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This article investigates TP2 dependence of sample spacings. It is proved that TP2

(RR2) dependence between a general spacing and a nonadjacent order statistic
might be characterized by the DLR (ILR) property of the parent distribution, and
TP2 dependence between any pair of consecutive spacings might be characterized
by the DLR aging property of the population. Furthermore, TP2 dependence
between any two consecutive spacings in multiple outliers exponential models is
also derived. In addition, some applications in reliability and business auction are
presented as well.

1. INTRODUCTION

Sample spacings have received tremendous attention from numerous researchers
during the past several decades because they play important roles in reliability
theory, life testing, data analysis, goodness-of-fit tests, and other related areas. The
past two decades witnessed an extensively amount of stochastic comparisons
among sample spacings. Readers can refer to Barlow and Proschan [3], Kochar
[14, 15], Misra and van der Meulen [20], Hu, Wang, and Zhu [6], Hu and Zhuang
[7], and Xu and Li [24] for those detailed statements. On the other hand, dependence
among sample spacings are also of great interest for the reason that, in actuarial
science, reliability theory, survival analysis, system safety, and so forth, it is more
important to judge whether an increase of some sample space tends to incur the
increase or decrease of another one. In the recent two decades, some authors, for
example, Barlow and Proschan [3], Kim and David [13], and Khaledi and Kochar
[11], devoted themselves to study the dependence among sample spacings and
many interesting results have been built. The purpose of this article is to further
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investigate TP2 properties of general spacings. For convenience, the term increasing
is used instead of monotone nondecreasing and the term decreasing is used instead of
monotone nonincreasing throughout this article; it is also implicitly assumed that all
random variables under consideration are nonnegative, are absolutely continuous and
have zero as the common left end point of the supports.

Recall that a bivariate function h(x, y) is said to be sign-regular (SR2) of order 2
if, for 11 and 12 equal to þ1 or 21, 11h(x, y) � 0 and 12[h(x1, y1)h(x2, y2) 2 h(x1,
y2)h(x2, y1)] � 0 whenever x1 � x2 and y1 � y2. For two random variables X and Y
with joint probability density or mass function f (x, y), (X, Y ), or f (x, y) is said to
be totally positive (TP2) of order 2, denoted by TP2(X, Y ), if 12 ¼ 1; (X, Y ) or f(x, y)
is said to be reversely regular (RR2) of order 2, denoted by RR2(X, Y ), if 12 ¼ 21.
For more details on SR2, readers can refer to Karlin [8]. As a stronger notion of
dependence between random variables, TP2 and RR2 also have their multivariate
versions, called the multivariate total positive of order 2 (MTP2) and multivariate
reversely regular of order 2 (MRR2), respectively. A random vector (X1, . . . , Xn) is
said to be MTP2 (MRR2) if its probability density or mass function f(x1, . . . , xn) satisfies
f(x _ y)f(x ^ y) � (�)f(x)f(y) for all x ¼ (x1, . . . , xn) and y ¼ ( y1, . . . , yn); here, x _

y ¼ (x1 _ y1, . . . , xn _ yn), x ^ y¼ (x1 ^ y1, . . . , xn ^ yn), x1 _ y1¼ maxfx1, y1g, and
x1 ^ y1¼ minfx1, y1g. One can refer to Karlin and Rinott [9, 10] for further discussions
on MTP2 and MRR2.

The stochastic monotone property is also useful to characterize the weaker depen-
dence of random variables. A random variable Y is said to be stochastically increasing
in X, denoted by SI(YjX ), if P(Y . yjX ¼ x) is increasing in x for all y; X is said to be
stochastically decreasing in X, denoted by SD(YjX ), if P(Y . yjX ¼ x) is decreasing
in x for all y. It has been shown that

TP2(X, Y)¼) SI(Y jX) and RR2(X, Y)¼) SD(Y jX):

Readers can refer to Müller and Stoyan [21] for more detailed statements.
The main results in this article are also closely related to some aging notions.

A random variable X with distribution F and density f is said to be of decreasing like-
lihood ratio (DLR) if log f (x) is convex; it is said to be of increasing likelihood ratio
(ILR) if log f (x) is concave; X is said to be of decreasing failure rate (DFR) if
f ðtÞ= �FðtÞ decreases on its interval of support; it is said to be of increasing failure
rate (IFR) if f ðtÞ= �FðtÞ increases on its interval of support. The following chains of
implication are well known:

ILR¼) IFR and DLR¼)DFR:

Aging conceptions play important roles in maintenance and degradation; we refer
readers to Barlow and Proschan [3] and Müller and Stoyan [21] for comprehensive
statements.

For an independent sample X1, . . . , Xn, let 0 ; X0:n � X1:n � X2:n � . . . � Xn:n

be the corresponding order statistics. Denote X the population random variable
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when X1, . . . ,Xn are identical. Some authors have made efforts to characterize particu-
lar classes of life distributions based on order statistics and sample spacings; pioneer-
ing work is due to Langberg, Leon, and Prochan [16], who presented the following
characterizations for IFR and its dual notion:

X is of DFR (IFR)() SI (SD)(Xsþ1:n � Xs:njXs:n) for n . s � 1: (1:1)

Barlow and Proschan [3] presented the following dependent result of sample
spacings:

X is of DFR ¼) SI(Xsþp:n � Xs:njXs:n) for n � sþ p . s � 1: (1:2)

Subsequently, Kim and David [13] showed that

X is of DFR (IFR)¼) SI (SD)(Xrþp:n � Xr:njXs:n)

for n � r þ p . r � s � 1:
(1:3)

In combination with (1.1)–(1.3), it can be concluded that

X is of DFR (IFR)() SI (SD)(Xrþp:n � Xr:njXs:n)

for n � r þ p . r � s � 1:
(1:4)

On the other hand, other researchers devoted themselves to the dependence of
sample spacings. Karlin and Rinott [9] were among the first to point out that

MTP2(X1:n � X0:n, X2:n � X1:n, . . . , Xn�1:n � Xn:n) (1:5)

provided the DLR property of the population X. As a direct consequence, it holds that,
for an independent and identically distributed (i.i.d.) sample from a DLR population,

TP2(Xiþ1:n � Xi:n, Xi:n � Xi�1:n) for n . i � 1: (1:6)

At a later time, Khaledi and Kochar [11] proved that (1.6) also holds in multiple out-
liers exponential models, where, for some m [ f1, . . . , ng, X1, . . . , Xm are exponen-
tial with parameter l and Xmþ1, . . . , Xn are exponential with another parameter l*.
Recently, Hu et al. [6, Them. 3.1] further showed that (1.5) remains valid in multiple
outliers exponential models and, hence, (1.6) can be viewed as a special case.

The rest of this article is organized as follows. Section 2 deals with distributions
having a monotone likelihood ratio. In parallel to (1.4), Theorem 2.4 develops a
characterization result, which claims that X is of DLR (ILR) property if and only if
Xrþp:n 2 Xr:n and Xs:n are TP2 (RR2). Theorem 2.6 further proves that in fact X is
of DLR (ILR) property if and only if any pair of Xj:n 2 Xk:n and Xk:n 2 Xl:n for any
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n � j . k . l � 0 are TP2 dependent; this forms a strengthened version of (1.6).
Section 3 provides a discussion on the dependence of sample spacings in the
context of multiple outliers exponential models. Theorem 3.2 builds the TP2 depen-
dence between Xj:n 2 Xk:n and Xk:n 2 Xl:n for any n � j . k . l � 1, which can be
regarded as an extension of (1.6).

2. SAMPLE SPACINGS FROM ILR AND DLR OBSERVATIONS

Before proceeding to the main results, let us introduce the following three lemmas,
which will be repeatedly used in the proof of our main theorems in sequel. More
details on them can be found in Karlin [8] and Khaledi and Kochar [12].

LEMMA 2.1 [8]: Let A, B, and C be subsets of the real line, let L(x, z) be SR2 for x [ A
and z [ B and let M(z, y) be SR2 for z [ B and y [ C. Then, for a s-finite measure m,

K(x, y) ¼
ð

B
L(x, z)M(z, y)dm(z)

is also SR2 for x [ A and y [ C and 1i(K ) ¼ 1i(L)1i(M ) for i ¼ 1, 2.

LEMMA 2.2 [8]: Suppose l, v, and g traverse the ordered sets L, V, and G, respect-
ively. If f(l, v, g) . 0 is TP2 in each pair of its variables with the other one fixed and
g(l, g) is TP2, then, for a s-finite measure m,

h(l, v) ¼
ð
G

f (l, v, g)g(l, g)dm(g)

is also TP2 in (l, v) [ L �V.

LEMMA 2.3 [12]: Suppose l, v, and g traverse the ordered sets L, V, and G, respect-
ively. If f(l, v, g) . 0 and g(l, g) are TP2 in (l, g) and f(l, v, g) is RR2 in (l, v) and
(v, g), then, for a s-finite measure m,

h(l, v) ¼
ð
G

f (l, v, g)g(l, g)dm(g)

is also RR2 in (l, v) [ L �V.

Now, we are ready to state the main results.

THEOREM 2.4:

(i) X is of DLR if and only if

TP2(Xrþp:n � Xr:n, Xs:n) for any n � r þ p . r � s � 1:
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(ii) X is of ILR if and only if

RR2(Xrþp:n � Xr:n, Xs:n) for any n � r þ p . r � s � 1:

PROOF:

(i) )Let X have the distribution function F and density function f; �F ¼ 1� F is
the survival function. Denote by fs,r,rþp(x, y, z) and fs,rþp2r(x, y) the joint
density functions of (Xs:n, Xr:n, Xrþp:n) and (Xrþp:n 2 Xr:n, Xs:n), respectively.

For r . s,

fs,rþp�r(x, y) ¼
ð1

y
fs,r,rþp(y, t, xþ t)dt

¼ C1

ð1

y
Fs�1(y)[F(t)� F(y)]r�s�1[F(xþ t)� F(t)]p�1

� �Fn�r�p(xþ t)f (y)f (t)f (xþ t)dt

¼ C1

ð1

0
L(x, t)M(t, y)dt, (2:1)

where

C1 ¼
n!

(s� 1)!(r � s� 1)!(p� 1)!(n� r � p)!
,

L(x, t) ¼ [F(xþ t)� F(t)]p�1 �Fn�r�p(xþ t)f (xþ t),

M(t, y) ¼ Fs�1(y)[F(t)� F(y)]r�s�1f (t)f (y)I(t � y):

Since X is of DLR, by Lemma 2.1(ii) in Misra and van der Meulen [20], L(x, t)
is TP2 in (x, t) [ Rþ � Rþ for p � 1. Similarly, M(t, y) is also TP2 in (t, y)
[ Rþ � Rþ. So, from Lemma 2.1, the TP2 property between Xrþp:n 2 Xr:n

and Xs:n follows immediately.
For r ¼ s, the joint density function of Xrþp:n 2 Xr:n and Xr:n is

fr,rþp�r(x, y) ¼ C2[F(y)]r�1[F(xþ y)� F(y)]p�1

[ �F(xþ y)]n�r�pf (y)f (xþ y),
(2:2)

where

C2 ¼
n!

(r � 1)!(p� 1)!(n� r � p)!
:
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For x1 � x2,

fr,rþp�r(x2, y)
fr,rþp�r(x1, y)

¼ F(x2 þ y)� F(y)
F(x1 þ y)� F(y)

� �p�1 �F(x2 þ y)
�F(x1 þ y)

� �n�r�p f (x2 þ y)
f (x1 þ y)

� �
:

It is easy to verify that both the second term and the third term above are increasing in y
if X is of DLR. By Lemma 2.1(ii) in Misra and van der Meulen [20], the first term is
also increasing in y. Thus, fr,rþp2r(x, y) is TP2 in (x, y) [ Rþ � Rþ for p � 1.
( For 0 � t0 � t and 1 � s � r , r þ p � n, it can be directly verified that TP2

(Xrþp:n 2 Xr:n, Xs:n) is equivalent to

[Xrþp:n � Xr:njXs:n ¼ t] �lr [Xrþp:n � Xr:njXs:n ¼ t0]: (2:3)

Setting r ¼ s ¼ n 2 1 and p ¼ 1 in (2.3) reduces to

[Xn:n � Xn�1:njXn�1:n ¼ t] �lr [Xn:n � Xn�1:njXn�1:n ¼ t0]: (2:4)

By the Markovain property,

[Xn:n � Xn�1:njXn�1:n ¼ t]¼st
[X � tjX . t] for any t � 0:

Thus, (2.4) is equivalent to

[X � tjX . t] �lr [X � t0jX . t0] for all t � t0 � 0:

That is to say, X is of DLR.

(ii) )For r . s, set in (2.1)

K(x, y, t) ¼ [F(xþ t)� F(t)]p�1 �Fn�r�p(xþ t) f (xþ t) I(t � y),

N(y, t) ¼ Fs�1(y)[F(t)� F(y)]r�s�1f (t)f (y):

If X is of ILR, it can be verified that both K(x, y, t) . 0 and N( y, t) are TP2 in ( y, t)
and that K(x, y, t) is RR2 both in (x, y) and in (x, t). So, the RR2 property can be shown
from Lemma 2.3 immediately.

For r ¼ s, by the ILR property of X and Lemma 2.1(ii) in Misra and van der
Meulen [20], the joint density fr,rþp2r(x, y) in (2.2) is RR2 in (x, y) [ Rþ � Rþ

for p � 1.
( The proof is similar to that of the sufficiency in (i) and, hence, is omitted here

for briefness. B
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The k-out-of-n system is a very popular fault-tolerant system in industrial and
military systems; it functions if and only if at least k components function. The life-
time of a k-out-of-n system of n components with lifetimes X1, . . . , Xn corresponds to
the (n 2 k þ 1)st statistic Xn2kþ1:n. Thus, the study of lifetime of the k-out-of-n
system is equivalent to the study of the stochastic properties of order statistics. In prac-
tice situations, it is of great interest to study how the time of a failure of a component
affects the lifetime of a k-out-of-n system with i.i.d. components. In fact, given that the
(n 2 k)th failure occurs at time t � 0, the residual life of a k-out-of-n system can be
represented by [Xn2kþ1:n 2 Xn2k:njXn2k:n ¼ t]. Langberg et al. [16] first proved that
X is of DFR (IFR) if and only if, for 1 � k , n and all t � t0 � 0,

[Xn�kþ1:n � Xn�k:njXn�k:n ¼ t] �st (�st)[Xn�kþ1:n � Xn�k:njXn�k:n ¼ t0]:

In this spirit, Belzunce, Franco, and Ruiz [4] provided some equivalent characteriz-
ations of IFR in terms of dispersive order and failure rate order. Recently, Li and
Zuo [19] and Li and Chen [18] further investigated the behavior of the residual life
of such a system with i.i.d. components and that with independent but nonidentical
components, respectively.

It is worthwhile to point out that Theorem 2.4 leads to a very nice supplement to
those results developed in the literature.

COROLLARY 2.5: X is of DLR (ILR) if and only if, for 1 � k , n and all t � t0 � 0,

[Xn�kþ1:n � Xn�k:njXn�k:n ¼ t] �lr (�lr)[Xn�kþ1:n � Xn�k:njXn�k:n ¼ t0]:

To end this section, the next theorem addresses the TP2 dependence of two
consecutive general spacings based on a sample of a DLR population.

THEOREM 2.6: X is of DLR if and only if

TP2(Xj:n � Xk:n, Xk:n � Xl:n) for n � j . k . l � 0:

PROOF:

)The case of n � j . k . l ¼ 0 is a direct consequence of Theorem 2.4(i). For
n � j . k . l � 1, the joint density of Xj:n 2 Xk:n and Xk:n 2 Xl:n is

fk�l,j�k(x, y)

¼
ð1

0
fl,k,j(u, uþ x, uþ xþ y)du

¼ C3

ð1

0
Fl�1(u)[F(uþ x)� F(u)]k�l�1[F(uþ xþ y)� F(uþ x)]j�k�1

� �Fn�j(uþ xþ y)f (u)f (xþ u)f (xþ yþ u)du,
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where

C3 ¼
n!

(l� 1)!(k � l� 1)!(j� k � 1)!(n� j)!
:

Let

g(x, u) ¼ Fl�1(u)[F(uþ x)� F(u)]k�l�1f (u)f (xþ u),

h(x, y, u) ¼ [F(uþ xþ y)� F(uþ x)]j�k�1 �Fn�j(uþ xþ y)f (xþ yþ u):

Since X is of DLR, by Lemma 2.1(ii) in Misra and van der Meulen [20] again, g(x, u)
is TP2 in (x, u) [ Rþ � Rþ, for k . l.

For any fixed y and u2 . u1,

h(x, y, u2)
h(x, y, u1)

¼ F(u2 þ xþ y)� F(u2 þ x)
F(u1 þ xþ y)� F(u1 þ x)

� �j�k�1 �F(u2 þ xþ y)
�F(u1 þ xþ y)

� �n�jf (xþ yþ u2)
f (xþ yþ u1)

:

It is easy to verify that both the second term and the third term above are increasing in
x for n . j under the assumption that X is of DLR. Note that, for any fixed y � 0,

h1(x, u) ¼
ðy

0
f (wþ xþ u)dw:

X is of DLR; by Lemma 2.2, h1(x, u) is TP2 in (x, u) [ Rþ � Rþ. Then, it follows that
h(x, y, u) is TP2 in (x, u) [ Rþ � Rþ.

For any fixed x � 0,

h2(y, u) ¼
ð1

0
f (wþ xþ u)I(w � y)dw:

Likewise, it can be verified that h(x, y, u) is TP2 in ( y, u) [ Rþ � Rþ under the
assumption that X is of DLR.

For any fixed u � 0, by Lemma 2.1(ii) of Misra and van der Meulen [20],

h3(x, y) ¼ F(uþ xþ y)� F(uþ x)

is TP2 in (x, y) [ R � R. Thus, by the DLR property of X, we have h(x, y, u) is TP2 in
(x, y) [ Rþ � Rþ.

Now, from Lemma 2.2 again, the desired result follows immediately.
( Setting l ¼ 0, TP2 (Xj:n 2 Xk:n, Xk:n 2 Xl:n) for any n � j . k � 1 is just

TP2(Xj:n 2 Xk:n, Xk:n) for any n � j . k � 1. From Theorem 2.4(i), the DLR property
of X follows directly.
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Remark: To the best of our knowledge, we do not know whether there exists some impli-
cations between ILR property of the population X and TP2(Xj:n 2 Xk:n, Xk:n 2 Xl:n) for
any n � j . k � 1.

3. SAMPLE SPACINGS IN MULTIPLE OUTLIERS EXPONENTIAL
MODELS

In the multiple outliers exponential model, X1, . . . , Xp are assumed to be exponential
with common failure rate l and Xpþ1, . . . , Xn are assumed to be exponential with
failure rate l*, q ¼ n 2 p � 1. Since the joint density function of order statistics
from an independent but not identical sample can be represented as permanent, let
us digress for a moment to permanent; one can refer to Bapat and Beg [1] and
Bapat and Kochar [2] for more related results.

The permanent of a n � n matrix A ¼ (ai,j) is defined as
P

s

Q
i¼1
n ai,s(i), where

the summation is taken over all permutations s ¼ (s(1), . . . , s(n)) of (1, . . . , n). If di

[ Rn for i ¼ 1, 2, . . . , n, we will denote by [d1, . . . , dn] the permanent of the n � n
matrix (d1, . . . , dn). The permanent

d1|{z}
r1

, d2|{z}
r2

, � � �

2
4

3
5

is obtained by taking r1 copies of d1, r2 copies of d2, and so on. If ri ¼ 1, it is omitted
in the notation above. If ri ¼ 0, then it is understood that di does not appear in the
permanent; If ri , 0, for some i, the permanent is defined to be zero. For mutually
independent random variables X1, . . . , Xn, let fi, Fi, and �Fi be the density, distribution,
and survival functions, respectively, of Xi, i ¼ 1, . . ., n. The column vector ( f1(x), . . .,
fn(x))0 will be denoted simply by f(x); vectors l, F(x), and �F(x) can be similarly
defined.

For 1 � p1 , � � �, pj � n, the joint density function of (Xp1:n, . . . , Xpj:n) is

fp1:n,...,pj:n(s1, ... , sj)¼Kp1,...,pj:n

� F(s1)|ffl{zffl}
p1�1

,f(s1),F(s2)�F(s1)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
p2�p1�1

, f(s2),...,F(sj)�F(sj�1)|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
pj�pj�1�1

,f(sj), �F(sj)|ffl{zffl}
n�pj

2
64

3
75 ,

(3:1)
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for s1 , ��� , sj, where

K�1
p1,���,pj:n¼(p1�1)!(n�pj)!

Yj

i¼2

(pi�pi�1�1)!:

For convenience, denote

[i, j, k, l]p,q ¼ elu � 1|fflfflffl{zfflfflffl}
i

, lelu|ffl{zffl}
j

, l|{z}
k

, F(y)|{z}
l

2
4

3
5

p,q

:

The next lemma, which can be proved in a completely similar manner to Lemma
3.3 and Theorem 1.1 in Wen, Lu, and Hu [23], will be used to reach the main
conclusion.

LEMMA 3.1: Let G ¼ fi: maxfk 2 p 2 1, 0g � i � minfk 2 1, qgg; then, for
l � (�)l*,

l, F(y)|{z}
j�k�1

, f(y), �F(y)|{z}
n�j

2
64

3
75

pþi�kþ1,q�i

and

Fi(y) ¼ exp{[l(k � i� 1)þ l�i]y}
ð1

0
[l� 1, 0, 1, k � l� 1]k�i�1,ie

�[lpþl�q]udu

are both RR2 (TP2) in (i, y) [ G � Rþ.

Now, let us prove the following result.

THEOREM 3.2: Xj:n 2 Xk:n and Xk:n 2 Xl:n are TP2 dependent for n � j . k . l � 1.

PROOF: The joint distribution function of Xj:n 2 Xk:n and Xk:n 2 Xl:n is

fj�k,k�l(x, y) ¼
ð1

y
fl,k,j(u� y, u, uþ x)du for x, y � 0:
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Applying the Laplace expansion along the first k 2 1 columns of the permanent
below, it holds that, for u � y � 0,

fl,k,j(u�y, u, uþx)

¼C4 F(u�y)|fflfflfflffl{zfflfflfflffl}
l�1

, f(u�y), F(u)�F(u�y)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
k�l�1

, f(u), F(uþx)�F(u)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
j�k�1

, f(uþx), �F(uþx)|fflfflfflffl{zfflfflfflffl}
n�j

2
64

3
75

p,q

¼C4

X
i[G

q

i

� � p

k� i�1

� �
F(u�y)|fflfflfflffl{zfflfflfflffl}

l�1

, f(u�y), F(u)�F(u�y)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
k�l�1

2
4

3
5

k�i�1,i

� f(u), �F(u)F(x)|fflfflfflffl{zfflfflfflffl}
j�k�1

, f(uþx), �F(uþx)|fflfflfflffl{zfflfflfflffl}
n�j

2
64

3
75

pþiþ1�k,q�i

¼C4

X
i[G

q

i

� � p

k� i�1

� �
F(u�y)|fflfflfflffl{zfflfflfflffl}

l�1

, f(u�y), F(u)�F(u�y)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
k�l�1

2
4

3
5

k�i�1,i

exp{�[l(pþ iþ1�k)þl�(q� i)]u} � l, F(x)|{z}
j�k�1

, f(x), �F(x)|{z}
n�j

2
64

3
75

pþiþ1�k,q�i

,

where

C4¼
n!

(l�1)!(k� l�1)!(j�k�1)!(n� j)!
:

Since

fj�k,k�l(x,y)¼
X
i[G

ai(x)bi(y),

for i ¼ 1, 2, ... , n,

ai(x)¼ l, F(x)|{z}
j�k�1

, f(x), �F(x)|{z}
n�j

2
64

3
75

pþiþ1�k,q�i

and letting

ci¼
q

i

� � p

k� i�1

� �
,
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we have

bi(y)¼ci

ð1

y
F(u�y)|fflfflfflffl{zfflfflfflffl}

l�1

f(u�y), F(u)�F(u�y)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
k�l�1

2
4

3
5

k�i�1,i

e�[l(pþi�kþ1)þl�(q�i)]udu

¼ci

ð1

0
F(u)|{z}
l�1

, f(u), �F(u)(1� �F(y))|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k�l�1

2
4

3
5

k�i�1,i

e�[l(pþi�kþ1)þl�(q�i)](uþy)du

¼ci

ð1

0
F(u)|{z}
l�1

, f(u), �F(u)(1� �F(y))|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k�l�1

2
4

3
5

k�i�1,i

e�[lpþl�q](uþy)e[l(k�i�1)þl�i](uþy)du

¼cie
�[lpþl�q]y �

ð1

0
[l�1,0,1,k� l�1]k�i�1,ie

�[lpþl�q]ue[l(k�i�1)þl�i]ydu

¼ciFi(y)e�[lpþl�q]y:

From Lemma 3.1, it follows that ai(x) is RR2 (TP2) in (i, x) [ G � Rþ, and bi(x) is
RR2 (TP2) in (i, y) [ G1 � Rþ for l � (�)l*. By the basic composition formula in
Karlin [8], we have that fj2k,k2l(x, y) is RR2 (TP2) in (x, y) [ Rþ � Rþ; hence, we
complete the proof. B

It is remarkable to point out that (1.6) follows immediately if we set j ¼ k þ 1
and l ¼ k 2 1 in Theorem 3.2.

The stochastic model of a business auction is a very active research area in recent
years. Recently, some authors paid their attention to the winner’s rent in a k-price
auction and derive several interesting conclusions. For more details, please refer to
Bulow and Klemperer [5], Paul and Gutierrez [22], and Li [17].

In the (n 2 k þ 1)-price buyer’s auction, a seller and a number of buyers gather
to the auction of some good, and the rent of the winner is Xn:n 2 Xk:n; whereas in the
k-price reverse auction, a buyer and a number of sellers gather to the auction of some
good, and the rent of the winner is Xk:n 2 X1:n. Some researchers focused on how a
variation or increase of the bid has an effect on the winner’s rent, but few of them
investigated the relationship between the winner’s rent in a buyer’s auction and that
in a reverse auction. In fact, observing that

[Xn:n � Xk:n]þ [Xk:n � X1:n] ; Xn:n � X1:n,

we often jump to the conclusion that the above two kinds of winner’s rents are nega-
tive dependent through instinct. However, the following two results claim that this is
not necessarily true.

By setting j ¼ n and l ¼ 1 in Theorem 2.6, we have the following.

COROLLARY 3.3: The winner’s rent in the (n 2 k þ 1)-price buyer’s auction and that
in the k-price reverse auction are TP2 dependent, provided that all bids are i.i.d. with
a DLR distribution.
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According to Theorem 3.2, this conclusion also holds even when bids are com-
posed of two subgroups of i.i.d. exponential random variables.
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