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Newforms of Half-integral Weight:
The Minus Space Counterpart

EhudMoshe Baruch and Soma Purkait

Abstract. We study genuine local Hecke algebras of the Iwahori type of the double cover of
SL2(Qp) and translate the generators and relations to classical operatorson the space Sk+1/2(Γ0(4M)),
M odd and square-free. In [9] Manickam, Ramakrishnan, and Vasudevan deûned the new space of
Sk+1/2(Γ0(4M)) that maps Hecke isomorphically onto the space of newforms of S2k(Γ0(2M)). We
characterize this newspace as a common −1-eigenspace of a certain pair of conjugate operators that
come from local Hecke algebras. We use the classical Hecke operators and relations that we obtain to
give a new proof of the results in [9] and to prove our characterization result.

1 Introduction

Let M be odd and square-free and let k be a positive integer. In a remarkable work,
Niwa [10], comparing the traces of Hecke operators, proved the existence of Hecke
isomorphism between Sk+1/2(Γ0(4M)), the space of holomorphic cusp forms of
weight k + 1/2 on the congruence subgroup Γ0(4M) and S2k(Γ0(2M)), the space
of weight 2k cusp forms on Γ0(2M). In [5, 6] Kohnen considers a certain Hecke
operator on Sk+1/2(Γ0(4M)), which is an analogue of Niwa’s operator at level 4. his
operator has two eigenvalues, one positive and one negative, and the Kohnen plus
space is the eigenspace of the positive eigenvalue. Kohnen considers a new space,
S
+,new
k+1/2 (Γ0(4M)), inside his plus space and proves that this new subspace is Hecke

isomorphic to Snew
2k (Γ0(M)), the space of newforms of weight 2k and level M.

From Kohnen’s results, it is clear that the Niwa map sends the Kohnen plus space
to a subspace of old forms inside S2k(Γ0(2M)). In a subsequent work, Manickam,
Ramakrishnan, andVasudevan [9] deûne the newspace of Sk+1/2(Γ0(4M)) thatmaps
Hecke isomorphically onto Snew

2k (Γ0(2M)), the space of newforms of weight 2k and
level 2M. Our main objective in this paper is to give a common eigenspace character-
ization for this newspace of Sk+1/2(Γ0(4M)) in terms of certain ûnitelymany pairs of
cojugate operators.

his is a continuation of our earlierwork in [2],wherewe use local Hecke algebras
to give an eigenspace characterization of the space of integral weight newforms. he
local Hecke algebramethod allows us to obtain the newspace ofManickam et al. in a
diòerentway, andwe show that it is the common −1-eigenspace ofKohnen’s operator,
a conjugate of Kohnen’s operator, and pairs of p-adic analogues of Kohnen’s operator
and their conjugates for each prime dividing M. We call this newspace the minus
space at level 4M.
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Our results are motivated by the results of Loke and Savin [8], who interpreted
the Kohnen plus space in representation theory language. For the case M = 1, Loke
and Savin deûned another space of half-integer weight forms that they showed is
“conjugate” to the Kohnen plus space. his means that it is an image of the Kohnen
plus space by an invertibleHecke operator and is isomorphic to theKohnen plus space
as a Hecke module. We show that the Kohnen plus space and the space considered
by Loke and Savin do not intersect and that their sum maps isomorphically to the
space of old forms Sold

2k (Γ0(2)) under the Niwa map. We deûne the minus space
at level 4 to be the orthogonal complement of the direct sum under the Petersson
inner product and show that it is mapped isomorphically under the Niwa map to
Snew
2k (Γ0(2)), the space of newforms on Γ0(2). We characterize this space as a com-

mon eigenspace of two Hecke operators: theNiwa operator used byKohnen to deûne
the Kohnen plus space and a conjugate of the Niwa operator that was considered by
Loke and Savin. he minus space is the intersection of the negative eigenspaces of
both operators. We normalize the negative eigenvalue to be −1 as in [2]. Our de-
scription of the minus space at level 4 is completely analogous to our description of
the new space Snew

2k (Γ0(2)) in [2], where we showed that Snew
2k (Γ0(2)) is the common

−1-eigenspace of two Hecke operators. To summarize the case ofM = 1, we show that
the space Sk+1/2(Γ0(4)) decomposes into a direct sum of three spaces: the Kohnen
plus space, a “conjugate” of the Kohnen plus space given by Loke and Savin, and the
minus space. he Kohnen plus space and its conjugate are indistinguishable as Hecke
modules, which is the same as saying that they are mapped under the Niwa map to
“conjugate” spaces of old forms. heminus space is diòerent as aHeckemodule from
both spaces.

In order to generalize this result for M odd and square-free, we consider certain
p-adic Hecke algebras for every prime p dividing M. Our work follows that of Loke
and Savin, who studied a certain 2-adic Hecke algebra that allowed them to give a
representation theoretic interpretation of theKohnen plus space and to introduce the
operator that is a conjugate of Niwa’s operator and the space that is a “conjugate” to
Kohnen’s plus space.

We compute genuine local Hecke algebras, of the Iwahori type with genuine qua-
dratic central character, for S̃L2(Qp), the double cover of SL2(Qp), and prove that this
is isomorphic to the Iwahori Hecke algebra of PGL2(Qp). In [13], Savin obtained de-
scription of Iwahori-typeHecke algebras for coverings of simply connected Chevally
group G ≠ SL2. We are not aware of any such results for SL2, apart from the work of
Loke and Savin [8] for the 2-adic case that we generalize for any odd prime p.

In our p-adic Hecke algebra, we consider two p-adic operators that give rise to
conjugate classical Hecke operatorswhich,when used alongwithNiwa’s operator and
its conjugate, allow us to deûne our minus space at level 4M. We note that these two
p-adic operators are p-adic analogues of Niwa’s operator and its conjugate. We give
two descriptions of theminus space: one description as an orthogonal complement of
a certain sumof subspaces and another description as a common−1-eigenspace of the
Niwa operator, its conjugate, and a pair of conjugate operators for each prime dividing
M. his again is completely analogous to our description of the space of newforms
of weight 2k for Γ0(2M) given in [2, heorem 1]. We show that the minus space of
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weight k + 1/2 at level 4M is isomorphic as aHeckemodule to the space of newforms
of weight 2k at level 2M.
Due to the Hecke isomorphism and multiplicity, it is clear that the minus space

we deûne is identical to the newspace of [9]. In particular, we obtain a new proof of
the Hecke isomorphism in [9]. We note that our description of the minus space as
an orthogonal complement diòers from the description of the newspace in [9]. We
elaborate this point in Remark 6.27.

Our paper is divided up as follows. In Section 2, we set up notation following
Shimura’s work on half-integral weight forms and recall Gelbart’s theory of the dou-
ble cover of SL2(Qp). In Section 3, we deûne a genuine Hecke algebra of the double
cover of SL2(Qp)modulo certain subgroups and a genuine central character and give
its presentation using generators and relations. In particular, we recall the work of
Loke and Savin when p = 2. In Section 4, we translate certain elements in our p-adic
Hecke algebra to classical Hecke operators on Sk+1/2(Γ0(4M)). We obtain two clas-
sical operators: Q̃p with eigenvalues p and −1 and an involution W̃p2 . We further
consider Q̃′

p , which is a conjugate of Q̃p by W̃p2 . We check that these operators are
self-adjoint with respect to the Petersson inner product. We recall Kohnen’s classical
operator Q on Sk+1/2(Γ0(4M)), which he uses to describe his plus space. We show
that his operator Q comes from the 2-adic Hecke algebra considered by Loke and
Savin. Let Q̃′

2 ∶= ( 2
2k+1)Q/

√
2 and let Q̃2 be conjugate of Q̃′

2 by an involution W̃4.
he operators Q̃′

p and Q̃p are p-adic analogues of Kohnen’s operator Q and its con-
jugate. In Section 5, we deûne our minus space S−k+1/2(Γ0(4M)) and prove our main
result.

heorem Let S−k+1/2(Γ0(4M)) ⊆ Sk+1/2(Γ0(4M)) be the common −1-eigenspace of
operators Q̃p and Q̃′

p for all primes p dividing 2M. hen S−k+1/2(Γ0(4M)) has a basis

of eigenforms for all the operators Tq2 where q is a prime coprime to 2M and all the

operators Up2 where p is a prime dividing 2M, andmaps isomorphically under theNiwa

map onto the space Snew
2k (Γ0(2M)).

We are certain that theHecke algebra approach can be employed to give a newform
theory for the space of half-integral weight forms of a general level. Indeed, in [3] we
use themethods developed in this paper to deûne theminus space at level 8M,M odd
and square-free, and show that the minus space at level 8M is Hecke isomorphic to
Snew
2k (Γ0(4M)). his generalizes Ueda and Yamana’s work in [17]. Please refer to Re-

mark 6.34 formore details. We plan to use the results in this paper to studyWhittaker
functions associated with automorphic forms coming from Hecke eigenforms in the
minus space. As an application,we plan to generalize theKohnen–Zagier formula for
the twisted central L-values of an integer weight modular form of level 2M.

2 Preliminaries and Notation

Let k,N denote positive integers. Let Γ0(N) be the subgroup of SL2(Z) consisting of
matrices of the form (∗ ∗

0 ∗) (mod N). We denote by Sk(Γ0(N)) the space of holomor-
phic cusp forms of weight k on the group Γ0(N). For each prime p not dividing N ,
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we have the Hecke operator Tp on Sk(Γ0(N)) whose action on q-expansion can be
given as follows: if f = ∑∞

n=1 anq
n ∈ Sk(Γ0(N)) thenTp( f ) = ∑

∞
n=1(apn+pk−1an/p)q

n .
For m ∈ N, let Um , V(m) be given by the following action on any formal q-series:

Um(
∞

∑
n=1
anq

n) =
∞

∑
n=1
amnq

n , V(m)(
∞

∑
n=1
anq

n) =
∞

∑
n=1
anq

mn .

It is well known that V(m) maps Sk(Γ0(N)) to Sk(Γ0(mN)) and if m ∣N , then Um
is an operator on Sk(Γ0(N)).

We brie�y recall the theory of half-integral weight modular forms [14]. Let G be
the set of all ordered pairs (α, ϕ(z)) where α = (a bc d) ∈ GL+2 (R) and ϕ(z) is a holo-
morphic function on the upper half plane H such that ϕ(z)2 = t det(α)−1/2(cz + d)
with t in the unit circle S1 ∶= {z ∈ C ∶ ∣z∣ = 1}. hen G is a group under the following
operation:

(α, ϕ(z))(β,ψ(z)) = (αβ, ϕ(βz)ψ(z)) .

Let P ∶ G → GL+2 (R) be the homomorphism given by the projection map onto the
ûrst coordinate.

Let ζ = (α, ϕ(z)) ∈ G. Deûne the slash operator ∣ [ζ]k+1/2 on functions f on H by
f ∣ [ζ]k+1/2(z) = f (αz)(ϕ(z))

−2k−1.
Let N be divisible by 4 and let α = (a bc d) ∈ Γ0(N). Deûne the automorphy factor

j(α, z) = ε−1
d (

c

d
)(cz + d)1/2 ,

where εd = 1 or i according towhether d ≡ 1 or 3 (mod 4) and ( cd ) is as in Shimura’s
notation. Let

∆0(N) ∶= {α∗ = (α, j(α, z)) ∈ G ∣ α ∈ Γ0(N)} ≤ G.

hemap L ∶ Γ0(N)→ G given by α ↦ α∗ deûnes an isomorphism onto ∆0(N). hus,
P∣∆0(N) and L are inverse of each other. Denote by ∆1(N) the image of Γ1(N).

Let χ be an evenDirichlet character modulo N . Let Sk+1/2(Γ0(N), χ) be the space
of cusp formsofweight k+1/2, levelN , and character χ consisting of f ∈ Sk+1/2(∆1(N))

such that f ∣ [α∗]k+1/2(z) = χ(d) f (z) for all α ∈ Γ0(N). In particular, when χ is triv-
ial, Sk+1/2(Γ0(N), χ) = Sk+1/2(∆0(N)). In this case we will simply denote the space
by Sk+1/2(Γ0(N)).

Let ξ be an element of G such that ∆0(N) and ξ−1∆0(N)ξ are commensurable.
hen we have an operator ∣ [∆0(N)ξ∆0(N)]k+1/2 on Sk+1/2(Γ0(N)) deûned by

f ∣ [∆0(N)ξ∆0(N)]k+1/2 = det(ξ)(2k−3)/4
∑
v
f ∣ [ξv]k+1/2 ,

where ∆0(N)ξ∆0(N) = ⋃v ∆0(N)ξv .
Let ξ = ((

1 0
0 p2 ), p

1/2) . If p is a prime dividing N , then by [14, Proposition 1.5],

f ∣ [∆0(N)ξ∆0(N)]k+1/2 = p
(2k−3)/2

p2−1

∑
s=0

f ∣[((
1 s
0 p2 ) , p

1/2)]
k+1/2(z),
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thus if f = ∑∞
n=1 anq

n , then f ∣ [∆0(N)ξ∆0(N)]k+1/2 = ∑
∞
n=1 ap2nq

n = Up2( f ). If p is
a prime such that (p,N) = 1, then theHecke operator Tp2 is deûned by

Tp2( f ) = f ∣ [∆0(N)ξ∆0(N)]k+1/2 .

We will be studying local Hecke algebra of the double cover of SL2. We next recall
Gelbart’s [4] description of the double cover. Let p be any prime (including the inûnite
prime). he group SL2(Qp) has a non-trivial central extension by µ2 = {±1}:

1 Ð→µ2 Ð→ S̃L2(Qp)Ð→ SL2(Qp)Ð→ 1
{(I, ± 1)} (g ,±1) z→ g

We use the 2-cocycle deûned below to determine the double cover S̃L2(Qp). Let
( ⋅ , ⋅ )p be theHilbert symbol over Qp . For g = ( a bc d ) ∈ SL2(Qp), deûne

τ(g) =

⎧⎪⎪
⎨
⎪⎪⎩

c if c ≠ 0,
d if c = 0.

If p =∞, set sp(g) = 1, while for a ûnite prime p

sp(g) =

⎧⎪⎪
⎨
⎪⎪⎩

(c, d)p if cd ≠ 0 and ordp(c) is odd,
1 otherwise.

Deûne the 2-cocycle σp on SL2(Qp) as follows:

σp(g , h) = (τ(gh)τ(g), τ(gh)τ(h))p sp(g)sp(h)sp(gh).

hen the double cover S̃L2(Qp) is the set SL2(Qp) × µ2 with the group law:

(g , є1)(h, є2) = (gh, є1є2σp(g , h)).

For any subgroup H of SL2(Qp), we will denote by H the complete inverse image of
H in S̃L2(Qp).

We consider the following subgroups of SL2(Zp):

K
p
0 (p

n) = { (
a b

c d
) ∈ SL2(Zp) ∶ c ∈ p

nZp} ,

K
p
1 (p

n) = { (
a b

c d
) ∈ SL2(Zp) ∶ c ∈ p

nZp , a ≡ 1 (mod p
nZp)} .

By [4, Proposition 2.8] for odd primes p, S̃L2(Qp) splits over SL2(Zp). hus,
SL2(Zp) is isomorphic to the direct product SL2(Zp) × µ2 and K

p
0 (p) is isomorphic

to K
p
0 (p) × µ2. It follows from [4, Corollary 2.13] that the center Mp of S̃L2(Qp) is

simply the direct product {±I} × µ2. hus, any genuine central character is given by
a non-trivial character of µ2 × µ2.

However S̃L2(Q2) does not split over SL2(Z2) but instead splits over the subgroup
K2

1 (4). In this case, the center M2 of S̃L2(Q2) is a cyclic group of order 4 generated
by (−I, 1) and so a genuine central character is given by sending (−I, 1) to a primitive
fourth root of unity.
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We set up more notation. For s ∈ Qp , t ∈ Q×
p , let us deûne the following elements

of SL2(Qp):

x(s) = (
1 s

0 1) , y(s) = (
1 0
s 1) , w(t) = (

0 t

−t−1 0) , h(t) = (
t 0
0 t−1) .

Let N = {(x(s), є) ∶ s ∈ Qp , є = ±1}, N = {(y(s), є) ∶ s ∈ Qp , є = ±1} and
T = {(h(t), є) ∶ t ∈ Q×

p , є = ±1} be the subgroups of S̃L2(Qp). hen the normalizer
NS̃L2(Qp)

(T) of T in S̃L2(Qp) consists of elements (h(t), є), (w(t), є) for t ∈ Q×
p . We

note the following useful relations: for s, t ∈ Q×
p and u, v ∈ Qp , we have

(h(s), 1)(h(t), 1) = (h(st), (s, t)p),

(w(s), 1)(w(t), 1) = (h(−st−1), (s, t)p),

(h(s), 1)(w(t), 1) = (w(st), (s,−t)p),

(w(s), 1)(h(t), 1) = (w(st−1), (−s, t)p),

(h(s), 1)(x(u), 1) = ((
s su

0 s−1) , 1) ,

(x(u), 1)(h(s), 1) = ((
s s−1u

0 s−1 ) , 1) ,

(h(s), 1)(y(u), 1) = ((
s 0

s−1u s−1) , σp(h(s), y(u))) ,

(y(u), 1)(h(s), 1) = ((
s 0
su s−1) , σp(y(u), h(s))) ,

(2.1)

where

σp(h(s), y(u)) = σp(y(u), h(s)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if u = 0,
(s, u)p if u ≠ 0, ordp(su)even,
(s, s)p if u ≠ 0, ordp(su)odd,

(w(t), 1)(x(u), 1) = ((
0 t

−t−1 −t−1u
) , σp(w(t), x(u))) ,

(x(u), 1)(w(t), 1) = ((
−ut−1 t

−t−1 0) , 1) ,

(w(t), 1)(y(v), 1) = ((
tv t

−t−1 0) , 1) ,

(y(v), 1)(w(t), 1) = ((
0 t

−t−1 tv
) , σp(y(v),w(t))) ,

where

σp(w(t), x(u)) =
⎧⎪⎪
⎨
⎪⎪⎩

(−t,−u)p if u ≠ 0, ordp(t) odd,
1 otherwise,
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and

σp(y(v),w(t)) =

⎧⎪⎪
⎨
⎪⎪⎩

(−t, v)p if u ≠ 0, ordp(t) odd,
1 otherwise,

(x(u), 1)(y(v), 1) = ((
1 + uv u

v 1) , 1) ,

(y(v), 1)(x(u), 1) = ((
1 u

v uv + 1) , σp(y(v), x(u))) ,

(x(u), 1)(x(v), 1) = ((
1 u + v

0 1 ) , 1) ,

(y(v), 1)(y(u), 1) = ((
1 0

u + v 1) , 1) ,

where

σp(y(v), x(u)) =
⎧⎪⎪
⎨
⎪⎪⎩

(v , uv + 1)p if v(uv + 1) ≠ 0, ordp(v)odd,
1 otherwise.

For any subgroup S of S̃L2(Qp), we further let N S = N ∩ S, T S = T ∩ S, and
N

S
= N ∩ S.

3 A Local Hecke Algebra of S̃L2(Qp)
Loke and Savin [8] studied a genuine local Hecke algebra of S̃L2(Q2) corresponding
to K2

0(4) and a genuine central character, and gave an interpretation ofKohnen’s plus
space at level 4 in terms of certain elements in this 2-adicHecke algebra. In this section
we recall their work on the 2-adic Hecke algebra. We then study genuine Iwahori
Hecke algebra for S̃L2(Qp) corresponding to K

p
0 (p) and a genuine character of Mp

for a general odd prime p.
Let p be any ûnite prime and let C∞c (S̃L2(Qp)) be the space of locally constant,

compactly supported complex-valued functions on S̃L2(Qp). For an open compact
subgroup S of S̃L2(Qp) and a genuine character γ of S (that is, a character of S that
acts nontrivially on µ2), let H(S , γ) be the subalgebra of C∞c (S̃L2(Qp)) deûned as
follows:

{ f ∈ C∞c (S̃L2(Qp)) ∶ f (k̃ g̃ k̃′) = γ(k̃)γ(k̃′) f (g̃) for g̃ ∈ S̃L2(Qp), k̃, k̃′ ∈ S}.

hen H(S , γ) is aC-algebra under the convolution, which, for any f1 , f2 ∈ H(S , γ), is
deûned by

f1 ∗ f2(h̃) = ∫
S̃L2(Qp)

f1(g̃) f2(g̃
−1

h̃)d g̃ = ∫
S̃L2(Qp)

f1(h̃ g̃) f2(g̃
−1)d g̃ ,

where d g̃ is the Haar measure on S̃L2(Qp) such that the measure of S is one. We
call H(S , γ) the genuine Hecke algebra of S̃L2(Qp) with respect to S and γ. We can
sometimes denote f1 ∗ f2 simply by f1 f2.
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For certain S and γ,wewould like to describe the algebraH(S , γ) using generators
and relations. In order to do so, we need to ûrst compute the support of H(S , γ). We
say that H(S , γ) is supported on g̃ ∈ S̃L2(Qp) if there exists f ∈ H(S , γ) such that
f (g̃) ≠ 0. We use the following lemmas to compute the support.

Lemma 3.1 Let S g̃ = S ∩ g̃S g̃ −1. hen H(S , γ) is supported on g̃ if and only if for

every k̃ ∈ S g̃ we have γ([k̃
−1 , g̃ −1]) = 1, where [ ⋅ , ⋅ ] is the usual commutator bracket.

Lemma 3.2 he function α g̃ ∶ S g̃ → C deûned by α g̃(k̃) = γ([k̃−1 , g̃ −1]) is a character
of S g̃ .

In order to compute the support using above lemmas, we need certain results on
cocyclemultiplication. We note them in the appendix.

We also note that the following well-known lemmas will be useful in computing
convolutions.

Lemma 3.3 Let f1 , f2 ∈ H(S , γ) such that f1 is supported on S x̃S = ⋃m
i=1 α̃ iS and f2

is supported on S ỹS = ⋃n
j=1 β̃ jS. hen

f1 ∗ f2(h̃) =
m

∑
i=1
f1(α̃ i) f2(α̃

−1
i h̃),

where the nonzero summands are precisely for those i for which there exist a j such that

h̃ ∈ α̃ i β̃ jS.

For g̃ ∈ S̃L2(Qp) let µ(g̃) denote the number of disjoint le� (right) S cosets in the
decomposition of the double coset S g̃S.

Lemma 3.4 Let g̃ , h̃ ∈ S̃L2(Qp) be such that µ(g̃)µ(h̃) = µ(g̃ h̃). Let f1, f2 ∈

H(S , γ) be supported on S g̃S and S h̃S, respectively. hen f1 ∗ f2 is precisely supported

on S g̃ h̃S and f1 ∗ f2(g̃ h̃) = f1(g̃) f2(h̃).

3.1 Local Hecke Algebra of S̃L2(Q2) Modulo K2
0(4)

Let S = K2
0(4) and let γ be a genuine character of M2 determined by its value on

(−I, 1). Since K2
0(4) is the direct product K2

1 (4) × M, we can extend γ to a genuine
character of K2

0(4) by setting it trivial on K2
1 (4). Loke and Savin described H(S , γ)

for the above choice of S and γ as follows.
Using relations in (2.1), extend γ to the normalizer NS̃L(Q2)

(T) by deûning
γ((h(2n), 1)) = 1 for all integers n and γ((w(1), 1)) = (1+γ((−I, 1)))/

√
2, a primitive

8th root of unity. For n ∈ Z, deûne the elements Tn andUn ofH(K2
0(4), γ) supported

respectively on the K2
0(4) double cosets of (h(2n), 1) and (w(2−n), 1) such that

Tn(k̃(h(2n), 1)k̃′) = γ(k̃)γ((h(2n), 1))γ(k̃′),

Un(k̃(w(2−n), 1)k̃′) = γ(k̃)γ((w(2−n), 1))γ(k̃′) for k̃, k̃′ ∈ K2
0(4).
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heorem 3.5 (Loke–Savin [8]) For m, n ∈ Z,
(i) if mn ≥ 0, then Tm ∗ Tn = Tm+n ;

(ii) U1 ∗ Tn = Un+1 and Tn ∗U1 = U1−n ;

(iii) U1 ∗Un = Tn−1 and Un ∗U1 = T1−n .

he Hecke algebra H(K2
0(4), γ) is generated by U0 and U1 modulo relations

(U0 − 2
√

2)(U0 +
√

2) = 0 and U2
1 = 1.

3.2 Iwahori Hecke Algebra of S̃L2(Qp) Modulo K
p
0 (p), p Odd

Fix an odd prime p. Let S = K
p
0 (p). Let γ be a character of K

p
0 (p) such that it is trivial

on K
p
1 (p). Since

K p
0 (p)

K p
1 (p)

≅ (Zp/pZp)
×, we can deûne γ by a character of (Z/pZ)×. We

use the same symbol γ to denote a genuine character of S by deûning γ(A, є) = єγ(A)

for A ∈ K
p
0 (p). We call H(S , γ) with the above choice of S and γ to be the genuine

Iwahori Hecke algebra of S̃L2(Qp) with central character γ. Our main result in this
subsection is to describe this Iwahori Hecke algebra using generators and relations
when γ is quadratic.

In the rest of this subsection, we denote K
p
0 (p) simply by K0. We ûrst note the

following lemma.

Lemma 3.6 A complete set of representatives for the double cosets of S̃L2(Qp) mod

K0 is given by (h(pn), 1), (w(p−n), 1), where n varies over integers.

We need to compute the support ofH(K0 , γ). Fix an integer n. Let A = h(pn) and
Ã = (A, є1). We shall show that H(K0 , γ) is supported on Ã. We have

SÃ = {((
a b

c d
) ,±1) ∈ SL2(Zp) ∶ ordp(c) ≥max{−2n + 1, 1},

ordp(b) ≥ max{2n, 0}} .

We check that SÃ has a triangular decomposition SÃ = N S ÃT S ÃN
S Ã ,where T S Ã = TK0 ,

N S Ã = {(x(s),±1) ∶ ordp(s) ≥ max{2n, 0}}, and N
S Ã = {(y(t),±1) ∶ ordp(t) ≥

max{−2n + 1, 1}}.
By Lemma 3.1 and 3.2, it is enough to check that the value of γ on the commutator

[(B, є2)−1 , (A, є1)−1] is 1 for any (B, є2) in N S Ã , T S Ã and N
S Ã , respectively.

By Lemma A.3, for B = (x(s), є2) ∈ N S Ã , we get

[(B, є2)−1 , (A, є1)−1] = ((
1 sp−2n − s

0 1 ) , 1) ;

for B = (h(u), є2) ∈ T S Ã ,we get [(B, є2)−1 , (A, є1)−1] = (I, 1); and for B = (y(t), є2)
∈ N S Ã , we get that

[(B, є2)−1 , (A, є1)−1] = ((
1 0

(p2n − 1)t 1) , 1) .

Since each of them belongs to K
p
1 (p) × {1}, we are done.
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Next let A = w(p−n). We show that H(K0 , γ) is supported on Ã = (A, є1) provided
γ(u2) = 1 for all units u in Zp . In this case, we have

SÃ = {((
a b

c d
) ,±1) ∈ SL2(Zp) ∶ ordp(c) ≥ max{2n, 1},

ordp(b) ≥ max{−2n + 1, 0}} ,

and SÃ has a triangular decomposition SÃ = N S ÃT S ÃN
S Ã , where T S Ã = TK0 , N S Ã =

{(x(s),±1) ∶ordp(s)≥ max{−2n+ 1, 0}}, N
S Ã ={(y(t),±1) ∶ordp(t) ≥ max{2n, 1}}.

By Lemma A.3, for B = (x(s), є2) ∈ N S Ã , we get

[(B, є2)−1 , (A, є1)−1] = ((
1 + s2p2n −s
−sp2n 1 ) , 1) ,

so γ takes value 1 on this commutator. In the case B = (y(t), є2) ∈ N S Ã , we have

B
−1
A
−1
BA = (

1 −p−2n t

−t 1 + p−2n t2
) , where ordp(t) ≥ max{2n, 1},

so sp(B
−1A−1BA) = 1 if either −t(1 + p−2n t2) = 0 or ordp(t) is even. Assume that

−t(1 + p−2n t2) ≠ 0 and ordp(t) is odd. hen sp(B
−1A−1BA) = (−t, 1 + p−2n t2)p =

(−p, 1 + p−2n t2)p . Let u = 1 + p−2n t2. Since ordp(t) ≥ max{2n, 1}, we have u ≡ 1
(mod pZp).

Hence, sp(B−1A−1BA) = (−p, u)p = (u
p ) = 1. So in this case also γ takes value 1.

For B = (h(u), є2) ∈ T S Ã ,

[(B, є2)−1 , (A, є1)−1] = ((
1/u2 0
0 u2) , 1) ,

so γ([(B, є2)−1 , (A, є1)−1]) = γ(u2).
hus, if γ(u2) = 1 for all units u inZp , then H(K0 , γ) is supported on (w(p−n), є).

In particular, this holds if our choice of γ is quadratic. hus, we have the following
proposition.

Proposition 3.7 If γ is a quadratic character thenH(K0 , γ) is supported on the double

cosets of K0 represented by (h(pn), 1) and (w(p−n), 1), as n varies over integers.

We now obtain the generators and relations in H(K0 , γ) when γ is quadratic.
We consider the character γ of K0 to be the genuine character of the center Mp

and extend it to the normalizer group NS̃L2(Qp)
(T) as follows.

Let εp = 1 or i depending on whether p ≡ 1 or 3 (mod 4), thus ε2p = (−1
p ) . Let

t = pnu ∈ Q×
p , where n ∈ Z and u is a unit in Zp . Deûne

γ((h(t), 1)) =
⎧⎪⎪
⎨
⎪⎪⎩

γ((h(u), 1)) if n is even,

εp(
u
p)γ((h(u), 1)) if n is odd.

It is easy to see that γ thus deûned is a character of T .
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We now extend γ to the normalizer NS̃L2(Qp)
(T) by deûning γ((w(1), 1)) ∶= 1 and

using the relation

(w(t), 1) = (h(t), 1)(w(1), 1)(I, (−1, t−1)
p
) .

hus, for t = pnu as above,

γ((w(t), 1)) =
⎧⎪⎪
⎨
⎪⎪⎩

γ((h(u), 1)) if n is even,

εp(
−u
p )γ((h(u), 1)) if n is odd.

We deûne the elements Tn andUn ofH(K0 , γ) supported respectively on the dou-
ble cosets of (h(pn), 1) and (w(p−n), 1) such that

Tn(k̃(h(p
n), 1)k̃′) = γ(k̃)γ((h(pn), 1))γ(k̃′) ,

Un(k̃(w(p−n), 1)k̃′) = γ(k̃)γ((w(p−n), 1))γ(k̃′)

for k̃, k̃′ ∈ K0. hus, Proposition 3.7 implies that Tn , Un , as n varies over integers
form a C-basis for H(K0 , γ) when γ is quadratic.

In order to obtain relations amongst Tn and Un , we note the following lemma,
which can be obtained by using the triangular decomposition of K0.

Lemma 3.8 (i) For n ≥ 0,

K0h(p
n)K0 = ⋃

s∈Zp/p2nZp

x(s)h(pn)K0 = ⋃
s∈Zp/p2nZp

K0h(p
n)y(ps).

(ii) For n ≥ 1,

K0h(p
−n)K0 = ⋃

s∈Zp/p2nZp

y(ps)h(p−n)K0 = ⋃
s∈Zp/p2nZp

K0h(p
−n)x(s).

(iii) For n ≥ 1,

K0w(p−n)K0 = ⋃
s∈Zp/p2n−1Zp

y(ps)w(p−n)K0 = ⋃
s∈Zp/p2n−1Zp

K0w(p−n)y(ps).

(iv) For n ≥ 0,

K0w(pn)K0 = ⋃
s∈Zp/p2n+1Zp

x(s)w(pn)K0 = ⋃
s∈Zp/p2n+1Zp

K0w(pn)x(s).

Proposition 3.9 We have the following relations:

(i) If mn ≥ 0, then Tm ∗ Tn = Tm+n .

(ii) For n ≥ 0, U1 ∗ Tn = Un+1 and T−n ∗U1 = Un+1.

(iii) For n ≥ 0, U0 ∗ T−n = U−n and Tn ∗U0 = U−n .

(iv) For n ≥ 1, U0 ∗Un = γ((−I, 1))Tn and Un ∗U0 = γ((−I, 1))T−n .

Proof We prove (i) and the second part of (iv). he rest are similar.
For (i), let mn ≥ 0. We can assume both m, n ≥ 0. It follows from Lemma 3.8 and

3.4 that Tm ∗ Tn is precisely supported on the double coset K0(h(p
n+m), 1)K0 and

that

Tm ∗ Tn((h(p
m), 1)(h(pn), 1)) = Tm((h(pm), 1))Tn((h(p

n), 1)) .
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Let m and n both be even. hen (h(pm), 1)(h(pn), 1) = (h(pn+m), 1) and so

Tm ∗ Tn((h(p
n+m), 1)) = Tm((h(pm), 1))Tn((h(p

n), 1))

= γ((h(pm), 1))γ((h(pn), 1))

= 1 = Tm+n((h(p
n+m), 1)) ,

hence Tm ∗ Tn = Tm+n . Next suppose both m and n are odd, so m + n is even. hen
(h(pm), 1)(h(pn), 1) = (h(pn+m), 1)(I, (p, p)p) and so

Tm ∗ Tn((h(p
n+m), 1)) = γ((I, (p, p)p))Tm((h(pm), 1))Tn((h(p

n), 1))

= (
−1
p
)γ((h(pm), 1))γ((h(pn), 1)) = (

−1
p
) ε2p

= 1 = Tm+n((h(p
n+m), 1)) .

Now suppose m is odd and n is even (or vice versa), so m + n is odd. In this case,
(h(pm), 1)(h(pn), 1) = (h(pn+m), 1) and so

Tm ∗ Tn((h(p
n+m), 1)) = εp = Tm+n((h(p

n+m), 1)) ,

and we are done.
For (iv), let n ≥ 1. As before, using Lemma 3.8 and 3.4, we know that Un ∗ U0 is

supported on the double coset K0(h(p
−n), 1)K0 and that

Un ∗U0((w(p−n), 1)(w(1), 1)) = Un((w(p−n), 1))U0((w(1), 1)) .

We have (w(p−n), 1)(w(1), 1) = (h(p−n), 1)(−I, (p−n ,−1)p), and so

γ((−I, 1)) Un ∗U0((h(p
−n), 1))

= (p−n ,−1)p Un((w(p−n), 1))U0((w(1), 1))

=

⎧⎪⎪
⎨
⎪⎪⎩

(−1
p ) εp(

−1
p ) = εp if n is odd,

1 if n is even

= T−n((h(p
−n), 1)),

and thus Un ∗U0 = γ((−I, 1))T−n . ∎

We consider two choices for γ as a character of (Z/pZ)∗: either γ is trivial or γ is
given by the Kronecker symbol γ = ( ⋅p ) . hen we have the following proposition.

Proposition 3.10 (i) U2
0 =

⎧⎪⎪
⎨
⎪⎪⎩

(p − 1)U0 + p if γ is trivial,

(−1
p ) p if γ = ( ⋅p ) .

(ii) U2
1 =

⎧⎪⎪
⎨
⎪⎪⎩

p if γ is trivial,

εp(p − 1)U1 + (−1
p ) p if γ = ( ⋅p ) .

(iii) If γ is trivial, then T1 ∗U1 = p U0 and T−1 = (1/p) U1 ∗ T1 ∗U1.

Proof For (i),we use Lemma 3.3 to check thatU2
0 is atmost supported on the double

cosets K0 and K0(w(1), 1)K0. hus,we need to only compute the values ofU2
0 at (I, 1)

Minus Space of Half-integral Weight 337

https://doi.org/10.4153/S0008414X19000233 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000233


and (w(1), 1). Using Lemma 3.8 and 3.3, we have

U2
0((I, 1)) =

p−1

∑
s=0

U0((x(s), 1)(w(1), 1))U0((w(1), 1)−1(x(s), 1)−1)

=
p−1

∑
s=0

U0((w(1), 1))U0((w(−1), 1)(x(−s), 1))

=
p−1

∑
s=0

U0((h(−1), 1)(w(1), 1)(x(−s), 1))

=
p−1

∑
s=0

γ(−1) =
⎧⎪⎪
⎨
⎪⎪⎩

p if γ is trivial,

(−1
p ) p if γ = ( ⋅p ) ,

where the third equality follows from the relation (h(−1), 1)(w(1), 1) = (w(−1),
(−1, 1)p) by equation (2.1).

Similarly, we get that

U2
0((w(1), 1)) =

p−1

∑
s=0

U0((x(s), 1)(w(1), 1))U0((w(1), 1)−1(x(s), 1)−1(w(1), 1))

=
p−1

∑
s=0

U0(((
0 −1
1 −s) , 1)(w(1), 1))

=
p−1

∑
s=0

U0((y(s), 1)) =
p−1

∑
s=1

U0((y(s), 1)) ,

since U0((I, 1)) = 0 (as (I, 1) is not in the support of U0). It is easy to check that for
1 ≤ s ≤ p − 1,

(y(s), 1) = ((
1 1/s
0 1 ) , 1)(w(1), 1)((

−s −1
0 −1/s) , 1) ∈ K0(w(1), 1)K0 ,

and hence

U2
0((w(1), 1)) =

p−1

∑
s=1

γ(−1/s) =
p−1

∑
s=1

γ(s) =

⎧⎪⎪
⎨
⎪⎪⎩

p − 1 if γ is trivial,

∑
p−1
s=1 ( s

p) = 0 if γ = ( ⋅p ) .

hus, if we write U2
0 = c1U0 + c2, we get that

c1 =

⎧⎪⎪
⎨
⎪⎪⎩

p − 1 if γ is trivial,

0 if γ = ( ⋅p )
, c2 =

⎧⎪⎪
⎨
⎪⎪⎩

p if γ is trivial,

(−1
p ) p if γ = ( ⋅p ) .

Now we prove (ii). Again using Lemma 3.3, we see that U2
1 is at most supported

on the double cosets K0 and K0(w(p−1), 1)K0. So we need to ûnd the values of U2
1
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at (I, 1) and (w(p−1), 1). Using Lemma 3.8 and 3.3,

U2
1 ((I, 1)) =

p−1

∑
s=0

U1((y(ps), 1)(w(p−1), 1))U1((w(p−1), 1)−1(y(ps), 1)−1)

=
p−1

∑
s=0

U1((w(p−1), 1))U1((w(−p
−1), 1)(y(−ps), 1))

=
p−1

∑
s=0
εp(

−1
p
)U1((h(−1), (−p,−1)p)(w(p−1), 1))

=
p−1

∑
s=0
εp(

−1
p
)γ(−1)(

−1
p
) εp(

−1
p
)

= γ(−1)p =
⎧⎪⎪
⎨
⎪⎪⎩

p if γ is trivial,
(−1

p ) p if γ = ( ⋅p ) .

Finally, we have

U2
1 ((w(p−1), 1))

=
p−1

∑
s=0

U1((y(ps), 1)(w(p−1), 1))U1((w(−p
−1), 1)(y(−ps), 1)(w(p−1), 1))

=
p−1

∑
s=0
εp(

−1
p
)U1(((

s −p−1

p 0 ) , (p2 ,−p
2
s)p )(w(p−1), 1))

=
p−1

∑
s=0
εp(

−1
p
)U1((x(s/p), (p,−p)p)) =

p−1

∑
s=1
εp(

−1
p
)U1((x(s/p), 1)) .

Now we check that for 1 ≤ s ≤ p − 1,

(x(s/p), 1)(I, (
s

p
)) = ((

s 0
p 1/s) , 1)(w(p−1), 1)((

1 0
p/s 1) , 1) ,

and so

U2
1 ((w(p−1), 1)) =

p−1

∑
s=1
εp(

−1
p
)(

s

p
)γ(1/s)εp(

−1
p
)

=
p−1

∑
s=1

(
−s

p
)γ(1/s)

=

⎧⎪⎪
⎨
⎪⎪⎩

∑
p−1
s=1 (−s

p ) = 0 if γ is trivial,

∑
p−1
s=1 (−s

p )( s−1

p ) = (−1
p )(p − 1) if γ = ( ⋅p ) .

hus, if we write U2
1 = c1U1 + c2, we get that

c1 =

⎧⎪⎪
⎨
⎪⎪⎩

0 if γ is trivial,
εp(p − 1) if γ = ( ⋅p ) ,

c2 =

⎧⎪⎪
⎨
⎪⎪⎩

p if γ is trivial,

(−1
p ) p if γ = ( ⋅p ) .
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For (iii) let γ be a trivial character. From Proposition 3.9(iv),we haveU0 ∗U1 = T1.
Right multiplication by U1 on both sides and using (ii) above give T1 ∗ U1 = p U0.
Further, using the same proposition, we get that T−1 = U1 ∗U0 = (1/p)U1 ∗T1 ∗U1. ∎

Remark 3.11 We compare the p-adic operator U1 with Ueda’s classical operator Yp
[16, Proposition 1.27], which satisûes a similar relation. In particular, if we consider
operator U′

1 = εpU1, then in the case γ is trivial, we have

(U′
1)

2 = (εpU1)
2 = ε2pp = (

−1
p
) p,

while in the case γ = ( ⋅p ) , we have

(U′
1)

2 = (εpU1)
2 = εp

2 (εp(p − 1)U1 + p(
−1
p
)) = (p − 1)U′

1 + p.

hus, U′
1 satisûes exactly the same relations as the operator Yp .

heorem 3.12 he “genuine” Iwahori Hecke algebraH(K
p
0 (p), γ) for γ trivial or ( ⋅p )

is generated as a C-algebra by U0 and U1 with the deûning relations given by the above

proposition.

Proof We let A be an abstract algebra generated by Ũ0 and Ũ1 with deûning rela-
tions as (i) and (ii) of Proposition 3.10. We have a homomorphism from Ã to H(γ)

mapping Ũ0 to U0 and Ũ1 to U1. It follows from Proposition 3.9 that this homomor-
phism is onto. We let M be the kernel of this homomorphism. Using relations (i) and
(ii), it follows that M is a linear combination of words of the form Ũ0Ũ1Ũ0 ⋅ ⋅ ⋅ and
Ũ1Ũ0Ũ1 ⋅ ⋅ ⋅. here are four possibilities for the beginning and ending of such a word
and each one is mapped by the homomorphism to a diòerent basis element (again
using Proposition 3.9). It follows that M = 0. ∎

Remark 3.13 We note that the Hecke algebras H(K
p
0 (p), γ) for γ trivial or ( ⋅p )

are isomorphic (with roles of Ũ0, Ũ1 switched a�er suitable normalization). Further,
these are isomorphic to the Iwahori Hecke algebra of PGL2(Qp) giving what Loke
and Savin called, local Shimura correspondence at odd primes.

he Hecke algebra generators and relations described above allow a study of the
representation theory of the maximal compact with (K

p
0 (p), γ) equivariant vectors

and also the inûnite dimensional genuine representations of S̃L(2)with such vectors.
We will pursue this study in a subsequent work.

4 Translation of Adelic to Classical

In this section, following Gelbart [4] andWaldspurger [18],we review the connection
between automorphic forms on S̃L2(A) and classical modular forms of half-integral
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weight. We use this connection to translate certain elements in the p-adicHecke alge-
bra described in the previous section into classical operators and thus obtain relations
satisûed by these classical operators.

Let A = AQ be the adele ring of Q and S̃L2(A) = SL2(A) × {±1} with the group
law: for g = (gν), h = (hν) ∈ SL2(A) and є1 , є2 ∈ {±1},

(g , є1)(h, є2) = (gh, є1є2σ(g , h)),where σ(g , h) =∏
ν
σν(gν , hν).

he group S̃L2(A) splits over SL2(Q), and the splitting is given by

sQ ∶ SL2(Q)Ð→ S̃L2(A), g z→ (g , sA(g)), where sA(g) =∏
ν
sν(g).

By [4, Proposition 2.16], for α = ( a bc d ) ∈ Γ1(N), sA(α) = ( cd ) s unless c = 0, in which
case sA(α) = 1. Here, ( cd ) s = ( cd )(c, d)∞.

Lemma 4.1 Let 4 ∣ N. For α = ( a bc d ) ∈ Γ0(N), we have

sA(α) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

( cd ) s
(c, d)2 if c ≠ 0 and ord2(c) is even,

( cd ) s
if c ≠ 0 and ord2(c) is odd,

1 if c = 0.

Proof If c = 0, then sν(α) = 1 for all places ν, and so sA(α) = 1.
Suppose c ≠ 0. Since α ∈ Γ0(N) and 4 ∣ N , d is odd and coprime to c. By deûnition,

for any ûnite prime q, we have sq(α) = (c, d)q if ordq(c) is odd and is 1 otherwise.
Hence

sA(α) = ∏
q finite

sq(α) = ∏
ordq(c) odd

(c, d)q .

It follows from the proof of [4, Proposition 2.16] (the proof only uses that d is odd and
coprime to c), that ( cd ) s

=∏q∣c (c, d)q . Now

∏
ordq(c) odd

(c, d)q =∏
q∣c

(c, d)q ∏
ordq(c) even>0

(c, d)q = (
c

d
)

s
∏

ordq(c) even>0
(c, d)q .

So we just need to show that∏ordq(c) even >0 (c, d)q is (c, d)2 if ord2(c) is even and is
1 if ord2(c) is odd (note that ord2(c) ≥ 2). Let p be any odd prime such that ordp(c)

is even and > 0. Let c = p2nu, where u is unit in Zp . hen (c, d)p = (u, d)p = 1 as
both d , u are units in Zp . Hence we are done. ∎

For g̃ = (( a bc d ), є) ∈ S̃L2(R) and z ∈ H, deûne

g̃(z) =
az + b

cz + d
and J(g̃ , z) = є(cz + d)1/2 .

By [4, Lemma 3.3], J(g̃ , z) satisûes the automorphy condition i.e.,

J(g̃ h̃, z) = J(g̃ , h̃z)J(h̃, z).
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Let f ∈ Sk+1/2(Γ0(N)), where 4 ∣ N and α ∈ Γ0(N). hen considering α = (α, sA(α))
∈ S̃L2(R), using the above lemma, we have

f (αz) = (
c

d
)(ε−1

d )2k+1(cz + d)k+1/2
f (z)

= (
c

d
)(ε−1

d )2k+1
sA(α)J(α, z)2k+1

f (z)

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(ε−1
d J(α, z))2k+1 f (z) if c = 0,

(c, d)∞(ε−1
d J(α, z))2k+1 f (z) if c ≠ 0 and ord2(c) is odd,

(c, d)∞ (c, d)2 (ε
−1
d J(α, z))2k+1 f (z) if c ≠ 0 and ord2(c) is even.

For θ ∈ R, let

k(θ) = (
cos θ sin θ

−sinθ cos θ) .

Deûne K̃∞ ∶= {k̃(θ) ∶ θ ∈ (−2π, 2π]}, where

k̃(θ) =

⎧⎪⎪
⎨
⎪⎪⎩

(k(θ), 1) if −π < θ ≤ π,
(k(θ),−1) if −2π < θ ≤ −π or π < θ ≤ 2π.

hen K̃∞ is amaximal compact subgroup of S̃L2(R) and k̃(θ)↦ e i
2k+1
2 θ is a genuine

character of K̃∞. Let

K1(N) ∶= ∏
q<∞

{(
a b

c d
) ∈ SL2(Zq) ∶ c ≡ 0, and a, d ≡ 1 (mod NZq)} .

Recall the strong approximation theorem for S̃L2(A): every element g̃ ∈ S̃L2(A) can
be written as

g̃ = (α, sA(α))g̃∞(k1 , 1),

where (α, sA(α)) ∈ sQ(SL2(Q)), k1 ∈ K1(N) and g̃∞ ∈ S̃L2(R) determined up to le�
multiplication by elements in sQ(Γ1(N)).

We follow the notation ofWaldspurger [18]. Let χ be an even Dirichlet character
modulo N . Write χ0 = χ(−1

⋅ )
k
. Deûne γ̃2 on Z×2 as

γ̃2(t) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if t ≡ 1 (mod 4Z2),
−i if t ≡ 3 (mod 4Z2),

and for k0 = (
a b

c d
) ∈ K2

0(4), deûne

є̃2(k0) =

⎧⎪⎪
⎨
⎪⎪⎩

γ̃2(d)
−1 (c, d)2 s2(k0) if c ≠ 0,

γ̃2(d) if c = 0.

Let χ0 also denote the idelic character (of Q×/A×
Q) corresponding to the Dirichlet

character χ0 (it will be clear from the context when we consider χ0 to be idelic or
Dirichlet character) and χ0,p be the p-component of χ0. Let Ak+1/2(N , χ0) denote
the set of functions Φ ∶ S̃L2(A)→ C satisfying the following properties:
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(i) Φ(sQ(α)g̃(k1 , 1)) = Φ(g̃) for all k1 ∈∏q∤N SL2(Zq), α ∈ SL2(Q), g̃ ∈ S̃L2(A).
(ii) Φ is genuine, that is, Φ((I, ζ)g̃) = ζΦ(g̃) for ζ ∈ µ2.
(iii) For odd primes p such that pn∥N , Φ(g̃(k0 , 1)) = χ0,p(d)Φ(g̃) for all k0 =

(a bc d) ∈ K
p
0 (p

n).
(iv) If 2n∥N (n ≥ 2), Φ(g̃(k0 , 1)) = є̃2(k0)χ0,2(d)Φ(g̃) for all k0 ∈ K2

0(2
n).

(v) Φ(g̃ k̃(θ)) = e i
2k+1
2 θΦ(g̃) for all k̃(θ) ∈ K̃∞.

(vi) Φ is smooth as a function of S̃L2(R) and satisûes the diòerential equation
∆Φ = −[(2k + 1)(2k − 3)/16]Φ, where ∆ is the Casimir operator.

(vii) Φ is square integrable, that is, ∫sQ(SL2(Q))/S̃L2(A)/µ2
∣Φ(g̃)∣2d g̃ <∞.

(viii) Φ is cuspidal, that is, ∫NQ/NA
Φ(( 1 a

0 1 )g̃)da = 0 for all g̃ ∈ S̃L2(A).

By [18, Proposition 3], there exists an isomorphism between

Ak+1/2(N , χ0)Ð→ Sk+1/2(Γ0(N), χ)

given by Φ ↦ fΦ , where for z ∈ H,

fΦ(z) = Φ(g̃∞)J(g̃∞ , i)2k+1 ,

where g̃∞ ∈ S̃L2(R) is such that g̃∞(i) = z. he inverse map is given by f ↦ Φ f ,
where, for g ∈ S̃L2(A), if g̃ = (α, sA(α))g̃∞(k1 , 1),

Φ f (g̃) = f (g̃∞(i))J(g̃∞ , i)−2k−1 .

his isomorphism induces a ring isomorphism of spaces of linear operators,

q ∶ EndC (Ak+1/2(N , χ0)) Ð→ EndC (Sk+1/2(Γ0(N), χ))

given by q(T)( f ) = fT(Φ f ) .

4.1 N = 4M, M Odd and p∥M

Let p be an odd prime and let N = 4M with M odd such that p strictly divides M.
In this subsection, we translate the elements T1, U1, U0, and T−1 in the p-adic Hecke
algebra to certain classical operators on Sk+1/2(Γ0(4M), χ). We restrict ourselves to χ

being the trivial character modulo 4M. In this case, χ0 = (−1
⋅ )

k
has conductor either

1 or 4, and so χ0,p is trivial on Z×p , while χ0,2 acts by χ−1
0 = χ0 on Z×2 .

Let γ be the character on (Zp/pZp)
× induced by χ0,p ∣Z×p (so in the current

case, γ is trivial). hen Iwahori Hecke algebra H(K
p
0 (p), γ) is a subalgebra of

EndC(Ak+1/2(N , χ0)) via the following action: for T ∈ H(K
p
0 (p), γ) and Φ ∈

Ak+1/2(N , χ0),

T(Φ)(g̃) = ∫
S̃L2(Qp)

T(x̃)Φ(g̃ x̃)d x̃ .

Proposition 4.2 Let M be positive integer such that p strictly divides M. Let χ be

the trivial character modulo 4M and let γ be induced by χ0,p . Let T1, U1, U0, T−1 ∈

H(K
p
0 (p), γ) and f ∈ Sk+1/2(Γ0(4M), χ). hen
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(i) (
−1
p
)

k
q(T1)( f )(z) = p

−k−1/2
p2−1

∑
s=0

f (
z + s

p2 ) = p
(3−2k)/2

Up2( f ).

(ii) q(U1)( f )(z) = εp(
−1
p
)(

M/p

p
)

p−1

∑
s=0
f ∣ [(αs , ϕαs)]k+1/2(z), where

αs = (
p2n − 4Mms m

4pM(1 − s) p
) ∈ M2(Z)

has determinant p2 andm, n ∈ Z are such that pn − (4M/p)m = 1 and ϕαs(z) =

(4M(1 − s)z + 1)1/2.

(iii) q(U0)( f )(z)= ∑
p−1
s=0 f ∣ [(βs , ϕβs)]k+1/2(z),where βs = ( 1 m−s

4M1 np−4M1 s) ∈ Γ0(4M1)
with M1 = M/p and m, n ∈ Z are such that pn − 4M1m = 1 and ϕβs =

(4M1z + (np − 4M1s))
1/2.

(iv) q(T−1)( f )(z)= (−1
p )

k
∑

p2−1
s=0 f ∣ [(γs , ϕγs(z))]k+1/2(z), where γs = ( p2 0

−4Ms 1
) and

ϕγs(z) = (−4(M/p)sz + p−1)1/2.

Proof For (i), let g̃∞ = (g∞ , 1) ∈ S̃L2(R) such that g̃∞ i = z. hen using decompo-
sition in Lemma 3.8, we have

T1(Φ f )(g̃∞) =
p2−1

∑
s=0

γ(h(p), 1)Φ f (g̃∞(x(s), 1)(h(p), 1))

= εp

p2−1

∑
s=0

Φ f (g̃∞(x(s), 1)(h(p), 1))

= εp

p2−1

∑
s=0

Φ f (sQ(As)g̃∞(x(s), 1)(h(p), 1)) ,

where for each 0 ≤ s ≤ p2 − 1, we take As = h(p−1)x(−s) = ( p−1
−p−1 s

0 p ) ∈ SL2(Q)

(note that Φ f (sQ(α)g̃) = Φ f (g̃) for any α ∈ SL2(Q), g̃ ∈ S̃L2(A)). Clearly sν(As) = 1
for all primes ν, so sQ(As) = (As , 1). he∞-component of

(As , 1)
´¹¹¹¹¹¹¸¹¹¹¹¹¶
diagonal

g̃∞
°
∞ place

(x(s), 1)(h(p), 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p place

is (As , 1)g̃∞, for aprime q such that (q, 2M) = 1 the q-component is (As , 1) ∈ SL2(Zq)

× {1}, for a prime r such that (r, 2p) = 1 and rb∥M, the r-component is (As , 1) ∈

K r
0(r

b) × {1}, the 2-component is (As , 1) ∈ K2
0(4) × {1}, and the p-component is

(As , 1)(x(s), 1)(h(p), 1) = (I, (p, p)p) = (I, (−1
p )).

Since χ is trivial, χ0,2 = (−1
⋅ )

k
, while χ0,p and χ0,r are trivial. So the 2-component

acts by є̃2(As)χ0,2(p) = γ̃2(p)χ0,2(p) = εp(
−1
p )

k
, and the p-component acts by (−1

p ) .
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hus,

T1(Φ f )(g̃∞) = εp

p2−1

∑
s=0

Φ f (sQ(As)g̃∞(x(s), 1)(h(p), 1))

= (εp)
2(
−1
p
)

k
(
−1
p
)

p2−1

∑
s=0

Φ f (As g∞ , 1)

= (
−1
p
)

k p2−1

∑
s=0

f (As g∞(i))J((As g∞ , 1), i)−2k−1 .

Consequently,

q(T1)( f )(z) = T1(Φ f )(g̃∞)J((g∞ , 1), i)2k+1

= (
−1
p
)

k
p
−k−1/2

p2−1

∑
s=0

f (
z + s

p2 ) .

For (ii) we need the following decomposition (we use (4,M) = 1):

K0w(p−1)K0 = ⋃
s∈Zp/pZp

y(4Ms)w(p−1)K0 .

Taking g̃∞ such that g̃∞ i = z, we have

U1(Φ f )(g̃∞) = εp(
−1
p
)

p−1

∑
s=0

Φ f (g̃∞(y(4Ms), 1)(w(p−1), 1)) .

Since p is coprime to 4M/p, we ûx m, n ∈ Z such that pn − (4M/p)m = 1. For
0 ≤ s ≤ p − 1, take

As = (
pn

m
p

4M 1
)(

1 0
−4Ms 1) = (

pn − 4ms
M
p

m
p

4M(1 − s) 1
) ∈ SL2(Q).

Since sν(As) = 1 for all primes, ν we have sQ(As) = (As , 1). As before, the ∞-
component of

sQ(As)g̃∞ (y(4Ms), 1)(w(p−1), 1)

is (As , 1)g̃∞, for aprime q such that (q, 2M) = 1 the q-component is (As , 1) ∈ SL2(Zq)

× {1}, for a prime r such that (r, 2p) = 1 and rb∥M; the r-component is (As , 1) ∈

K r
0(r

b) × {1} and the 2-component is (As , 1) ∈ K2
1 (4) × {1} (as (2, 2)-th entry of As

is 1). For the p-component we check that

(As , 1) = ((
pn m/p
4M 1 ) , 1)(y(−4Ms), 1) ,

and so

(As , 1)(y(4Ms), 1)(w(p−1), 1) = ((
−m n

−p 4M/p
) , (

M/p

p
)) .

Since χ is trivial, as before, the r-component acts trivially, the p-component acts
by (M/p

p ) (as χ0,p(4M/p) = 1), and the 2-component by є̃2(As)χ0,2(1) = 1. hus,
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we have

U1(Φ f )(g̃∞)

= εp(
−1
p
)

p−1

∑
s=0

Φ f (sQ(As)g̃∞(y(4Ms), 1)(w(p−1), 1))

= εp(
−1
p
)(

M/p

p
)

p−1

∑
s=0

Φ f ((As , 1)(g∞ , 1))

= εp(
−1
p
)(

M/p

p
)

p−1

∑
s=0
f ((As , 1)z)J((As , 1), z)−2k−1

J((g∞ , 1), i)−2k−1 .

So we have

q(U1)( f )(z) = εp(
−1
p
)(

M/p

p
)

p−1

∑
s=0
f ((As , 1)z)J((As , 1), z)−2k−1 .

Let αs = As(
p 0
0 p ) and ϕαs(z) = (4M(1 − s)z + 1)1/2. hen

q(U1)( f )(z)

= εp(
−1
p
)(

M/p

p
)

p−1

∑
s=0
f (

(p2n − 4mMs)z +m

4pM(1 − s)z + p
)(4M(1 − s)z + 1)−k−1/2

= εp(
−1
p
)(

M/p

p
)

p−1

∑
s=0
f ∣ [(αs , ϕαs)]k+1/2(z).

For (iii), using Lemma 3.8, we have

U0(Φ f )(g̃∞) =
p−1

∑
s=0

Φ f (g̃∞(x(s), 1)(w(1), 1)) .

Let m, n ∈ Z such that pn − (4M/p)m = 1 and let M1 = M/p. For 0 ≤ s ≤ p − 1, take

As = (
1 −s +m

4M1 −4M1s + np
) ∈ Γ1(4M1).

By Lemma 4.1, we have sA(As) = ( 4M1
−4M1 s+np) = 1. hus, the ∞-component of

sQ(As) g̃∞ (x(s), 1)(w(1), 1) is (As , 1)(g∞ , 1); for a prime q such that (q, 2M) = 1 the
q-component is (As , 1) ∈ SL2(Zq)×{1}; if r is an odd prime such that rb∥M then the
r-component is (As , 1) ∈ K r

0(r
b)×{1}; and the 2-component is (As , 1) ∈ K2

1 (4)×{1}.
For the p-component, since ordp(4M1) = 0, we have

((
1 m

4M1 np
) , 1)(x(−s), 1) = (As , 1),

((
1 m

4M1 np
) , 1)(w(1), 1) = ((

−m 1
−np 4M1

) , β) ,

where β is either (4M1 ,−1)p or (4M1 , np)p depending on whether ordp(np) is odd
or even. In either case it is clear that β is 1. hus, the p-component is (( −m 1

−np 4M1 ), 1) ∈
K0 × {1}.
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Since χ is trivial, the p-component and r-component act trivially, and the
2-component acts by є̃2(As)χ0,2(−4M1s + np) = (4M1 ,−4M1s + np)2s2(As), which
clearly equals 1. hus,

U0(Φ f )(g̃∞) =
p−1

∑
s=0

Φ f ((As , 1)g̃∞)

=
p−1

∑
s=0
f (Asz)J((As , 1), z)

−2k−1
J((g∞ , 1), i)

−2k−1

and consequently

q(U0)( f )(z) =
p−1

∑
s=0
f (

z + (m − s)

4M1z + (np − 4M1s)
)(4M1z + (np − 4M1s))

−k−1/2
.

For (iv), using K0h(p
−1)K0 = ⋃s∈Zp/p2Zp y(4Ms)h(p−1)K0, we have

T−1(Φ f )(g̃∞) = εp

p2−1

∑
s=0

Φ f (g̃∞(y(4Ms), 1)(h(p−1), 1)) .

For 0 ≤ s ≤ p2−1, take As = h(p)y(−4Ms) = (
p 0

−4(M/p)s p−1 ), then sQ(As) = (As , ξs),
where

ξs ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if s = 0,
1 if ordp(s) = 1 and ord2(s) odd,

(−1
p )(Ms

p , p)2 if ordp(s) = 1 and ord2(s) even,

(−1
p )(Ms

p , p)p if (s, p) = 1 and ord2(s) odd,

(Ms
p , p)2 (Ms

p , p)p if (s, p) = 1 and ord2(s) even.

We verify the above formula for ξs in the case when ordp(s) = 1 and ord2(s) is
even; the other cases follow similarly. Clearly, ordp(s) = 1 and ord2(s) even imply
that ordp(−4(M/p)s) = 1 and ord2(−4(M/p)s) is even. So we have s2(As) = 1,
sp(As) = (− 4Ms

p , p−1)p , and by deûnition, s∞(As) = 1. For any prime q, note that
(− 4Ms

p , p−1)q = (−Msp, p)q = (Ms, p)q . So

ξs =∏
ν

sν(As) = (Ms, p)p ∏
q∶(q , 2p)=1,

ordq(4Ms) odd

(Ms, p)q .

If ordq(4Ms) is even, then (Ms, p)q = (u, p)q for some unit u inZq , so (Ms, p)q = 1.
hus, using the product formula∏ν(Ms, p)ν = 1, we have

ξs =∏
ν

sν(As) = (Ms, p)p ∏
q∶(q , 2p)=1

(Ms, p)q = (Ms, p)2 .

Since (p, p)2 = (−1
p ) , we get that (−1

p )(Ms
p , p) 2 = (Ms, p)2, and we are done.

hus, we have

T−1(Φ f )(g̃∞) = εp

p2−1

∑
s=0

ξsΦ f ((As , 1)g̃∞(y(4Ms), 1)(h(p−1), 1)).
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Now the∞-component of (As , 1)g̃∞(y(4Ms), 1)(h(p−1), 1) is (As , 1)g̃∞, for a prime
q such that (q, 2M) = 1 the q-component is (As , 1) ∈ SL2(Zq) × {1}, if r is an odd
prime coprime to p such that rb∥M, then the r-component belongs to K r

0(r
b) × {1},

the 2-component is

((
p 0

−4(M/p)s p−1) , 1) ∈ K
2
0(4) × {1},

and the p-component is (As , 1)(y(4Ms), 1)(h(p−1), 1), which is precisely equal to
(I, ηs), where

ηs ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(−1
p ) if s = 0,

1 if ordp(s) = 1,

(−1
p )(Ms

p , p) p if (s, p) = 1.

Since χ is trivial, χ0,p is trivial, and so the p-component acts on Φ f simply by
multiplication by ηs . Next we look at how the 2-component acts on Φ f . Since χ0,2 =

(−1
⋅ )

k
, we get that

є̃2(As)χ0,2(p
−1) =

⎧⎪⎪
⎨
⎪⎪⎩

γ̃2(p
−1)χ0,2(p

−1) if s = 0,
γ̃2(p

−1)−1(−4M
p s, p−1)

2s2(As)χ0,2(p
−1) if s ≠ 0,

= ϑs ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

εp(
−1
p )

k
if s = 0,

εp(
−1
p )

k
if s ≠ 0 and ord2(s) odd,

εp(
−1
p )

k+1
(Ms

p , p) 2 if s ≠ 0 and ord2(s) even.

One can check that
ϑsηs = εp(

−1
p
)

k
ξs ,

and so

T−1(Φ f )(g̃∞) = εp

p2−1

∑
s=0

ξsϑsηsΦ f ((As , 1)g̃∞) = (
−1
p
)

k p2−1

∑
s=0

Φ f ((As , 1)g̃∞) .

hus,

q(T−1)( f )(z) = (
−1
p
)

k p2−1

∑
s=0

f (
p2z

−4Msz + 1
)(
−4Msz + 1

p
)
−k−1/2

= (
−1
p
)

k p2−1

∑
s=0

f ∣[(γs , ϕγs(z))] k+1/2(z),

where γs = ( p2 0
−4Ms 1

) and ϕγs(z) = (−4(M/p)sz + p−1)1/2. ∎

Let Q̃p ∶= q(U0) and W̃p2 ∶= q(p−1/2U1). hen we have the following corollary.

Corollary 4.3 On Sk+1/2(Γ0(4M)), we have the following:

(i) W̃p2 is an involution;

(ii) (Q̃p − p)(Q̃p + 1) = 0;
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(iii) Q̃p = (−1
p )

k
p1−kUp2W̃p2 ;

(iv) if f ∈ Sk+1/2(Γ0(4M/p)), then Q̃p( f ) = p f .

Proof he proof of (i) to (iii) follows by using Propositions 3.10 and 4.2. For (iv) we
use Proposition 4.2(iii). ∎

We further deûne an operator Q̃′
p on Sk+1/2(Γ0(4M)) to be the conjugate of Q̃p by

W̃p2 , i.e., Q̃′
p = W̃p2 Q̃pW̃p2 . hus, Q̃′

p satisûes the same quadratic relation as Q̃p , and

we have Q̃′
p = (−1

p )
k
p1−kW̃p2Up2 .

Remark 4.4 We note that for a prime q such that (q, 2M) = 1, one can similarly
obtain the usual Hecke operator Tq2 on Sk+1/2(Γ0(4M)). In particular, if we take

T1 ∶= X(h(q),1) ∈ H(SL2(Zq), γq), then q(T1) = (−1
p )

k
p(3−2k)/2Tq2 .

Moreover, if p and q are distinct primes such that pn , qm strictly divide N , then
the operators S ∈ H(K

p
0 (p

n), γp) and T ∈ H(K
q
0(q

m), γq) in EndC(Sk+1/2(Γ0(N)))
commute.

In particular, the operators Q̃p , W̃p2 on Sk+1/2(Γ0(4M)) that we deûned above
commute with Tq2 for primes q coprime to 2M.

Remark 4.5 Let f ∈ Sk+1/2(Γ0(2νM)), where ν ≥ 2. hen we have exactly the
same statement as Proposition 4.2 for the action on f with M replaced by 2νM. In
particular, if f ∈ Sk+1/2(Γ0(2νM/p)), then Q̃p( f ) = p f . he results of thenext section
on self-adjointness also hold similarly.

4.2 Self-adjointness

Let M be odd such that p∥M. In this subsection,we check that the operators W̃p2 , Q̃p ,
and Q̃′

p are self-adjointoperatorson Sk+1/2(Γ0(4M)). hepropertyof self-adjointness
will be used to give a description of ourminus space in terms of common eigenspaces.

Proposition 4.6 he operator W̃p2 is self-adjoint with respect to the Petersson inner

product.

Proof We write

W̃p2( f ) =
εp
√

p
(
−1
p
)(

M/p

p
)Sp( f ), Sp( f ) ∶= ∑

s∈Z/pZ
f ∣[(αs , ϕαs(z))] k+1/2 ,

where

(αs , ϕαs(z)) = ((
p2n − 4mMs m

4pM(1 − s) p
) , (4M(1 − s)z + 1)1/2) ∈ G,

and n,m are integers such that pn − (4M/p)m = 1.
We will show that ⟨Sp( f ), g⟩ = (−1

p )⟨ f , Sp(g)⟩. We write Sp = S1,p + S2,p , where
S1,p consists of the s = 0 term and S2,p consists of rest of the terms. Also, letM1 = M/p.
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We ûrst consider S2,p . For s ≠ 0, as pn − 4M1ms = 1 + 4M1m(1 − s) it is clear that
pn−4M1ms and 4M(1−s) are relatively coprime, hence there exists integers u, v such
that u(pn − 4M1ms) + v4M(1 − s) = 1. In particular, this implies that −4M1msu ≡ 1
(mod p). Since −4M1m ≡ 1 (mod p), we get that su ≡ 1 (mod p).

We take

X = (
u v

−4M(1 − s) pn − 4M1ms
) ∈ Γ0(4M);

then X∗ = (X , j(X , z)), where

j(X , z) = (
−4M(1 − s)

pn − 4M1ms
)(−4M(1 − s)z + (pn − 4M1ms))1/2 ,

as pn − 4M1ms ≡ 1 (mod 4). Since f has level 4M, we have

f ∣ [(αs , ϕαs(z))]k+1/2 = f ∣ [X
∗]k+1/2∣ [(αs , ϕαs(z))]k+1/2 .

We claim that in G,

X
∗(αs , ϕαs(z)) = ((

p um + vp

0 p
) , (

u

p
)) .

It is easy to see equality in the matrix component, also j(X , αsz)ϕαs(z) simpliûes
to just ( −4M(1−s)

pn−4M1ms ) . So we only need to check equality of the Kronecker symbols

( −4M(1−s)
pn−4M1ms ) = (u

p) . While making a choice of m and n so that pn − 4M1m = 1,
we can choose m to be a negative integer so that for 1 ≤ s ≤ p − 1, pn − 4M1ms =
1 + 4M1m(1 − s) > 0. So we have

(
−4M(1 − s)

pn − 4M1ms
) = (

−4M1m(1 − s)

1 + 4M1m(1 − s)
)(

p

1 + 4M1m(1 − s)
)(

m

1 + 4M1m(1 − s)
)

= (
p

1 + 4M1m(1 − s)
)(

m

1 + 4M1m(1 − s)
) .

Note that

(
p

1 + 4M1m(1 − s)
) = (

1 + 4M1m(1 − s)

p
) = (

pn − 4M1ms

p
) = (

u

p
) .

If m is odd, clearly ( m
1+4M1m(1−s)) = 1. Also, if m = 2νm′, where ν ≥ 1 and m′ is odd,

then

(
m

1 + 4M1m(1 − s)
) = (

2
1 + 4M1m(1 − s)

)
ν
(

m′

1 + 4M1m(1 − s)
) = 1,

since in this case we have 1 + 4M1m(1 − s) ≡ 1 (mod 8). hus our claim is proved.
Consequently, we have

S2,p( f ) = ∑
u∈(Z/pZ)×

f ∣ [((
p um

0 p
) , (

u

p
))]

k+1/2
.

Since the adjoint of ∣ [((
p um
0 p ) , ( u

p ))]

k+1/2
is ∣ [((

p −um
0 p ) , ( u

p ))]

k+1/2
, the adjoint

of S2,p is (−1
p )S2,p , i.e., ⟨S2,p( f ), g⟩ = (−1

p )⟨ f , S2,p(g)⟩.
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Next we consider the term

S1,p( f ) = f ∣ [((
p2n m

4pM p
) , (4Mz + 1)1/2)]

k+1/2
.

For this case, we can choose m to be a positive integer. Let γp ∶= ( a bc d ) ∈ SL2(Z)

such that γp ≡ ( 0 −1
1 0 ) (mod p) and γp ≡ ( 1 0

0 1 ) (mod 8M1m) (this is possible since
(p, 8M1m) = 1). We may also choose c, d above so that c < 0 and d > 0. We claim
that

S1,p( f ) = f ∣ [((
pa b

p2c pd
) , (

M1

p
)(
c

d
)(cpz + d)1/2)]

k+1/2
.

Let

Y = (
a − 4bM1

−ma+bpn
p

pc − 4Md −mc + dpn
) .

hen Y ∈ SL2(Z) and pc − 4Md ≡ 0 (mod 4M), so Y ∈ Γ0(4M). We further note
that −mc+dpn ≡ 1 (mod 4), dpn−mc = d(1+4M1m)−mc > 0. To prove the claim,
we need to check that

Y
∗((

p2n m

4pM p
) , (4Mz + 1)1/2) = ((

pa b

p2c pd
) , (

M1

p
)(
c

d
)(cpz + d)1/2) .

As before,matrix equality is easy to check and the automorphy factor of the le�-hand
side equals kronecker symbol ( pc−4Md

−cm+d pn ) times (pcz+d)1/2. Sowe need to show that

( pc−4Md
−cm+d pn ) = (M1

p )( cd ) . Now

(
pc − 4Md
−cm + dpn

) = (
p

−cm + dpn
)(

c − 4M1d

−cm + dpn
) = (

−cm + dpn

p
)(

c − 4M1d

−cm + dpn
)

= (
−m

p
)(

c − 4M1d

−cm + dpn
) = (

M1

p
)(

c − 4M1d

−cm + dpn
) .

Since (m,−cm + dpn) = 1 we can write ( c−4M1d
−cm+d pn ) = (

d+cm−d pn
−cm+d pn )( m

−cm+d pn ) . We
have

(
d+cm−d pn
−cm+d pn )( m

−cm+d pn ) = ( d
−cm+d pn )(

m
−cm+d pn ) = ( cd )(

m
d )(

m
−cm+d pn ) .

We ûnally check that (m
d )(

m
−cm+d pn ) = 1. If m is odd,

(
m

−cm + dpn
) = (

dpn

m
) = (

d

m
)(

pn

m
) = 1 = (

m

d
) .

If m = 2νm′, ν ≥ 1 then dpn − cm ≡ 1 (mod 8) and so

(
m

−cm + dpn
) = (

2
−cm + dpn

)
ν
(

m′

−cm + dpn
) = (

dpn

m′
) = 1 = (

m

d
) .

hus, our claim is proved.
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Next we note that

((
pa b

p2c pd
) , (

c

d
)(cpz + d)1/2) = ((

1 0
0 p

) , p1/4)γ
∗
p ⋅ ((

p 0
0 1) , p

−1/4)

=∶ ςp ,

and so S1,p( f ) = (M1
p ) f ∣ [ςp]k+1/2.

We check similarly that

((
1 0
0 p

) , p1/4)(γ∗p)
2((

p 0
0 1) , p

−1/4) = ((
p 0
0 p

) , (
−1
p
))Z∗ ,

where

Z = (
a2 + bc ab+bd

p
pc(a + d) bc + d2) ∈ Γ0(4M)

and so

f ∣ [((
1 0
0 p

) , p1/4)(γ∗p)
2((

p 0
0 1) , p

−1/4)]
k+1/2

= (
−1
p
) f .

Note that

(ςp)
2

= ((
1 0
0 p

) , p1/4)γ
∗
p ⋅ ((

p 0
0 1) , p

−1/4)

× ((
1 0
0 p

) , p1/4)γ
∗
p ⋅ ((

p 0
0 1) , p

−1/4)

= ((
1 0
0 p

) , p1/4)γ
∗
p ⋅ ((

p 0
0 p

) , 1)γ
∗
p ⋅ ((

p 0
0 1) , p

−1/4)

= ((
p 0
0 p

) , 1)((
1 0
0 p

) , p1/4)(γ∗p)
2 ⋅ ((

p 0
0 1) , p

−1/4) .

hus,

f ∣ [(ςp)
2]k+1/2 = (

−1
p
) f , i.e., f ∣ [ς−1

p ]k+1/2 = (
−1
p
) f ∣ [ςp]k+1/2 .

Since the adjoint of ςp is ς−1
p , we get ⟨S1,p( f ), g⟩ = (−1

p )⟨ f , S1,p(g)⟩.
hus, ⟨Sp( f ), g⟩ = (−1

p )⟨ f , Sp(g)⟩. So

⟨W̃p2( f ), g⟩ =
εp
√

p
(
−M1

p
)⟨Sp( f ), g⟩

=
εp
√

p
(
M1

p
)⟨ f , Sp(g)⟩ = ⟨ f ,

εp
√

p
(
M1

p
)Sp(g)⟩ = ⟨ f , W̃p2(g)⟩ .

Hence, we are done. ∎
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Next we want to show that Q̃p = q(U0) is self-adjoint. We use the relations
U1T1U1 = pT−1 and T1U1 = p U0 (Proposition 3.10(iii)). hus, we have

⟨q(U0) f , g⟩ =
1
p
⟨q(T1)q(U1) f , g⟩ .

Since by the above theorem q(U1) is self-adjoint, we get that

⟨ f , q(U0)g⟩ =
1
p
⟨ f , p q(U0)g⟩ =

1
p
⟨ f , q(T1)q(U1)g⟩

=
1
p
⟨ f ,

1
p

q(U1)
2
q(T1)q(U1)g⟩ =

1
p
⟨q(U1) f ,

1
p

q(U1)q(T1)q(U1)g⟩

=
1
p
⟨q(U1) f , q(T−1)g⟩ .

Since q(U1) is surjective, it follows that q(U0) is self-adjoint if and only if the adjoint
of q(T−1) is q(T1). We now show that the adjoint of q(T−1) is q(T1).
Consider elements ξ = ((

1 0
0 p2), p

1/2) and η = ((p2 0
0 1

), p−1/2) in G. We can choose

βs such that Γ0(4M)(
1 0
0 p2)Γ0(4M) = ⋃ Γ0(4M)βs = ⋃ βsΓ0(4M). So by [14, Propo-

sitions 1.1, 1.2], we have ∆0(4M)ξ∆0(4M) = ⋃∆0(4M)ξs = ⋃ ξs∆0(4M), where
P(ξs) = βs .

Since ∆0(4M)η∆0(4M) = ∆0(4M)ξ−1∆0(4M)((
p2 0
0 p2

), 1) , it follows that

∆0(4M)η∆0(4M) = ⋃∆0(4M)ξ−1
s ((

p2 0
0 p2

), 1) .
hus, for f , g ∈ Sk+1/2(Γ0(4M)), we have

⟨ f ∣ [∆0(4M)ξ∆0(4M)]k+1/2 , g⟩ = ⟨p(2k−3)/2
∑
s
f ∣ [ξs]k+1/2 , g⟩

= ⟨ f , p
(2k−3)/2

∑
s

g∣ [ξ−1
s ]k+1/2⟩

= ⟨ f , g∣ [∆0(4M)η∆0(4M)]k+1/2⟩,

(4.1)

as elements of the type (aI, 1) belong to the center of G and act trivially via the slash
operator.

Using the triangular decomposition we check that

Γ0(4M)(
p2 0
0 1) Γ0(4M) =

p2−1
⋃
s=0

Γ0(4M)(
p2 0
0 1)(

1 0
−4Ms 1) ,

and so

∆0(4M)η∆0(4M) =
p2−1
⋃
s=0

∆0(4M) η ((
1 0

−4Ms 1) , (−4Msz + 1)1/2)

=
p2−1
⋃
s=0

∆0(4M)((
p2 0

−4Ms 1) , (−4(M/p)sz + p
−1)1/2) .

hus it follows from parts (i) and (iv) of Proposition 4.2 that

g∣ [∆0(4M)η∆0(4M)]k+1/2 = (
−1
p
)

k
p
(2k−3)/2

q(T−1)(g),
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and f ∣ [∆0(4M)ξ∆0(4M)]k+1/2 = (−1
p )

k
p(2k−3)/2q(T1)( f ). hus by equation (4.1),

we obtain the following proposition.

Proposition 4.7 he operator q(T−1) is adjoint of q(T1), and consequently Q̃p is

self-adjoint with respect to the Petersson inner product.

4.3 Translating Elements of 2-adic Hecke Algebra and Kohnen’s Plus Space

FollowingNiwa andKohnen’swork, Loke and Savin gave an interpretation ofKohnen’s
plus space at level 4 in terms of certain elements in the 2-adicHecke algebra described
previously. In this subsection, we describeKohnen’s plus space at level 4M for M odd
in a similar way.

Let χ be the trivial character modulo 4; thus, χ0 = (−1
⋅ )

k
. Let γ be a character

of M2 such that γ((−I, 1)) = −i2k+1 and let φ8 ∶= γ((w(1), 1)). hen, for any k0 =
(a bc d) ∈ K2

0(4) we have є̃2(k0)χ0,2(d) = γ((k0 , 1)).

Proposition 4.8 (Loke–Savin [8]) ForT1,U1 ∈H(K2
0(4), γ) and f ∈ Sk+1/2(Γ0(4), χ),

the following hold.

(i) q(T1)( f )(z) = 2(3−2k)/2U4( f )(z);

(ii) q(U1)( f )(z) = ( 2
2k+1)W4( f )(z), where the operatorW4 is given byW4( f )(z) =

(−2iz)−k−1/2 f (−1/4z) and ( 2
2k+1) is the usual Kronecker symbol.

Niwa [10] considered operator R = W4U4 on Sk+1/2(Γ0(4), χ), proved that it is
self-adjoint and that (R − α1)(R − α2) = 0, where α1 = ( 2

2k+1)2k , α2 = −
α1
2 . Kohnen

[5] deûned his plus space S+k+1/2(Γ0(4)) at level 4 to be the α1-eigenspace of R in
Sk+1/2(Γ0(4)). It follows from the above proposition that S+k+1/2(Γ0(4)) is the
2-eigenspace of q(U1)q(T1)/

√
2 and hence that of q(U2)/

√
2.

In the case of level 4M with M odd and χ a trivial character modulo 4M, Kohnen
[6] deûnes a classical operator Q on Sk+1/2(Γ0(4M)) in order to obtain his plus space.
he operator Q is deûned by

Q ∶= [∆0(4M , χ)ρ∆0(4M , χ)], where ρ = ((
4 1
0 4) , e

πi/4) .

By [6, Proposition 1], Q is self-adjoint and satisûes (Q − α)(Q − β) = 0, where
α = (−1)[(k+1)/2]2

√
2, β = −α/2, and the plus space S+k+1/2(Γ0(4M)) is precisely the

α-eigenspace of Q.

Proposition 4.9 Let f ∈ Sk+1/2(Γ0(4M)) with M odd. hen we have

Q( f ) = (
2

2k + 1
)q(U2)( f ) = (

2
2k + 1

)q(U1)q(T1)( f ).

Consequently, S+k+1/2(Γ0(4M)) is the 2-eigenspace of q(U1)q(T1)/
√

2.
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Proof Following [6, Proposition 1], we can write

Q( f ) =
4

∑
s=0
f ∣ [ρ]k+1/2∣ [(

1 0
4Ms 1) , (4Msz + 1)1/2]

k+1/2

= e−(2k+1)πi/4
4

∑
s=0
f ∣ [(

4 + 4Ms 1
16Ms 4) , (4Msz + 1)1/2]

k+1/2

and its adjoint

Q̃( f ) =
4

∑
s=0
f ∣ [(

4 −1
0 4 ) , e−πi/4]

k+1/2
∣ [(

1 0
4Ms 1) , (4Msz + 1)1/2]

k+1/2

= e(2k+1)πi/4
4

∑
s=0
f ∣ [(

4 − 4Ms −1
16Ms 4 ) , (4Msz + 1)1/2]

k+1/2
.

Since Q is self-adjoint, Q = Q̃.
We now compute q(U2)( f ). Let g̃∞ ∈ S̃L2(R) be such that g̃∞ i = z. Using

K2
0(4)w(2−2)K2

0(4) = ⋃s∈Z/4Z y(4M(1 − s))w(2−2)K2
0(4) (from [8, Proposition 3]),

we get

U2(Φ f )(g̃∞) = φ8

3

∑
s=0

Φ f (g̃∞(y(4M(1 − s)), 1)(w(2−2), 1)).

Take

As =
⎛

⎝

1 − (−1
M )Ms −(−1

M )/4
4Ms 1

⎞

⎠
∈ SL2(Q),

so sQ(As) = (As , 1). he∞-component of

sQ(As) g̃∞ (y(4M(1 − s)), 1)(w(2−2), 1)

is (As , 1)g̃∞, for aprime q such that (q, 2M) = 1 the q-component is (As , 1) ∈ SL2(Zq)

×{1}, for an odd prime p such that pb∥M, the p-component is (As , 1) ∈ K
p
0 (p

b)×{1}
while the 2-component is

(As , 1)(y(4M(1 − s)), 1)(w(2−2), 1)) =
⎛

⎝

⎛

⎝

(−1
M )

1−M( −1
M )

4
−4 M

⎞

⎠
, 1
⎞

⎠
.

SinceM is odd, it is clear that 1−M( −1
M )

4 ∈ Z2 and so the 2-component is in K2
0(4)×{1}.

he p-component acts trivially, while the 2-component acts by (γ̃2(M))−1

(−1,M)2 χ0,2(M) =∶ ωM . Hence,

q(U2)( f )(z) = φ8 ωM

3

∑
s=0
f (Asz)J(As , z)−2k−1

= φ8 ωM

3

∑
s=0
f (

(4 − 4M(−1
M )sz) − (−1

M )

16Msz + 4
)(4Msz + 1)−k−1/2 .

We note that e(2k+1)πi/4 = ( 2
2k+1)

1+i2k+1
√

2
= ( 2

2k+1)φ8. hus, when M ≡ 1 (mod 4),

since ωM = 1, comparing the expression of Q̃ and q(U2), we see that Q̃( f ) =

( 2
2k+1)q(U2)( f ). In the case M ≡ 3 (mod 4), we get that ωM = −i(−1)k ,
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so ( 2
2k+1)φ8ωM = e−(2k+1)πi/4, and consequently Q( f ) = ( 2

2k+1)q(U2)( f ). Since
by heorem 3.5, U2 = U1 ∗ T1, we get that Q( f ) = ( 2

2k+1)q(U1)q(T1)( f ). Hence, we
are done.

he last statement follows, since (−1)[(k+1)/2] = ( 2
2k+1) . ∎

As before, we can translate T1 , U1 , U0 ∈ H(K2
0(4), γ) to classical operators on

Sk+1/2(Γ0(4M)) .

Proposition 4.10 For f ∈ Sk+1/2(Γ0(4M)),

(i) q(T1)( f )(z) = 2(3−2k)/2U4( f )(z) = ∑
3
s=0 f ∣ [(

1 −s
0 4 ), 2

1/2]k+1/2(z).

(ii) q(U1)( f )(z) = φ8(
−1
M )

k+3/2
f ∣ [W , ϕW(z)]k+1/2(z), where W = ( 4n m

4M 4 ) with

m, n ∈ Z such that 4n −mM = 1 and ϕW(z) = (2Mz + 2)1/2.

(iii) q(U0)( f )(z)=φ8(
−1
M )

k+3/2
∑

3
s=0 f ∣ [As , ϕAs(z)]k+1/2(z),where As = (n −ns+m

M −Ms+4)

with m, n ∈ Z such that 4n −mM = 1 and ϕAs(z) = (Mz + 4 −Ms)1/2.

Deûne Q̃2 ∶= q(U0)/
√

2. It follows from the relation U0 = T1U1 that Q̃2 =

q(T1)q(U1)/
√

2. One can also observe it directly from the above proposition. Let
W̃4 ∶= q(U1). hus, W̃4 is an involution. Let Q̃′

2 be the conjugate of Q̃2 by W̃4. hus,
Q̃2 = 21−kU4W̃4 and Q̃′

2 = 21−kW̃4U4. he Kohnen’s plus space at level 4M is the
2-eigenspace of Q̃′

2. Note that Q̃2 and Q̃′
2 are self-adjointwith respect to the Petersson

inner product. he operators Q̃′
p and Q̃p are p-adic analogues of Kohnen’s operator

Q̃′
2 and its conjugate Q̃2.

Remark 4.11 We note that q(U1) in the above proposition can also be given by the
following expression:

q(U1)( f )(z) = φ8(
2
M

)(
−1
M

)
k+3/2

f ∣ [W , ϕW(z)]k+1/2(z),

whereW = ( 4n m
4M 8 ) with m, n ∈ Z such that 8n −mM = 1 and ϕW(z) = (2Mz + 4)1/2.

We shall use this expression of q(U1) in [3].

5 Eigenvalues of Up

For every positive integer n and amodular form F, let Fn(z) ∶= V(n)F(z) = F(nz).
Let M be a positive integer such that p ∤ M. If F ∈ S2k(Γ0(M)), then by well-known
action of Tp and Up , we have

(5.1) Up(F)(z) = Tp(F)(z) − p
2k−1

Fp(z).

Assume that F ∈ S2k(Γ0(M)) is a primitive Hecke eigenform and ap is the p-th
Fourier coeõcient of F. hen Tp(F) = apF. It is known that ap is real and by the
Ramanujan conjecture proved by Deligne we have that ∣ap ∣ ≤ 2p(2k−1)/2.

Lemma 5.1 (i) If (p, n) = 1, then Up(Fn) = apFn − p2k+1Fnp .

(ii) If p ∣ n, then Up(Fn) = Fn/p .
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Proof It iswell known that if (p, n) = 1 then V(n)Tp(F) = TpV(n)F. Hence, using
(5.1) and that F is a primitiveHecke eigenform, we get that

Up(Fn) = Tp(Fn) − p
2k−1

Fnp = V(n)Tp(F) − p
2k−1

Fnp

= V(n)apF − p
2k−1

Fnp = apFn − p
2k−1

Fnp .

For (i) write n = mp. hen

Up(Fn)(z) =
1
p

p−1

∑
k=0
Fmp(

z + k

p
) =

1
p

p−1

∑
k=0
Fm(z + k) = Fn/p(z). ∎

hus, Up stabilizes the two dimensional subspace spanned by Fn and Fnp for
(p, n) = 1. We will compute the eigenvalues of Up on this space. If G = λFn + βFnp is
an eigenfunction of Up then it follows from part (ii) of the above lemma that λ /= 0.
Hence, we can assume that λ = 1. We have

Up(Fn + βFnp) = (ap + β)Fn − p
2k−1

Fnp .

It is clear from above that β cannot be zero and that G is an eigenfunction if and only
if ap +β = −p2k−1/β with eigenvalue ap +β. Hence, β2 + apβ+ p2k−1 = 0, andwe have

β =
−ap ±

√
a2

p − 4p2k−1

2
.

he eigenvalues of Up on the subspace ⟨Fn , Fnp⟩ are

ap + β =
ap ±

√
a2

p − 4p2k−1

2
.

Proposition 5.2 If an eigenvalue λ of (Up)
2 on the two dimensional subspace spanned

by Fn and Fnp is real, then λ = ±p2k−1.

Proof Using the Ramanujan conjecture, we can see that the eigenvalues of Up are
real or purely imaginary if and only if ap = ±2pk−1/2 or ap = 0. In those cases, the
eigenvalue of (Up)

2 are precisely ±p2k−1. ∎

6 The Minus Space of Half-integral Weight Forms

Let M be odd and square-free. In this section, we use the operators and relations
that we obtained in Section 4 to deûne the minus space S−k+1/2(Γ0(4M)) of weight
k + 1/2 and level 4M. We show that there is an Hecke algebra isomorphism between
S−k+1/2(Γ0(4M)) and Snew

2k (Γ0(2M)), andwe give a common eigenspace characteriza-
tion of S−k+1/2(Γ0(4M)). It follows that this minus space is identical to the newspace
in [9].
For the sake of clarity, we start by deûning the minus space at level 4 and at level

4p for p an odd prime. A�er that we treat the general case of level 4M.
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6.1 Minus Space for Γ0(4)

We recall the following theorem of Niwa, which was obtained by proving equality of
traces ofHecke operators.

heorem 6.1 (Niwa [10]) Let M be odd and square-free. here exists an isomorphism

of vector spaces ψ ∶ Sk+1/2(Γ0(4M))→ S2k(Γ0(2M)) satisfying

Tp(ψ( f )) = ψ(Tp2( f )) for all primes p coprime to 2M .

Moreover, if f ∈ Sk+1/2(Γ0(4)), then we further have U2(ψ( f )) = ψ(U4( f )).

We also recall the Shimura li� [14]: For t a positive square-free integer, there is a
linear map Sht ∶ Sk+1/2(Γ0(4M))→ S2k(Γ0(2M)) given by

Sht (
∞

∑
n=1
anq

n) =
∞

∑
n=1

( ∑
d ∣n

(d ,2M)=1

(
−1
d

)
k
(
t

d
)dk−1

a(t
n2

d2 ))q
n .

We note the following observations [11]:

(a) Sht need not be injective, but if Sht( f ) = 0 for all square-free t, then f = 0.
(b) Sht commutes with all Hecke operators, i.e., Tp(Sht( f )) = Sht(Tp2( f )) for all

primes p coprime to 2M andUp(Sht( f )) = Sht(Up2( f )) for all primes p divid-
ing 2M.

We denote S+k+1/2(Γ0(4)) simply by S+(4). We note the following theoremofKohnen.

heorem 6.2 (Kohnen [5]) (i) dim(S+(4)) = dim(S2k(Γ0(1))).
(ii) S+(4) has a basis of eigenforms for all the operators Tp2 , p odd.

(iii) If f is such an eigenform, then ψ( f ) is an old form and ψ( f ) = λF + βF2, where

F ∈ S2k(Γ0(1)) is a primitive eigenform determined by the eigenvalues of f .

DeûneA+k+1/2(Γ0(4)) ∶= W̃4S
+
k+1/2(Γ0(4)),whichwe shall simplydenote byA+(4).

We know that S+(4) is the 2-eigenspace of Q̃′
2, hence A

+(4) is the 2-eigenspace of
Q̃2. Since W̃4 is invertible, we can use the above theorem of Kohnen to get that
dim(A+(4)) = dim(S2k(Γ0(1))) and the following corollary.

Corollary 6.3

(i) A+(4) has a basis of eigenforms under Tp2 for all p odd.

(ii) ψ maps A+(4) into the space of old forms in S2k(Γ0(2)).

Proof Let f ∈ S+(4) be an eigenform under Tp2 for all p odd satisfying Tp2( f ) =

λp f . Since W̃4 commutes with all such Tp2 , we get that g = W̃4 f ∈ A+(4) is also
an eigenform under all Tp2 with eigenvalues λp . By heorem 6.1, ψ( f ) and ψ(g) are
eigenforms in S2k(Γ0(2)) under all Tp with the same set of eigenvalues λp . Since
ψ( f ) is an old form, it follows from Atkin–Lehner [1] that ψ(g) is also an old form
(belonging to the same two dimensional subspace spanned by F and F2). ∎
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We note the following key proposition, showing that the sum S+(4) + A+(4) is a
direct sum. We see analogues of this result in Subsections 6.2 and 6.3.

Proposition 6.4 S+(4) ∩ A+(4) = {0}.

Proof Suppose there is a nonzero f ∈ S+(4) ∩ A+(4). We can assume that f is
an eigenform under Tp2 for all p odd (since Tp2 stabilizes the intersection S+(4) ∩
A+(4)). Since A+(4) and S+(4) are respectively the 2-eigenspaces of Q̃2 and Q̃′

2, we
have Q̃2( f ) = 2 f = Q̃′

2( f ). Using the relations Q̃2 = 21−kU4W̃4, Q̃′
2 = 21−kW̃4U4 and

W̃2
4 = 1, we get that U 2

4 = 22k−2Q̃2Q̃
′
2 and thus

(U4)
2( f ) = 22k

f .

Applying ψ to the above equation, we get that (U2)
2(ψ( f )) = 22kψ( f ). Now ψ( f )

belongs to the subspace spanned by F and F2 for some primitive form F ∈ S2k(Γ0(1)),
and by Proposition 5.2, the eigenvalues of (U2)

2 on this subspace are either non-real
or ±22k−1. his is a contradiction. ∎

Deûne S−k+1/2(Γ0(4)) to be the orthogonal complement of S+(4)⊕A+(4). Since Q̃2

and Q̃′
2 areHermitian it follows that S−k+1/2(Γ0(4)) is the common eigenspacewith the

eigenvalue −1 of the operators Q̃2 and Q̃′
2. We write S−k+1/2(Γ0(4)) simply by S−(4).

So we have

Sk+1/2(Γ0(4)) = S
+(4)⊕ A+(4)⊕ S

−(4).

heorem 6.5 S−(4) has a basis of eigenforms for all the operators Tp2 , p odd; these

eigenforms are also eigenfunctions under U4. If two eigenforms in S−(4) share the same

eigenvalues for all Tp2 , then they are scalar multiples of each other. ψ induces a Hecke

algebra isomorphism:

S
−(4) ≅ S

new
2k (Γ0(2)).

Proof Since ψ maps S+(4) ⊕ A+(4) into Sold
2k (Γ0(2)) and dim(S+(4) ⊕ A+(4)) =

2dim(S2k(Γ0(1))) = dim(Sold
2k (Γ0(2))), we get that ψ maps this direct sum onto

Sold
2k (Γ0(2)).
Now Tp2 commutes with Q̃2 and Q̃′

2 for every odd prime p, so we get that Tp2

stabilizes S−(4), hence it has a basis of eigenforms for all Tp2 with p odd.
If f is such an eigenform, then F ∶= ψ( f ) is an eigenform in S2k(Γ0(2)) under

all Tp , p odd. By Atkin-Lehner [1], F is either an old form or a newform. Since ψ is
injective, it follows that F must be a newform. So ψ maps the space S−(4) into the
space Snew

2k (Γ0(2)). By equality of dimensions, we get that ψ is an isomorphism of
S−(4) onto Snew

2k (Γ0(2)). Consequently, by [1] an eigenform in S−(4) under all Tp2

for p odd is uniquely determined up to scalar multiplication.
Further for such an eigenform f , by [1, heorem 3], U2(F) = −2k−1λ(2)F, where

λ(2) = ±1. hus, ψ(U4( f )) = U2(F) ∈ Snew
2k (Γ0(2)), so U4( f ) belongs to S−(4).

Since U4 commutes with Tp2 for all p odd, we get that U4( f ) is an eigenform under
all Tp2 with the same eigenvalues as f and hence is a scalar multiple of f . ∎
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6.2 Minus Space for Γ0(4p) for p an Odd Prime

In this subsection, we need the involution W̃p2 and the operators Up2 , Q̃p and Q̃′
p =

W̃p2 Q̃pW̃p2 on Sk+1/2(Γ0(4p)) that we deûned in Section 4.
Consider the subspace V(1) of S2k(Γ0(2p)) coming from the old forms at level 1,

that is,

V(1) = S2k(Γ0(1))⊕ V(2)S2k(Γ0(1))⊕ V(p)S2k(Γ0(1))⊕ V(2p)S2k(Γ0(1)).

We consider the eigenvalues of (Up)
2 on V(1).

Lemma 6.6 he operator Up stabilizes V(1). If an eigenvalue λ of (Up)
2 on this

space is real, then λ = ±p2k−1.

Proof For a primitive Hecke eigenform F in S2k(Γ0(1)), consider the four dimen-
sional subspace spanned by F , F2 , Fp , F2p . hen V(1) is a direct sum of such four
dimensional subspaces. By Lemma 5.1, Up preserves the two dimensional subspace
spanned by F and Fp and the two dimensional subspace spanned by F2 and F2p . It
follows by Proposition 5.2 that the eigenvalues of (Up)

2 on these two dimensional
subspaces are either non-real or ±p2k−1. ∎

Let R ∶= S+k+1/2(Γ0(4))⊕ A
+
k+1/2(Γ0(4)). hen we have the following proposition.

Proposition 6.7 R ∩ W̃p2R = {0}.

Proof Let f ≠ 0belong to the intersection. We can again assume that f is an eigenform
under Tq2 for all primes q coprime to 2p. Since, by Corollary 4.3(iv) Sk+1/2(Γ0(4))
is contained in the p-eigenspace of Q̃p and so W̃p2Sk+1/2(Γ0(4)) is contained in the

p-eigenspace of Q̃′
p , we have Q̃p( f ) = p f = Q̃′

p( f ). Using Q̃p = (−1
p )

k
p1−kUp2W̃p2 ,

we get that (Up2)
2 = p2k−2Q̃pQ̃

′
p , and thus

(Up2)
2( f ) = p

2k
f .

Since f ≠ 0, there exists a square-free integer t such that the Shimura li� Sht( f ) ≠ 0.
Applying this Sht to the above equation, we get that (Up)

2(Sht( f )) = p2kSht( f ).
Since Sht commutes with all the Hecke operators we get that Sht( f ) ∈ V(1). But by
Lemma 6.6, the eigenvalues of (Up)

2 on V(1) are either non-real or ±p2k−1 leading
to a contradiction. ∎

Corollary 6.8 Niwa’s map ψ maps R ⊕ W̃p2R isomorphically onto V(1).

Proof As before (see Corollary 6.3(ii)) ψ maps R⊕ W̃p2R into V(1). It follows from
the equality of dimensions that themap is onto. ∎

Next we consider the following subspace of S2k(Γ0(2p)) coming from the old
forms at level 2:

V(2) = S
new
2k (Γ0(2))⊕ V(p)Snew

2k (Γ0(2)).
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his space is a direct sum of two dimensional subspaces spanned by F and Fp , where
F is a primitiveHecke eigenform in Snew

2k (Γ0(2)). Using Proposition 5.2, we have the
following lemma.

Lemma 6.9 If an eigenvalue λ of (Up)
2 on V(2) is real, then λ = ±p2k−1.

Since (byheorem 6.5) ψ maps S−k+1/2(Γ0(4)) isomorphically onto Snew
2k (Γ0(2)), it

follows thatψ maps W̃p2S
−
k+1/2(Γ0(4)) into the spaceV(2). he proof of the following

is identical to that of Proposition 6.7.

Proposition 6.10 S−k+1/2(Γ0(4)) ∩ W̃p2S
−
k+1/2(Γ0(4)) = {0}.

Corollary 6.11 ψ maps S−k+1/2(Γ0(4))⊕W̃p2S
−
k+1/2(Γ0(4)) isomorphically ontoV(2).

Finally, we consider the following subspace of S2k(Γ0(2p)) coming from the old
forms at level p:

V(p) = S
new
2k (Γ0(p))⊕ V(2)Snew

2k (Γ0(p)).
his space is a direct sum of two dimensional subspaces spanned by F and F2, where
F is a primitiveHecke eigenform in Snew

2k (Γ0(p)). We have the following lemma.

Lemma 6.12 If an eigenvalue λ of (U2)
2 on V(p) is real, then λ = ±22k−1.

Let S
+,new
k+1/2 (Γ0(4p)) be the new space inside the plus space in Sk+1/2(Γ0(4p)).

Kohnen [6,heorem 2] proved thatψmaps S+,newk+1/2 (Γ0(4p)) intoV(p) and the dimen-
sion of S+,newk+1/2 (Γ0(4p)) equals the dimension of Snew

2k (Γ0(p)). hen as before, ψ maps
W̃4S

+,new
k+1/2 (Γ0(4)) into V(p), and we have the following proposition and corollary.

Proposition 6.13 S
+,new
k+1/2 (Γ0(4p)) ∩ W̃4S

+,new
k+1/2 (Γ0(4p)) = {0}.

Corollary 6.14 ψ maps S
+,new
k+1/2 (Γ0(4p)) ⊕ W̃4S

+,new
k+1/2 (Γ0(4p)) isomorphically onto

V(p).

We deûne the following subspace of Sk+1/2(Γ0(4p)),

E ∶= R ⊕ W̃p2R ⊕ S
−
k+1/2(Γ0(4))⊕ W̃p2S

−
k+1/2(Γ0(4))

⊕ S
+,new
k+1/2 (Γ0(4p))⊕ W̃4S

+,new
k+1/2 (Γ0(4p)).

ByCorollary 6.8, 6.11, and 6.14,we get thatψmaps the space E isomorphically onto the
old space Sold

2k (Γ0(2p)). We deûne theminus space to be the orthogonal complement
of E under the Petersson inner product; that is,

S
−
k+1/2(Γ0(4p)) ∶= E

⊥ .

heorem 6.15 S−k+1/2(Γ0(4p)) has a basis of eigenforms for all the operators Tq2 ,

where q is a prime coprime to 2p, uniquely determined up to scalar multiplication. ψ

maps the space S−k+1/2(Γ0(4p)) isomorphically onto the space Snew
2k (Γ0(2p)).
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Proof Since the operatorsTq2 with (q, 2p) = 1 stabilize the space E and since they are
self-adjoint with respect to the Petersson inner product, it follows that they stabilize
the space S−k+1/2(Γ0(4p)); hence, S

−
k+1/2(Γ0(4p)) has a basis of eigenforms for all such

operators Tq2 . If f is such an eigenform, then ψ( f ) ∈ S2k(Γ0(2p)) is also an eigen-
form for all the operators Tq , (q, 2p) = 1, and thus (by [1]) ψ( f ) is either an old form
or a newform. Since ψ is injective andmaps E onto Sold

2k (Γ0(2p)), it follows that ψ( f )
is a newform. hus, ψ maps the space S−k+1/2(Γ0(4p)) into the space Snew

2k (Γ0(2p)).
By equality of dimensions, we get that ψ maps the space S−k+1/2(Γ0(4p)) isomorphi-
cally onto Snew

2k (Γ0(2p)). Consequently, an eigenform in S−k+1/2(Γ0(4p)) is uniquely
determined up to multiplication by a scalar. ∎

Corollary 6.16 Let f ∈ S−k+1/2(Γ0(4p)) be a Hecke eigenform for all the operators

Tq2 , q prime, and (q, 2p) = 1. hen W̃p2 f = β(p) f , W̃4 f = β(2) f , where β(p) = ±1,
β(2) = ±1.

Proof Let g = W̃p2 f . Since W̃p2 commutes with all the operators Tq2 for (q, 2p) = 1,
we get that g is an eigenform for all the operators Tq2 with the same eigenvalues as f .
Since ψ( f ) is a newform, it follows by [1] that ψ(g) is a scalar multiple of ψ( f ). Since
ψ is an isomorphismwe get that g is a scalar multiple of f . Since W̃p2 is an involution,
we get that the scalar is ±1. he same proof applies to W̃4. ∎

Let f ∈ S−k+1/2(Γ0(4p)) be a Hecke eigenform for all the operators Tq2 as above. It
follows that F ∶= ψ( f ) is aHecke eigenform in Snew

2k (Γ0(2p)) for all the operators Tq ,
(q, 2p) = 1. Since the Shimura li� Sht( f ) is also an eigenform for all the operators Tq
with the same eigenvalues as F, it follows from [1] that Sht( f ) is a scalar multiple of
F (which could be zero). Also, Up(F) = −pk−1λ(p)F, where λ(p) = ±1 and U2(F) =

−2k−1λ(2)F, where λ(2) = ±1.

Proposition 6.17 Let f ∈ S−k+1/2(Γ0(4p)) be a Hecke eigenform for all the operators

Tq2 , q prime and (q, 2p) = 1. hen

Up2( f ) = −p
k−1

λ(p) f , U4( f ) = −2k−1
λ(2) f ,

where λ(p) = ±1 and λ(2) = ±1 are deûned as above.

Proof Let g = Up2 f . hen Sht(g) = UpSht( f ) = −pk−1λ(p)Sht( f ) for every posi-
tive square-free integer t. It follows that Sht(g−pk−1λ(p) f ) = 0 for all such t implying
g − pk−1λ(p) f = 0, which is what we need. For the prime 2, the proof is the same. ∎

Proposition 6.18 Let f ∈ S−k+1/2(Γ0(4p)). hen Q̃p( f ) = − f = Q̃′
p( f ) and Q̃2( f ) =

− f = Q̃′
2( f ).

Proof Let f ∈ S−k+1/2(Γ0(4p)) be a Hecke eigenform for all the operators Tq2 ,

(q, 2p) = 1. Since Q̃p = (−1
p )

k
p1−kUp2W̃p2 and Q̃2 = 21−kU4W̃4, it follows from

Corollary 6.16 and Proposition 6.17 that f is an eigenform for the operators Q̃p , Q̃′
p ,

Q̃2, and Q̃′
2 with eigenvalues ±1. However, the eigenvalues of Q̃p , Q̃′

p are p and −1,
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and the eigenvalues of Q̃2 and Q̃′
2 are 2 and −1, hence the eigenvalues have to be −1.

Since S−k+1/2(Γ0(4p)) has a basis of such eigenforms, we get the result. ∎

heorem 6.19 Let f ∈ Sk+1/2(Γ0(4p)). hen f ∈ S−k+1/2(Γ0(4p)) if and only if

Q̃p( f ) = − f = Q̃′
p( f ) and Q̃2( f ) = − f = Q̃′

2( f ).

Proof If f ∈ S−k+1/2(Γ0(4p)), then by Proposition 6.18 the conditions hold. Now
assume that f ∈ Sk+1/2(Γ0(4p)) is in the intersection of −1-eigenspaces of Q̃p , Q̃′

p , Q̃2,
and Q̃′

2. For every g ∈ Sk+1/2(Γ0(4)), we have Q̃p(g) = pg. Since Q̃p is self-adjoint,

−⟨ f , g⟩ = ⟨Q̃p f , g⟩ = ⟨ f , Q̃p g⟩ = p⟨ f , g⟩,

implying ⟨ f , g⟩ = 0. hus, f is orthogonal to R ⊕ S−k+1/2(Γ0(4)). For every g ∈

W̃p2Sk+1/2(Γ0(4)),we have Q̃′
p(g) = pg, and the same argument shows that ⟨ f , g⟩ = 0

implying f is orthogonal to W̃p2(R⊕S−k+1/2(Γ0(4))). SinceKohnen’s plus space is the
2-eigenspace of Q̃′

2, for g ∈ S
+,new
k+1/2 (Γ0(4p)) we have Q̃′

2(g) = 2g; consequently, for
g ∈ W̃4S

+,new
k+1/2 (Γ0(4p)), we have Q̃2(g) = 2g. Hence, ⟨ f , g⟩ = 0 for such g; that is, f is

orthogonal to S
+,new
k+1/2 (Γ0(4p))⊕W̃4S

+,new
k+1/2 (Γ0(4p)). It follows that f ∈ S−k+1/2(Γ0(4p)).

∎

6.3 Minus Space for Γ0(4M) for M Odd and Square-free

Let M ≠ 1 be an odd and square-free natural number. WriteM = p1p2 ⋅ ⋅ ⋅ pk . For each
i = 1, . . . , k let M i = M/p i . Since Sk+1/2(Γ0(4M i)) is contained in the p i-eigenspace
of Q̃p i (Corollary 4.3(4)), following the proof of Proposition 6.7 we obtain the fol-
lowing proposition.

Proposition 6.20 Sk+1/2(Γ0(4M i)) ∩ W̃p2i
Sk+1/2(Γ0(4M i)) = {0}.

Corollary 6.21 he Niwa map ψ ∶ Sk+1/2(Γ0(4M)) → S2k(Γ0(2M)) maps Sk+1/2

(Γ0(4M i)) ⊕ W̃p2i
Sk+1/2(Γ0(4M i)) isomorphically onto S2k(Γ0(2M i)) ⊕ V(p i)S2k

(Γ0(2M i)).

Let S
+,new
k+1/2 (Γ0(4M)) be the new space inside the Kohnen plus subspace of

Sk+1/2(Γ0(4M)). hen similarly we have the following proposition.

Proposition 6.22 S
+,new
k+1/2 (Γ0(4M)) ∩ W̃4S

+,new
k+1/2 (Γ0(4M)) = {0}.

Corollary 6.23 ψ maps S
+,new
k+1/2 (Γ0(4M))⊕W̃4S

+,new
k+1/2 (Γ0(4M)) isomorphically onto

Snew
2k (Γ0(M))⊕ V(2)Snew

2k (Γ0(M)).

We let B i = Sk+1/2(Γ0(4M i))⊕ W̃p2i
Sk+1/2(Γ0(4M i)), i = 1, . . . , k. Deûne

E ∶=
k

∑
i=1
B i ⊕ S

+,new
k+1/2 (Γ0(4M))⊕ W̃4S

+,new
k+1/2 (Γ0(4M)).
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Proposition 6.24 Under ψ, the space E maps isomorphically onto the old space

Sold
2k (Γ0(2M)).

Proof his follows from Corollaries 6.21 and 6.23 and from the decomposition

Sold
2k (Γ0(2M)) = (

k

∑
i=1

S2k(Γ0(2M i))⊕ V(p i)S2k(Γ0(2M i)))⊕

(Snew
2k (Γ0(M))⊕ V(2)Snew

2k (Γ0(M))) . ∎

We now deûne theminus space to be the orthogonal complement of E, under the
Petersson inner product, that is,

S
−
k+1/2(Γ0(4M)) ∶= E⊥ .

Let f ∈ S−k+1/2(Γ0(4M)) be a Hecke eigenform for all the operators Tq2 where q is an
odd prime satisfying (q,M) = 1. Let ψ( f ) = F. he proofs of the following results are
identical to the proofs in the previous subsections.

Proposition 6.25 F is up to a scalar a primitive Hecke eigenform in Snew
2k (Γ0(2M)).

heorem 6.26 he space S−k+1/2(Γ0(4M)) has a basis of eigenforms for all the operators

Tq2 where q is an odd prime satisfying (q,M) = 1. Under ψ, the space S−k+1/2(Γ0(4M))

maps isomorphically onto the space Snew
2k (Γ0(2M)). If two forms in S−k+1/2(Γ0(4M))

have the same eigenvalues for all the operators Tq2 , (q, 2M) = 1, then they are same up

to a scalar factor.

In particular, the minus space S−k+1/2(Γ0(4M)) has strong multiplicity one property

in the full space; that is, if f1 and f2 are Hecke eigenforms in Sk+1/2(Γ0(4M)) with the

same eigenvalues for all Tq2 , (q, 2M) = 1 and if f1 is a nonzero element of the minus

space S−k+1/2(Γ0(4M)), then f2 is a scalar multiple of f1.

Remark 6.27 Our results in heorems 6.5, 6.15, and 6.26 give an another proof
of [9, heorem 5]. We note that in [9] the old space is deûned using the opera-
tors Up2 for p ∣ 2M, while our deûnition uses Atkin–Lehner type operators W̃p2 .
he operators Up2 , W̃p2 and Q̃p come from the local Hecke algebra element corre-
sponding to the double cosets of (h(p), 1), (w(p−1), 1) and (w(1), 1), respectively,
and our proofs essentially depend on relations among these operators that we de-
rive from the local Hecke algebra. Since S+(4) is the 2-eigenspace of Q̃′

2, we indeed
have S+(4) = Q̃′

2S
+(4) = W̃4U4S

+(4), which implies equality of spaces, U4S
+(4) =

W̃4S
+(4) = A+(4). hus, U4W̃4A

+(4) = A+(4). However, U4A
+(4) need not equal

S+(4) as noted in Example 6.33 in the next subsection. In the case of odd primes
p i dividing M, the space Sk+1/2(Γ0(4M i)) is contained in the p i-eigenspace of Q̃p i ,
which in particular implies that Up2i

W̃p2i
S−k+1/2(Γ0(4M i)) = S−k+1/2(Γ0(4M i)), but as

before we do not expect the spaces Up2i
S−k+1/2(Γ0(4M i)) and W̃p2i

S−k+1/2(Γ0(4M i))

to be equal inside Sk+1/2(Γ0(4M)). We illustrate this using the following reasoning,
which needs to be proved. Consider the simple case M = 4p, p an odd prime. In
this case, if Up2S

−(4) = W̃p2S
−(4), then the corresponding picture in the integral
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weight should beUpS
new
2k (Γ0(2)) =WpS

new
2k (Γ0(2)) = VpS

new
2k (Γ0(2)) (where the last

equality was shown in [2]). If Snew
2k (Γ0(2)) is non-zero, then the action of Up (see

Lemma 5.1) and the fact that Snew
2k (Γ0(2)) ∩ VpS

new
2k (Γ0(2)) = {0} leads to a contra-

diction. Since representation theoretically A+(4) corresponds to S2k(Γ0(1)), using
the same reasoning, we do not expect the spaces U4A

+(4) and S+(4) to be equal.

Let f ∈ S−k+1/2(Γ0(4M)) be aHecke eigenform for all the operators Tq2 , (q, 2M)= 1.
henψ( f )= F is aHecke eigenformin Snew

2k (Γ0(2M)) for all operatorsTq , (q, 2M)= 1.
By [1], for all primes p such that p ∣M, Up(F) = −pk−1λ(p)F where λ(p) = ±1 and
U2(F) = −2k−1λ(2)F where λ(2) = ±1.

Proposition 6.28 Let f ∈ S−k+1/2(Γ0(4M)) be aHecke eigenform for all the operators

Tq2 , q prime, (q, 2M) = 1. hen for all primes p such that p∣M,

Up2( f ) = −p
k−1

λ(p) f and U4( f ) = −2k−1
λ(2) f ,

where λ(p) = ±1 and λ(2) = ±1 are deûned as above.

Following [14,heorem 1.9] we have the following corollary.

Corollary 6.29 Let f = ∑
∞
n=0 anq

n ∈ S−k+1/2(Γ0(4M)) be a Hecke eigenform for all

Hecke operators, i.e, Tq2( f ) = ωq f for all primes (q, 2M) = 1 and Up2( f ) = ωp f

for all primes p ∣ 2M. Let F = ∑
∞
n=0 Anq

n ∈ Snew
2k (Γ0(2M)) be the unique normalized

primitive form determined by f , i.e., Ap = ωp for all primes p. hen for a fundamental

discriminant D such that (−1)kD > 0,

L(s − k + 1, (
D

⋅
))

∞

∑
n=1
a∣D∣n2 n

−s = a(∣D∣)
∞

∑
n=1
Ann

−s .

We ûnally give the characterization of ourminus space. he proofs of the following
proposition and theorem are as before.

Proposition 6.30 Let f ∈ S−k+1/2(Γ0(4M)). hen for every prime p dividing M we

have Q̃p( f ) = − f = Q̃′
p( f ) and Q̃2( f ) = − f = Q̃′

2( f ).

heorem 6.31 Let f ∈ Sk+1/2(Γ0(4M)). hen f ∈ S−k+1/2(Γ0(4M)) if and only if

Q̃p( f ) = − f = Q̃′
p( f ) for every prime p dividing M and Q̃2( f ) = − f = Q̃′

2( f ).

6.4 Some Examples

We complete this section by giving two examples. For simplicity we shall denote
plus and minus spaces S+k+1/2(Γ0(4M)) and S−k+1/2(Γ0(4M)) by S+k+1/2(4M) and
S−k+1/2(4M).

We use Shimura decomposition [15] and recall the following notation: for a prim-
itive Hecke eigenform F of weight 2k and level dividing 2M, Sk+1/2(4M , F) denotes
the subspace of Sk+1/2(Γ0(4M)) consisting of forms that are Shimura-equivalent to F
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(i.e., forms f that are eigenforms under Tp2 with the same eigenvalues as F under Tp
for almost all odd primes p coprime to M).

Example 6.32 he space S3/2(Γ0(28)) is one dimensional and is spanned by

f = q − q
2 − q

4 + q
7 + q

8 − q
9 + q

14 − 2q15 + q
16 + 3q18 − 2q21 + ⋅ ⋅ ⋅ .

hen by Shimura decomposition,

S3/2(Γ0(28)) = ⊕
F∈Snew

2 (Γ0(M))

prim., M∣14

S3/2(28, F) = S3/2(28, F14),

as there are no primitive Hecke eigenforms of weight 2 at level 1, 2, 7, and F14 ∈
Snew
2 (Γ0(14)) is the only primitiveHecke eigenform at level 14. In particular, we have

S+3/2(28) = {0} and S−3/2(28) = S3/2(Γ0(28)) = ⟨ f ⟩.

Example 6.33 he space S17/2(Γ0(12)) is 13-dimensional. We ûrst give the Shimura
decomposition of S17/2(Γ0(12)). We note that there are seven primitiveHecke eigen-
forms of weight 16 and level dividing 6, namely, F1 of level 1, G2 of level 2, H3, K3 of
level 3 each and L6, M6, N6 each of level 6. Using Shimura decomposition algorithm
in [12] we have

S17/2(Γ0(12)) = S17/2(12, F1)⊕ S17/2(12,G2)⊕ S17/2(12,H3)

⊕ S17/2(12,K3)⊕ S17/2(12, L6)⊕ S17/2(12,M6)⊕ S17/2(12,N6),
(6.1)

where S17/2(12, F1) is the four-dimensional space spanned by

f1 = q + 88q4 + 513q9 + 3024q12 − 4368q13 − 13760q16 + 33264q21 + ⋅ ⋅ ⋅ ,

f2 = 11q2 + 64q4 + 232q7 − 1408q8 + 4608q9 + 190q10 − 6578q11 + ⋅ ⋅ ⋅ ,

f3 = 9q3 − 64q4 + 189q6 − 232q7 − 190q10 + 1152q12 − 3328q13 + ⋅ ⋅ ⋅ ,

f4 = q
5 − 11q8 + 18q9 − 9q12 − 116q17 + 344q20 − 99q621 − 189q24 + ⋅ ⋅ ⋅ ;

the space S17/2(12,G2) is two-dimensional and is spanned by

g1 = q + 21q3 − 128q4 − 609q6 + 3192q7 + 5313q9 − 12810q10 + ⋅ ⋅ ⋅ ,

g2 = 3q2 + 7q3 − 203q6 − 384q8 − 416q9 + 2706q11 − 896q12 + ⋅ ⋅ ⋅ ;

the space S17/2(12,H3) is two-dimensional and is spanned by

h1 = q
5 + 7q8 − 27q12 − 80q17 + 56q20 + 189q21 + 81q24 + 231q29 + ⋅ ⋅ ⋅ ,

h2 = 7q2 − 27q3 + 81q6 − 896q8 + 854q11 + 3456q12 − 1876q14 + ⋅ ⋅ ⋅ ;

the space S17/2(12,K3) is two-dimensional and is spanned by

k1 = q − 362q4 − 2187q9 − 11826q12 + 19032q13 + 51940q16 + ⋅ ⋅ ⋅ ,

k2 = 1971q3 + 13184q4 + 31266q6 − 20158q7 + 271340q10 + ⋅ ⋅ ⋅ ;

the last three summands in (6.1) are one-dimensional, eachwith S17/2(12, L6) spanned
by

l1 = 13q2 + 129q3 + 736q5 + 1323q6 + 1664q8 + 5918q11 + 16512q12 + ⋅ ⋅ ⋅ ;
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the space S17/2(12,M6) spanned by

m1 = q
3 − 18q6 − 42q7 − 12q10 + 128q12 + 384q13 − 126q15 − 1074q19 + 896q21 + ⋅ ⋅ ⋅ ;

and the space S17/2(12,N6) spanned by

n1 = 16q − 1539q3 − 2048q4 − 5994q6 − 50178q7 − 34992q9 − 2460q10 + ⋅ ⋅ ⋅ .

We can also check (using bound in [7]) that the Kohnen’s plus space S+17/2(12) is four-
dimensional. Indeed,

S
+
17/2(12) = ⟨ f1 , f4 , h1 , k1⟩ = S

+
17/2(4)⊕ W̃9S

+
17/2(4)⊕ S

+,new
17/2 (12),

with S+17/2(4) = ⟨ f1 − 336 f4⟩ and S
+,new
17/2 (12) = ⟨h1 , k1⟩. Note that from Remark 6.27,

A+17/2(4) = U4(S
+
17/2(4)), so A

+
17/2(4) = ⟨U4( f1 − 336 f4)⟩ = ⟨88 f1 + 336 f2 + 672 f3 −

115584 f4⟩ and S−17/2(4) = ⟨g1 + 3g2⟩ (again we use Shimura decomposition algo-
rithm to get the explicit forms in S+17/2(4) and S−17/2(4)). One can further check that
U4(A

+
17/2(4)) does not equal S+17/2(4); indeed, A

+
17/2(4) is spanned by a form with

q-expansion given by

88q + 3696q2 + 6048q3 − 13760q4 − 115584q5 + 127008q6 − 77952q7 + 798336q8 + ⋅ ⋅ ⋅ ,

and so

U4(A
+
17/2(4)) = ⟨−13760q + 798336q2 + 1306368q3 − 5855744q4 + ⋅ ⋅ ⋅⟩,

which is clearly not equal to S+17/2(4).
hus, we have

S17/2(12, F1) = R ⊕ W̃9R, where R = S
+
17/2(4)⊕ A

+
17/2(4),

S17/2(12,G2) = S
−
17/2(4)⊕ W̃9S

−
17/2(4),

S17/2(12,H3)⊕ S17/2(12,K3) = S
+,new
17/2 (12)⊕ W̃4S

+,new
17/2 (12),

S17/2(12, L6)⊕ S17/2(12,M6)⊕ S17/2(12,N6) = ⟨l1 , m1 , n1⟩ = S
−
17/2(12).

Remark 6.34 (i) In general, S−k+1/2(Γ0(4M)) = ⊕F Sk+1/2(4M , F), where F
runs through all primitiveHecke eigenforms of weight 2k and level 2M.

(ii) he Kohnen plus space is given by a well-known Fourier coeõcient condi-
tion. But we do not expect any such Fourier coeõcient condition for forms in our
minus space, as is also evident from the above examples. We note that in [17], Ueda
and Yamana deûne generalized Kohnen plus space of level 8M and show that the
newspace inside this plus space is Hecke isomorphic to Snew

2k (Γ0(2M)). In [3], we
obtain a self-adjoint involution on Sk+1/2(Γ0(8M)) coming from an element in a cer-
tain 2-adicHecke algebra of S̃L2 of level 8 that is not inside the corresponding 2-adic
Hecke algebra of S̃L2 of level 4. We observe that the plus space deûned by Ueda-
Yamana is precisely the +1-eigenspace of this involution and that their plus newspace
is a “conjugate” of S−k+1/2(Γ0(4M)). We deûne theminus space at level 8M and show
that this space is contained inside the −1-eigenspace of the involution and hence sat-
isfy a Fourier coeõcient condition that is exactly opposite to the Kohnen’s plus space
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Fourier coeõcient condition. Since this involution on Sk+1/2(Γ0(8M)) does not pre-
serve the space Sk+1/2(Γ0(4M)), we do not expect Fourier coeõcient condition for
S−k+1/2(Γ0(4M)). For more details, please refer to [3].

A Some Observations on Cocycle Multiplication

Let p denote any prime. In this appendix we note down some useful observations on
themultiplication in S̃L2(Qp) by cocycle σp .

Recall the Hilbert symbol ( ⋅ , ⋅ )p deûned on Q×
p ×Q×

p . For an odd prime p it can
be given by the following formula: For a, b coprime to p,

(ps
a, pt

b)p = (
−1
p
)

st
(
a

p
)

t
(
b

p
)

s
.

hus, (p, p)p = (−1
p ) and (−p, u)p = (p, u)p = (u

p ) , where u is a unit in Zp . For the
prime 2, if a, b are odd, then

(2s
a, 2t

b)2 = (−1)
(a−1)(b−1)

4 (
2
∣a∣

)
t
(

2
∣b∣

)
s
.

Let A = (a bc d) ∈ SL2(Qp). For (A, є1) ∈ S̃L2(Qp), (A, є1)−1 = (A−1 , є1σp(A,A−1)),
where

(i) if c = 0, then σp(A,A−1) = (a, a)p = (d , d)p .
(ii) if c ≠ 0 and ordp(c) is even, then σp(A,A−1) = 1.
(iii) if c ≠ 0 and ordp(c) is odd, then

σp(A,A−1) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(c, d)p (−c, a)p if d ≠ 0, a ≠ 0,
(c, d)p if d ≠ 0, a = 0,
(−c, a)p if d = 0, a ≠ 0,
1 if d = 0, a = 0.

In particular, if A ∈ {x(pn), y(pn), w(pn)}n∈Z, then σp(A,A−1) = 1. For A = h(pn)

with n ∈ Z, if p = 2, then σp(A,A−1) = 1; however, if p is an odd prime, then

σp(A,A−1) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if n even,

(−1
p ) otherwise.

Let (A, є1), (B, є2) ∈ S̃L2(Qp). he following lemmas can be easily obtained using
the cocycle formula.

Lemma A.1 We have [(B, є2)−1 , (A, є1)−1] = (B−1A−1BA, ξ),where ξ = σp(A,A−1)

σp(B, B−1)σp(B,A)σp(A
−1 , BA)σp(B

−1 ,A−1BA).
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Lemma A.2 he σp-factor (ξ factor above) of [(B, є2)−1 , (A, є1)−1] equals the product

(τ(B), τ(B−1))
p
⋅ (τ(A), τ(A−1))

p
⋅ (τ(BA)τ(B), τ(BA)τ(A))

p

⋅ (τ(A−1
BA)τ(A−1), τ(A−1

BA)τ(BA))
p

⋅ (τ(B−1
A
−1
BA)τ(B−1), τ(B−1

A
−1
BA)τ(A−1

BA))
p
⋅ sp(B

−1
A
−1
BA).

In the proofs for checking the support of our local Hecke algebra (Section 3) we
need the following lemma.

Lemma A.3 Let A = (
a b

c d
) ∈ SL2(Qp).

(i) If B = x(s), where s ≠ 0, then σp-factor is

⎧⎪⎪
⎨
⎪⎪⎩

(−sc2 , 1 − cds)p if sc2(1 − cds) ≠ 0 and ordp(s) is odd,

1 otherwise.

(ii) If B = h(u), where u ≠ ±1, then σp-factor is

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(ac(1 − u2), 1 + (1 − u2)bc)p if ac(1 − u2)(1 + (1 − u2)bc) ≠ 0
and ordp(ac(1 − u2)) is odd,

1 otherwise.

(iii) If B = y(t), where t ≠ 0, then σp-factor is

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

((a2 − 1)t + abt2 , 1 + abt + b2 t2)p if ((a2 − 1)t + abt2)(1 + abt + b2 t2) ≠ 0
and ordp((a

2 − 1)t + abt2) is odd,

1 otherwise.

In each of the above cases, the σp-factor is simply sp(B
−1A−1BA).

Proof For (i) let B = x(s), where s ≠ 0. hen we have

BA = (
a + sc b + sd

c d
) , A

−1
BA = (

1 + cds sd2

−sc2 1 − cds) ,

B
−1
A
−1
BA = (

1 + cds + s2c2 sd2 − s + cds2

−sc2 1 − cds ) .

It is easy to see that (τ(B), τ(B−1)) = 1 and that

(τ(A), τ(A−1)) = (τ(A−1
BA)τ(A−1), τ(A−1

BA)τ(BA))

=

⎧⎪⎪
⎨
⎪⎪⎩

1 if c ≠ 0,
(d , a)p otherwise.

Further, one can check that (τ(BA)τ(B), τ(BA)τ(A)) = 1 and also

(τ(B−1
A
−1
BA)τ(B−1), τ(B−1

A
−1
BA)τ(A−1

BA)) = 1.
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Finally, we have

sp(B
−1
A
−1
BA) =

⎧⎪⎪
⎨
⎪⎪⎩

(−sc2 , 1 − cds)p if sc2(1 − cds) ≠ 0 and ordp(s) is odd,

1 otherwise.

By using Lemma A.2,multiplying all the above terms, we get the required σp-factor.
For (ii) we proceed similarly. Let B = h(u), where u ≠ ±1. hen

BA = (
ua ub

u−1c u−1d
) , A

−1
BA = (

uad − u−1bc bd(u − u−1)
ac(u−1 − u) u−1ad − ubc

) ,

B
−1
A
−1
BA = (

1 + (1 − u−2)bc bd(1 − u−2)
ac(1 − u2) 1 + (1 − u2)bc

) .

We have (τ(B), τ(B−1))
p
= (u, u−1)

p . Also, (τ(A), τ(A−1)) = 1 if c ≠ 0 and

(d , a)p otherwise. We check that

(τ(BA)τ(B), τ(BA)τ(A))
p
=

⎧⎪⎪
⎨
⎪⎪⎩

(c, u−1)
p if c ≠ 0,

(d , u−1)
p otherwise,

(τ(A−1BA)τ(A−1), τ(A−1BA)τ(BA))
p

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(−a(u−1 − u), u−1)
p if ac ≠ 0

(bu,−b)p if a = 0 and c ≠ 0
(du−1 , a)p if a ≠ 0 and c = 0,

(τ(B−1A−1BA)τ(B−1), τ(B−1A−1BA)τ(A−1BA))
p

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(ac(u−1 − u), u−1)
p if ac ≠ 0

(bc, u)p = (−1, u)p if a = 0 and c ≠ 0
(−ad , u)p if a ≠ 0 and c = 0,

and

sp(B
−1
A
−1
BA) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(ac(1 − u2), 1 + (1 − u2)bc)p if ac(1 − u2)(1 + (1 − u2)bc) ≠ 0
and ordp(ac(1 − u2)) is odd,

1 otherwise.

Again, by multiplying all the above terms we get the required σp-factor.
For (iii), let B = y(t), where t ≠ 0. hen

BA = (
a b

at + c bt + d
) , A

−1
BA = (

1 − abt −b2 t

a2 t 1 + abt) ,

B
−1
A
−1
BA = (

1 − abt −b2 t

(a2 − 1)t + abt2 1 + abt + b2 t2
) .
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As before, (τ(B), τ(B−1))p = (t,−t)p = 1, and (τ(A), τ(A−1))p = 1 if c ≠ 0 and
(d , a)p otherwise. One can compute (using ad − bc = 1 in the Hilbert symbol calcu-
lations) that

(τ(BA)τ(B), τ(BA)τ(A)) p =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(t(at + c),−ct)p if a ≠ −c/t and c ≠ 0,
(−c, a)p if a = −c/t and c ≠ 0,
(a,−dt)p if c = 0,

and
(τ(A−1

BA)τ(A−1), τ(A−1
BA)τ(BA))

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(t(at + c),−ct)p if a ≠ −c/t and c ≠ 0 and a ≠ 0,
1 if a ≠ −c/t and c ≠ 0 and a = 0,
(−c, a)p if a = −c/t and c ≠ 0,
(a, at)p if c = 0.

All the above factors clearly multiply to 1. Also it turns out that

(τ(B−1
A
−1
BA)τ(B−1), τ(B−1

A
−1
BA)τ(A−1

BA)) p = 1,

so we get the required σp-factor. ∎

We also note the triangular decomposition of K p
0 (p

n).

Lemma A.4 We have a triangular decomposition

K
p
0 (p

n) = N
K p
0 (pn)

T
K p
0 (pn)

N
K p
0 (pn)

.

More precisely, for (A, є) = (( a bc d ), є) ∈ K
p
0 (p

n),

(A, є) = (x(s), 1)(h(u), 1)(y(t), 1)(I, єδ)

where

u = d−1 , s = d−1
b, t = d−1

c,
and

δ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 c = 0,
(d ,−1)p c ≠ 0, ordp(c)is odd,

(−c, d)p c ≠ 0, ordp(c)is even.

Proof Clearly,

(
a b

c d
) = (

1 bd−1

0 1 )(
d−1 0
0 d

)(
1 0
cd−1 1) .

Let u = d−1 , s = bd−1 , t = cd−1. Since

x(s)h(u)y(t) = (
u su−1

0 u−1 )(
1 0
t 1) = (

u + su−1 t su−1

tu−1 u−1 ) ,

we get that

(x(s), 1)(h(u), 1)(y(t), 1) = (x(s)h(u)y(t), δ) = (A, δ),
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where

δ = σ(x(s), h(u))σ(x(s)h(u), y(t)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 t = 0,
(u,−1)p t ≠ 0, ordp(t)is odd,
(t, u)p t ≠ 0, ordp(t)is even.

Substituting u, s, t in terms of b, c, d, we get δ as in the statement. ∎
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