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The effects of the finiteness of the physical domain over the free decay of
homogeneous isotropic turbulence are explored in the present article. Saturation
at the large scales is investigated by the use of theoretical analysis and eddy-damped
quasi-normal Markovian calculations. Both analyses indicate a strong sensitivity of
the large-scale features of the flow to saturation and finite Reynolds number effects.
This aspect plays an important role in the general lack of agreement between grid
turbulence experiments and numerical simulations. On the other hand, the statistical
quantities associated with the behaviour of the spectrum in the inertial region are
only marginally affected by saturation. These results suggest new guidelines for the
interpretation of experimental and direct numerical simulation studies.
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1. Introduction
Among the difficulties arising in the investigation of turbulent free flows, the effects

of confinement present an important challenge. This aspect, which will be referred
to as saturation in the following, is particularly relevant for the analysis of the well-
known test case of free decay of homogeneous isotropic turbulence (HIT). In the
spectral space, HIT dynamics can be described by the Lin equation:

∂E(k, t)
∂t

+ 2νk2E(k, t)= T(k, t), (1.1)

where E(k, t) is the energy spectrum and T(k, t) is the nonlinear energy transfer;
ν is the molecular viscosity of the fluid, k represents the spectral wavenumber and
t is the evolution time. The resulting decay regime is determined by a power-law
time evolution of the main physical quantities, such as the turbulent kinetic energy
K, the energy dissipation rate ε, the integral length scale L and the Reynolds
number ReT = √2/3KL/ν. Considering an unbounded spectral space, the power-law

† Email address for correspondence: marcello.meldi@ensma.fr
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exponent nQ driving the time evolution of a general quantity Q is determined by the
turbulence production mechanisms/initial conditions prescribed (George 1992, 2012;
Meldi & Sagaut 2013a). By the use of theoretical analysis, Comte-Bellot & Corrsin
(1966) expressed nK as an algebraic function of the parameter σ , which describes the
slope of the energy spectrum at the large scales E(k, t)∝Akσ , σ ∈ [1, 4]. Confinement
effects make more complex the description of HIT decay. In fact, in a bounded
domain, the growth of the characteristic scales will eventually lead to saturation
(i.e. when L is as large as the domain typical size, resulting in a constant integral
scale decay regime) after a finite time. Extending the analysis by Comte-Bellot &
Corrsin (1966) to a finite spectral space, Stalp, Skrbek & Donnelly (1999), Skrbek &
Stalp (2000) showed that the case σ =+∞ corresponds to complete saturation. The
resulting formulae for the main HIT statistical quantities are summarised in table 1.

While previous studies considered unbounded/completely saturated HIT, the
systematic analysis of confinement effects in the transition region between the two
asymptotic phenomena, which is the most realistic configuration, is still unexplored.
Qualitative elements of discussion have been proposed by Davidson (2004) and, very
recently, by Thornber (2016). The exclusion of confinement effects is problematic
for both experimental analysis and numerical simulation. Due to the limits in size
of wind tunnel facilities, the analysis of grid turbulence at high Reynolds number
configurations in an unbounded space is a prohibitive task. In fact, anisotropy effects
influence HIT evolution in the near grid region, while finite Reynolds number
(FRN) effects and saturation govern turbulence dynamics downstream. As a result,
quasi-isotropic turbulence for Reλ > 100 can be observed over a very limited time
window, not more than 10–100 initial turnover times t0 = K(0)/ε(0) (Mohamed
& LaRue 1990; Mydlarski & Warhaft 1996; White, Karpetis & Sreenivasan 2002;
Krogstad & Davidson 2011; Thormann & Meneveau 2014; Sinhuber, Bodenschatz &
Bewley 2015). Reλ =√2/3Kλ/ν =√20/3ReT is the Reynolds number based on the
Taylor microscale λ. Direct numerical simulation (DNS) suffers similar drawbacks.
Presently, the computational resources available impose very strict constraints for the
analysis of HIT free decay. The resolution at the large scales progressively decreases
in time as the integral length scale L increases, so that a smaller initial Reλ has to be
imposed if longer observation times are required. This aspect is particularly complex
to handle for classical numerical simulation, as the resolution at the large scales
diminishes significantly in the time needed for a statistically converged observation.
Ishida, Davidson & Kaneda (2006) performed a comprehensive analysis by DNS and
indicated a minimum resolution of one decade at the large scales at the final time
in order to avoid saturation effects. However, the analysis was based on observations
for initial values of the Reynolds number in the range 250 > Reλ(0) > 31.3. Recent
experimental studies by Djenidi, Kamruzzamana & Antonia (2015) show that finite
Reynolds number effects are not negligible for Reλ6100, so that extrapolation towards
high Reynolds number turbulence is questionable. Arguably, saturation effects play
an important role in the lack of agreement between theoretical studies, experimental
results and numerical simulations reported in the open literature.

In the present paper, the confinement effects before the fully saturated regime at
high Reynolds number configurations are analysed via a theoretical study and eddy-
damped quasi-normal Markovian (EDQNM) calculation (Orszag 1970). In both cases,
a fixed resolution at the large scales is imposed i.e. the saturation threshold and the
integral length scale L follow the same time evolution. In this way, saturation effects
can be isolated and quantified over long observation times, which are precluded in
classical experimental and numerical analyses. The constant resolution at the large
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scales is numerically obtained by the use of the recent model proposed by Meldi &
Sagaut (2014), which resolves the EDQNM problem over an adaptive spectral mesh.

The paper is structured as follows. In § 2, saturation effects are isolated in the
framework of an energy spectrum analysis. In § 3, numerical details about the model
and the set-up of the simulations are provided. In § 4, the effects of saturation are
investigated. In § 5, the theoretical/EDQNM results are elaborated in order to estimate
confinement effects in DNS and experiments. Finally, in § 6, the final remarks are
drawn.

2. Confinement effects in the unsaturated regime: a theoretical analysis
The effects of large-scale confinement over quasi-unbounded regimes in a bounded

box are now investigated through theoretical analysis. The present work elaborates on
the proposals by Comte-Bellot & Corrsin (1966) and Skrbek, Niemela & Donnelly
(2000), Skrbek & Stalp (2000). The first work addresses the case of unbounded
regimes while the latter investigates completely saturated regimes. The present
analysis aims at deriving information for the range of configurations between the
two asymptotic regimes. Here the spectrum at the large scales is not neglected, but
its size is finite and constant through the time evolution. A simplified energy spectrum
as in figure 1 is used as a starting point:

E(k, t)=


0 k<αkL(t)
Akσ αkL(t)6 k 6 kL(t)
CKε

2/3(t)k−5/3 kL(t) < k 6 kη(t)
0 k> kη(t),

(2.1)

where kL(t) = 1/L(t) and kη(t) = 1/η(t) are the wavenumbers associated with the
integral length scale L and the Kolmogorov scale η, respectively. They relate as
kη=Re3/4

T kL. CK = 1.5 is the Kolmogorov constant and the parameter A can be derived
considering the continuity constraint of the energy spectrum at kL: A3k3σ+5

L = C3
Kε

2.
The constant α represents the resolution at the large scales. More precisely, αkL(t) and
kL(t) evolve following the same power law, so that the resolution at the large scales is
hypothesised as constant. Thus, a physical system described by the energy spectrum
in (2.1) would grow in space with the same time evolution of the integral length
scale L. Such an approximation is here used to investigate the effect of a constant
confinement for very long observation times, so that a converged statistical behaviour
can be quantified. Moreover, a time evolution of the parameter A(t) = Ak−a

L (t) is
considered (Eyink & Thomson 2000; Meldi & Sagaut 2012). The value of the
parameter a = max(0, 0.65 × (σ − 3.2)) is connected with the fulfilment of the
permanence of large eddies hypothesis.

If the spectrum in (2.1) is integrated, the following expression for K is obtained:

K=
[

Akσ−a+1

σ − a+ 1

]kL

αkL

+
[
−3

2
CKε

2/3k−2/3

]kη

kL

. (2.2)

Using the continuity constraint of the spectrum at k= kL, kL and kη are elaborated
to obtain an expression of K=K(A,CK, σ , ReT, α, ε):

K= [B−C]Dε2((σ−a+1)/(3(σ−a)+5)), (2.3)
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FIGURE 1. Time evolution of the energy spectrum introduced in (2.1).

where

B= 3(σ − a)+ 5
2(σ − a+ 1)

, C=
(

ασ−a+1

σ − a+ 1
+ 3

2Re1/2
T

)
,

D= A
2/(3(σ−a)+5)

C3((σ−a+1)/(3(σ−a)+5))
K .

 (2.4)

The Lin equation (1.1) is now integrated over k, yielding:

∂K
∂t
+ ε=1T, (2.5)

where 1T = 0 in the case of full resolution of all the dynamically active scales of
HIT. Equation (2.5) is now elaborated imposing a power-law solution of the form ε=
ε0(1+ t/t0)

nε . As a consequence, the right-hand term must exhibit the same power-law
evolution, which will be modelled as 1T =1T0(1+ t/t0)

nε :

(B−C)D
(

2
σ − a+ 1

3(σ − a)+ 5

)
nε
ε

2((σ−a+1)/(3(σ−a)+5))
0

t0

(
1+ t

t0

)nε

+ ε0

(
1+ t

t0

)nε

=1T0

(
1+ t

t0

)nε

. (2.6)

In the case of fully resolved high Reynolds HIT, the value of the constants tend to
α→ 0, ReT →+∞ and 1T0 → 0. Thus, C = 0 and the result by Comte-Bellot &
Corrsin (1966) analysis in table 1 is recovered. Equation (2.6) is now divided by (1+
t/t0)

nε . The following expression for nε is derived:

nε = 3(σ − a)+ 5
2(σ − a+ 1)

t0
1T0 − ε0

(B−C)Dε2((σ−a+1)/(3(σ−a)+5))
0

= −3(σ − a)+ 5
2(σ − a+ 1)

t0ε
(σ−a+3)/(3(σ−a)+5)
0

BD
(1+F)= n?ε(1+F) (2.7)
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n?ε is the power-law exponent obtained by the Comte-Bellot & Corrsin analysis. The
expression for n?ε in (2.7) can be elaborated to obtain the result in table 1, using
underlying relations between the parameters describing the energy spectrum and ε0,
t0. On the other hand, F(α, ReT, 1T0) is a correction function which accounts for
saturation and finite Reynolds number effects. Further manipulation of (2.7) gives the
expression:

F = C− B1T0ε
−1
0

B−C
= 2ασ−a+1 + 3(σ − a+ 1)Re−1/2

T − (3(σ − a)+ 5)1T0ε
−1
0

3(σ − a)+ 5− 2ασ−a+1 − 3(σ − a+ 1)Re−1/2
T

. (2.8)

Considering the relation nε = nK− 1, equation (2.7) can be rewritten with the same
formalism for the power-law exponent nK. The analysis of (2.7)–(2.8) indicates that
saturation is responsible for a faster decay of ε and K. The same conclusion can be
drawn for finite Reynolds number effects. On the other hand, the contribution of the
term 1T0ε

−1
0 can be either positive or negative. Considering saturation effects only (i.e.

1T0= 0,ReT→+∞), one can observe that F ∝ ασ−a+1, so that the magnitude of the
power-law exponent evolves towards the fully saturated value as α increases. This last
result implies as well that (2.8) can be well approximated by a power-law function
of the parameter α. However, for α → 1, F is expected to exhibit a progressively
slower evolution. In fact, the slope of the energy spectrum evolves from the value σ
to the value −5/3 over approximately a decade in the spectral space k for a realistic
configuration (see figure 4a).

3. The EDQNM model
A brief summary about the numerical details of the EDQNM model is now

provided. A comprehensive analysis is reported in the works by Orszag (1970),
Sagaut & Cambon (2008). The model is based on the Lin equation (1.1), which
describes the time evolution of the energy spectrum in HIT decay. The EDQNM
closure operates in the evolution equation for T(k, t). The fourth-order cumulants,
which measure the difference between the actual velocity probability density function
(PDF) from a Gaussian distribution, are modelled as a linear damping term. Moreover,
the characteristic dissipation time is neglected with respect to the evolution time
through the Markovian approximation. These two hypotheses produce a dramatic
simplification in the evolution equation for T(k, t):

TEDQNM(k, t)=
∫

p+q=k
Θkpq(xy+ z3)E(p, t)[E(p, t)pk2 − E(k, t)p3]dp dq

pq
, (3.1)

where x, y, z are geometrical coefficients associated with the spherical integration in
the spectral space and Θkpq is the characteristic time of relaxation recovered by the
Markovianisation procedure. In the present work, the adaptive formulation by Meldi &
Sagaut (2014) is used to update the spectral mesh, which is defined by a geometrical
distribution. The EDQNM equations are not modified, but a dynamic mesh calculation
is implemented. This procedure allows one to prescribe a fixed large-scale/small-scale
resolution. In the present analysis, the adaptive procedure conserves the total number
of elements N and imposes a fixed ratio kL(t)/k1(t) = α−1. Energy conservation
through the dynamic mesh update is obtained using the following definition of K:

K(t)=
∫ k1

0
Akσ dk+

∫ kN

k1

E(k, t) dk= AK +
∫ kN

k1

E(k, t) dk, (3.2)
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FIGURE 2. Nonlinear energy transfer budget term kT(k, t) at the beginning and at the end
of a time step for which the mesh adaptive procedure is triggered. Data are taken from
simulation 1 of the Saffman database, where the condition α = 10−1/30 is imposed.

where k1 and kN are the smallest and largest resolved mode, respectively. The
coefficient AK is updated every time the mesh is adapted (i.e. smaller/larger elements
are introduced), in order to conserve the total energy K. More precisely, the
resolution at the large scales is checked at the beginning of each time step. Whenever
kL(t)/k1(t) < α−1, the mesh is updated so that kj(t∗) = kj(t)/rs. Where rs is the ratio
of the geometrical distribution of the mesh elements and t and t∗ represent the
same time step, but they are defined as the time before/after the adaptive procedure,
respectively. Additionally, the constant AK is updated using the integral in (3.2):
AK(t∗) =

∫ k1(t∗)
0 Akσ dk. In this way, the turbulent kinetic energy and all the other

physical quantities investigated are exactly conserved through t→ t∗. However, AK
does not play a role in the numerical computation of the EDQNM closure, which is
performed on the spectral mesh k1, . . . , kN . While the adaptive EDQNM calculation
does not use the energy spectrum in (2.1), it captures the essential feature of the
theoretical model proposed in § 2, which is a constant large-scale resolution during
HIT decay. The time evolution of all HIT statistical moments is calculated by the
EDQNM procedure and is not affected by the mesh time evolution (Meldi & Sagaut
2014). The nonlinear energy transfer budget term kT(k, t) at the beginning/end of a
time step where the adaptive procedure is triggered is shown in figure 2. In the present
analysis, a constraint is imposed for the large scales only, and the total number of
mesh elements N is conserved. As a consequence, the small-scale resolution increases
in time from the initial value kN(0)/kη(0) as ReT decreases.

The present work encompasses the analysis of energy statistical quantities and their
pressure counterparts. The pressure spectrum Ep is derived by the EDQNM model
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using the integration method proposed by Lesieur, Ossia & Metais (1999), Meldi &
Sagaut (2013b) through the joint Gaussian assumption:

Ep(k, t)= k2

4π

∫
p+q=k

E(p, t)E(q, t)
sin4 ξ

p4
dq, (3.3)

where [k, p, q] is the basis used to compute the triadic interactions and ξ is the
angle facing p in the triangle formed by the three vectors of the basis. The statistical
quantities analysed are:

(i) turbulent kinetic energy K(t)= ∫ +∞0 E(k, t) dk;
(ii) energy dissipation rate ε(t)= ∫ +∞0 2νk2E(k, t) dk;

(iii) integral length scale L(t)= (3π/4)((
∫ +∞

0 k−1E(k, t) dk)/(
∫ +∞

0 E(k, t) dk));
(iv) turbulence coefficient Cε(t)=√27/8L(t)ε(t)/K3/2(t);
(v) pressure fluctuation variance p2(t)= ∫ +∞0 Ep(k, t) dk;

(vi) velocity derivative skewness
S(t)=−(3√30/14)((

∫ kN

k1
k2T(k, t) dk)/((

∫ kN

k1
k2E(k, t) dk)3/2));

(vii) coefficient of the 4/5 Kolmogorov law C3 =−max S3(r)/(εr).

Here S3 = 〈(δuL)
3〉 is the statistical third-order moment of the velocity increment

along the separation vector (r) of modulus r.

3.1. Numerical set-up
The effects of saturation have been investigated by the use of two databases of
EDQNM simulations. More precisely, the investigation is performed for the cases
of Saffman turbulence (σ = 2) and Batchelor turbulence (σ = 4). Each database is
composed by a total of 60 simulations, which are initialised prescribing the following
functional form:

E(k)=Ckε
2/3k−5/3fL(kL)fη(kη), (3.4)

with:

fL(kL)=
(

kL
[(kL)3/2 + cL )]2/3

)5/3+σ
, fη(kη)= exp(−ξ([(kη)4+ c4

η]1/4− cη)), (3.5a,b)

where cη = 0.4, ξ = 5.3 and cL has been chosen to obtain L(0) = 1. The initial
Reynolds number is Reλ(0) = 1.5 × 105. For every numerical simulation, the initial
value of the largest resolved mode has been chosen as kN(0)/kη(0) = 2. The Ni

elements of the spectral mesh are distributed following a geometrical progression so
that kj+1/kj= 101/30, j= 1, 2, . . . ,N − 1. For the simulation i∈ [1, 60] of the database,
the resolution criterion at the large scales has been set so that kL/k1= 10i/30. Thus, a
constant resolution at the large scales in the range zero to two decades in the spectral
space is analysed. As introduced in § 3, the adaptive procedure checks the value of
kL/k1 at each time step. Whenever kL(t)/k1 < 10i/30, the mesh and the coefficient AK
are updated so that kj(t∗)= kj(t)/101/30, j= 1, 2, . . . ,N. Thus, the mesh slides towards
smaller modes as L increases in time, in order to conserve the ratio kL/k1≈ const. The
initial resolution at the large scales is set to kL/k1 = 10(i+20)/30, so that the adaptive
procedure is not triggered during the initial transient. Moreover, as the initial values
of Reλ(0) and kL(0) are the same for every calculation, the total number of elements
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FIGURE 3. (a) Time evolution of K for simulation 1, 10 and 60 of the database
(Saffman turbulence, σ = 2). (b) Power-law exponent nK calculated by local polynomial
fitting.

Ni of the spectral mesh linearly increases with the resolution: Ni = N1 + (i − 1).
The power-law coefficients of HIT statistical quantities have been computed from
data in the range Reλ = 105→ 300, in order to achieve a full statistical convergence
of the results. This corresponds to an observation window of 8→ 25 time decades,
because of the sensitivity of Reλ decay to the resolution criterion imposed and to the
initially prescribed value of σ (see table 1). For all cases, a very smooth behaviour of
the power-law coefficients has been observed in the investigated range. In particular,
local oscillations of nK never exceeded 0.5 % of the average value calculated after a
suitable transient, as shown in figure 3.

The EDQNM database produced with the adaptive method has been compared with
classical calculations. For the latter case, fully resolved and fully saturated solutions
have been derived. Important differences are highlighted by the comparison of E(k, t)
and kT(k, t), which are reported in figure 4(a,b). In fact, while the small-scale region
is mostly unchanged, saturation effects progressively modify the shape of the spectra
in the large-scale region. One important consequence observed is a non-zero energy
transfer due to the coarse resolution at the large scales:

∫ kN

k1
T(k, t) dk 6= 0. This aspect

will be investigated in detail in § 4. Moreover, the most saturated case investigated in
the database, i.e. α = 10−1/30, shows characteristics that are intermediate between the
fully resolved case and the fully saturated counterpart. Thus, one can expect to observe
a progressive change of the behaviour of HIT physical quantities while saturation
effects become more important. At the same time, the observation of figure 4 suggests
that the fully saturated statistics (and in particular nK =−2) should not be observed
in the database of adaptive EDQNM simulations. The same conclusion can be drawn
by the analysis of (2.8). In fact, considering 1T0 = 0, ReT → ∞ and α = 1, the
analytical values of the power-law exponent calculated using (2.7) are nK ≈ −1.42
and nK≈−1.53 for Saffman and Batchelor turbulence, respectively. These values are
significantly smaller in magnitude when compared to the fully saturated case nK=−2.

4. Results
The numerical results obtained by the adaptive EDQNM model are presented in

the following. The effects of saturation over the energy transfer are first investigated.
In figure 4, saturation modifies the shape of the energy spectrum in the large-scale
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FIGURE 4. (a) Energy spectra E(k, t) and (b) energy transfer budget term kT(k, t) for
different resolution at the large scales, calculated by the use of an EDQNM model. The
Reynolds number is here Reλ = 103.

region, which results in a non-zero energy transfer in the numerical simulation. A
comprehensive analysis of this aspect for the two EDQNM databases is reported in
figure 5. Firstly, the relation 1T ∝ ε has been observed in all cases. This result, which
is exemplified in figure 5(a), is consistent with (2.5). The value of the ratio 1T0/ε0

has then been investigated for the databases and the results are shown in figure 5(b).
For the case of Saffman turbulence, the term 1T0/ε0 is positive, which implies that it
contributes to a decrease in magnitude of the power-law exponents. This contribution
can be well approximated by the relation 1T0/ε0 ≈ 10−2α4.75. Thus, it is negligible
when compared to the saturation term 2ασ+1 = 2α3. The value 4.75 in the power-
law relation for 1T0/ε0 does not appear to have any connection with the physical
evolution of HIT, but it is driven by the numerical discretisation of the Lin equation.
In DNS, this term could have a significantly higher relevance with respect to α, in
particular if the numerical discretisation does not show good properties of conservation
of the integral

∫ kN

k1
T(k, t) dk= 0. The results for the case of Batchelor turbulence are

significantly more complex. While 1T0/ε > 0 for high kL/k1 values, a change of sign
is observed for kL/k1 ≈ 3. Moreover, in this case, the saturation term and the energy
transfer error term scale with a similar power law of α. These observations are a
result of the high sensitivity of Batchelor turbulence to non-local interaction (Meldi &
Sagaut 2012). This feature sets the stage for more complex interactions of the different
effects at play.

4.1. Sensitivity of the large-scale physical quantities to confinement effects
The predicted value of the power-law exponent nK is now discussed. The EDQNM
results (symbols), along with the theoretical equation (2.7) (solid lines) are reported
in figure 6. Each symbol represents an EDQNM calculation of the database for the
corresponding value of the parameter α. For the case of Saffman turbulence, the
theoretical prediction is not far from the EDQNM observation, and a very good
agreement is observed in the range 10−2 6 α 6 10−1. For lower kL/k1 values, the
complexity of the shape of the energy spectrum at the large scales is responsible for
the deviation from the theoretical predictions. This observation is even more true for
Batchelor turbulence. One can hypothesise that its sensitivity to non-local interaction
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FIGURE 5. (a) Evolution of the error in the energy transfer 1T/ε for two simulations of
the EDQNM database, kL/k1= 101/6, 10. (b) Sensitivity of the error in the energy transfer
1T/ε to the large-scale resolution kL/k1.

10010–110–2

–1.2

–1.4

–1.6

EDQNM,

EDQNM,

FIGURE 6. Sensitivity of nK to saturation effects. Theoretical and EDQNM results are
shown.

amplifies the deviation from the theoretical prediction in (2.7), which is based on a
simplification of the shape of the energy spectrum in the peak region.

A power-law approximation of the function F is now proposed, in order to
derive a continuous formulation with respect to σ . Here, only saturation effects are
included. In this case, F evolves following a power law of the parameter α. Thus,
the approximation proposed is:

nK = n?K[1+F ] = n?K[1+ aσ × αbσ ]. (4.1)

A constrained optimisation using the EDQNM database is performed, in order
to determine the values of the coefficients aσ and bσ . The analysis is performed
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separately for the cases of Saffman and Batchelor turbulence. The two constraints
are (i) minimised difference using an L2 norm between the EDQNM results and
the analytical formula (2.8) and (ii) imposing a local difference smaller than 1 %
for α = 10−1/30. The optimisation results indicate values of the constants equal to
a2 = 0.25, b2 = 1.92, a4 = 0.3 and b4 = 2.38 for Saffman and Batchelor turbulence,
respectively. If a linear variation with respect to σ is hypothesised, the coefficient
can be calculated by the following formulae:

aσ = 0.2+ 0.025× σ , bσ = 1.46+ 0.23× σ . (4.2a,b)

The comparison between the optimised analytical formula (dashed lines) and
the power-law exponent derived by the EDQNM data is shown in figure 6. The
correspondence between the two curves is good for both Saffman and Batchelor
turbulence. The local difference never exceeds 1.5 %. Moreover, the coefficient aσ
can be approximated by aσ = −n?K/4.8. Another, less precise approximation is
aσ ≈ 0.5(n?K − nK(σ → +∞)). So, α = 1 is a sort of intermediate configuration
between the fully resolved case and the completely saturated case, in agreement with
the qualitative observations of figure 4 and theoretical predictions. Moreover, the
observation of the EDQNM results indicate that the classical turbulence relations,
such as nK = nε + 1 and Cε ≈ constant are well verified even for low resolution at
the large scales. In particular, the sensitivity of nCε to the parameter α is shown in
figure 7(a). Cε is an invariant when Kolmogorov theory is verified, while it exhibits
a time evolution when turbulence equilibrium is violated (Valente & Vassilicos 2012;
Goto & Vassilicos 2015; Meldi 2016). The present results indicate very small, positive
values even as α→ 0. This observation is consistent with previous studies by Bos,
Shao & Bertoglio (2007) and is associated with the time evolution of the inertial
range of E(k, t). This aspect creates an unbalance between the cascade time tC

and the dissipation time tD. A confirmation is given by the higher value of nCε for
Batchelor turbulence, which exhibits a faster decay of ReT . On the other hand, nCε
shows a very weak sensitivity for α → 1. In particular, the maximum value here
observed nCε ≈ 0.01 is significantly smaller than the value nCε ≈ −nReT derived by
Goto & Vassilicos (2015). This result suggests that saturation is not responsible for an
anomalous behaviour of Cε and, as a consequence, does not influence the turbulence
equilibrium state. In summary, the power-law exponents for every physical quantity
can be derived by the canonical formulae, with a known value of nK. This result is
shown for a number of HIT statistical quantities in figure 7. The constitutive relations
(b) nε = nK − 1, (c) nL = 1 + 0.5nK and (d) np2 = 2nK are well respected for every
EDQNM calculation.

4.2. Sensitivity of the inertial range physical quantities to confinement effects
The analysis in § 4.1 allowed for the quantification of confinement effects over
the decay of the main HIT statistical quantities. A common feature of the physical
properties investigated is that they are determined by the shape of the energy spectrum
at the large scales, which is largely unresolved in this case. The sensitivity of the
physical quantities related to the inertial range of the energy spectrum to saturation
effects is now assessed. Skewness S is investigated first. This parameter has been
recently investigated for several flow configurations by Antonia et al. (2015). The
results, which are reported in figure 8(a), indicate that the prediction of S is not
affected by a lack of resolution at the large scales. Thus, one can exclude saturation
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FIGURE 7. Power-law exponents driving the time evolution of (a) the coefficient Cε, (b)
the energy dissipation rate ε, (c) the integral length scale L and (d) the pressure fluctuation
p2 as a function of the resolution at the large scales α.

effects from being the principal physical mechanism responsible for the significant
variance observed by Antonia et al. (2015) for high Reynolds number configurations
(Reλ ≈ 103, S ∈ [−0.62,−0.42]). The same information is derived by the observation
of the coefficient C3 of the 4/5 Kolmogorov law, which is reported in figure 8(b)
for a number of calculations. A weak sensitivity is observed for the case α= 10−1/30

only. This is a direct consequence of the results shown in figure 4(b). The shape
of the inertial range and the dissipation region show a negligible sensitivity to
the energy extraction mechanisms at the large scales. Thus, the physical quantities
determined by the small-scale features exhibit a weak sensitivity to large-scale
resolution. Extrapolation of the behaviour of large-scale quantities from small-scale
features can result in important errors and should be avoided.

5. Guidelines for the interpretation of experimental/DNS results

The results presented in § 4 allowed for the quantification of the effects of the
finiteness of the physical/numerical domain. In particular, a correction function F
has been derived by the analysis of EDQNM data. The information derived by the
long-time observation of turbulence decay at fixed resolution has been used to set
the free coefficients in F . However, as previously mentioned in the introduction, the
asymptotic configuration investigated by theoretical analysis and adaptive EDQNM
simulations does not mimic experiments and classical DNS runs. The reason why is
that in the latter the large-scale cutoff is time independent, yielding a time-dependent
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FIGURE 8. (a) Velocity derivative skewness S and (b) coefficient C3 calculated by the use
of the adaptive EDQNM procedure.

α parameter. In such a case saturation evolves in time with HIT physical statistics, so
that its effects change during the time/space window of observation used to produce
statistically converged results. This complex aspect has been referred to as the dangers
of periodicity by Davidson (2004). In order to investigate the effects of time-evolving
confinement, the results obtained in § 4 are compared with a classical EDQNM
simulation (i.e. invariant spectral mesh with respect to time). The initial conditions
have been set as α(0)= k1/kL(0)= 10−5 and Reλ(0)= 1.5× 105. This choice allowed
for the observation of time-evolving confinement effects excluding both FRN effects
and the initial transient. The comparison of the results, which is shown in figure 9,
indicates that a similar quantification of confinement effects is obtained using the
classical and the adaptive EDQNM model. This observation allows one to exclude
the possibility that the dynamic mesh procedure could be responsible for numerical
corruption of the results. On the other hand, the adaptive EDQNM results should be
considered here as more robust, because each point of the curve in figure 9 has been
determined by observation over several time decades with approximately 30 time
samples per decade. The local results for the classical EDQNM simulation have been
derived by polynomial fitting using a limited number of samples. Moreover, both
of the numerical approaches show reasonably good agreement with the theoretical
model developed in § 2. This observation supports the conclusion that the differences
associated with the tools used did not corrupt the results obtained. In the following,
the information obtained in § 4 is elaborated to derive guidelines and strategies for
the interpretation of numerical and experimental results. In turn, the authors hope that
DNS practitioners will provide feedback, in particular for robust estimation of the
value of the free coefficients aσ and bσ which have been determined by observation
of EDQNM data.

5.1. Numerical simulation
DNS is considered first. If one wants to exclude saturation effects in numerical
simulation, the reported results indicate that at the final time tF the following condition
must be respected: α < 10−1. This implies that the minimal domain size required
to obtain a quasi-unbounded evolution in a bounded box with a constant size is
therefore ten times larger than the final value of the integral scale, i.e. k1= kL(tF)/10.
Considering a constant uniform mesh size 1x= 5η(0), the number of grid points per
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FIGURE 9. Evolution of confinement effect with respect to α(t) = (kL(t)/k1)
−1. The

analysis addresses the behaviour of the power-law exponent nK, which drives the evolution
of the turbulent kinetic energy. Saffman turbulence (σ = 2) is here considered.

direction is therefore:

Nx = 10
L(tF)

1x
= 2

L(tF)

η(0)
. (5.1)

Using the power-law assumption:

L(tF)=
(

1+ tF

t0

)n?L

L(0)=
(

1+ tF

t0

)n?L

Re3/4
T (0)η(0) (5.2)

Nx can be expressed as a function of ReT(0):

Nx = 2
(

1+ tF

t0

)n?L

Re3/4
T (0). (5.3)

As a result, the total number of mesh elements is:

N =N3
x = 8

(
1+ tF

t0

)3n?L

Re9/4
T (0)= 8

(
1+ tF

t0

)6/(σ−a+3)

Re9/4
T (0). (5.4)

Recent experimental results by Djenidi et al. (2015) indicate that FRN effects can
be excluded for Reλ(t) > 100 or, equivalently, ReT(t) > 1500. Therefore, to guarantee
that an uncorrupted high Reynolds number evolution will be observed over the time
0→ tF and fixing an arbitrary lower bound ReT(tF) > 1500, one should have:

ReT(0)= ReT(tF)

(
1+ tF

t0

)−(1−σ+a)/(σ−a+3)

. (5.5)
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Thus, the total number of elements can be estimated in this case:

N = 8Re9/4
T (tF)

(
1+ tF

t0

)−(9/4)((1−σ+a)/(σ−a+3))(
1+ tF

t0

)6/(σ−a+3)

= 1.12× 108

(
1+ tF

t0

)(15+9(σ−a))/(4(σ−a+3))

. (5.6)

The product of the two terms (1 + tF/t0) in (5.6) gives important information. In
fact, the first term increases faster with σ while an opposite behaviour is observed
for the second term. This is justified by the fact that L exhibits a slower growth in
Batchelor turbulence, but in the same case the Reynolds number decays faster, so that
a higher value of ReT(0) must be imposed in order to obtain ReT(tF)= 1500. If a total
simulation time tF= 103t0 is considered, the number of mesh elements required is N≈
1013 for Saffman turbulence and N ≈ 1013.4 for Batchelor turbulence. Thus, the faster
decay of the Reynolds number has a higher impact on the computational resources
demanded when compared to the time evolution of L. The choice of simulation length
of three decades was not arbitrary, but it has been selected as the resulting N is of
the order of magnitude of the capability of the best supercomputers currently available.
Thus, DNS can presently provide uncorrupted results for the analysis of high Reynolds
number turbulence, if the total simulation time is not larger than three decades. This
implies a maximum increase of the integral length scale L(tF)≈ 10L(0).

Bounded evolving regimes in DNS simulations are now considered. Turbulence
decay is supposed to be observed in the time window t1→ t2 and it is hypothesised
that ReT(t2)> 1500. The coefficient α will evolve in time from the value α1=α(t1)=
k1L(t1) to the value α2= k1L(t2). Where k1 is the smallest resolved wavenumber. The
average value of the power-law exponent nK can be calculated as:

nK =

∫ t2

t1

nK dt′∫ t2

t1

dt′
= n?K +

∫ t2

t1

n?KF dt′

t2 − t1

= n?K +

∫ t2

t1

n?Kaσ ×
(

k1L(0)
(

1+ t′

t0

)1+0.5nK(t′)
)bσ

dt′

t2 − t1
. (5.7)

The sampled DNS data can be used to provide a numerical estimation of the integral
in the right-hand side of (5.7). Thus, a link between nK and n?K is obtained and
the effect of saturation can be precisely quantified. A less precise, much simpler
approximation is:

nK =

∫ α2

α1

nK dα′∫ α2

α1

dα′
= n?K +

∫ α2

α1

n?KF dα′

α2 − α1
= n?K +

n?Kaσ
bσ + 1

α
bσ+1
2 − αbσ+1

1

α2 − α1
. (5.8)

5.2. Experiments
The estimation of saturation effects for experimental set-ups is now addressed.
The analysis is here much more complex compared to the numerical case. For an
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observation between the points x1 and x2, equation (5.7) becomes:

nK =

∫ x2

x1

nK dx′∫ x2

x1

dx′
= n?K +

∫ x2

x1

n?Kaσ ×
(

k1(x′)L(v0)

(
1+ x′

x0

)1+0.5nK(x′)
)bσ

dx′

x2 − x1
, (5.9)

where v0 is an appropriate virtual origin and x0 is a reference length. Equation (5.9) is
extremely similar to (5.7), but here k1 = k1(x). The smallest resolved wavenumber k1

is known and constant in classical numerical simulation. This dramatically simplifies
the analysis because α∝ L. In experiments k1 evolves in space and is usually difficult
to estimate. Thus, α is the product of two time evolving quantities. The resolution
of the integral of (5.9) can be significantly affected by epistemic uncertainties in
the measure/estimation of the quantities of interest. k1 is determined by the size
of the experimental apparatus, but it exhibits a sensitivity to dynamic effects such
as the presence of boundary layers. Moreover, a reduced number of samples could
significantly affect the computation of the integral in (5.9). If reasonable estimations
for k1 and L can be provided at x1 and x2, the use of (5.8) could produce more
reliable information for n?K. The quantification of this coefficient is one of the biggest
challenges in grid turbulence experiments (Lavoie, Djenidi & Antonia 2007; Krogstad
& Davidson 2010; Davidson 2011). In fact, the value of n?K is initially determined by
the value of the energy spectrum slope σ prescribed in DNS. On the other hand, this
information cannot be imposed in grid turbulence experiments and is usually derived
by the behaviour of HIT statistical quantities. Thus, equations (5.8)–(5.9) could prove
useful to identify the link between the experimental set-up and the emergence of
specific decay regimes.

6. Conclusions

The sensitivity of free decaying HIT to saturation effects has been investigated
by the use of theoretical analysis and EDQNM calculations. In both cases, a
time invariant resolution at the large scales has been considered. The theoretical
approach developed allowed for a more precise estimation of the decay power-law
exponents through the derivation of an analytical correction function F . This function
accounts for the effects of saturation and finite Reynolds numbers. An EDQNM fitted
power-law function F , which account for saturation effects only, has been proposed.

Theoretical and numerical results indicate that the physical quantities associated
with the large-scale behaviour of the energy spectrum are sensitive to confinement
effects. All quantities exhibit different sensitivities, but the criterion α < 10−1 is
observed to ensure a good convergence over all quantities considered in the present
study. This result is consistent with recent data assimilation studies by Mons et al.
(2014) and DNS results by Ishida et al. (2006). The way that finite-domain effects
modify the time-evolution exponent is shown to be sensitive to the initial spectrum
shape at scales that will be active in the determination of the evolution exponents, as
shown by relations (4.1) and (4.2).

Finally, the statistical quantities which are related to the behaviour of the inertial
region of the energy spectrum show a negligible sensitivity to saturation. These results
give new elements for the analysis and interpretation of experimental/DNS studies.
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