical bundle V = ker dπ0 ⊂ T (SM) and ιX : T ∗(SM)→ R is the contraction
ιXg (ξ) = ξ(Xg).

We also mention here as it is used in the following proof that, as a consequence of
hyperbolicity,

V ∗ ∩ E∗
s = V ∗ ∩ E∗

u = {0}.
This can be found in [Pat99, Theorem 2.50], for instance (formulated for the tangent
bundle T (SM) but the adaptation to T ∗(SM) is straightforward). The T in Lemma 4.2
will be chosen accordingly so that Lemma 4.3 is satisfied.

Proof. By [DGRS20, Lemma 3.1], the cone C′
u(g0) can be chosen so that there exist T > 0

and U ′ such that, for all t ≥ T and all g ∈ U ′, �gt (C′
u(g0)) ⊂ C′

u(g0). We also know that
�
g0
T0
(V ∗ ∩ ker ιXg ) ⊂ C′

u(g0) for some T0 > T by hyperbolicity of g0 (that is, the stable
bundle E∗

s only intersects trivially the vertical bundle V ∗ ∩ ker ıXg ), but by continuity
of g �→ �

g
T0

, the same holds for all g in some possibly smaller neighborhood U ′′ ⊂ U ′,
thus for all t ≥ T0 and all g ∈ U ′′, �gt (V ∗ ∩ ker ιXg ) ⊂ C′

u(g0). Now, we claim that, up to
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choosing U ′′ even smaller, the exponential map is a diffeomorphism on {|v|g ≤ T } in the
universal cover: indeed, Anosov geodesic flows have no pair of conjugate points.

4.3. Proof or Proposition 4.1. Let us define

�
g

1 := π2∗
∫ ∞

0
χ(t)e−tXg dtπ∗

2 , �
g

2 := π2∗R−
g (0)

∫ +∞

0
χ ′(t)e−tXg dtπ∗

2 .

Proposition 4.1 is a consequence of the following two lemmas.

LEMMA 4.4. For each g ∈ U ′, �g1 ∈ 
−1(M; S2T ∗M) with principal symbol

σ(�
g

1)(x, ξ) = cn|ξ |−1πker iξ A
2
2πker iξ

for some cn > 0 depending only on n = dimM and A2 some positive definite endomor-
phism defined in Lemma 2.1, and the map g �→ �

g

1 is continuous with respect to the smooth
topology on U ′ and the usual Fréchet topology on 
−1(M; S2T ∗M).

Proof. The fact that, for each g ∈ MAn, the operator �g1 ∈ 
−1(M; S2T ∗M) is proved
in [Gui17, Theorem 3.5]. The computation of the principal symbol follows from the
computation [SSU05, SU04] and is done in detail in our setting in [GL, Theorem 4.4].
We need to check the continuity with respect to g in the 
−1(M; S2T ∗M) topology and
we can proceed as in [SU04, Propositions 1 and 2]. For h ∈ C∞(M; S2T ∗M), we can
write explicitly in (xi)i coordinates in the universal cover M̃ near a point p ∈ M̃ ,

(�
g

1h(x))ij =
∫
SxM̃

∫ ∞

0
χ(t )̃hexpg̃x (tv)

(∂t expg̃x(tv), ∂t expg̃x(tv))pij (x, v) dtdSx(v),

where pij (x, v) are homogeneous polynomials of order 2 in the v variable, h̃ ∈
C∞(M̃; S2T ∗M) is the lift of h to the universal cover M̃ , and dSx is the natural measure
on the sphere SxM̃ . Using Lemma 4.3, we can perform the change of coordinates
(t , v) ∈ (0, T )× SxM̃ �→ y := expg̃x(tv) ∈ M̃ , and we get the distance t = dg̃(x, y) in
M̃ , and

dtdv = J
g
x (y)

(dg̃(x, y))n−1 dvolg(y), v = −∇ g̃y dg̃(x, y), ∂t expg̃x(tv) = (∇ g̃x dg̃(x, y)),

for some J gx (y) smooth in x, y, g. We claim that this implies that

�
g

1h(x) =
∫
M

Kg(x, y)h(y) dvolg(y)

for some Kg(x, y) which is smooth in (g, x, y) outside the diagonal x = y and, near the
diagonal, has the form (for some L <∞)

Kg(x, y) =
L∑
�=1

c�(g, x, y)ω�,g,x(x − y)

with c� a matrix valued function, smooth in all its variables and ω�,g,x(v) a vector-valued
function smooth in g, x, homogeneous of degree −(n− 1) in v ∈ R

n. Indeed, one can
work in the universal cover M̃ where xi are globally defined coordinates, so that, writing
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h(x) = ∑
i,j hij (x)dxidxj and p = ∑

ij pij (x)dxidxj , we get that Kg(x, y) is a matrix
with coefficients

(Kg(x, y))ij i′j ′ = χ(dg̃(x, y))pij (x)F
g
i (x, y)F gj (x, y)Gg

i′(x, y)Gg
j ′(x, y)

J
g
x (y)

dg̃(x, y)n−1

where Fgi (x, y) = −dxi(∇ g̃y dg̃(x, y)) and Ggi (x, y) = dxi(∇ g̃x dg̃(x, y)). Now we can use
the standard fact (see, for example, [SU04, Lemma 1]) that

d2
g̃ (x, y) =

∑
ij

H 1
ij (g, x, y)(x − y)i(x − y)j ,

dxi(∇gx dg̃(x, y)) =
∑
ij H

2
ij (g, x, y)(x − y)j
dg̃(x, y)

(and likewise for dxi(∇gy dg̃(x, y)) by symmetry) where Hkij (g, x, y) are smooth in all
variables and positive definite for x = y. The kernelKg is thus smooth outside the diagonal
(as a function of g, x, y), and can be written near the diagonal as a sum of terms of the form
c(g, x, y)ωg,x(x − y) where c is smooth in all its variables and ωg,x(v) is a homogeneous
distribution of degree −(n− 1) in the variable v, smooth in g, x. The off-diagonal term
for the Fréchet topology is then clearly smooth in g, while the near-diagonal term has full
local symbols that are Fourier transforms of c(g, x, x − v)ωg,x(v):

σ(g; x, ξ) =
∫
R

eivξ c(g, x, x − v)ωg,x(v) dv.

It is then a standard and easy exercise to check that this provides uniform bounds
on semi-norms of the symbol. (Alternatively, the semi-norms on the full symbol are
equivalent to semi-norms in the space of distributions on M ×M that are conormal to
the diagonal, defined through differentiations of Kg(x, y) with respect to smooth fields
tangent to diag(M ×M); see [Mel, Ch. 5, Proposition 6.1.1 and its proof]. Such norms for
Kg are clearly uniformly bounded in terms of g.) We deduce the continuity (and indeed,
smoothness) of �g1 as an element of 
−1(M; S2T ∗M) with respect to the metric g.

LEMMA 4.5. The operator�g2 has a smooth Schwartz kernel for each g ∈ U ′, and the map

g ∈ U ′ �→ �
g

2 ∈ C∞(M ×M; S2T ∗M ⊗ (S2T ∗M)∗)

is continuous if we identify �2
g with its Schwartz kernel.

Proof. First we observe that ifB ∈ 
0(SM) is chosen, independently of g, so thatB∗ = B
and B is microsupported in a small conic neighborhood of V ∗ not intersecting Cu(g0) and
equal microlocally to the identity in a slightly smaller conic neighborhood of V ∗, then

π∗
2 = Bπ∗

2 + Sg , π2∗ = π2∗B + S∗
g ,

with Sg a continuous family of smoothing operators. This decomposition is a consequence
of the fact that π∗

2 maps C−∞(M; S2T ∗M) to the space C−∞
V ∗ (SM) of distributions with

wavefront set contained in V ∗ (π∗
2 being essentially a pullback, this follows, for instance,
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from [Hör03, Theorem 8.2.4]). We will show that the operator

�
g

3 := π2∗BR−
g (0)

∫ T+1

T

χ ′(t)e−tXgBπ∗
2 dt

is a continuous family (with respect to g) of smoothing operators. We need to show that
for each N > 0, �g3 : H−N(SM)→ HN(SM) is a continuous family with respect to g of
bounded operators. To study R−

g (0), it suffices to write it in the form

R−
g (0) = 1

2πi

∫
|λ|=δ

R−
g (λ)

λ
dλ (4.6)

with δ small enough so that the only pole of R−
g (λ) in |λ| ≤ δ is λ = 0 (this is possible

for g close enough to g0 by continuity of g �→ R−
g (λ) as proved in [DGRS20]; note

that the spectrum (the Pollicott–Ruelle resonances) depends continuously on the metric,
as was shown by [Bon20]), so that this amounts to analyzing R−

g (λ) on {|λ| = δ}. We
decompose B = B1 + B2 with Bi ∈ 
0(SM), where WF(B1) is contained in a conic
neighborhood of ker ιXg0

not intersecting the annihilator E0(g0)
∗ of Eu(g0)⊕ Es(g0)

(the neutral direction) and WF(B2) ∩ ker ιXg0
= ∅ (B2 is microsupported in the elliptic

region). For i = 1, 2 we let BiT ∈ 
0(SM) be microsupported in a conic neighborhood
of

⋃
t∈[T ,T+1] �

g
t (WF(Bi)), so that by Egorov (or simply the formula of composition of


0(SM) with diffeomorphisms of SM),

for all t ∈ [T , T + 1], e−tXgBi = BiT e−tXgBi + S′
g,i (t),

for some continuous family (g, t) �→ S ′
g,i (t) of smoothing operators (for g close enough to

g0). We note that by taking U ′ small enough and WF(B1) close enough to V ∗ ∩ ker ιXg0
,

Lemma 4.3 ensures that we can choose B1
T depending only on T (thus uniform in g ∈ U ′)

so that WF(B1
T ) ⊂ C′

u(g0). Thus∫ T+1

T

χ ′(t)e−tXgB1 dt = B1
T

∫ T+1

T

χ ′(t)e−tXgB1 dt + S′′
g,1

for some continuous family g �→ S′′
g,1 of smoothing operators. Next we use (4.1) with the

choice N0 = N + 1 and N1/16 = N + 2. Since, by (4.2),

mg(z, ξ) ≤ −N − 1 for all (z, ξ) ∈ WF(B1
T ),

we obtain, using the composition properties in [FRS08, Theorem 8] that A
m
N0,N1
g

B1
T ∈


−N−1(SM) is uniformly bounded with respect to g and continuous as a map g ∈ U ′ �→
A
m
N0,N1
g

B1
T ∈ L(H−N(SM), H 1(SM)). In particular,

U ′ � g �→ A
m
N0,N1
g

∫ T+1

T

χ ′(t)e−tXgB1 dt ∈ L(H−N(SM), H 1(SM)) (4.7)

is continuous. Next, we deal with the ‘elliptic region’ term, that is, the term B2. The idea is
to show it is smoothing, since it is a Schwartz function of Xg microlocalized in the elliptic
region of Xg . First, WF(B2

T ) does not intersect ker ιXg for g ∈ U ′ after possibly reducing
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U ′ since it does not intersect ker ιXg0
. Moreover, we have

X2N
g

∫ T+1

T

χ ′(t)e−tXgB2dt =
∫ T+1

T

χ(1+2N)(t)e−tXgB2dt ,

and since WF(B2
T ) does not intersect ker ιXg for g ∈ U ′, there exist by microlocal

ellipticity [DZ19, Proposition E.32] a family Qg ∈ 
−2N(SM) and Zg ∈ 
−∞(SM),
both continuous with respect to g, so that

QgX
2N
g = B2

T + Zg .

We write

B2
T

∫ T+1

T

χ ′(t)e−tXgB2 dt = QgX2N
g

∫ T+1

T

χ ′(t)e−tXgB2 dt + Z′
g

= Qg
∫ T+1

T

χ(1+2N)(t)e−tXgB2dt + Z′
g ,

where Z′
g ∈ L(H−N(SM), HN(SM)) continuously in g. Since

∫ T+1
T

χ ′(t)e−tXgB2 dt is
continuous in g as a bounded map L(H−N(SM)) andQg is continuous in g as a bounded
map L(H−N(SM), HN(SM)), we get

B2
T

∫ T+1

T

χ ′(t)e−tXgB2 dt ∈ L(H−N(SM), HN(SM))

continuously in g ∈ U ′. Combine these facts with (4.7), (4.3) and (4.6), we deduce that

U ′ � g �→ A
m
N0,N1
g

R−
g (0)(AmN0,N1

g
)−1A

m
N0,N1
g

∫ T+1

T

χ ′(t)e−tXgB dt

is continuous as a map with values in L(H−N(SM), L2(SM)). Finally, using that
WF(B) ∩ Cu(g0) = ∅ and −mN0,N1

g ≤ −2N − 4 outside Cu(g0) by (4.2), we have that
B(A

m
N0,N1
g

)−1 ∈ 
−2N−4(SM) uniformly in g (again using [FRS08, Theorem 8] and

[DGRS20, Lemma 3.2]) and the following map is continuous:

U ′ � g �→ B(A
m
N0,N1
g

)−1 ∈ L(L2(SM), HN(SM)).

This shows that U ′ � g �→ �
g

3 ∈ L(H−N(M; S2T ∗M), HN(M; S2T ∗M)) is continuous.
The terms involving the smoothing remainders Sg appearing in the difference between
�
g

2 and �g3 can be dealt with using the same argument, and indeed are even simpler to
consider. The proof is then complete.

The proof of Proposition 4.1 is simply the combination of Lemmas 4.4 and 4.5.
As a corollary we prove Theorem 1.3.

4.4. Proof of Theorem 1.3. Let g0 ∈ MAn and assume g0 has non-positive curvature if
n ≥ 3. Using Lemma 2.4, for g1, g2 ∈ M close enough to g0 in Ck+3,α norm, we can find
ψ ∈ Dk+1,α

0 (with k ≥ 5 to be chosen later), depending in a C2 fashion on (g1, g2) such
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that D∗
g1
(ψ∗g2) = 0. Moreover, g′

2 = ψ∗g2 satisfies

‖g′
2 − g1‖Ck,α ≤ C(‖g1 − g0‖Ck,α + ‖g2 − g0‖Ck,α )

for some C depending only on g0. We can then rewrite the proof of Theorem 1.2,
replacing g0 by g1. Let
g1(g2) = P(−J ug1

− ag1,g2 + ∫
Sg0M

ag1,g2 dμ
L
g1
) be the map (3.2)

with (g1, g2) replacing (g0, g), and �g1(g2) = IμL
g1
(g1, g2), where ag1,g2 is the time

reparametrization coefficient (2.14) in the conjugacy between the flows ϕg1 and ϕg2 , and
the pressure and the stretch are taken with respect to the flow ϕg1 . Combining [Con92,
Theorem C] and Proposition C.1, the maps (g1, g2) �→ 
g2(g1) and (g1, g2) �→ �g1(g2)

areC3 in g2 if k is chosen large enough, and each g2-derivative of order � ≤ 3 is continuous
with respect to (g1, g2) ∈ Ck+3 × Ck+3 (again k is fixed large enough). Following the
proof of Proposition 3.5, this gives that for g1, g2 smooth but close enough to g0 in Mk+3,α

Cn(�g1(g2)− 1)2 +
g1(g2) ≥ 1
8 〈�g1

2 (g
′
2 − g1), (g′

2 − g1)〉 − C′
g1

‖g2 − g1‖3
Ck0,α ,

where Cn depends only on n = dimM , and C′
g1

depends on ‖g1‖Ck0,α for some fixed k0.
Combining Proposition 4.1 and Lemma 2.2, we deduce that there exist Cg0 , C′

g0
> 0

depending only on g0 so that for g1, g2 ∈ M in a small enough neighborhood of g0 in the
Ck+3,α topology (for k ≥ k0),

Cn(�g1(g2)− 1)2 +
g1(g2) ≥ Cg0‖g′
2 − g1‖H−1/2(M) − C′

g0
‖g2 − g1‖3

C5,α .

This means that there exists ε > 0 depending on g0 and k large enough so that, for all
g1, g2 ∈ M smooth satisfying ‖gj − g0‖Ck+3,α(M) ≤ ε, the estimates of Proposition 3.5
with (g1, g2) replacing (g0, g) hold uniformly with respect to (g1, g2). This proves the
theorem.

5. Distances from the marked length spectrum
In this section we discuss different notions of distances involving the marked length
spectrum on the space of isometry classes of negatively curved metrics. Again, if the X-ray
transform I2 were known to be injective, it is likely that one could only assume the Anosov
property for the metrics in this paragraph.

5.1. Length distance. We define the following map.

Definition 5.1 Let k be as in Theorem 1.3. We define the marked length distance map
dL : Mk,α × Mk,α → R

+ by

dL(g1, g2) := lim sup
j→∞

∣∣∣∣ log
Lg1(cj )

Lg2(cj )

∣∣∣∣.
This is indeed well defined. If g1, g2 are two such metrics, then there exists a

constant C = C(g1, g2) ≥ 1 such that for all (x, v) ∈ TM , (1/C)× |v|g1(x) ≤ |v|g2(x) ≤
C × |v|g1(x). As a consequence, using that a geodesic is a minimizer of the length among
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a free homotopy class, we obtain

Lg1(cj )

Lg2(cj )
= �g1(γg1(cj ))

�g2(γg2(cj ))
≤ �g1(γg2(cj ))

�g2(γg2(cj ))
≤ C1/2 �g2(γg2(cj ))

�g2(γg2(cj ))
= C1/2,

and the lower bound follows from a similar computation. We obtain the following corollary
of Theorem 1.3.

COROLLARY 5.2. The map dL descends to the set of isometry classes near g0 and defines
a distance in a small Ck,α-neighborhood of the isometry class of g0.

Proof. It is clear that dL is invariant by action of diffeomorphisms homotopic to the
identity since Lg = Lψ∗g for such diffeomorphisms ψ . Now let g1, g2, g3 three metrics.
We have

lim sup
j→∞

∣∣∣∣ log
Lg1(cj )

Lg2(cj )

∣∣∣∣ = lim sup
j→∞

∣∣∣∣ log
Lg1(cj )

Lg3(cj )

Lg3(cj )

Lg2(cj )

∣∣∣∣
≤ lim sup

j→∞

∣∣∣∣ log
Lg1(cj )

Lg3(cj )

∣∣∣∣ + lim sup
j→∞

∣∣∣∣ log
Lg3(cj )

Lg2(cj )

∣∣∣∣,
thus dL satisfies the triangle inequality. Finally, by Theorem 1.3, if dL(g1, g2) = 0 with
g1, g2 in the Ck,α neighborhood Ug0 of Theorem 1.3, we have g1 isometric to g2, showing
that dL produces a distance on the quotient of Ug0 by diffeomorphisms.

We also note that Theorem 1.3 states that there is Cg0 > 0 such that for each g1, g2 ∈
Ck,α(M; S2T ∗M) close to g0 there is a diffeomorphism such that

dL(g1, g2)
1/2 ≥ Cg0‖ψ∗g1 − g2‖H−1/2 .

5.2. Thurston’s distance. We also introduce the Thurston distance on metrics with
topological entropy 1, generalizing the distance introduced by Thurston in [Thu98] for
surfaces on Teichmüller space (all hyperbolic metrics on surface have topological entropy
equal to 1). We denote by E (respectively, Ek,α) the space of negatively curved metrics in
M (respectively, in Mk,α) with topological entropy htop(g) = 1. (Let us also recall here
for the sake of clarity that htop(λ

2g) = htop(g)/λ, for λ > 0.) With the same arguments as
in Lemma 3.6, this is a codimension-one submanifold of M and if g0 ∈ Ek,α , we have

Tg0Ek,α :=
{
h ∈ Ck,α(M; S2T ∗M) |

∫
Sg0M

π∗
2h dμ

BM
g0

= 0
}

. (5.1)

Definition 5.3 We define the Thurston non-symmetric distance map dT : Ek,α × Ek,α →
R

+ by

dT (g1, g2) := lim sup
j→∞

log
Lg2(cj )

Lg1(cj )
.

Note that the finiteness of the previous quantity also follows from the same argument as
the one justifying the finiteness of Definition 5.1. Its non-negativity will be a consequence
of Lemma 5.5, where it is proved that this can be expressed in terms of the geodesic stretch.
We will prove the following proposition.
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PROPOSITION 5.4. The map dT descends to the set of isometry classes of metrics in Ek,α
(for k ∈ N large enough, α ∈ (0, 1)) with topological entropy equal to 1 and defines a
non-symmetric distance in a small Ck,α-neighborhood of the diagonal.

Moreover, this distance is non-symmetric in the pair (g1, g2) which is also the case of
the original distance introduced by Thurston [Thu98], but this is just an artificial limitation
(Thurston [Thu98]): ‘It would be easy to replace L (in Thurston’s notation, L(g, h) =
lim supj→∞ log(Lg(cj )/Lh(cj ))) by its symmetrization 1

2 (L(g, h)+ L(h, g)), but it
seems that, because of its direct geometric interpretations, L is more useful just as it is.’ In
order to justify that this is a distance, we start with the following lemma.

LEMMA 5.5. Let g1, g2 ∈ M be negatively curved. Then

lim sup
j→∞

Lg2(cj )

Lg1(cj )
= sup
m∈Minv,erg

Im(g1, g2) ≥ 0.

Note that there is no need to assume g1 and g2 are close in this lemma: this follows from
Appendix B, where we discuss the fact that the stretch (and the time reparametrization)
is well defined despite the fact that the metrics may not be close. Here m is seen as an
invariant ergodic measure for the flow ϕg1

t living on Sg1M . However, writing M = �\M̃
with � � π1(M , x0) for x0 ∈ M , it can also be identified with a geodesic current on
∂∞M̃ × ∂∞M̃ \�, that is, a �-invariant Borel measure, also invariant by the flip (ξ , η) �→
(η, ξ) on ∂∞M̃ × ∂∞M̃ \�. This point of view has the advantage of being independent
of g1 (see [STar]).

Proof. First of all, we claim that (as pointed out to us by one of the referees, the map
Minv � m �→ Im(g1, g2) is continuous and linear on a compact convex set; it thus achieves
its maximum on the extremal points of the convex sets (the ergodic measures) so the
argument could be shortened)

sup
m∈Minv,erg

Im(g1, g2) = sup
m∈Minv

Im(g1, g2).

Of course, it is clear that supm∈Minv,erg
Im(g1, g2) ≤ supm∈Minv

Im(g1, g2) and thus we are
left to prove the reverse inequality. By compactness, we can consider a measurem0 ∈ Minv

realizing supm∈Minv
Im(g1, g2). By the Choquet representation theorem (see [Wal82, pp.

153]), there exists a (unique) probability measure τ on Minv,erg such that m0 admits the
ergodic decomposition m0 = ∫

Minv,erg
m dτ(m). Thus

Im0(g1, g2) =
∫
Sg1M

ag1,g2 dm0

=
∫
Minv,erg

∫
Sg1M

ag1,g2 dm dτ(m)

≤ sup
m∈Minv,erg

∫
Sg1M

ag1,g2 dm

∫
Minv,erg

dτ(m) = sup
m∈Minv,erg

Im(g1, g2),

which eventually proves the claim.
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Let (cj )j∈N be a subsequence such that limj→+∞ Lg2(cj )/Lg1(cj ) realizes the lim sup.
Then, by compactness, we can extract a subsequence such that δg1(cj ) ⇀ m ∈ Minv. Thus:

Lg2(cj )/Lg1(cj ) = 〈δg1(cj ), ag1,g2〉 →j→+∞ 〈m, ag1,g2〉 = Im(g1, g2),

which proves, using our preliminary remark, that

lim sup
j→+∞

Lg2(cj )/Lg1(cj ) ≤ sup
m∈Minv,erg

Im(g1, g2).

To prove the reverse inequality, we consider a measure m0 ∈ Minv,erg such that
Im0(g1, g2) = supm∈Minv,erg

Im(g1, g2) (which is always possible by compactness). Since
m0 is invariant and ergodic, there exists a sequence of free homotopy classes (cj )j∈N such
that δg1(cj ) ⇀ m0 (by [Sig72]). Then, as previously, we have

Im0(g1, g2) = lim
j→+∞ Lg2(cj )/Lg1(cj ) ≤ lim sup

j→+∞
Lg2(cj )/Lg1(cj ),

which provides the reverse inequality.

We can now prove Proposition 5.4.

Proof of Proposition 5.4.. By (2.17), for g1, g2 ∈ Ek,α , we have that IμBM
g1
(g1, g2) ≥ 1 and

thus, by Lemma 5.5, we obtain that dT (g1, g2) ≥ 0 (note that g1 and g2 do not need to
be close for this property to hold). Moreover, the triangle inequality is immediate for this
distance. Eventually, if dT (g1, g2) = 0, then 0 ≤ log IμBM

g1
(g1, g2) ≤ dT (g1, g2) = 0, that

is, IμBM
g1
(g1, g2) = 1 and, by Theorem 2.9, it implies that g1 is isometric to g2 if g2 is close

enough to g1 in the Ck,α topology (note that this neighborhood depends on g1).

We now investigate in more detail the structure of the distance dT . A consequence of
Lemma 5.5 is the following expression of the Thurston Finsler norm.

LEMMA 5.6. Let g0 ∈ Ek,α and (gt )t∈[0,ε) be a smooth family of metrics and let f :=
∂tgt |t=0. Then

‖f ‖T := d

dt
dT (g0, gt )

∣∣∣∣
t=0

= 1
2

sup
m∈Minv,erg

∫
Sg0M

π∗
2 f dm (5.2)

The norm ‖ · ‖T is a Finsler norm on Tg0Ek,α ∩ ker D∗
g0

Proof. We introduce

u(t) := edT (g0,gt ) = sup
m∈Minv,erg

Im(g0, gt )

and write at := ag0,gt for the time reparametrization (as in (2.14)). Then

lim
t→0

u(t)− u(0)
t

= lim
t→0

sup
m∈Minv,erg

∫
Sg0M

at − 1
t
dm = sup

m∈Minv,erg

∫
Sg0M

ȧ0 dm

= 1
2

sup
m∈Minv,erg

∫
Sg0M

π∗
2 f dm = u′(0) = d

dt
dT (g0, gt )

∣∣∣∣
t=0

,
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since ȧ0 = ∂tat |t=0 and π∗
2 f are cohomologous by Lemma 3.3. This also shows that

the derivative exists. The inversion of the limit and the sup follows from the fact that,
writing Ft(m) := ∫

Sg0M
(at − 1)/t dm, we have supm∈Minv,erg

|Ft(m)− F0(m)| →t→0 0.
Note that, up to taking a large k ∈ N and iterating the same computation for higher-order
derivatives, this shows that t �→ u(t) (thus t �→ dT (g0, gt )) is at least C2.

We now prove that this is a Finsler norm in a neighborhood of the diagonal. We fix g0 ∈
Ek,α . By Lemma 2.4, isometry classes near g0 can be represented by solenoidal tensors,
namely, there exists a Ck,α-neighborhood U of g0 such that for any g ∈ U , there exists a
(unique) ψ ∈ Dk+1,α

0 such that D∗
g0
ψ∗g = 0. Moreover, if g ∈ Ek,α , then ψ∗g ∈ Ek,α . As

a consequence, using (5.1), the statement now boils down to proving that (5.2) is a norm
for solenoidal tensors f ∈ Ck,α(M; S2T ∗M) such that

∫
Sg0M

π∗
2 f dμ

BM
g0

= 0. Since the
triangle inequality, R+-scaling and non-negativity are immediate, we simply need to show
that ‖f ‖T = 0 implies f = 0. Now, for such a tensor f, we have

P(π∗
2 f ) = sup

m∈Minv,erg

hm(ϕ
g0
1 )+

∫
Sg0M

π∗
2 f dm

≤ sup
m∈Minv,erg

hm(ϕ
g0
1 )+ sup

m∈Minv,erg

∫
Sg0M

π∗
2 f dm = htop(ϕ

g0
1 )︸ ︷︷ ︸

=1

+ 0,

and this supremum is achieved for m = μBM
g0

and P(π∗
2 f ) = 1. As a consequence, the

equilibrium state associated to the potential π∗
2 f is the Bowen–Margulis measureμBM

g0
(the

equilibrium state associated to the potential 0) and thus π∗
2 f is cohomologous to a constant

c ∈ R (see [HF19, Theorem 9.3.16]) which has to be c = 0 since the average of π∗
2 f with

respect to Bowen–Margulis is equal to 0, that is, there exists a Hölder-continuous function
u such that π∗

2 f = Xu. Since f ∈ ker D∗
g0

, the s-injectivity of the X-ray transform I
g0
2

implies that f ≡ 0.

The asymmetric Finsler norm ‖ · ‖T induces a distance dF between isometry classes,
namely,

dF (g1, g2) = inf
γ :[0,1]→E ,γ (0)=g1,γ (1)=g2

∫ 1

0
‖γ̇ (t)‖T dt .

It is easy to prove that dT (g1, g2) ≤ dF (g1, g2), which shows that dF is indeed a distance
in a neighborhood of the diagonal, just like dT . Indeed, consider a C1-path γ : [0, 1] → E
such that γ (0) = g1, γ (1) = g2. Then, considering N ∈ N, ti := i/N , we have, by the
triangle inequality,

dT (g1, g2) ≤
N−1∑
i=0

dT (γ (ti), γ (ti+1))

=
N−1∑
i=0

‖γ̇ (ti )‖T (ti+1 − ti )+ O(|ti+1 − ti |2)→N→+∞
∫ 1

0
‖γ̇ (t)‖T dt ,
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which proves the claim (note that we here use the fact that t �→ dT (g0, gt ) is at leastC2). In
[Thu98], Thurston proves that, on restriction to Teichmüller space, the asymmetric Finsler
norm induces the distance dT , that is, dT = dF . We make the following conjecture.

CONJECTURE 5.7. The distances dT coincide with dF for isometry classes of negatively
curved metrics with topological entropy equal to 1.

This conjecture would imply the marked length spectrum rigidity conjecture. Indeed,
as mentioned just after Theorem 2.9, two metrics with the same marked length spectrum
have the same topological entropy and there is no harm (up to a scaling of the metrics)
in assuming that this topological entropy is equal to 1. Then, if the previous conjecture is
true, using that their Thurston distance dT is zero, we obtain that their Finsler distance dF
is zero. But this implies that the metrics are isometric.
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A. Appendix. Asymptotic marked length spectrum
In this appendix, we show the following lemma (the proof was communicated to us by one
of the referees).

LEMMA A.1. Let g and g0 be two metrics with Anosov geodesic flows on a fixed manifold
M and assume that g is close to g0 in Ck,α norm. Assume that for all sequences (cj )j≥0 in
C, Lg(cj )/Lg0(cj )→j→+∞ 1. Then Lg = Lg0 .

Proof. By Sigmund [Sig72, Theorem 1], the set D := {δg0(c) | c ∈ C} is dense in Minv

(the set of invariant measures by the g0-geodesic flow on Sg0M). If μ ∈ Minv \ D, we
can therefore find a sequence such that δg0(cj ) ⇀j→+∞ μ and Lg0(cj )→ +∞. (Indeed,
if Lg0(cj ) ≤ C for some C ≥ 0, then the sequence (δg0(cj ))j≥0 only achieves a finite
number of measures, which would imply that μ is a Dirac mass on a closed orbit and this
is excluded since μ /∈ D.) Then, the condition Lg/Lg0 → 1 immediately implies that

Iμ(g0, g) =
∫
Sg0M

ag(z) dμ(z) = 1.

Now, for c ∈ C and t > 0 small, the linear combination tμ+ (1 − t)δg0(c) /∈ D. Indeed,
if not, we would have tμ+ (1 − t)δg0(c) = δg0(ct ) but by continuity, ct = c0 for t small,
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which contradicts μ /∈ D. Therefore

t

∫
Sg0M

ag(z) dμ(z)+ (1 − t) 1
Lg0(c)

∫ Lg0 (c)

0
ag(ϕ

g0
s (z)) ds = 1,

that is,

1
Lg0(c)

∫ Lg0 (c)

0
ag(ϕ

g0
s (z)) ds = Lg(c)

Lg0(c)
= 1.

B. Appendix. Global conjugacy for Riemannian Anosov flows
Let (M , g) be a closed Riemannian manifold whose geodesic flow is Anosov. As has been
shown by Klingenberg [Kli74] the geodesic flow has no conjugate points. Let (M̃ , g) be the
universal cover of M where for simplicity the lifted metric is also denoted by g. Let � be the
group of deck transformations. As has been remarked in [Kni12], the universal cover M̃ is
Gromov hyperbolic (see [BH99, Section III.H.1] for a definition of Gromov hyperbolicity).
Denote by ∂∞M̃ the Gromov boundary which is equipped with the visibility topology (see,
for example, [Kni02] for more details). For ξ ∈ ∂∞M̃ and x0 ∈ M̃ , the Busemann function
x �→ b

g
ξ (x0, x) is defined by

b
g
ξ (x0, x) := lim

z→ξ
dg(x0, z)− dg(x, z). (B.1)

It has the following properties:

b
g
ξ (x0, x) = bgξ (x0, x1)+ bgξ (x1, x) (cocycle property) (B.2)

and

b
g

γ (ξ)(γ (x0), γ (x)) = bgξ (x0, x) (�-equivariance) (B.3)

for all γ ∈ �. We introduce the gradient of the Busemann function Bg(x, ξ) :=
∇xbgξ (x0, x) which is independent of x0 by property (B.2). Also observe that Bg(x, ξ) ∈
SgM̃ by the very definition (B.1). Here, SgM̃ is the unit tangent bundle on the universal
cover and π : SgM̃ → M̃ denotes the projection. Given z = (x, v) ∈ SgM̃ , we introduce
cg(z, t) := π(ϕgt (x, v)), where (ϕgt )t∈R is the (lift of) the geodesic flow on M̃ . We set
z
g
± = cg(z, ±∞) ∈ ∂∞M̃ .

For ξ = zg+ the submanifolds Wss(z) = {(x, −Bg(x, ξ)) ∈ SgM̃ | bgξ (x0, x) =
b
g
ξ (x0, πz)} and Wuu(z) = {(x, Bg(x, ξ)) ∈ SgM̃ | bgξ (x0, x) = bgξ (x0, πz)} are the

lifts of the leafs of strong stable and unstable foliations through z ∈ SgM̃ . Since the
leafs are smooth and the foliations are Hölder continuous, the Busemann functions
(x, ξ) �→ b

g
ξ (x0, x) are smooth with respect to x and Hölder continuous with respect

to ξ . The following lemma was proved in [STar] (see also [Gro00]) in negative curvature.

LEMMA B.1. Let M = M̃/� be a closed manifold, and let g1, g2 be two Riemannian
metrics with Anosov geodesic flow. Consider the map ψg1,g2 : Sg1M̃ → Sg2M̃ defined by
ψg1,g2(z) = w where w ∈ Sg2M̃ is the unique vector with wg2+ = zg1+ and wg2− = zg1− and
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b
g2

z
g1+
(π(z), π(w)) = 0. Then ψg1,g2 is a Hölder-continuous surjective map with

ϕ̃
g2
τ(z,t)ψg1,g2(z) = ψg1,g2(ϕ̃

g1
t (z)),

where

τ(z, t) = bg2

z
g1+
(π(z), π(ϕ̃g1

t (z))) =
∫ t

0
g2(B

g2(π(ϕ̃
g1
s (z)), z

g1+ ), ϕ̃
g1
s (z)) ds

for all z ∈ Sg1M̃ . Furthermore, for all γ ∈ � we have

γ∗ψg1,g2(z) = ψg1,g2(γ∗z)

and τ(γ∗z, t) = τ(z, t) and therefore ψg1,g2 descends to a map between the quotients
SgiM .

Proof. We show first that for each (z, t) ∈ Sg1M̃ × R we have

ϕ̃
g2
τ(z,t)ψg1,g2(z) = ψg1,g2(ϕ̃

g1
t (z)),

where τ(z, t) = bg2

z
g1+
(π(z), π(ϕ̃g1

t (z)). From the cocycle property (B.2) of the Busemann

function we obtain

b
g2

z
g1+
(π(ϕ̃

g1
t (z)), π(ϕ̃

g2
τ(z,t)ψg1,g2(z)))

= bg2

z
g1+
(π(ϕ̃

g1
t (z)), π(ψg1,g2(z)))+ bg2

z
g1+
(π(ψg1,g2(z)), π(ϕ̃

g2
τ(z,t)ψg1,g2(z)))

= bg2

z
g1+
(π(ϕ̃

g1
t (z)), π(ψg1,g2(z)))+ τ(z, t)

= bg2

z
g1+
(π(ϕ̃

g1
t (z)), π(z))+ bg2

z
g1+
(π(z), π(ψg1,g2(z)))+ τ(z, t)

= −bg2

z
g1+
(π(z), π(ϕ̃g1

t (z)))+ τ(z, t) = 0.

By the definition of ψg1,g2 this yields ϕ̃g2
τ(z,t)ψg1,g2(z) = ψg1,g2(ϕ̃

g1
t (z)). The regularity of

the Busemann function shows that ψg1,g2 is Hölder continuous. The remaining assertions
follow from the �-equivariance (B.3) of the Busemann function.

Remark B.2. Note that ψg1,g2 : Sg1M → Sg2M maps orbits of the geodesic flow of g1

surjectively onto orbits of the geodesic flow of g2 but is not necessarily injective. To obtain
a injective map the following modification due to Gromov [Gro00] (see also [Kni02]) can
be made. Choose r0 > 0 such that τ(z, r0) > 0 for all z ∈ Sg1M . Define

r(z) = 1
r0

∫ r0

0
τ(z, s) ds

and consider ψrg1,g2
(z) := ϕg2

r(z) ◦ ψg1,g2(z) Then

ψrg1,g2
(ϕ
g1
t (z)) = ϕg2

r(ϕ
g1
t (z))+τ(z,t)

ψg1,g2(z).

Since

τ̂ (z, t) := r(ϕg1
t (z))+ τ(z, t) = 1

r0

∫ r0

0
τ(z, t + s) ds
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and

d

dt
τ̂ (z, t) = 1

r0
(τ (z, t + r0)− τ(z, r0)) = 1

r0
τ(ϕ

g1
t (z), r0) > 0,

the map t �→ τ̂ (z, t) is strictly monotone increasing and therefore ψrg1,g2
is injective and

yields a conjugacy between the geodesic flows.

C. Appendix. Anosov stability
The proof of the Anosov stability theorem is given using the implicit function theorem in
[dlLMM86] in theC0 category; the extension to the Hölder setting (with the same method)
appears in [KKPW89]. We need the continuity with respect to the two metrics here; the
proof of [dlLMM86, KKPW89] indeed shows this, as we explain below. Let ν ∈ (0, 1).
Then if X is a Ck vector field for k ≥ 4 with flow ϕXt , we will denote by CνX(M, M) the
space of Cν maps ψ on a closed manifold M so that dψ .X := ∂t (ψ ◦ ϕXt )|t=0 exists and
belongs to Cν(M; TM). This is a Banach manifold [KKPW89, Proposition 2.2].

PROPOSITION C.1. Let g0 be a smooth metric, and assume that Xg0 its geodesic vector
field on M := Sg0M is Anosov. We view all geodesic vector fields Xg associated to g near
g0 as vector fields on M (by pulling back from SgM to Sg0M). For k ≥ 4, there exist
ν > 0 and two open neighborhoods U0 ⊂ U of Xg0 in Ck+1(M; TM) such that, for each
Y ∈ U and each g ∈ Ck+2(M; S2T ∗M) so that Xg ∈ U0, there exist a homeomorphism
ψg,Y ∈ CνXg (M, M) and ag,Y ∈ Cν(M, R+) such that

for all x ∈ M, dψg,Y (x)Xg(x) = ag,Y (x)Y (ψg,Y (x)),

where Xg is the geodesic vector field of g. Moreover, Y ∈ U �→ ag,Y ∈ Cν(M, R+) and
Y �→ ψg,Y ∈ CνXg (M, M) are Ck , and each derivative of order � ≤ k with respect to Y is
continuous with respect to (g, Y ) with values in Cν .

Proof. The proof is essentially contained in [KKPW89, Proposition 2.2], except for
the statement about the continuity with respect to Xg . Consider, for ν ∈ (0, 1) and E :=
Ck+1(M; TM)× Cν(M, TM), the map

FXg : Ck+1(M; TM)× CνXg (M, M)× Cν(M)→ E

defined by

FXg(Y , u, γ ) := (Y , γ du.Xg − Y ◦ u).
This is a Ck map between Banach manifolds. The differential of FXg at (Xg , Id, 1) is given
(as in [KKPW89]) by

dF
Xg
(Xg ,Id,1)(Y , V , γ ) = (Y , −Y + LXgV + γXg), (C.1)

where V ∈ CνXg (M; TM) := {V ∈ Cν(M; TM) | LXgV ∈ Cν}. Let αg be the contact
form of g, so that ker αg = Eu(g)⊕ Es(g) is the smooth bundle of stable or unstable
vectors for g. By [KKPW89, Proposition 2.2. and Lemma 2.3], the operator LXg : V �→
LXgV is invertible from CνXg (M; ker αg)→ Cν(M; ker αg) for some ν depending on the
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maximal/minimal expansion rates of the flow ϕ
Xg
t . The inverse is given by

L−1
Xg

: V = Vu + Vs �→ L−1
Xg
V = −

∫ +∞

0
dϕ
Xg
−t Vu ◦ ϕXgt dt +

∫ +∞

0
dϕ
Xg
t Vs ◦ ϕXg−t dt ,

where the integrals converge due to the contraction of the differential: for all t ≥ 0,

C−1e−λ+t ≤ ‖dϕXgt |Es(g)‖ ≤ Ce−λ−t , C−1e−λ+t ≤ ‖dϕXg−t |Eu(g)‖ ≤ Ce−λ−t . (C.2)

This operator maps continuously Cν(M; ker αg) to CνXg (M; ker αg) if ν > 0 is small

enough, depending on λ+ and ‖ϕXgT ‖C2 for T > 0 large (see below). Moreover, by
continuity of the bundles Es(g), Eu(g) with respect to g [HP68, Theorem 3.2], for g close
enough to g0 in Ck+5, Eu(g) and Es(g) are contained in a small conic neighborhood
of Eu(g0) and Es(g0) respectively, and the contraction exponents λ±(g) are also close
to λ±(g0) (see, for example, [Bon20, Lemma 3]), so this will give the boundedness of
L−1
Xg

in Cν for some fixed ν > 0 for g close enough to g0 in Ck+5. From the expression

of L−1
Xg

, and the fact that (C.2) holds uniformly for g close to g0 for some 0 < λ− < λ+
(and similarly on Eu(g)), we claim that, if πg : TM → ker αg is the projection given by
πg(V ) = V − αg(V )Xg , then

L−1
Xg
πg : Cν(M; TM)→ Cν(M; TM)

is continuous with respect to g (in Ck+5) for ν > 0 small enough. To prove this, we rewrite
L−1
Xg
πg as

L−1
X πg =

∫ ∞

0
e
−tLXg πsg dt −

∫ ∞

0
e
tLXg πug dt (C.3)

where πug : Cν(M; TM)→ Cν(M; TM) is the projection on Eu parallel to Es and πsg :

Cν(M; TM)→ Cν(M; TM) is the projection on Es parallel to Eu, and etLXg Y :=
dϕ
Xg
−t Y ◦ ϕXgt is the propagator. Here ν is chosen small so that Eu and Es are Cν bundles

(see [HP68]), and by [Con92] the maps g �→ πug and g �→ πsg are continuous (actually
Cr for some r depending on the smoothness of g). Next, there exist C > 0 and  > 0
such that, for all t, ‖ϕXgt ‖C2 ≤ Ce |t | for all g near g0 in Ck+5, which implies that, for all
V ∈ C1(M; TM),

for all t , ‖etLXg V ‖C1 ≤ Ce2 |t |‖V ‖C1 , ‖etLXg V ‖C0 ≤ Ce |t |‖V ‖C0 ,

thus if ν0 ∈ (0, 1) is such that Eu ∈ Cν0 , we have by interpolation that ‖etLXg ‖L(Cν) ≤
Ce(1+ν0) |t | for each ν ≤ ν0. Since ‖etLXg πug ‖L(C0) + ‖e−tLXg πsg‖L(C0) ≤ Ce−λ−t for all
t ≥ 0, we obtain by interpolating Cν between the spaces C0 and Cν0 with ν = θ × 0 +
(1 − θ)× ν0 (for θ ∈ (0, 1)) that, for all t ≥ 0,

‖etLXg πug ‖L(Cν) + ‖e−tLXg πsg‖L(Cν) ≤ Ce(−θλ−+(1−θ)(1+ν0) )t .

We can now fix ν small enough (that is, θ close enough to 1) to guarantee

−θλ− + (1 − θ)(1 + ν0) < 0,
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which implies that (C.3) is uniformly converging with respect to g near g0 in Ck+5.
Since g �→ e

tLXg πug and g �→ e
−tLXg πsg are continuous for each t ≥ 0, we can apply

the Lebesgue theorem to deduce the continuity of g �→ L−1
Xg
πg ∈ L(Cν) for ν > 0 small

enough.
Next, we consider the map F̃ Xg : E → E defined by

F̃ Xg (Y , V ) := FXg(Y , expg0
(L−1
Xg
πg(Y + V )), αg(Y + V ))

= (Y , αg(Y + V )d(expg0
(L−1
Xg
πg(Y + V ))).Xg − Y ◦ expg0

(L−1
Xg
πg(Y + V ))),

where we recall that E = Ck+1(M; TM)× Cν(M, TM) and expg0
is the exponential

map of g0. This map satisfies F̃ Xg (Xg , 0) = (Xg , 0). We want to apply the inverse
function theorem to find a pre-image to each (Y , 0) close to (Xg , 0). As in [KKPW89,
Proposition 2.2] (see also [dlLMM86, Appendix A]), the map F̃ Xg is Ck , and moreover
it depends continuously on g ∈ Ck+5(M; S2T ∗M), with all its derivatives of order � ≤ k
being also continuous with respect to g, due to the continuity of g �→ L−1

Xg
πg as a map

Ck+5(M; S2T ∗M)→ L(Cν(M; TM)). Now we have

dF̃Xg (Xg , 0) = Id,

by using (C.1) and πg(Xg) = 0. In particular, there is ε > 0 such that if ‖g − g0‖Ck+5 < ε,
‖Y −Xg‖Ck+1 < ε and ‖V ‖Cν < ε, then

‖dF̃Xg(Y ,V ) − Id‖L(Cν(M;TM)) < 1/4.

For each Y close to Xg , we can then apply the fixed point theorem (as in the proof of
the inverse function theorem) to the map (Z, V ) ∈ E �→ (Z + Y , V )− F̃ Xg (Z, V ) and
obtain that there is a unique (Y , V (Y )) such that (Y , 0) = F̃ Xg (Y , V (Y )), and V (Y ) ∈
Cν(M; TM) depends in a Ck fashion on Y and is continuous with respect to g. Moreover,
the usual argument in the inverse function theorem used to prove the Ck property of Y �→
V (Y ) also shows that the derivatives of order � ≤ k are continuous with respect to (Xg , Y ),
by using the continuity of F̃ Xg and its derivatives with respect to g. This shows that for
each Y close to Xg in Ck+1 norm and g close to g0 in Ck+5 norm, there is a

u = expg0
(L−1
Xg
πg(Y + V )) ∈ CνXg (M, M), γ = αg(Y + V ) ∈ Cν(M)

so that γ du.Xg = Y ◦ u, with

Ck+1(M; TM) � Y �→ (u, γ ) ∈ Cν(M × M)× Cν(M),

and where Ck and all the derivatives of order � ≤ k are continuous in (g, Y ) (with values
in Cν(M, M)× Cν(M)).
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