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over a flat plate. Part 1. Wave structures
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This paper is the first part of a two-part study on the mechanisms of the receptivity
to disturbances of a Mach 4.5 flow over a flat plate by using both direct numerical
simulations (DNS) and linear stability theory (LST). The main objective of the current
paper is to study the linear stability characteristics of the boundary-layer wave modes
and their mutual resonant interactions. The numerical solutions of both steady base
flow and unsteady flow induced by forcing disturbances are obtained by using a
fifth-order shock-fitting method. Meanwhile, the LST results are used to study the
supersonic boundary-layer stability characteristics relevant to the receptivity study.
It is found that, in addition to the conventional first and second modes, there exist
a family of stable wave modes in the supersonic boundary layer. These modes play
a very important role in the receptivity process of excitation of the unstable Mack
modes, especially the second mode. These stable modes are termed mode I, mode II,
etc., in this paper. Though mode I and mode II waves are linearly stable, they can have
resonant (synchronization) interactions with both acoustic waves and the Mack-mode
waves. Therefore, the stable wave modes such as mode I and mode II are critical
in transferring wave energy between the acoustic waves and the unstable second
mode. The effects of frequencies and wall boundary conditions for the temperature
perturbations on the boundary-layer stability and receptivity are also studied.

1. Introduction
The study of laminar–turbulent transition in supersonic and hypersonic boundary

layers is important to the development of future space vehicles operating at sustained
supersonic and hypersonic speeds. In an environment with small initial disturbances,
which is the case for most flight conditions of supersonic and hypersonic vehicles,
the paths to transition can conceptually be divided into three stages: (i) receptivity,
(ii) linear eigenmode growth or transient growth, and (iii) nonlinear breakdown to
turbulence. The first stage, which is the receptivity process, converts the environmental
disturbances into boundary-layer instability waves, such as the Tollmien–Schlichting
(T-S) waves. The second stage is the linear eigenmode growth of boundary-layer
instability waves, which can be obtained as the eigen-solutions of the homogeneous
linearized disturbance equations. As the amplitudes of the instability waves grow,
three-dimensional and nonlinear interactions occur in the form of secondary
instabilities or other nonlinear interactions. Subsequent stages cause the breakdown
to turbulence. The receptivity to large-amplitude free-stream disturbances may also
lead to transition without the appearance of the second stage, which is called the
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32 Y. Ma and X. Zhong

bypass transition. In general, the transition process depends strongly on the initial
flow conditions in the free stream and surface roughness at the wall.

The transition from laminar to turbulent flow in the boundary layers has been
extensively studied. The most widely used transition prediction method is the semi-
empirical eN method. This method postulates that boundary-layer transition occurs
when the total growth of the most unstable disturbance waves in the boundary layer
exceeds some empirical factor, eN , relative to its amplitude at the lower branch
(branch I) of the neutral stability curve. The growth rates of disturbances are
calculated from the linear stability theory (LST). Typical value of N , determined
by comparison with experimental observations of transition locations, is between 9
and 11. The limitation of the eN method is well known. A major drawback of the eN

method is that it does not consider the effects of free-stream disturbance environments
on the onset of boundary-layer transition. Such effects can only be understood through
the studies on the receptivity of boundary layers to various forcing disturbances. The
receptivity mechanism provides important initial conditions of amplitude, frequency
and phase for the instability waves in the boundary layers (Goldstein & Hultgren
1989). The goal of receptivity analysis is to understand the generation of instability
waves for the development of transition prediction methods which take into account
the effects from free-stream disturbance environments. Recent studies on receptivity
are reviewed by Saric, Reed & Kerschen (2002). However, they mainly focus on
receptivity of incompressible flow.

This paper is concerned with the receptivity of a supersonic boundary layer over
a flat plate. The main objective of a receptivity study on a supersonic boundary
layer is to investigate the mechanisms of initial generation of the unstable boundary-
layer wave modes by forcing waves. The unstable wave modes in supersonic boundary
layers have been identified by Mack (1984) using the LST. Because of Mack’s extensive
studies, the instability properties of these wave modes are currently well understood.
Particularly, Mack found that there are higher acoustic instability modes in addition
to the first-mode instability waves in supersonic and hypersonic boundary layers.
These instability modes in supersonic boundary layers have been termed the Mack
modes. Among them, the second Mack mode becomes the dominant instability mode
for supersonic boundary layers at Mach numbers larger than about 4. The existence
and dominance of the second mode has been validated by experimental studies
(Stetson & Kimmel 1992). Experimental measurements on supersonic and hypersonic
boundary-layer stability on sharp cones were performed by Kendall (1975) and others.
The experimental results indicated that the first and second Mack-mode instabilities
are simultaneously present in supersonic and hypersonic boundary layers. Though the
linear stability of the Mack modes is well understood, it is still a subject of current
research with regard to the receptivity of the supersonic boundary layer, i.e. the invest-
igation of the mechanisms of the unstable Mack modes generated by forcing waves.

The receptivity process plays an important role in boundary-layer transition. It
has been shown by experimental measurements that the transition locations (ReT ) in
supersonic and hypersonic boundary layers are strongly affected by the characteristics
of free-stream disturbance environments. Measurements of the transition location on
a slender cone by Krogmann (1977) in a Ludwieg tube showed higher transition
Reynolds numbers than those measured in other facilities with different free-stream
disturbance levels. The measurements by Pate & Schueler (1969), Pate (1971), Potter &
Whitfield (1962) and Potter (1968) in free-flight conditions showed that the transition
Reynolds numbers increase with increasing unit Reynolds numbers of the flows, which
can be attributed to the effects of free-stream disturbance environments. Stetson
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et al. (1986) studied the effects of the unit Reynolds numbers and environmental
disturbances on the transition of a cone at Mach 8. They concluded that the external
disturbances must be known in order to predict boundary-layer transition. Therefore,
boundary-layer transition will never be successfully predicted without understanding
the receptivity phenomena, i.e. how the environmental disturbances enter the boundary
layers and ultimately generate boundary-layer instability waves.

Currently, the receptivity mechanisms of supersonic boundary layers to free-stream
disturbances are not well understood. Even for receptivity of supersonic flow over
a simple flat plate with an elliptical leading edge to free-stream disturbances, the
results of receptivity experiments were difficult to interpret, often inclusive and even
confusing (Reshotko 1990). This is because the non-parallel growth of the boundary
layer near the leading edge, the rapid profile adjustment due to varying pressure
gradients, and the change in surface curvature at the juncture of the leading edge
with the flat plate, can all contribute to a source of excitation of receptivity.

There have been a few reported experimental studies on the receptivity of supersonic
and hypersonic boundary layers. Maslov & Semionov (1986) and Maslov et al. (2001)
conducted experimental investigations on the excitation of instability waves in a
Mach 2 boundary layer of a flat plate by external acoustic waves emanating from
another parallel flat plate below the first flat plate. They concluded that the conversion
of external acoustic perturbations into the instability waves of the boundary layer on
a flat plate is most intense in the following areas: the leading-edge region of the plate,
the acoustic branch of the neutral stability curve, and the lower branch of the neutral
stability curve. Semionov et al. 1996, Arnal et al. 1999 and Maslov et al. (2001) also
conducted experimental investigations of hypersonic boundary-layer receptivity, on
the sharp leading edge of a flat plate, to acoustic waves in a Mach 5.92 flow in the
free stream. They found that acoustic waves impinging on the leading edge generate
Tollmien–Schlichting waves in the boundary layer. The receptivity coefficients were
obtained for several radiation conditions and intensities. It was shown that there is a
dependence of receptivity coefficients on the wave inclination angles.

Most of the computational and theoretical studies on the boundary-layer receptivity
have been conducted for incompressible flow (Goldstein & Hultgren 1989). There
have been only a few theoretical and computational studies on the receptivity of
compressible boundary layers. Mack (1975) altered his LST to include the response
of compressible boundary layers to incoming acoustic waves, but the mechanism
by which the forcing waves turned into boundary-layer perturbation was not
considered. Choudhari & Street (1990, 1993) extended an asymptotic theory, which
was successfully used in studies of subsonic receptivity (Kerschen 1989), to investigate
the receptivity to localized flow inhomogeneities in a Mach 4.5 boundary layer with
a zero pressure gradient. The effect of the interaction of the shock wave, which
is induced by the boundary-layer displacement, with the forcing disturbances was
not considered in their studies. Fedorov & Khokhlov (1991) examined the leading-
edge receptivity of supersonic boundary layers to free-stream acoustic waves by an
asymptotic method. It was concluded that the discrete modes of supersonic boundary
layers are synchronized with acoustic waves near the leading edge. As a result of
the wave synchronization, boundary-layer disturbances are strongly excited near the
leading edge. Two receptivity mechanisms, diffraction and diffusion of acoustic waves
on the leading edge, were proposed in their later studies (Fedorov & Khokhlov 1992).
They also found that the leading-edge receptivity depends on the incident angles of
the acoustic waves. Fedorov & Alexander (1997), Fedorov & Khokhlov (2001, 2002)
and Fedorov & Tumin (2001) showed that strong excitation occurs when external
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waves and wall-induced disturbances are in resonance with the boundary-layer normal
modes. Boundary-layer self-similar solutions were used in Fedorov’s analyses, but the
effect of the shock wave, however, was not considered.

With the development of powerful computers and advanced numerical methods,
the direct numerical simulation approach of directly solving the full unsteady
Navier–Stokes equations has become an important tool in the investigation of the
boundary-layer receptivity process. This approach can simultaneously simulate both
the effects of complex disturbance environments on boundary-layer receptivity and
the shock/disturbance interactions. So far, very few numerical studies have been
carried out on the supersonic and hypersonic boundary-layer receptivity. Zhong
(1997, 2001) studied the receptivity of hypersonic flow over a parabola by solving full
Navier–Stokes equations. The effects of bow shock interactions were accurately taken
into account by using a fifth-order shock-fitting scheme (Zhong 1998). A parametric
study was carried out on the receptivity characteristic for different free-stream waves,
frequencies, nose bluntness characterized by Strouhal numbers, Reynolds numbers,
Mach numbers and wall cooling. It was concluded that the generation of boundary-
layer stability waves was mainly due to the interaction of boundary layer with the
transmitted acoustic waves instead of entropy and vorticity waves. The receptivity
coefficient was found to increase as the relative nose radius was decreased. Fezer &
Kloker (1999) simulated receptivity of a Mach 6.8 boundary-layer flow to blowing and
suction under either wind-tunnel or atmospheric conditions to investigate laminar–
turbulent transition scenarios at different temperature conditions. It was found that
a self-induced stabilization occurred at hot conditions for a certain disturbance level
owing to strong mean-flow distortion. Lin, Malik & Sengupta (1999) and Malik (2000)
studied the receptivity of a Mach 8 flow past a sharp wedge to three different types
of external disturbances by solving compressible linearized Navier–Stokes equations.
The forcing disturbances include: a blowing/suction embedded in the wedge surface,
a narrow ‘beam’ of free-stream acoustic waves and plane acoustic waves in the free
stream. Their results showed that similar boundary-layer instability wave patterns
were obtained in all cases of different forcing disturbances.

Because of the complexity of transient supersonic flow fields involving a receptivity
process with shock interaction, an effective approach to study supersonic boundary-
layer receptivity is the direct numerical simulation (DNS) of the full Navier–Stokes
equations. The DNS has the advantage that detailed flow characteristics of the
receptivity process can be obtained with minimum simplification by using the full
Navier–Stokes governing equations. Systematic numerical simulations can also be
carried out to study the effects of various parameters on the receptivity characteristics.
Such numerical studies can lead to an in-depth understanding of detailed flow
mechanisms. So far, there are no such detailed numerical simulations on the receptivity
of supersonic flow over a flat plate. The mechanisms of generation of instability wave
modes inside the boundary layer are not well understood. Therefore, the objective of
this paper is to study the receptivity mechanisms of the supersonic boundary layer to
various forcing disturbances by using the DNS approach.

Figure 1 shows a diagram of the receptivity of a supersonic flat-plate boundary
layer to free-stream disturbances. An oblique shock wave is generated in supersonic
viscous flow over the flat plate owing to the displacement of the boundary layer
resulting from the viscous effects. The strength of the shock is not known in advance.
It depends on the free-stream Mach number and the Reynolds number of the flow.
The induced oblique shock was neglected in most of the previous theoretical and
computational studies of the stability and receptivity of supersonic and hypersonic
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Figure 1. A diagram of the receptivity to free-stream disturbances for a supersonic
boundary-layer flow over a flat plate.

boundary layers. Such simplification is acceptable in the linear stability analysis of
supersonic boundary layers (Mack 1984) because the standoff distance of the shock
from the wall is relatively large compared with the boundary-layer thickness. For
the study of the supersonic boundary-layer receptivity to free-stream disturbances,
however, such simplification is not appropriate because the effects of the oblique shock
on the receptivity can be significant. The free-stream forcing waves must pass the
oblique shock wave before they enter the boundary layer to excite the Mack modes
there. The interaction of the shock with the forcing waves result in complex wave
patterns behind the shock. Therefore, it is necessary to include the shock interaction
in studies of supersonic boundary-layer receptivity mechanisms.

The DNS approach studies the boundary-layer receptivity process by numerically
solving the time-dependent three-dimensional Navier–Stokes equations for the
temporally or spatially evolving instability waves. Such a simulation requires that
all relevant time and length scales in the flow field are resolved by the numerical
solutions. Therefore, highly accurate high-order numerical methods are required for
such direct simulations. One of the difficulties in supersonic flow simulations is that,
owing to numerical instability, high-order linear schemes can only be used for the
spatial discretization of the equations for the flow field without shock waves inside.
Zhong (1998) presented and validated a new high-order (fifth- and sixth-order) upwind
finite-difference shock-fitting method for the DNS of supersonic and hypersonic flows
with a strong bow shock and with stiff source terms. The use of the shock-fitting
method makes it possible to simulate unsteady motion of the shock accurately without
spurious numerical noise. The method has been subsequently validated and applied
to numerical studies of receptivity of two- and three-dimensional supersonic and
hypersonic flows over blunt bodies, which has proved to be the most appropriate tool
in such receptivity studies.

This paper is part 1 of a series of our extensive studies on the receptivity mechanisms
of a supersonic boundary layer over a flat plate by DNS and by using the LST. The
characteristics of boundary-layer normal modes are analysed in part 1. In part 2
(Ma & Zhong 2003), the receptivity mechanisms of a supersonic boundary layer to
free-stream sound will be investigated.

2. Governing equations and physical model
Under a thermally and calorically perfect gas regime, the two-dimensional Navier–

Stokes equations in conservative form can be written as:

∂U∗

∂t∗ +
∂

∂x∗ (F∗
1 + F∗

v1) +
∂

∂y∗ (F∗
2 + F∗

v2) = 0, (1)
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where the superscript ‘∗’ represents dimensional variables, and U∗ is a vector
containing the conservative variables, {ρ∗, ρ∗u∗, ρ∗v∗, e∗}. F∗

1 and F∗
2 are inviscid

flux vectors, i.e.

F∗
1 =




ρ∗u∗

ρ∗u∗2 + p∗

ρ∗u∗v∗

u∗(e∗ + p∗)


, F∗

2 =




ρ∗v∗

ρ∗u∗v∗

ρ∗v∗2 + p∗

v∗(e∗ + p∗)


. (2)

F∗
v1 and F∗

v2 are viscous and diffusive flux vectors given by

F∗
v1 =




0

−τ ∗
xx

−τ ∗
xy

−τ ∗
xxu

∗ − τ ∗
xyv

∗ − κ∗ ∂T ∗

∂x∗


, F∗

v2 =




0

−τ ∗
yx

−τ ∗
yy

−τ ∗
yxu

∗ − τ ∗
yyv

∗ − κ ∂T ∗

∂y∗


, (3)

where

p∗ = ρ∗R∗T ∗, (4)

e∗ = ρ∗c∗
vT

∗ + 1
2
ρ∗(u∗2 + v∗2), (5)

τ ∗
ij = µ∗

(
∂u∗

i

∂x∗
j

+
∂u∗

j

∂x∗
i

)
− 2

3
µ∗ ∂u∗

k

∂x∗
k

δij , (6)

for i, j = 1, 2, (u∗
1, u

∗
2) = (u∗, v∗). µ∗ is the viscosity coefficient and calculated by using

Sutherland’s law:

µ∗ = µ∗
r

(
T ∗

T ∗
r

)3/2
T ∗

r + T ∗
s

T ∗ + T ∗
s

, (7)

and κ∗ is the heat conductivity coefficient computed by assuming a constant Prandtl
number Pr = 0.72, where the Prandtl number is defined as Pr = µ∗c∗

p/κ∗.
In this paper, dimensional flow variables are non-dimensionalized by the steady-

state free-stream conditions. Specifically, velocities are non-dimensionalized by the
free-stream velocity u∗

∞, length scales by a boundary-layer thickness length L∗ given
by (9), density by ρ∗

∞, pressure by p∗
∞, temperature by T ∗

∞, time by L∗/u∗
∞, vorticity by

u∗
∞/L∗, entropy by c∗

p , wavenumber by 1/L∗, circular frequency by u∗
∞/L∗, etc. The

dimensionless flow variables are denoted by the same notation as their dimensional
counterparts, but without the superscript.

3. Numerical methods and boundary conditions
A fifth-order shock-fitting method of Zhong (1998) is used to compute the two-

dimensional Navier–Stokes equations in the flow field bounded by the bow shock and
the plate (figure 1). The numerical method is described briefly here.

The shock-fitting method treats the bow shock as a computational boundary. The
flow variables behind the shock are determined by the Rankine–Hugoniot relations
across the shock and a characteristic compatibility equation from behind the shock.
The Rankine–Hugoniot relations lead to jump conditions for flow variables behind
the moving shock as functions of unsteady free-stream flow variables in front of the
shock and the local shock normal velocity vn. In order to compute the flow variables
behind the shock, the velocity of the shock front vn is required, which is determined by
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a characteristic compatibility equation immediately behind the shock. The transient
movement of the shock and its interaction with free-stream disturbance waves are
solved as a part of the solutions. The use of the shock-fitting method makes it possible
to use high-order finite-difference schemes for spatial discretization. A fifth-order
upwind finite-difference scheme is applied for convective terms while a sixth-order
central scheme is used for the discretization of viscous terms. The spatial discretization
of governing equations leads to a system of first-order ordinary differential equations.
The first-order explicit Runge–Kutta method is used for temporal discretization. The
computer code based on the fifth-order shock-fitting method has been tested in the
study of receptivity of blunt body to free-stream disturbances (Zhong 2001). This
code is applied to the current study of the receptivity to free-stream disturbances of
supersonic flow over a flat plate.

As a part of the shock-fitting method, Rankine–Hugoniot relations are used to
determine steady or unsteady flow variables at locations immediately behind the
shock boundary. High-order extrapolation is used for outflow conditions because
the flow is supersonic at the outlet except that there is a tiny region near the
wall where flow is subsonic. The non-slip wall-boundary condition is used for
velocity. The adiabatic wall-boundary condition is used for the steady base flow.
For unsteady flow simulations, the conditions for temperature fluctuations at the
wall are either ∂T ′/∂y = 0 or T ′ = 0. Although adiabatic wall and isothermal wall
boundary conditions are commonly used for the base steady flow, ∂T ′/∂y|y=0 = 0 is
called the adiabatic wall and T ′|y=0 = 0 is called the isothermal wall in this paper to
avoid confusion. It has been argued (Mack 1984; Malik 1990) that it is more physical
to assume that the temperature perturbations vanish at the solid boundary even
though the adiabatic wall-boundary condition can be used in base flow calculation.
The main argument for this assumption is that for high-frequency disturbances, the
temperature fluctuations will not penetrate deep into the solid boundary owing to
the thermal inertia of the solid body. In reality, the temperature perturbations could
be somewhere between zero perturbation and zero normal gradient for adiabatic
conditions. Therefore, in this paper, both the adiabatic wall and isothermal wall
boundary conditions are used for the temperature perturbations as two bounds
for real cases if the physical condition for temperature perturbations is difficult to
determine. The effect of both wall temperature boundary conditions on the growth
rates of boundary-layer instability waves will be investigated and discussed.

For supersonic flow over a flat plate with a sharp leading edge, there exists a
singular point at the tip of the leading edge, which introduces numerical instability in
a simulation using the fifth-order shock-fitting method. Therefore, the computational
domain for a shock-fitting calculation starts from a very short distance downstream
of the leading edge. A set of inflow conditions at this inlet location are required to
initialize the flow simulation by the shock-fitting method. In fact, setting physical
inflow conditions correctly is important for both temporal and spatial DNS for
supersonic and hypersonic flow over a flat plate. To our knowledge, all previous
DNS works on supersonic flow over flat plates use locally self-similar solutions of
boundary-layer equations under the assumption ∂p/∂x =0 as inflow conditions and
shock waves are excluded from consideration. However, the zero-pressure-gradient
boundary-layer solutions are not valid for solutions near the leading edge owing
to the interaction between the boundary layer and the outer supersonic flow. Such
interaction leads to a favourable pressure gradient and the formation of an oblique
shock in the flow field. Such effects must be accurately accounted for in the numerical
simulations by using a high-order shock-fitting scheme. In this paper, the steady-state
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inflow conditions near the leading edge for the shock-fitting calculations are obtained
from the results computed by the second-order total variation diminishing (TVD)
shock-capturing scheme in a very small region including the leading edge. The results
of code validation and the evaluation of numerical accuracy for the solutions have
been presented in Ma & Zhong (2001).

4. Flow conditions of Mach 4.5 flow over a flat plate
The receptivity of a Mach 4.5 boundary-layer flow over a flat plate is considered

because the stability of Mach 4.5 flow has been extensively studied (Kendall 1967;
Bayliss, Maestrello & Krishnan 1991; Kerschen 1989; Pruett & Chang 1993; Kleiser,
Guo & Adams 1996). The flow conditions are the same as those used in Kendall’s
(1975) experiment on the stability of a Mach 4.5 flow over a flat plate, i.e.

M∞ = 4.5, T ∗
∞ = 65.15 K,

p∗
∞ = 728.4381557 Pa, Pr = 0.72,

Unit Reynolds number: Re∗
∞ =

ρ∗
∞u∗

∞
µ∗

∞
= 7.2 × 106 m−1.

In many figures in this paper, the results are plotted as a function of the dimensional
x∗ coordinate along the flat plate because this case has been studied by previous
experiments. The dimensional x∗ coordinate in the figures can be converted easily to
dimensionless local Reynolds numbers according to the following formula:

Rex = Re∗
∞ x∗ = 7.2 × 106x∗, (8)

where x∗ is the dimensional coordinate in metres measured from the leading edge
along the plate surface for the current case.

In this paper, a TVD code developed by Zhong & Lee (1996) is used to compute
steady supersonic flow over the leading edge of a flat plate. The TVD code has
been validated by comparing numerical results with experimental results in several
cases (Ma & Zhong 2001). The steady flow near the leading edge of an infinitely
thin flat plate is calculated on very fine grids (200 × 200, �x∗ = 5 × 10−5 m) by using
the same TVD code. The TVD solutions of the flow in the leading-edge region are
then used as inflow conditions to start the simulation by the fifth-order shock-fitting
method. Figure 2(a) compares the steady pressure contours obtained from the TVD
method with those from the fifth-order shock-fitting method. Overall, there is excellent
agreement between the solutions of the two methods for steady flow. There exists some
minor visible difference in the downstream area between the contours from the two
different methods owing to the low-order accuracy and high dissipation associated
with the TVD method. However, it is accurate enough to use TVD solutions as
inflow conditions for the subsequent high-order shock-fitting calculations. Figure 2(b)
compares the profiles of normal velocity at x∗ = 0.007m for solutions computed by the
two methods. The agreement between the two sets of results computed by the TVD
scheme and by the high-order shock-fitting scheme is excellent. Therefore, the TVD
solutions are used as the steady inflow conditions to start our high-order calculation
by using the shock-fitting method.

The computational domain of the current simulations by using the shock-fitting
method begins at x∗ = 0.006 m and ends at 0.63 m, corresponding to the local Reynolds
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Figure 2. (a) Steady pressure contours in a local region near the leading edge and (b) the
profiles of steady normal velocity components along a wall-normal grid line located at
Rex = 50 400. The vertical line in the middle of the domain is the inlet for the shock-fitting
calculation. (Rex = 7.2 × 106x∗ and M∞ = 4.5). (a) —, TVD; . . . , SHKFIT. (b) —, TVD;
�, SHKFIT.
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numbers ranging from Rex =4.32 × 104 to Rex = 4.54 × 106. In studies of boundary-
layer stability, a local Reynolds number, R, based on the length scale of the boundary-
layer thickness are often used:

R =
√

Rex =
ρ∗

∞u∗
∞L∗

µ∗
∞

, L∗ =

√
µ∗

∞x∗

ρ∗
∞u∗

∞
, (9)

where L∗ is the length scale of the boundary-layer thickness. In terms of R, the full
computational domain of current simulations spans from R = 207.9 to R = 2129.8.
In actual simulations, the computational domain is divided into 11 subzones, a total
of 3121 grid points in the streamwise direction and 121 grid points in the wall-normal
direction. In the streamwise direction, there are about 17 grid points to resolve one
wavelength of the second mode at F = 2.2 × 10−4. From supersonic boundary-layer
self-similarity solutions, the displacement thickness of the current boundary layer is
approximately 12.9L∗. A grid stretching function is used in the wall-normal direction
to cluster more points inside the boundary layer near the wall. The grid points are
distributed uniformly in the streamwise direction. In temporal integration, the time
step is calculated by fixed CFL number 0.05.

For unsteady calculation, the frequency is often characterized by a dimensionless
frequency F defined as

F =
ω∗µ∗

∞
ρ∗

∞u∗2
∞

, (10)

where ω∗ is dimensional circular frequency. In this paper, boundary-layer normal
modes with four different frequencies, F = 0.6 × 10−4, 1.2 × 10−4, 1.6 × 10−4 and
2.2 × 10−4, are considered.

5. Steady base flow solutions
The steady-flow solutions are first obtained by using the shock-fitting scheme for the

Mach 4.5 flow over a flat plate without any free-stream disturbances. Figure 3 shows
the distribution of pressure along the wall surface. There are significant pressure
gradients in the streamwise direction, especially in the region near the leading edge,
resulting from the interaction between inviscid external flow and viscous boundary-
layer flow.

Figure 4 shows the positions and angles of the oblique shock wave induced by
the boundary-layer displacement effect. The shock wave is almost a straight line and
shock angles decrease from 15.8◦ near the leading edge to 13.4◦ at the exit of the
current computational domain. There is significant change in shock angles near the
leading edge owing to the interaction between the shock wave and the boundary layer.
In the downstream region, the shock moves far away from the boundary layer and
the interaction between the inviscid flow and the boundary layer becomes negligible.
As a result, local shock angles in the downstream region approach the limit of Mach
angle at 12.84◦ for the Mach 4.5 flow.

It is well known that the second wall-normal derivative of u is critical to the stability
of the second mode. The comparison of profiles of the second wall-normal derivative
of u (x = 0.139m, R = 1000) between the shock-fitting method and the boundary-layer
approach is presented in figure 5. There is good agreement between the boundary-layer
self-similar solution and the simulation except for a visible difference located near
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Figure 3. Pressure distribution along the plate surface for steady base flow solutions
obtained by using the fifth-order shock-fitting method.
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Figure 4. —, Position and . . . , angle of oblique shock wave in steady base flow.

the edge of the boundary layer (δ∗ = 12.9L∗), because pressure gradients are ignored
in the boundary-layer approach. Other features of the steady solutions for this flow
are not presented here because they are similar to the boundary-layer self-similar
solutions.
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Figure 5. Comparison of profiles of second wall-normal derivative of u
(x∗ = 0.139 m, R = 1000). —, SHKFIT; �, BL.

6. Boundary-layer wave mode characteristics
The instability waves in supersonic boundary layers, such as the first and the second

modes, have been studied extensively by Mack (1984) and other workers by using
the LST approach. These previous LST studies have been mainly focused on the
instability of the first- and second-mode waves. However, in a receptivity process, it is
found that some other wave modes, which are stable in a linear stability analysis, play
an important role in the receptivity process. The stable wave modes generated by the
forcing waves can interact with the instability waves once they are generated. In order
to understand the receptivity process, it is necessary to understand the characteristics
of these stable wave modes. Therefore, as the first step in studying the receptivity of a
supersonic boundary layer to free-stream disturbances, the characteristics of normal
modes of the Mach 4.5 boundary layer are studied by the LST in this section.

In the LST studies, pressure is usually non-dimensionalized by ρ∗
∞u∗2

∞ , and circular
frequency ω∗ is normalized by u∗

∞/L∗. The relation between non-dimensional circular
frequency ω and F is

ω = RF. (11)

The LST is based on the normal mode analysis under a parallel-flow assumption.
The formulation of the LST was described in detail in Malik (1990). An LST computer
code based on the multi-domain spectral method of Malik (1990) is developed and
validated.

6.1. Modes I, II, III and IV

After the validation of the LST code, the characteristics of Mach 4.5 (Re∗
∞ =

7.2×106 m−1) boundary-layer normal modes are studied by using the same LST code.
As shown in figure 5, there is little difference between self-similar boundary-layer
solutions and steady-flow solutions from numerical simulations. Our calculations
have shown that the linear stability properties based on steady flow solutions from
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Figure 6. Spectra of eigenvalues with F = 2.2 × 10−4 and R = 1000.

numerical simulations are very close to those based on self-similar boundary-layer
solutions. The base flows obtained from self-similar boundary-layer solutions are used
to perform the LST because it is much easier to obtain self-similar base flow solutions
at arbitrary locations.

In the first test case, the eigenvalues α associated with two-dimensional disturbance
modes are identified with fixed frequency F = 2.2 × 10−4 and spanwise wavenumber
β = 0. Here, the adiabatic boundary condition for temperature disturbances is used.
Figure 6 shows the spectra of eigenvalues at station R = 1000 (x∗ = 0.139). Here,
there are two discrete modes highlighted by circles in the spectra. One is the well-
known second mode; the other is called mode I in this paper. When the test station
gradually moves from upstream to downstream and R increases little by little, the
relative positions of mode I and the second mode will gradually change. We can track
the position of each mode and obtain their trajectories. The dashed line in figure 6
represents the trajectory and direction of mode I when R changes from low to high. It
shows that mode I starts from the continuous spectra on the left of the spectra, and
passes across another continuous spectra in the middle with increasing R. Here, it is
necessary to describe in detail how to track a mode by the LST when it passes across
continuous spectra. In fact, there are two multi-domain spectral methods (Malik 1990)
to carry out the LST. One is the global method and the other is the local method. The
global method can be used to generate the complete spectra of all eigenvalues. The
local method is a shooting method, which can obtain a more accurate eigenvalue of
a specific normal mode, when the less accurate eigenvalue from the global method is
used as an initial guess. We can also use the eigenvalue of a normal mode at the current
station as the initial guess to shoot the eigenvalue of the same mode for the next
neighbouring station. Once we identify the eigenvalue of a normal mode at the current
station, we can track this mode upstream or downstream from the current station to
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Figure 7. The distribution of the phase velocities of boundary-layer wave modes as a function
of RF obtained by the LST, either at different R with a fixed F = 2.2 × 10−4 or at different F
with a fixed location at R = 2000 (M∞ =4.5 and Re∗

∞ = 7.2 × 106 m−1).

obtain the trajectory of this mode. By the local method, we can track the interested
mode in the crossing regions. In the same way, we can find the trajectories of mode I,
the second mode and other modes. After the complex parameter α is found, a
non-dimensional phase velocity of the normal mode can be calculated as

a =
ω

αr

. (12)

Either the phase velocity a or the real part of the wavenumber αr can be used to
characterize the normal mode inside the boundary layer.

Figure 7 shows the distributions of the phase velocities of boundary-layer wave
modes. The phase velocity distributions shown in this figure include the following two
computational cases:

Case 1: phase velocity distributions as a function of different streamwise locations
R at a fixed frequency of F =2.2 × 10−4.

Case 2: phase velocity distributions as a function of different frequencies F at a
fixed streamwise location of R = 2000.

The figure shows that the two cases have identical phase velocity curves when they
are plotted as functions of ω = RF . In general, the phase velocities (or αr ) of different
normal modes inside the boundary layer can be written as a function of non-
dimensional circular frequency ω for cases of different frequencies F and different
local Reynolds numbers R.

Figure 7 presents the phase velocities of the first several wave modes in the
supersonic boundary layer. The phase velocities of the fast acoustic wave (1+1/M∞),
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Figure 8. Profiles of stable boundary-layer normal modes (mode I, mode II, etc.) obtained
by the LST (M∞ = 4.5 and R = 4000).

entropy/vorticity wave (1), and slow acoustic wave (1 − 1/M∞) are also shown in the
figure for comparison. In the figure, there is a class of wave modes, which originate
with an initial phase velocity of the fast acoustic wave (1 + 1/M∞). Before these wave
modes become distinct modes, their eigenvalues merge with the continuous spectra.
After these wave modes appear, their phase velocities decrease gradually as they
propagate downstream. In this paper, we define these wave modes as mode I, mode II,
mode III, etc, according to the sequences of their appearance. Specifically, mode I
appears from the leading edge; mode II comes out next, followed by mode III, and so
on. At locations further downstream, even higher modes will appear. The trajectory
of mode I in the spectra of eigenvalues is shown in figure 6. Here, mode I, mode II,
and so on, are in fact ‘multiple-viscous solutions’ in Mack (1984) and in Eissler &
Bestek (1996). We give them different names for convenience of discussion about
receptivity studies.

Figure 8 shows the typical eigenfunction profiles of this class of modes at R = 4000
and F = 2.2 × 10−4. In this paper, profiles of all disturbances are normalized by non-
dimensional pressure perturbation on the wall. At this location, there is only one peak
for mode I disturbances, while there is one peak and one valley for mode II, two peaks
and one valley for mode III , two peaks and two valleys for mode IV disturbances.
This figure also shows that the disturbances of this family of modes are mainly
concentrated inside the boundary layer (the boundary-layer displacement thickness
is about δ∗ = 12.9L∗). When this class of disturbances propagates from upstream
to downstream, the total number of peaks and valleys for pressure disturbance
profiles does not change, although the locations of peaks and valleys can change
gradually.
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Figure 9. Comparison of profiles of modes I and II with the Mack modes (first and second
modes) at the locations of the wave synchronization points.

6.2. Mack modes (first, second and third modes)

In addition to the family of wave modes I, II and III defined above, figure 7 shows
that there is another wave mode starting from the leading edge with an initial phase
velocity close to 1 − 1/M∞ near the leading edge. For this mode, the phase velocity
is less than the free-stream velocity, and approaches the value of the free-stream
velocity as it propagates downstream. As shown in figure 7, the phase velocity curve
of this mode intersects with modes I, II, III and IV subsequently as RF increases. It
should be pointed out that this mode is in fact the first mode before it intersects with
mode I. It becomes the second mode between mode I and mode II. After intersection
with mode II, it becomes the third mode. It is well known that the first mode is a
Tollmien–Schlichting mode in supersonic flow, which was demonstrated to be most
unstable in some oblique angles (Dunn & Lin 1955). The second, third and higher
modes are acoustic instability modes in supersonic and hypersonic boundary layers
found by Mack (1984). As shown in figure 7, the first, second, third modes are in
fact different sections of a single mode. Here, this mode is simply called Mack modes
for convenience of discussion, because all the different parts of this mode are Mack
modes except that the first part is the first mode.

At the intersections of the phase velocity curves in figure 7, the Mack modes are
synchronized with mode I, mode II, mode III, or higher modes because they have the
same frequency and phase velocity there. The synchronization of two different wave
modes can lead to resonant interactions between them. Here, the ‘resonant interaction’
designates the interaction between different waves with close phase velocities and the
same frequencies. Unlike modes I, II and III, whose numbers of peaks and valleys do
not change as R increases for a fixed F , the total number of peaks and valleys for
pressure disturbance profiles of the Mack modes increases gradually when the Mack
mode waves propagate downstream. For example, near the leading edge, there is
only one peak for the pressure disturbance profile of the Mack mode. After the
synchronization with mode I, another valley appears in the pressure disturbance
profile. Mack defined the numbering of these modes as the first mode with one peak
in the pressure profile, the second mode with one peak and one valley, etc.

At the location of synchronization between the first mode and mode I (R =845 for
F = 2.2 × 10−4), both the first mode and mode I have almost the same profiles of
disturbances inside the boundary layer (figure 9). As a result, it is almost impossible
to distinguish mode I from the first mode based on the profiles of disturbances at

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

03
00

47
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112003004786


Receptivity of a supersonic boundary layer. Part 1 47

this location. Because both the first mode and mode I have the same phase velocity
at their synchronization location, it is impossible to identify them from the phase
velocity either. The characteristic that can distinguish them is the change of phase
velocities during propagation. The phase velocity of mode I decreases while that of the
first mode increases during their propagation downstream. After the synchronization
point between mode I and the first mode, another valley gradually appears in the
profile of pressure disturbances for the Mack mode. The Mack mode in this region
is called the second mode. When the second mode propagates further downstream, it
becomes synchronized with mode II. At the location of synchronization (R = 2509 for
F = 2.2 × 10−4), both the second mode and mode II have almost the same profiles
of disturbances inside the boundary layer (figure 9). Figure 9 also shows that there is
much stronger oscillation in the profiles of the second mode disturbances near the edge
of the boundary layer (δ∗ = 12.9L∗) compared with that of mode II. At the location of
Mack-mode synchronization with mode II, another peak appears in the profile of
pressure disturbances for the Mack mode, which is the characteristic of the third
mode based on Mack’s definition. Actually, the profiles of the Mack mode at R = 2509
shown in figure 9 are located in the transition region from the second mode to the
third mode. Similarly, the Mack mode will become synchronized with mode III and
become the fourth mode when it propagates further downstream (figure 7).

6.3. Effects of Reynolds numbers and frequencies

Figure 7 shows that the effects of changing Reynolds number R and frequency F

on the wave modes can be represented by a combined parameter RF . This figure
shows two groups of computational cases: (i) different F at fixed R = 2000, and
(ii) different R at fixed F = 2.2 × 10−4. The adiabatic boundary condition for the
temperature disturbances is used for both groups. In figure 7, different lines show the
phase velocities of different normal modes changing with ω (ω =RF ). It shows that
the phase veloicty curves of a given mode are the same when the phase velocities
are plotted against ω, for the two groups of cases. Therefore, the phase velocities
of normal modes are functions of the product of non-dimensional frequency and
Reynolds number (RF ). Figure 7 also shows that 1 + 1/M∞ is not the limit for the
phase velocities of modes I, II, III, etc. However, these modes merge with continuous
spectra when their phase velocities are greater than 1 + 1/M∞.

6.4. Stability of boundary-layer normal modes

The phase velocity distributions of disturbances combined with growth rates (αi) and
disturbance profiles are important parameters to identify different normal modes. The
growth rates of different normal modes for the previous two groups of computational
cases are plotted in figure 10. In this figure, different symbols stand for the first
group of cases of different R at a fixed frequency of F = 2.2 × 10−4, and line patterns
represent the second group of cases of different F at a fixed Reynolds number of
R = 2000. For both groups of cases, the growth rates for modes I, II, III and IV are
always positive, which means this family of modes are always stable. Furthermore, the
values of αi of these modes increase as they propagate downstream, which indicates
that these modes become more and more stable during their propagation downstream.
Figure 10 also shows that the Mack modes are unstable in the range of RF between
0.18 and 0.23, in which the unstable Mack modes are the conventional second mode.
In this range, the growth rates of the second mode change dramatically. As shown
in the figure, the slope of the growth rate curve for the second mode is very sharp
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Figure 10. The distribution of the growth rates of boundary-layer wave modes as a function
of RF obtained by the LST.

in this range. The shape of growth rate curve of the unstable second mode is almost
the same for the two groups of cases of fixed frequency at F = 2.2 × 10−4 and fixed
Reynolds number at R =2000. In addition, the locations of branch I and II neutral
stability points of the second mode in terms of RF are almost same for both group
of computational cases.

Figure 10 also shows the conjugation between the second mode and mode I. In the
second-mode unstable region, when the growth rates of the second mode decrease, the
growth rates of mode I increase, and vice versa. The second Mack mode becomes more
unstable while mode I becomes more stable after they are synchronized with each
other. At the valley of the growth rate curve for the second mode, the growth rates
of mode I reach the local peak value. In the range from RF = 0.006 to RF =0.118,
the Mack mode is unstable for the fixed Reynolds number R = 2000 case, although
the results of the fixed frequency F = 2.2 × 10−4 case show that the Mack mode is
stable in the same range. The Mack mode in this range is the conventional first mode.
According to Mack’s study, the oblique first mode (β > 0) is most unstable, while the
second mode is most unstable when β = 0. The growth rates of the Mack modes at
different wave angle ψ = arctan(β/αr ) are shown in figure 11(a). It is obvious that the
results are consistent with Mack’s results, i.e. the oblique first mode is most unstable
when ψ is about 60◦ and the two-dimensional second mode is most unstable. In the
case of fixed F = 2.2 × 10−4, the first mode gradually becomes unstable with increases
of wave angle ψ , although it is stable for two-dimensional disturbances (ψ =0). In
addition, the most unstable wave angles are different for cases of different locations
R. When ψ is larger than 45◦, the second mode becomes always stable. Figure 11(a)
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Figure 11. The distribution of the growth rates of (a) Mack modes and (b) the phase velocities
of three-dimensional boundary-layer wave modes at different wave angles as a function of RF
obtained by the LST.

also shows that the growth rate curves at different wave angles ψ are very similar for
the fixed F = 2.2 × 10−4 case and the fixed R = 2000 case. Almost the same locations
of branch I or II neutral stability points of the second mode in terms of RF are
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obtained for different angles in both groups of cases. Modes I, II, III and IV are
always stable at any wave angles. The phase velocity curves at different wave angles
ψ are shown in figure 11(b). It is obvious that the phase velocities are smaller at
larger wave angles at the same location. Again, the same structures of phase velocity
curves vs. RF at different wave angles are obtained for both groups of cases.

Fedorov & Khokhlov (2002, figure 1) obtained very similar structures of phase
velocity and stability curves of mode I and Mack modes. Though direct comparison
with Fedorov & Khokhlov’s results is not possible because of different flow conditions,
the general trend of phase velocity and stability curves of boundary-layer normal
modes of current results is consistent with that of Fedorov & Khokhlov’s theoretical
analysis. It should be noted that mode I was called the first mode in Fedorov &
Khokhlov (2002). According to the stability properties of different modes, the oblique
first mode (β > 0) is most unstable, while the second mode is two-dimensional
dominant. The first, second and third modes are in fact different sections of a single
Mack mode, as shown in figure 7.

6.5. Effect of temperature boundary condition at the wall

To study the effect of the wall boundary condition for temperature perturbations
on the stability characteristics of the boundary-layer normal modes, eigenvalues
associated with different modes at fixed location (R =2000) are obtained for a range
of frequencies with both isothermal and adiabatic wall boundary conditions. The
results of the isothermal case are compared with those of the adiabatic case. Figure 12
compares the phase velocities and the growth rates of the relevant normal modes as a
function of ω ( ω = RF ). Different line patterns show the phase velocities of different
normal modes for the isothermal case while different symbols denote those for the
adiabatic case. The figure shows that the phase velocities of normal modes are the
same for both the isothermal case and the adiabatic case, which shows that the effect
of the wall temperature disturbance boundary condition on the phase velocities is
very small. This figure also shows that all normal modes of the isothermal case are
more stable than the corresponding modes of the adiabatic case. This is consistent
with Eissler & Bestek’s (1995) simulation results. It showed in Eissler & Bestek’s
(1995) study on wall-temperature effects on transition in supersonic boundary layers
that adiabatic disturbances led to a significantly lower transition Reynolds number
than the non-fluctuating temperature condition.

6.6. Exchange between different normal modes

In this test case, a lower fixed frequency of F = 0.6 × 10−4 is used in the LST analysis.
We chose a lower frequency because the mode exchange between different normal
modes is clearly shown at the frequency F = 0.6 × 10−4, whereas this phenomenon does
not present at frequency F = 2.2 × 10−4 in the LST results. The eigenvalues associated
with different modes are identified and tracked from upstream to downstream
with fixed spanwise wavenumber β = 0. An adiabatic boundary condition for the
temperature disturbances is used. Figure 13(a) compares the phase velocities of
different normal modes changing with the Reynolds numbers for the current case
with those from the previous case of higher frequency at F = 2.2 × 10−4. The phase
velocity curves for the F = 0.6 × 10−4 case match well with those of the F = 2.2 × 10−4

case. However, different from the case of F = 2.2 × 10−4, figure 13(a) shows a wave
mode exchange between mode I and the Mack mode for the case of F = 0.6 × 10−4.
After the first mode becomes synchronized with mode I, the first mode changes to
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Figure 12. Comparison of (a) phase velocities and (b) growth rates of boundary-layer
normal modes between the isothermal case and the adiabatic case.

mode I while mode I changes to the second mode for the current case. Such mode
exchange was first found by Fedorov & Khokhlov (2001). At the synchronization
point between mode I and the first mode (R = 3100 for F = 0.6 × 10−4 and R = 845
for F =2.2×10−4), the first mode and mode I have very similar disturbance structures
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Figure 13. (a) Phase velocities and (b) growth rates of boundary-layer normal modes at
different frequencies.

across the boundary layer (figure 14). Such similarity in mode structures also exists
between mode II and the Mack mode when they are synchronized with each other
(see figure 9). In addition, figure 14 also shows that the structures of the same normal
modes for the different frequencies are almost the same at the synchronization point.
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Figure 14. Similarity of mode I and the first mode at their synchronization points at two
different frequencies (M∞ = 4.5 and Re∗

∞ =7.2 × 106 m−1).

Almost the same profiles of normal modes for the different frequencies at different
locations can be obtained only if the product of RF is the same.

Figure 13(b) also shows the growth rates of different normal modes. For the case of
a fixed frequency at F =0.6×10−4, the first mode is unstable. The unstable first mode
converts to a stable mode I when it propagates downstream. Meanwhile, the stable
mode I converts to an unstable second mode during propagation. The second-mode
unstable range of RF is between 0.18 and 0.23 for both the F = 0.6 × 10−4 and
F = 2.2 × 10−4 cases. The conjugation between the second mode and mode I is shown
in this figure for both cases. Qualitatively, modes I, II, III and IV are stable for
both low-frequency and high-frequency cases, although they are more stable for the
high-frequency case.

7. Numerical simulations
Having obtained steady base flow solutions and linear stability characteristics of

boundary-layer normal modes for the Mach 4.5 flow over a flat plate, extensive
unsteady flow simulations are carried out to study the receptivity of the boundary
layer to various forcing waves. The numerical simulations are based on solving the full
Navier–Stokes equations, which are able to capture in the solutions, the non-parallel
effects of the boundary layer, the resonant interactions between different wave modes,
and the effects of the oblique shock on the wave modes. The amplitudes of forcing
disturbances are carefully chosen so that the non-dimensional amplitudes of the
perturbations are at least one order of magnitude larger than that of the maximum
numerical noise, and they are small enough to preserve the linearity of boundary-
layer disturbances. Numerical tests have demonstrated the linearity of boundary-layer
disturbances studied in this paper. Similar results have been shown in Ma & Zhong
(2000). In this paper, discrete linear wave modes are introduced from the inlet of
the computational domain. The numerical studies of this paper are focused on the
wave mode characteristics and the resonant interactions between the Mack mode
and the family of stable modes of mode I, mode II, etc. In addition, the effect of
frequencies and wall boundary conditions on the boundary-layer disturbances are
also investigated.

For each case of the boundary-layer response to a forcing wave, the unsteady
computations are carried out until the numerical solutions reach a periodic state.
After that, unsteady computations are conducted for one additional period in time,
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so that a temporal Fourier analysis is performed on the results of the unsteady flow
to obtain the amplitudes and phase angles of disturbances in the following form:

φ′(x, y, t) = |φ′(x, y)| exp[i(ψ ′(x) − ωt)]. (13)

From the wave amplitudes and phase angles computed by (13), streamwise wave-
numbers and growth rates of the disturbance waves can be extracted from the
numerical solutions near the wall by

αr =
d|ψ ′|
dx

, (14)

αi = − 1

|φ′|
d|φ′|
dx

. (15)

The values calculated by using (14) and (15) correspond to the streamwise wave-
number and growth rate of a single wave if the numerical solutions are dominated
by a single discrete wave mode in a local region. If the numerical solutions contain a
mixture of two or more wave modes, the αr and αi are a result of a modulation of
these wave modes.

7.1. Forcing waves from inlet

The first case is the response of supersonic boundary layer to forcing waves imposed
at the inlet. The purpose of the numerical studies is to study the wave modes
characteristics and resonant interactions in the supersonic boundary layer. The profiles
of the forcing waves at the inlet are specified as those obtained from the LST. At the
inlet boundary of the computational domain, the flow is specified as the superposition
of the steady base flow and a temporal fluctuations of flow variables at frequency ω,
amplitude ε, and streamwise wavenumber αr , i.e.

φ(xin, y, t) = φ̄(xin, y) + εφ̂(y) exp[i(αrxin − ωt)], (16)

where φ(xin, y, t) represents any of the flow variables. For a given wave mode at a
fixed frequency, the wavenumber αr and the disturbance structure contained in φ̂(y)
is obtained from the LST results. Because xin is fixed at the inflow, the product of
αrxin is a constant for a given αr . This constant can only affect the phase angle
at the inflow. Therefore, it is not necessary to specify αr when a normal mode is
introduced at the inlet. The subsequent downstream propagation of this wave mode
and its interactions with other modes are simulated by time-accurate computations
of the full Navier–Stokes equations.

7.1.1. Development of Mack modes in boundary layer

Neutral stability curves of the Mack modes. It was shown that, among all the normal
modes, only the Mack modes can become unstable in the supersonic boundary layer
by the LST in § 6. The neutral stability curves of the Mack modes are calculated
by using the base flow solution from the numerical simulation. The isothermal wall
boundary condition is used for temperature perturbations. Figure 15 shows the neutral
stability curves of the first and second modes for the Mach 4.5 flat-plate boundary
layer. As the Mack-mode wave at a fixed high frequency (F = 2.2×10−4, for example)
propagates from upstream to downstream, it goes through a stable region of decay
first, then a narrow second-mode unstable region of growth, followed by a stable
region again afterward. The second-mode unstable region for a fixed frequency of
F =2.2 × 10−4 predicted by the LST is located in an interval from R = 806 (branch I
neutral stability point) to 999.6 (branch II neutral stability point). This figure also
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Figure 15. Neutral stability curves (ω vs. R) of two-dimensional first and second modes in
the supersonic boundary layer (M∞ =4.5 and Re∗

∞ = 7.2 × 106 m−1).

shows that the second-mode neutral stability points (branch I and branch II) are
almost constant in term of ω when either R or F is large. For the second-mode
branch I neutral stability points, ω increases from 0.169 to 0.176 when F decreases
from 4.84×10−4 to 8.83×10−5. The difference is less than 4.0%. For the second-mode
branch II neutral stability points, ω increases from 0.215 to 0.225 when F decreases
from 3.53 × 10−4 to 1.12 × 10−4. The difference is less than 4.5%. Therefore, for the
Mack-mode neutral stability points (branches I and II), the linear stability curves can
be approximately scaled by a single non-dimensional parameter ω (ω =RF ) when
either R or F is large.

Mack modes at F = 2.2 × 10−4. In this case, the disturbances of a Mack mode with
a fixed frequency of F = 2.2 × 10−4 are introduced at the inlet located at x∗ =
0.025 m (R =424.26 and RF = 0.0933). The wave amplitude imposed at the inlet
is |p′|/p∞ =0.0002835. For the same steady base flow field, two different unsteady
flow fields are computed by using two sets of wall boundary conditions for the
temperature perturbations on the wall, i.e. both the adiabatic boundary condition
and the isothermal boundary condition for the wall temperature perturbations. The
effects of temperature perturbation boundary conditions on the growth rates of
boundary-layer wave modes are investigated. The temperature perturbations are set
to zero for the isothermal case. On the other hand, the first-order derivative of the
temperature perturbations is set to zero for the adiabatic case. At the location of the
current inlet (RF = 0.0933), figure 7 shows that the Mack mode is in the region of
the first-mode wave.
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Figure 16. Comparison of amplitudes of pressure perturbations along the wall surface for
two cases of different boundary conditions for temperature perturbations for the case of an
imposed Mack mode at the inlet with RF = 0.0933 (F = 2.2 × 10−4).

Figure 16 compares the amplitudes of pressure perturbations along the wall
surface between the adiabatic case and the isothermal case after the first mode
is introduced from the inlet. It shows that the amplitude of pressure disturbances
increases monotonically until it reaches a maximum value at the branch II neutral
stability point. After passing the branch II neutral stability point, the amplitudes
of the disturbances decay rapidly because the second mode becomes stable. Finally,
the amplitudes of the disturbances approach zero further downstream. The figure
shows that for the adiabatic case, the branch II neutral stability point is located at
x∗ = 0.155 m (or R = 1056) with peak pressure amplitude |p′|/p∞ = 0.001845, which is
6.5 times the pressure amplitude at the inlet. On the other hand, for the isothermal
case, the branch II neutral stability point is located at x∗ = 0.142 m (or R = 1011)
with peak pressure amplitude |p′|/p∞ = 0.001465, which is 5.2 times the pressure
amplitude at the inlet. If the adiabatic wall boundary condition is used for the
temperature perturbations, the second-mode unstable region predicted by the LST
is from R = 840 to R =1030.5 for a fixed frequency of F =2.2 × 10−4. Therefore,
in the simulation of both the adiabatic case and the isothermal case, there is good
agreement between the locations of the branch II neutral stability points predicted by
the LST and that obtained by numerical simulation based on the full Navier–Stokes
equations. Compared with the isothermal case, the maximum amplitude for pressure
perturbations is larger for the adiabatic case, which indicates that the second mode
is more unstable for the adiabatic case. This is consistent with the LST predictions
on the Mack mode growth rates shown in figure 12(b). Figure 16 also shows that
there is modulation on the amplitude of pressure perturbations after the second mode
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passes the branch II neutral stability point and becomes stable for the adiabatic case,
while pressure perturbations monotonically decay to zero after the branch II neutral
stability point for the isothermal case.

The streamwise local wavenumbers αr and growth rates αi of the numerical
solutions can be calculated, based on pressure disturbances on the wall, by using (14)
and (15), respectively. Figure 17 compares the local wavenumbers and growth rates of
the disturbances obtained from the numerical simulations with those predicted by the
LST based on the same mean flow. The figure shows that streamwise wavenumbers
predicted by the LST are the same for the two sets of wall temperature boundary
conditions. The wavenumbers computed by the simulations agree well with those
predicted by the LST analysis, except in the downstream region for the adiabatic
case. The disagreement is because αr does not represent the wavenumber of the Mack
mode in the region when the numerical solutions are a mixture of two or more wave
modes. In the numerical solutions for the adiabatic case, there is a modulation between
the Mack mode and another mode after passing the branch II neutral stability point.
As a result, there is an oscillation for streamwise wavenumbers after that point.
However, such a modulation does not exist in the isothermal case. Therefore, there
is good agreement on streamwise wavenumbers between the LST and the numerical
simulation in isothermal case.

Figure 17 also compares the growth rates between the results obtained from
numerical simulations based on (15) and those predicted by the LST. As shown in
figure 17, the second mode unstable region based the simulation results is from the
beginning to x∗ = 0.142 m for the isothermal case and to x∗ = 0.155 m for the adiabatic
case. The second-mode branch I neutral point does not show in the simulation results.
The peak growth rates predicted by the LST are −0.00256 and −0.00365 for the
isothermal case and the adiabatic case, respectively, while the corresponding values
obtained from the numerical simulations are −0.00318 and −0.00410, respectively.
Both the LST and the simulation results show that the adiabatic case is more unstable
than the corresponding isothermal case. In addition, there is a great difference between
the growth rates obtained from the numerical simulations and the LST. Specifically,
the LST consistently underpredicts the instability of the Mack modes. This trend
is true for all test cases we have considered. The numerical simulations account for
the effect of the non-parallel boundary layer and the effect of the oblique shock
interactions. In the current case, the effect of the shock is negligible because the
Mack-mode waves are confined in the boundary layer. Therefore, the difference in
the growth rates between the numerical solutions and the LST may be due to the
parallel mean flow assumption used in the LST. Overall, there is good agreement
in eigenvalues between the LST and DNS. Such agreement is also obtained in
comparison of eigenfunction profiles, which is not shown here.

Effect of frequency. The effects of wave frequency on the propagation of the Mack
modes are studied by comparing the results of four cases with different frequencies,
i.e.

F = 2.2 × 10−4, 1.6 × 10−4, 1.2 × 10−4, 0.6 × 10−4. (17)

The adiabatic boundary condition is used for the temperature perturbations on
the wall for these computational cases. Figure 18 compares amplitudes of pressure
perturbations on the wall for the four cases with different frequencies when the
Mack-mode waves with the same initial pressure amplitude of |p′|/p∞ = 0.0002835
are imposed at the inlet. The inlet of the four cases has the same location of
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Figure 17. Comparison of (a) the streamwise wavenumbers and (b) the growth rates obtained
by numerical simulations and by the LST calculations for the case of an imposed Mack mode
at the inlet with RF = 0.0933 (F = 2.2 × 10−4).

x∗ = 0.025 m (R = 424.26), where the Mack mode is in the first mode region. The
figure shows that as the frequencies decrease, the growth rates of the Mack mode
increase and the locations of branch II neutral stability points move downstream.
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Figure 18. Distributions of amplitudes of pressure perturbations of the Mack mode at
different frequencies.

The effects of frequencies on the growth rates and the locations of branch II neutral
stability points are consistent with the LST prediction. Based on the LST prediction,
the locations of the branch II neutral stability point of the second mode in terms
of RF are the same for cases of different frequencies (figures 13(a) and 15). The
peak amplitude of pressure perturbations at the branch II neutral stability point
for the case of F = 2.2 × 10−4 is located at x∗ = 0.155 m, or RF =0.2324 (R =1056).
Therefore, it is expected that the peak amplitudes of pressure perturbations for the
cases of F = 1.6 × 10−4 and F =1.2 × 10−4 should be located at RF = 0.2324 also,
i.e. R = 1452.6, or x∗ = 0.293 m for the case of F = 1.6 × 10−4, and R = 1936.7 or
x∗ = 0.521 m for the case of F = 1.2 × 10−4. From the numerical simulation with
F = 1.6×10−4, the peak amplitude of the pressure perturbation is |p′|/p∞ = 0.003774
and located at x∗ = 0.2914 m (R = 1448.5). For the case of F = 1.2 × 10−4, the peak
amplitude of the pressure perturbation is |p′|/p∞ = 0.007658 and it is located at
x∗ = 0.5188 m (R = 1932.7). Therefore, the locations of the peak pressure amplitudes
from the numerical simulations are consistent with those predicted by the LST.

On the other hand, the peak value of the pressure perturbations for the case of
F = 1.2 × 10−4 is almost quadruple that of the case of F =2.2 × 10−4 and twice that
of the case of F =1.6 × 10−4. This can be explained from the LST prediction on
the growth rates of the second mode. For different frequencies, there are very similar
growth rate curves in the second-mode unstable region in terms of RF shown in
figure 13(b). RF is proportional to the square root of physical length x∗ for a fixed
frequency. For different frequencies, the second-mode unstable region expressed in x∗

should be longer for the lower-frequency case given the same range of RF . From
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Figure 19. Comparison of the growth rates of the Mack mode between the LST and
simulation results for two sets of frequencies: F = 2.2 × 10−4 and F = 1.6 × 10−4.

the definition of growth rates (equation (15)), the amplitude changing with x can be
obtained by taking integration of growth rates with respect to x∗ according to the
following formula:

|φ′|(x∗) = |φ′
0| exp

(∫ x∗

x∗
0

− αi(ω) dx∗

)
, (18)

where ω is a function of x∗, and |φ′
0| is the initial wave amplitude at x∗

0 . Therefore,
a longer integration range in the second-mode unstable region leads to larger
disturbance amplitudes for the cases of lower frequency given the same initial wave
amplitudes.

For the case with F =0.6×10−4, the unstable region of the second mode is out of the
range of the current computational domain (0.02592 < RF < 0.128), while the first
mode is slightly unstable from the LST prediction, as shown in figure 13(b). The LST
prediction agrees with the simulation results, as shown in figure 18. The first-mode
branch II neutral stability point from the LST is located at x∗ = 0.536 (R = 1963.6).
From simulation, pressure perturbations reach a peak value of p′/p∞ = 0.001226 at
x∗ = 0.573 (R =2031.16). The numerical solutions agree well with those of the LST
prediction in terms of the location of the branch II neutral stability point for the first
mode.

Figure 19 compares the growth rates as a function of RF between the results from
LST and numerical simulations for two cases of different frequencies, i.e. F = 2.2×10−4

and 1.6×10−4. Again, the growth rate curves obtained from the numerical simulations
for two cases of different frequencies are very close to each other, except that the peak
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Figure 20. Distribution of instantaneous pressure perturbations along the wall surface
(F = 2.2 × 10−4).

growth rate is slightly larger for the case of F = 1.6×10−4. The locations of the peaks
at different frequencies are approximately the same. Therefore, both the results from
the the LST predictions (figuers 10 and 13b) and those from numerical simulations
(figure 19) show that the growth rate curves of the second mode vs. RF are very close
for different frequencies. As discussed before, compared with the numerical solutions,
the corresponding LST results underpredict the growth rates of the second mode in
the supersonic boundary layer.

Therefore, the results predicted by the LST are accurate in predicting the
wavenumbers and wave mode structures of the Mack modes in the supersonic
boundary layer, but the LST results are not accurate in predicting the growth rates
of the Mack modes. The LST calculations consistently underpredict the growth rates
as compared with the full Navier–Stokes simulations.

7.1.2. Mode I propagation and resonant interactions with Mack modes

Mode I at F =2.2 × 10−4. The development of mode I waves in the boundary layer
is considered in this section, where forcing disturbances of mode I with a frequency
of F = 2.2 × 10−4 are introduced at the inlet of the computational domain located at
x∗ = 0.025 m (R = 424.26).

Figure 20 shows the instantaneous pressure disturbances along the wall surface after
the unsteady solutions reach a periodic state. The adiabatic wall boundary condition
is used for temperature perturbations. Compared with the results of a single Mack
mode propagation shown in figure 16, the wave patterns induced by a mode I wave
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at the inlet are more complicated. There are multiple peaks in amplitudes of pressure
perturbations, which indicate the excitation of different wave modes at different
locations during the wave propagation from the inlet to the downstream area. The
amplitudes of pressure disturbances increase before reaching the first peak located
approximately at x∗ = 0.06 m, which means this mode is unstable in this region. This
is contradictory to the LST prediction shown in figure 10 that mode I should always
be stable. Intuitively, the amplification of mode I may be due to the effect of the
shock wave, which is not included in the LST. A similar numerical simulation on the
propagation of mode I is performed by using a rectangle domain without the shock
wave and boundary-layer self-similar solutions are used as inflow conditions (Ma &
Zhong 2000). The results show that the effect of the shock on the propagation of
mode I disturbances in the boundary layer is negligible. One possible reason is that
the amplification of mode I results from the interaction between mode I waves and
other waves in the flow field, which will be discussed further in § 7.1.3.

After passing the first peak (at x∗ = 0.06m), mode I waves decay owing to its
inherent stable property. Figure 20 show a second growth region for mode I in the
range of x∗ between 0.115 and 0.155 m. This growth results from the instability of
the second Mack mode. As shown in figure 7, mode I and the first mode become
synchronized at the synchronization point. Furthermore, both the first mode and
mode I have almost the same profiles of disturbances across the boundary layer
at the synchronization point (figure 9). As a result, mode I waves convert to the
Mack-mode waves in the synchronization region. In fact, the wave mode exchange
between mode I and the Mack mode has been discussed in § 6 (figure 13a). After the
synchronization point between mode I and the first mode, the Mack mode becomes
the second mode, which is unstable in the region closely behind the synchronization
point. The wave amplitudes in the region after the synchronization point increase
because of the growth of the induced second mode in its unstable region. Therefore,
the boundary-layer disturbances obtained by the numerical simulation are amplified
again when they reach the second-mode unstable region.

The process through which mode I waves convert to the second mode waves is
also shown in the distribution of the phase velocities calculated from the numerical
solutions of the pressure disturbances along the wall surface as shown in figure 21.
The figure shows that the phase velocities obtained from the simulation are the same
as those of mode I predicted by the LST in the upstream region. This is expected
because the disturbances imposed at the inlet are those of mode I obtained from the
linear stability analysis. As the wave propagates downstream, mode I converts to the
first mode at the wave synchronization point between mode I and the Mack mode
located at approximately x∗ = 0.1 m. After the synchronization point, the second
mode induced by mode I propagates downstream. The amplitudes of the second
Mack mode grow in the subsequent unstable region until it reaches the branch II
neutral stability point. After the Mack-mode waves pass the branch II neutral stability
point of the second mode, the amplitudes of the disturbances decay rapidly in
the second-mode stable region. There are strong oscillations in the phase velocity
distribution after the decay of the second mode because the disturbances result from
the modulation of the second mode and other modes.

These results indicate that although mode I is always stable, it can play an
important role in the receptivity process because it can convert to the unstable Mack
mode through the resonant interaction with Mack modes. The amplitudes of the
induced Mack mode can grow in its unstable region immediately following the wave
synchronization point.
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Figure 21. Comparison of the phase velocities between the results from the LST predictions
and those from numerical solutions based on pressure disturbances on the wall (F = 2.2 × 10−4).

Effect of frequency. The effect of frequency on mode I propagation and interaction
with the Mack modes in the boundary layer is studied by comparing the numerical
simulation results of four test cases of different frequencies:

F = 2.2 × 10−4, 1.6 × 10−4, 1.2 × 10−4, 0.6 × 10−4. (19)

Similar to the previous case, the disturbances of a single mode I wave, of the same
amplitude but different frequencies, are imposed at the inlet. The adiabatic boundary
condition is used for the temperature perturbations on the wall for all four cases.
Again, though mode I is predicted to be always linearly stable by the LST for all
four frequencies, the imposed mode I waves can excite the second Mack mode waves
through resonant interactions.

Figure 22 compares the amplitudes of the pressure perturbations on the wall for
the four cases of different wave frequencies when mode I waves are introduced at the
same inlet location of x∗ = 0.025 m (R = 424.26). The initial pressure amplitudes are
the same for all cases at |p′|/p∞ = 0.0002835. The figure shows that the amplitudes of
pressure disturbances for these cases of different frequencies increase at the beginning
due to the interaction between mode I disturbances and other modes. After reaching
the first peak values, the amplitudes of pressure disturbances decrease owing to the
inherent stable characteristic of mode I. After passing the first peaks in amplitudes,
unstable second-mode waves are induced by mode I waves at the wave synchronization
points. The amplitudes of the second mode grow significantly in its unstable region
before reaching the second peaks of the disturbance amplitudes at the second-mode
branch II neutral stability points. After passing branch II neutral stability points,
both mode I and the second-mode waves die down because both waves are stable.
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Figure 22. Distributions of the amplitudes of pressure perturbations on the wall for the
cases of imposed mode I of different frequencies at the inlet.

The peak values at the second-mode branch II neutral points are 0.0003346, 0.001068
and 0.002797, for the cases of F =2.2 × 10−4, F = 1.6 × 10−4 and F =1.2 × 10−4,
respectively, which are 1.18, 3.77 and 9.87 times their initial amplitudes at the inlet.
For the case of F =0.6 × 10−4, the region of instability of the second mode is located
further downstream, which is outside the computational domain considered in this
paper.

Effect of wall temperature boundary conditions. The effect of the wall temperature
boundary conditions on the propagation of mode I is investigated by introducing
mode I disturbances at the inlet with both the isothermal wall and the adiabatic
wall boundary conditions. The inlet is located at x∗ = 0.025 m (R = 424.26), and
the initial pressure amplitude is |p′|/p∞ = 0.0002835. Two cases with different
frequencies of F = 2.2 × 10−4 and F = 1.2 × 10−4 are studied. Figure 23 compares the
amplitudes of pressure perturbations on the wall between the cases with two different
wall temperature boundary conditions and two different frequencies. Overall, the
amplitudes of pressure perturbations away from the inlet are much smaller for the
isothermal cases compared to those of the adiabatic cases with the same frequency.
Especially, at the same frequency, pressure amplitudes at the second-mode branch II
neutral stability points are much smaller in the isothermal case than those in the
adiabatic case. The reason for the difference in wave amplitudes between the adiabatic
cases and the isothermal cases is that the normal modes of the isothermal cases are
linearly more stable than those of the adiabatic cases (figure 12b). Compared with an
adiabatic case, mode I in an isothermal case is less amplified before it reaches the first
peak in pressure perturbations. Furthermore, the amplitudes of mode I disturbances
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Figure 23. Comparison of the amplitudes of pressure perturbations along the wall surface
for mode I with different wall boundary conditions at different frequencies.

in the isothermal case decay much faster and die down to a much smaller value
when the wave reaches the synchronization point between mode I and the Mack
modes. As a result, the initial amplitudes of the induced second-mode waves are
much smaller in the isothermal cases than those in the corresponding adiabatic cases.
In addition, the growth rates of the second mode shown in figure 12(b) are smaller
for the isothermal case than those for the adiabatic case. Therefore, the amplitudes of
induced second-mode waves at the branch II neutral stability point are significantly
smaller for the isothermal cases than those for the adiabatic cases.

7.1.3. Mode II propagation and resonant interactions with acoustic waves

The development of mode II waves in the boundary layer is considered in this
section. Similar to mode I, this mode is always stable according to the LST prediction,
but the waves are important to the supersonic boundary-layer receptivity process. As
shown in figure 7, mode II was initiated at the same phase velocity as that of the free-
stream fast acoustic wave at 1 + 1/M∞. As mode II propagates downstream, the phase
velocity decreases. Mode II can have an energy exchange with the fast acoustic waves
in the boundary layer through these resonant interactions. Such resonant interactions
are critical to the receptivity of the Mack mode in the supersonic boundary layer.

The results of two test cases of mode II propagation are presented in this section.
In both cases, mode II disturbances of the same frequency are imposed at different
inlet locations. In the first case, the initial mode II waves are imposed at RF = 0.3552.
Figure 7 shows that the inlet location in this case is downstream of the location where
mode II first appears. On the other hand, in the second case, the initial mode II
waves are imposed at RF =0.2539. The inlet location is near the location of the
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Figure 24. Distribution of instantaneous pressure perturbations of mode II propagation along
the wall surface for the case of imposed mode II at inlet with RF =0.3552 (F = 2.2 × 10−4).

first appearance of mode II. The results in this case will show that the subsequent
development of mode II is very different in these two cases because there are wave
interactions near this synchronization point between mode II and the fast acoustic
waves.

Mode II of F = 2.2 × 10−4 imposed at the inlet with RF = 0.3552. In this case, the
forcing disturbances of mode II with a frequency of F = 2.2 × 10−4 are introduced
at the inlet of the computational domain located at x∗ = 0.362 m (R =1614.43). The
adiabatic wall boundary condition is used for the temperature perturbations on the
wall. The inlet is located at RF =0.3552 in the phase velocity plots of figure 7, which
shows that mode II is imposed from downstream of its initial synchronization point
with the fast acoustic wave.

Figure 24 shows the instantaneous pressure disturbances along the wall surface.
The decaying of pressure disturbances indicates that mode II waves are stable, which
is consistent with the prediction of the LST (figure 10). This figure shows that the
simulation results of this case only contain the disturbances of pure mode II waves
in the boundary layer. No other wave modes are excited. As predicted by the linear
stability analysis, the wave mode is stable as it propagates downstream. The results
of numerical simulations are expected to agree with the LST results because there are
no other wave components in the solutions.

Figure 25 compares the profiles of disturbances at x∗ = 0.488 m (R =1874.46) ob-
tained from the numerical simulation and those predicted by the LST as the eigen-
functions of mode II. The figure shows excellent agreement in the disturbance
structures between the numerical results and the LST predictions. Figure 26 shows
the comparison of streamwise wavenumbers (αr ) and growth rates (αi) obtained by
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Figure 25. Comparison of the wave structure of mode II obtained by the LST and by
numerical simulation for grid station located at R = 1874.46 for the case of imposed mode II
at inlet with RF = 0.3552 (F =2.2 × 10−4).

the numerical simulation and the corresponding values predicted by the LST. The
figure shows very good agreement in streamwise wavenumbers. Therefore, there are
only pure mode II waves in the boundary layer. The eigenfunctions and wavenumbers
of the waves can be predicted well by the linear stability analysis. However, consistent
with other modes, the LST analysis overpredicts the growth rates (αi) of mode II in the
boundary layer, as shown in figure 26(b). Therefore, there are significant differences for
the growth rates between the LST predictions and the numerical simulation results
(larger than 50% in maximum). Again, the differences may be because a parallel
assumption is used in the linear stability analysis, whereas the actual boundary layer
is not parallel. The non-parallel effect becomes stronger at higher Mach numbers.

Mode II of F = 2.2 × 10−4 imposed at inlet with RF =0.2539. In this case, mode II
disturbances are introduced through the inlet at x∗ = 0.185 m (R = 1154.12). This
case is different from the previous case only in the location of the inlet. For the
previous case, the inlet is located downstream of the initial synchronization point
between mode II waves and fast acoustic waves. For this case, the inlet is located at
R = 1154.12 (RF =0.2539), which is very close to the synchronization point between
mode II waves and fast acoustic waves. The profiles of mode II disturbances at the
inlet are showed in figure 27. It shows that the wave structures of mode II at this
early location contain strong amplitudes in the region outside the boundary layer.

Figure 28 shows the distribution of instantaneous pressure disturbances along the
wall surface. Compared with the previous case of mode II propagation shown in
figure 24, figure 28 shows that the disturbance field of the current case contains a
mixture of several wave modes with multiple peaks in perturbation amplitudes. Even
though mode II is always a stable mode according to the LST analysis, the amplitudes
of pressure disturbances along the wall surface for the current case increase before
they reach the peak value. However, according to figure 10, mode II is predicted by
the LST always to be stable. This difference in the stability result is not because the
effect of the shock is neglected in the LST analysis. A similar numerical simulation
study on the stability properties of mode II by using a rectangle domain without the
shock shows that the effect of the shock on the mode II stability is negligible.

It is found that the amplification of wave amplitudes in a stable region of mode II
is caused by a resonance between mode II disturbances and the fast acoustic waves
outside the boundary layer. From the profiles of mode II disturbances at the inlet
shown in figure 27, the structure of wave disturbances of mode II does not decay
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Figure 26. Comparison of (a) the wavenumber and (b) the growth rate distributions of
mode II between the simulation and the LST results for the case of imposed mode II at inlet
with RF = 0.3552 (F = 2.2 × 10−4).

exponentially outside the boundary layer at the synchronization point at the inlet. The
mode II wave profiles are very different from those of the same mode at downstream
locations (see figure 25) where mode II is not synchronized with the fast acoustic
wave. In other words, there are strong disturbances outside the boundary layer for
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Figure 27. Profiles of mode II disturbances obtained from LST at the inlet with
RF = 0.2539 (F = 2.2 × 10−4).
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Figure 28. Distribution of instantaneous pressure perturbations of mode II along the wall
surface for the case of imposed mode II at the inlet with RF = 0.2539 (F =2.2 × 10−4).

mode II near the synchronization point between mode II waves and fast acoustic
waves. The disturbances outside the boundary layer belong to fast acoustic waves
because the non-dimensional amplitudes of disturbances satisfy the relationship of
fast acoustic waves, i.e.√

|u′|2 + |v′|2 = |p′|M∞ =
|T ′|

M∞(γ − 1)
. (20)

Figure 29 compares the non-dimensionalized magnitudes of the mode II wave at the
inlet. The figure shows that the perturbations of mode II outside the boundary layer
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Figure 29. Wave structure of disturbances, obtained from LST, imposed at the inlet with
RF = 0.2539 (F = 2.2 × 10−4).

satisfy the acoustic wave relations given by (20). In addition, the phase velocities of
induced disturbances outside the boundary layer are the same as the phase velocity
of a fast acoustic wave, i.e.

a = 1 + 1/M∞. (21)

Figure 30 shows the profiles of phase velocities of induced disturbances along the
wall-normal direction at different streamwise locations. The phase velocities approach
that of a fast acoustic wave in the region outside the boundary layer. The results
in both figures 30 and 29 indicate that there are strong acoustic wave components
outside the boundary layer in the initial mode II disturbances, which are introduced
through the inlet at x∗ =0.185 m (RF = 0.2539) in the numerical simulation. Figure 30
also shows that the phase velocities of mode II inside the boundary layer decrease as
mode II waves propagate downstream.

Figure 31 shows the comparison of phase velocities of mode II predicted by the
LST and those obtained by the numerical simulations of imposed mode II with the
same frequency at different inlet locations. The figure shows that mode II waves are
modulated by the fast acoustic wave when mode II are imposed near their initial
wave synchronization location. On the other hand, if mode II are imposed at an
inlet downstream of the initial point, there is no wave modulation. The wavenumbers
of the numerical simulation for this case (simulation 1) agree very well with those
obtained by the LST.

Figure 32 compares the profiles of disturbances at x∗ = 0.488m (R = 1874.46 and
RF = 0.4124) obtained from the numerical simulation with those predicted by the
LST. The numerical simulation is for the second case of mode II imposed near the
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Figure 30. Profiles of phase velocities of wave disturbances obtained by numerical
simulations for the case of imposed mode II at the inlet with RF = 0.2539 (F =2.2 × 10−4).
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Figure 31. Comparison of phase velocities of the LST and those of numerical simulation
for mode II disturbances introduced at different inlet locations (simulation 1: Rinlet = 1614.43,
simulation 2: Rinlet = 1154.12, F = 2.2 × 10−4).
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Figure 32. Comparison of the wave structure of mode II obtained by the LST and by
numerical simulation for grid station located at R =1874.46 for the case of imposed mode II
at inlet with RF = 0.2539 (F = 2.2 × 10−4).

initial wave synchronization location. The figure shows that there is good agreement in
the disturbance structures inside the boundary layer between the numerical simulation
solutions and eigenfunctions predicted by the LST. However, because of a modulation
of mode II with the acoustic wave in the simulation, the two sets of results do not agree
outside the boundary layer. In the numerical simulation, the wave field downstream
contains both mode II wave and strong acoustic wave components outside the
boundary layer. The acoustic wave is excited by mode II through their mutual
resonant interaction. It is expected that an imposed forcing acoustic wave can also
excite mode II at this synchronization location through their resonant interactions.

Therefore, the characteristics of mode II propagation in the supersonic boundary
layer can be summarized as follows. Figure 7 shows that the phase velocities of
mode II waves are the same as those of the fast acoustic waves when mode II
waves initially appear in the figure. At this initial location, there is a strong resonant
interaction between mode II and the fast acoustic waves, because the phase velocities
of mode II disturbances are synchronized with that of the acoustic waves. As a
result, though predicted to be stable by the LST, mode II disturbances are amplified
when they are introduced at the inlet near this synchronization point located at
RF = 0.2539. Similarly, the amplification of mode I waves is also due to the resonance
between mode I waves and acoustic waves. Since the LST analysis cannot account
for the interactions between different types of wave, the amplification of mode II
disturbances cannot be predicted correctly by the LST when there are resonant wave
interactions. The current numerical simulation approach based on the full Navier–
Stokes equations can take account of these interactions, as well as the effect of shock
interaction with wave modes. On the other hand, when mode II disturbances are
introduced through the inlet at a location further downstream with RF = 0.3552,
the mode II disturbances are mainly confined inside the boundary layer and all
disturbances decay exponentially to zero outside the boundary layer (see figure 25).
In addition, downstream after RF = 0.3552, the phase velocities of mode II waves
are far away from those of the fast acoustic waves as shown in figure 31). Therefore,
there is no interaction between mode II waves and the acoustic waves in this case.
Consequently, there is good agreement on the wavenumbers of mode II disturbances
between the results from the LST and the numerical simulation, though the LST
consistently underpredicts the magnitude of the growth rates, owing to the effect of
non-parallel boundary layer, which is neglected in the LST.
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Figure 33. Comparison of mode II pressure perturbation amplitudes for two cases
of different frequencies.

Effect of frequency. The effect of frequency on the properties of the mode II wave
is studied by comparing results of mode II propagation at two different frequencies:
F = 1.6 × 10−4 and F = 2.2 × 10−4. The adiabatic wall boundary condition is used for
both cases. The mode II disturbances are introduced at the inlet with approximately
the same value of RF as in figure 7. For the cases of F = 1.6×10−4 and F = 2.2×10−4,
the inlets are located at x∗ = 0.362 m (RF =0.2583) and x∗ = 0.185 m (RF = 0.2539),
respectively.

Figure 33 compares the amplitudes of pressure perturbations on the wall for the
two cases of different frequencies. The figure shows that the amplitudes of pressure
disturbances increase at the beginning owing to the resonance between mode II
waves and the acoustic waves which are dominant outside the boundary layer. After
reaching peak values, the amplitudes of pressure disturbances decay as mode II waves
propagate downstream. The inflow condition of pressure disturbances at the inlet is
|p′|/p∞ = 0.0002835 for both cases. The peak amplitudes of pressure disturbances are
|p′|/p∞ = 0.00056295 and |p′|/p∞ =0.00059570 for F = 2.2×10−4 and F = 1.6×10−4,
respectively. Unlike the second Mack mode, which is much more amplified for lower
frequency, the maximum amplitudes of mode II pressure disturbances are close to
each other for two different frequencies. The locations of peak value expressed in
RF are 0.3294 and 0.3255 for F = 2.2 × 10−4 and F =1.6 × 10−4, respectively. Again,
the location of the peak amplitudes expressed in RF are very close in both cases of
different frequencies. These results again show that though mode II predicted by the
LST is always stable, it can experience growth when it is near the synchronization
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point with the fast acoustic waves. Such growth does not depend on the frequency
very much.

8. Results discussions and conclusions
This paper is the first part of our two-part study on the mechanisms of the

receptivity to disturbances of a Mach 4.5 flow over a flat plate by numerical
simulations and by linear stability analyses. The main focus of this paper is on stability
characteristics of the boundary-layer wave modes and their resonant interactions.
These interactions play a critical role in the receptivity process of a supersonic
boundary layer. The numerical solutions of both steady base flow and unsteady
flow induced by forcing disturbances are obtained by using a fifth-order shock-fitting
method of Zhong (1998). While the receptivity mechanisms are mainly studied based
on the analyses of the numerical solutions, the wave modes generated in the boundary
layer are identified by means of LST. The LST is also used to study the linear stability
characteristics and wave synchronization of the wave modes, which play an important
role in the receptivity process in the supersonic boundary layer. The results presented
in the previous sections are discussed further in this section.

8.1. Stability characteristics of wave modes

The linear stability properties of the Mack modes, i.e. the first mode and the second
mode, are well understood owing to the in-depth studies by Mack (1984). For the
receptivity studies, however, another family of stable normal modes in the supersonic
boundary layer play an important role in transferring perturbation energy from the
forcing waves to the unstable Mack modes. These stable modes are termed modes I, II,
III, etc. in this paper. Though they are linearly stable modes, they can have substantial
energy growth in the receptivity process because of their resonant interactions with
the forcing acoustic waves. They can also induce the growth of the Mack modes
because of their resonant interactions with the Mack modes. Currently, the stability
characteristics of these boundary-layer wave modes are not known, though the
characteristics of the first and second mode instability are well known. Therefore, the
linear stability properties of the normal modes in the supersonic boundary layer are
first studied before studying the receptivity of the supersonic boundary layer.

The characteristics of different boundary-layer normal modes, both the Mack modes
and the family of stable modes (mode I, mode II, etc.), have been studied first by
the LST analysis. For cases of different frequencies and different Reynolds numbers,
the results show that the phase velocities (or wavenumbers) of all normal modes
in the supersonic boundary layer are functions of the product of non-dimensional
frequency and Reynolds number (RF ). Almost the same values of RF are obtained
for branch I or branch II neutral stability points of the second mode for cases
of different frequencies and different Reynolds numbers. Both the family of Mack
modes (the first mode and second mode) and the family of stable modes (mode I,
mode II, etc.) coexist in the boundary layer. The family of stable wave modes are
originated with the same initial phase velocities as the fast acoustic waves. After
these wave modes appear, their phase velocities decrease gradually as they propagate
downstream. On the other hand, the family of Mack modes are originated from
the leading edge with initial phase velocities close to those of slow acoustic waves.
For Mack modes, the phase velocities are less than the free-stream velocity, and
approach the value of the free-stream velocity as they propagate downstream. It is
also found that the conventionally defined first, second and third instability modes in
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a supersonic boundary layer are, in fact, different sections of the same Mack mode
during propagation downstream.

The LST results show that all normal modes are stable except the Mack modes,
which are unstable in certain small ranges of RF . However, the stable modes such as
modes I and II play an important role in the receptivity process because the phase
velocity distributions of the Mack modes intersect with those of the stable modes I,
II, etc. as RF increases. At the intersecting points between the phase velocity curves
of the Mack modes and the stable modes, the Mack modes are synchronized with
modes I, II, III, or higher modes because they have the same frequency and the same
phase velocity. In addition, different modes at the synchronization points have almost
the same wave structures inside the boundary layer. Therefore, it is impossible to
distinguish different modes from their wave structure alone.

8.2. Simulation of wave mode propagations and resonant interactions

Extensive unsteady flow simulations have been carried out to study the receptivity of
the supersonic boundary layer to various forcing waves. In this paper, the numerical
simulation mainly focuses on the studies of the linear wave mode characteristics and
their resonant interactions, which are the crucial part of the receptivity process. Two
groups of computational cases are studied. The first group concerns the response of
supersonic boundary layer to forcing waves of different wave modes imposed at the
inlet located near the leading edge. The profiles of the forcing waves at the inlet are
obtained from the LST for a given wave mode at a fixed frequency.

The main findings of the numerical simulation studies are the importance of wave
resonant interactions which cannot be predicted by the LST analysis. The numerical
simulation studies on the propagation of modes I and II show that there are strong
resonant interactions between these modes and other waves, including the Mack
modes and the acoustic waves. The resonant interactions occur at the locations of
wave synchronization points predicted by the LST analysis. The interactions include
those between the fast acoustic waves and the stable modes (modes I and II), and
those between the stable modes and the Mack modes (the first and second modes).
The resonant interactions between the fast acoustic waves and modes I and II lead
to the amplification of modes I and II waves, even though both of them are linearly
stable. Similarly, both mode I and mode II waves can become synchronized with the
Mack modes. As a result, the synchronization between mode I and the Mack modes
lead to an energy exchange between the two different modes and excitations of the
Mack modes, especially the unstable second mode, in the supersonic boundary layer.

Though the steady base flow is obtained for the adiabatic wall boundary condition,
different conditions can be imposed on the temperature perturbation conditions. The
effects of wall temperature perturbation conditions on the stability of the wave modes
are also studied in this paper. Both the LST and simulation results show that all
normal modes of the isothermal cases are more stable than those of the corresponding
adiabatic cases. However, the stable modes I and II are not much affected by the
changes of wall temperature perturbation conditions. The effects of wave frequency
on the propagation of the wave modes have also been studied. It is found that the
Mack modes of lower frequencies have higher growth rates and larger downstream
movement of branch II neutral stability points. Based on the LST prediction, the
locations of branch II neutral stability points of the second mode in terms of RF are
the same for cases with different frequencies and different Reynolds numbers.

The numerical solutions also show that the wavenumbers obtained from the
numerical simulations agree very well with those predicted by the LST. However,
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there are significant differences between the growth rates obtained from the
numerical simulations and those predicted by the LST. The LST analysis consistently
underpredicts the growth rates of the Mack modes. The difference between the growth
rates obtained by the numerical solutions and those predicted by the LST may be
due to the parallel mean flow assumption used in LST.

8.3. Conclusions

To summarize, in addition to the conventional Mack modes, there exist a family of
stable wave modes (modes I, II, etc.) in the supersonic boundary layer. These modes
play a very important role in the receptivity process of excitation of the unstable
Mack modes, especially the second mode. Though mode I and mode II waves are
always stable, they can play an important role in the receptivity process because they
can have resonant interactions with both the fast acoustic waves and the Mack-mode
waves. Such interactions lead to the exchange of energy between the stable modes
and the Mack modes to induce the Mack modes in the boundary layer. On the other
hand, the stable mode II can also interact with the fast acoustic waves to lead to a
substantial amplitude growth of mode II in the boundary layer. Therefore, the stable
wave modes such as modes I and II are critical in transferring wave energy between
the acoustic waves and the unsteady second mode. It is important for the receptivity
study to understand the role of modes I and II in the excitation of the unstable Mack
modes.

The results of this paper also point out the critical role of fast acoustic waves as
forcing waves in the receptivity process. The forcing acoustic waves can originate
from noise in the free-stream. The numerical studies of the receptivity of supersonic
boundary layer to free-stream disturbances must account for the interaction of the
acoustic waves with the oblique bow shock. Such studies required extensive simulations
and analyses; the results will be presented in another paper.
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