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We have performed direct numerical simulations of compressible turbulent channel
flow using R-134a as a working fluid in transcritical temperature ranges (1T = 5,
10 and 20 K, where 1T is top-to-bottom temperature difference) at supercritical
pressure. At these conditions, a pseudophase change occurs at various wall-normal
locations within the turbulent channel from ypb/h = −0.23 (1T = 5 K) to 0.89
(1T = 20 K), where h is the channel half-height and y= 0 the centreplane position.
Increase in 1T also results in increasing wall-normal gradients in the semi-local
friction Reynolds number. Classical, compressible scaling laws of the mean velocity
profile are unable to fully collapse real fluid effects in this flow. The proximity to
the pseudotransitioning layer inhibits turbulent velocity fluctuations, while locally
enhancing the temperature and density fluctuation intensities. Probability distribution
analysis reveals that the sheet of fluid undergoing pseudophase change is characterized
by a dramatic reduction in the kurtosis of density fluctuations, hence becoming thinner
as 1T is increased. Instantaneous visualizations show dense fluid ejections from the
pseudoliquid viscous sublayer, some reaching the channel core, causing positive
values of density skewness in the respective buffer layer region (vice versa for the
top wall) and an impoverishment of the turbulent flow structure population near
pseudotransitioning conditions.

Key words: turbulence simulation, turbulent convection

1. Introduction
The operating pressure of propulsion and energy systems, such as gas turbines,

liquid rocket engines or supercritical water-cooled reactors, is continuously increasing
to improve performances. As a result, the working fluid often reaches pressures
and temperatures exceeding critical values, p > pcr and T > Tcr, respectively,
hence achieving a supercritical state. While promoting high heat transfer rates and
thermodynamic efficiencies and suppressing detrimental interfacial effects commonly
found in low-pressure boiling or cavitation processes (Zhong et al. 2009; Zhang
et al. 2011; Wen & Gu 2011), the heightened coupling between pressure, temperature
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and density in the supercritical regime also accentuates unwanted fluid dynamic
instabilities such as thermoacoustic oscillations in injection systems (Casiano, Hulka
& Yang 2010) or in fuel heat exchangers (Thurston 1964; Palumbo 2009; Wang
et al. 2015), the latter often leading to catastrophic hardware failure if uncontrolled.
These so-called real fluid effects are intensified in near-critical conditions, p∼ pcr and
T ∼ Tcr, which will be examined by the present paper in the context of turbulent heat
and mass transfer in a canonical compressible turbulent channel flow setting.

The lay understanding is that supercritical fluids share properties of both gases and
liquids, in a seemingly homogeneous yet ambiguous state of matter. In reality, there is
an identifiable transition between pseudoliquid (or liquid-like) and pseudogaseous (or
gaseous-like) conditions, especially in the vicinity of the critical point, defined by the
pseudoboiling line (PBL), also termed the Fisher–Widom line (Fisher & Widom 1969),
and the phenomena near the PBL have been studied for over 20 years (Sciortino et al.
1997; Liu et al. 2005; Xu et al. 2005; Simeoni et al. 2010; Brazhkin et al. 2011;
Artemenko, Krijgsman & Mazur 2017). The PBL is an extension of the subcritical
gas–liquid coexistence curve above the critical point (Banuti 2015) and is hereafter
defined as the locus of temperature and pressure values (Tpb > Tcr, ppb > pcr) at
which the thermal expansion coefficient of the fluid, αp=−(∂ρ/∂T)p/ρ, is maximum.
A pseudophase transition, or simply pseudotransition, occurs, for example, when
temperature changes from T < Tpb to T > Tpb (or vice versa), for given supercritical
pressure conditions p= ppb, hence crossing the PBL in the p–T phase diagram. The
goal of the present work is to investigate the dynamics of turbulent heat and mass
transfer when the instantaneous temperature and density fields fluctuate about such
pseudoboiling conditions, also referred to here as transcritical temperature conditions.

Unlike a subcritical phase change where the concept of latent heat accounts for
the discontinuity of enthalpy, supercritical pseudotransition takes place progressively
over a finite temperature range bracketing pseudoboiling conditions. While molecules
are homogeneously distributed in space with a well-defined mean free path in the
liquid-like (T � Tpb) or gas-like (T � Tpb) supercritical states, heterogeneously
distributed microscopic clusters of tightly packed molecules are formed during
pseudotransition (Tucker 1999). This results in abrupt changes in compressibility
and density, and a rapid, albeit continuous, increase in the heat capacity, with
gas-like behaviour retained between denser molecular clusters. This heterogeneous
microscopic distribution results in optical dispersion effects allowing the experimental
identification of pseudotransition (Gorelli et al. 2006; Simeoni et al. 2010).

Due to the steep variations of macroscopic thermodynamic properties near the PBL,
accurate simulations of flows in transcritical temperature conditions are numerically
challenging. Also, an Eulerian approach based on the fully compressible conservative
Navier–Stokes equations coupled with highly nonlinear equations of state is less
robust to inadequate spatial resolution, resulting in spurious numerical oscillations
(Kawai, Terashima & Negishi 2015). To bypass such stability constraints, Terashima,
Kawai & Yamanishi (2011), Terashima & Koshi (2012, 2013) and Kawai (2016)
used a non-conservative pressure-based formulation coupled with the use of artificial
viscosity, successfully suppressing non-physical oscillations at the expense of energy
conservation. Alternative approaches have used a double-flux formulation (Ma, Lv
& Ihme 2017), inspired by the interfacial flow community, where the flux at one
face is computed twice, each time assuming a specific heat ratio taken alternatively
from the left or right side of the flux face. Other works, such as Peeters et al.
(2016), use a low-Mach-number formulation neglecting compressibility effects such
as acoustic wave propagation with significant gains in computational time and stability.
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In the present study, a fully compressible and conservative approach is adopted, where
numerical stability issues are contained via systematic grid refinement in the canonical
setting of channel flow turbulence. To ensure numerical stability on coarse grids, the
conserved variables are explicitly filtered at every time step.

Transcritical temperature conditions have been found to enhance heat transfer
fluctuations and alter turbulence production rates in wall-bounded flows (Yoo 2013).
Such deviations from ideal gas behaviour are not to be confused with real fluid
effects, which refers to molecularly disassociated gases occurring in hypersonic
flows. Real fluid effects in a flat-plate turbulent boundary layer over a heated wall
were studied by Kawai (2016); he found that Morkovin’s hypothesis (Morkovin
1962) is not applicable to pseudophase changing conditions due to the presence of
significant density fluctuations yielding non-classical effects in the mass flux, turbulent
diffusion and pressure dilatation distributions. Patel et al. (2015) numerically and
theoretically investigated the near-wall scaling laws in a turbulent channel flow with
large thermophysical property variations. They confirmed that the turbulent flow
statistics exhibit quasi-similarity based on a semi-local friction Reynolds number,
Re∗τ ≡ Reτ

√
(ρ̄/ρ̄w)/(µ̄/µ̄w), where the overbar refers to Reynolds averaging and the

subscript w to the averaged wall quantity. Their investigation was, however, limited
to a density ratio of ρ̄/ρ̄w = 0.4–1.0. From direct numerical simulations (DNS) of
dense-gas, supersonic turbulent channel flows by Sciacovelli, Cinnella & Gloerfelt
(2017), it was found that the transport properties are dependent on density and
temperature of the fluid and the speed of sound varies non-monotonically due to
dense gas effects (or real fluid effects in this study). The dense gas effects caused
the maximum levels of the fluctuating density root-mean-square to be located in the
viscous sublayer, which is different from the ideal gas case locating in the buffer layer,
so that the density fluctuations do not change the turbulent structures significantly in
the channel and Morkovin’s hypothesis holds. In the present paper, we explore the
application of the conventionally scaled van Driest transformation (van Driest 1951),
as well as the semi-locally scaled one (Huang, Coleman & Bradshaw 1995) in the
context of transcritical boundary layers. We also explore the transformation by Trettel
& Larsson (2016), which performs comparably to the aforementioned transformations,
contrary to that shown by Ma, Yang & Ihme (2018). Nemati et al. (2015) performed
DNS of a heated turbulent pipe flow at supercritical pressure where thermal expansion
due to a constant wall heat flux in the presence of low buoyancy effects was found
to attenuate turbulent kinetic energy; turbulence enhancement was observed for high
buoyancy cases. Pizzarelli et al. (2009) studied turbulent rectangular channel flow
at supercritical pressure with high wall heat flux, finding that real fluid effects
attenuate heat transfer significantly at the channel corners. Compressible channel flow
simulations at supercritical pressures and transcritical temperatures by Sengupta et al.
(2017) show that the cold wall region has higher density and temperature fluctuations
as well as higher coherence than the hot near-wall region. Also, the liquid-like flow
region is characterized by decreased streamwise and increased spanwise anisotropy
and vice versa in the region of gas-like behaviour.

In the present paper, we analyse data from DNS of compressible channel
flow turbulence maintained in pseudophase changing conditions by a wall-to-wall
temperature difference imposed via isothermal conditions. The dataset presented here
has been considerably expanded with respect to previous publications by the authors
(Kim, Hickey & Scalo 2017a; Kim, Scalo & Hickey 2017b) and analysed in more
depth. In the following, we first describe the governing equations, the fluid model
and the computational set-up (§ 2). The mean and fluctuating hydrodynamic and
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thermodynamic quantities are then presented together with probability distribution
functions (p.d.f.s) (§§ 3 and 4). Finally, instantaneous turbulent structures are
investigated and compared with the correlation statistics to infer their role in the
heat- and mass-transfer dynamics focusing on the near-wall region (§ 5).

2. Problem formulation
2.1. Governing equations

The governing equations of mass, momentum and total energy for a fully compressible
flow are solved in conservative form which reads

∂ρ

∂t
+
∂ρuj

∂xj
= 0, (2.1a)

∂ρui

∂t
+
∂ρuiuj

∂xj
=−

∂p
∂xj
+
∂τij

∂xj
, (2.1b)

∂ρE
∂t
+

∂

∂xj
[uj(ρE+ p)] =

∂

∂xj
(uiτij − qj), (2.1c)

where x1, x2 and x3 (equivalently, x, y and z) are the streamwise, wall-normal
and spanwise coordinates, respectively, and ui is the velocity component in the ith
direction, t the time, ρ the density, p the pressure and E the total energy per unit
mass. Unless otherwise stated, all the symbols refer to dimensional quantities.

The viscous and conductive heat fluxes in (2.1b) and (2.1c) are, respectively,

τij = 2µ
[

Sij −
1
3
∂uk

∂xk
δij

]
, (2.2a)

qj =−λ
∂T
∂xj
=−

cpµ

Pr
∂T
∂xj
, (2.2b)

where µ is the dynamic viscosity, Sij the strain rate tensor given by Sij = (∂uj/∂xi +

∂ui/∂xj)/2, λ the thermal conductivity, cp the heat capacity at constant pressure, Pr
the Prandtl number and T the temperature.

2.2. Real fluid model
The Peng–Robinson (PR) equation of state (EoS) (Peng & Robinson 1976) is used
to model the working fluid of choice for this study, R-134a (1,1,1,2-tetrafluoroethane,
CH2FCF3), which benefits from experimentally accessible critical pressures and tem-
peratures of pcr= 40.59 bar and Tcr= 374.26 K and is widely used in turbomachinery
and heat exchangers as a cooling fluid because of its non-toxic and non-flammable
characteristics. Departure functions guaranteeing full thermodynamic consistency with
the chosen EoS have been derived following Ewing & Peters (2000). Transport
properties such as the dynamic viscosity and thermal conductivity are estimated via
Chung’s method (Chung et al. 1988) which predicts experimental values within 5 %
error (Poling, Prausnitz & O’Connell 2001). The choice of an accurate and simple
EoS such as the PR EoS provides a consistent thermodynamic model, computationally
less expensive than interpolating tabulated values. In order to prove adequacy and
accuracy of implementation of the equations, detailed derivations and comparisons
against the NIST database (Lemmon, McLinden & Friend 2016) (figure 27) are
included in appendix A.
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FIGURE 1. Phase diagram for R-134a showing the critical point (pcr = 40.59 bar, Tcr =

374.26 K) (@), the PBL (- - -) and the isolines of isobaric thermal expansion coefficient, αp
(——, K−1) (a). Density and isobaric heat capacity versus temperature for p= 1.1pcr with
the pseudoboiling point (u) and top-to-bottom temperature differences, 1T , bracketing
Tpb = 379.1 K (b).

2.3. Computational set-up
The proposed numerical simulations have been carried out with Hybrid, a fully
compressible Navier–Stokes solver originally written by Johan Larsson. This
code utilizes a finite central difference scheme with a fourth-order accuracy by
summation-by-parts operators for the inviscid terms and a second-order accuracy
for the viscous terms. The time advancement is achieved by a fourth-order-
accurate Runge–Kutta method. Hybrid has been used in several canonical numerical
investigations such as those involving shock–vortex interaction, compressible
homogeneous isotropic turbulence (Larsson, Lele & Moin 2007) and shock–turbulence
interaction (Larsson & Lele 2009; Larsson, Bermejo-Moreno & Lele 2013). The
code solves single-component fluid, which is a suitable modelling approach for a
supercritical pressure flow since surface tension becomes negligible for supercritical
pressures, p > pcr, and numerical techniques for multiphase simulations such as
interface tracking or reconstruction are not required. New features that have been
added to the code include parallel HDF5 (The HDF Group 1998) input/output
capabilities and a generic EoS.

The computational setup is a compressible turbulent channel flow (figure 2)
kept at a nominal bulk pressure of pb ' 1.1pcr corresponding to a pseudoboiling
temperature of Tpb = 379.1 K defined based on the maximum isobaric thermal
expansion coefficient, αp = −(∂ρ/∂T)p/ρ (figure 1a). The assigned isothermal
top- and bottom-wall boundary conditions bracket the pseudoboiling temperature
(Ttop/bot = Tpb ±1T/2) maintaining transcritical temperature conditions (figure1b).

Top- to bottom-wall temperature differences investigated are 1T = Ttop − Tbot = 5,
10 and 20 K, with bulk density set to ρb = 450, 474 and 520 kg m−3, respectively,
determined via trial and error to obtain the desired bulk pressure for all cases (see
tables 1 and 2). Periodic boundary conditions are applied to the streamwise and
spanwise directions and the grid is stretched in the wall-normal direction with a
hyperbolic tangent law. To guarantee feasibility of the simulations on the finest grid
and the highest temperature difference considered where the time step is acoustically
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FIGURE 2. Computational set-up for supercritical compressible channel flow simulations
in transcritical temperature conditions. Simulation parameters are given in tables 1 and 2.

Fluid pb ρpb Tpb 1T Tbot Ttop ρb Ub Box size
(kg m−3) (K) (K) (K) (K) (kg m−3) (m s−1) (mm3)

R-134a
1.1pcr 453.5 379.1

5 376.6 381.6 450
36 12× 2× 4(CH2FCF3) 10 374.1 384.1 474

20 369.1 389.1 520

TABLE 1. Simulation parameters achieving transcritical temperature conditions for
R-134a. Bulk parameters are indicated with a subscript ‘b’, while pseudoboiling or
pseudo(phase)transitioning are indicated with ‘pb’.

limited to 1t= 1.4× 10−8, the bulk velocity has been set for all cases to the relatively
high value (for typical heat transfer applications) of Ub = 36 m s−1 corresponding to
a Mach number in the low-subsonic range of Mb = 0.26 with a range of turbulent
Mach number Mt = 0.015 (centre region) to 0.051 (near-wall peak). Given the large
density variation near the pseudocritical point, buoyancy effects may be important in
the mean as well as in the turbulent quantities. In this study, however, the buoyancy
effects are neglected in order to focus on structural changes in compressible channel
flow turbulence due to wall heat transfer in the presence of real fluid effects.

To assess the sensitivity of the flow to the thermodynamic gradients near the critical
point, a reference simulation at twice the critical pressure (pb = 2pcr) is carried out
with the same working fluid (R-134a) and simulation parameters below. Given the
higher pressure, the gradients at the pseudoboiling point are much weaker compared to
the near-critical conditions pb= 1.1pcr chosen for the rest of the runs (see comparison
in figure 27 in appendix A). It should be noted that some real fluid effects are still
present in the higher-pressure case; the thermophysical and thermodynamic variations
as a function of temperature are in fact still present, albeit much weaker. For example,
for the same 1T = 20 K, the relative density difference between the top and bottom
walls is only 25 % at pb= 2pcr; it is 62 % at pb= 1.1pcr (see table 3). The parameters
of this reference simulation are ρb = 596 kg m−3, pb = 2pcr = 81.18 bar, 1T = 20 K
(Tbot = 394.9 K and Ttop = 414.9 K where the pseudoboiling temperature is Tpb =

404.9 K at the given pressure) and Ub = 36 m s−1.
To ensure the proper spatial resolution of all relevant hydrodynamic and thermody-

namic scales, a systematic grid refinement study has been carried out (see appendix B
and table 2); this is especially important in simulations of supercritical flows in the
near-critical or pseudophase transitioning conditions (see Introduction). The relevant
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Nx×Ny×Nz 64× 96× 64 128× 128× 96 192× 128× 128 384× 256× 256 512× 256× 256

1T = 5 K, ρb = 450 kg m−3

pb 44.64 bar 44.65 bar 44.67 bar 44.66 bar 44.67 bar

Bot

Reτ 360 340 345 370 372
1x+ 67.50 31.88 21.56 11.56 8.72
1y+ 0.41–16.75 0.40–11.03 0.40–11.15 0.39–5.09 0.38–5.06
1z+ 22.50 14.17 10.78 5.78 5.81

Top

Reτ 375 355 360 390 394
1x+ 70.31 33.28 22.50 12.19 9.23
1y+ 0.43–17.43 0.41–11.50 0.42–11.68 0.41–5.36 0.40–5.34
1z+ 23.44 14.79 11.25 6.09 6.16

1T = 10 K, ρb = 474 kg m−3

pb 44.58 bar 44.65 bar 44.65 bar 44.67 bar 44.69 bar

Bot

Reτ 345 325 335 365 364
1x+ 64.69 30.47 20.94 11.41 8.53
1y+ 0.40–16.13 0.38–10.65 0.39–10.87 0.38–4.96 0.37–4.93
1z+ 21.56 13.54 10.47 5.70 5.69

Top

Reτ 365 345 355 385 387
1x+ 68.44 32.34 22.19 12.03 9.07
1y+ 0.42–16.98 0.40–11.24 0.41–11.48 0.40–5.28 0.40–5.25
1z+ 22.81 14.38 11.09 6.02 6.05

1T = 20 K, ρb = 520 kg m−3

pb 44.37 bar 44.43 bar 44.42 bar 44.55 bar 44.67 bar

Bot

Reτ 320 310 315 345 342
1x+ 60.00 29.06 19.69 10.78 8.02
1y+ 0.37–15.06 0.36–10.03 0.37–10.26 0.36–4.72 0.35–4.68
1z+ 20.00 12.92 9.84 5.39 5.34

Top

Reτ 340 330 335 375 377
1x+ 63.75 30.94 20.94 11.72 8.84
1y+ 0.39–15.89 0.39–10.75 0.39–10.91 0.39–5.10 0.39–5.10
1z+ 21.25 13.75 10.47 5.86 5.89

TABLE 2. Friction Reynolds number and grid resolution in wall units (uτ/ν)−1 for the
bottom and top portion of the channel evaluated with respective wall quantities. See also
table 1.

metric of the spectral broadening level for channel flow turbulence is the friction
Reynolds number,

Reτ =
uτh
νw
, (2.3)

based on the friction velocity, uτ , the channel half-height, h, and the kinematic
viscosity at the wall, νw, of the fluid. It can be viewed as the channel half-height
normalized by the viscous length scale, νw/uτ = νw/(∂u/∂x2)x2=0, hence Reτ = h+.
Therefore, Reτ is the ratio of an integral length scale, ∼h, to a viscous scale
evaluated at the wall. Typical practice in DNS is to adopt relatively low values
of friction Reynolds number to enable full resolution of the relevant scales. For the
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FIGURE 3. Dynamic viscosity µ, thermal conductivity λ and Prandtl number Pr for
R-134a taken from Chung’s model (——) (see appendix A); scaled dynamic viscosity and
conductivity (- - -), augmented by a factor of 60, used in the computations, yielding the
same Prandtl number.

pb/pcr 1T (K) ρ top (kg m−3) ρbot (kg m−3) 1ρ (kg m−3) Ztop Zbot ypb

1.1 5 358.3 567.7 209.4 0.40 0.26 −0.23h
1.1 10 318.6 635.0 316.4 0.45 0.23 +0.55h
1.1 20 276.1 723.6 447.5 0.51 0.21 +0.89h

2.0 20 514.1 681.5 167.4 0.47 0.37 +0.09h

TABLE 3. Top- and bottom-wall values of mean density and compressibility factor and
average location of pseudophase transition ypb for various temperature conditions. With
the exception of 1T , all values reported are a result of the calculations. The first three
rows are related to the pb = 1.1pcr cases, the last row to the reference high-pressure case
pb = 2pcr.

present simulations, this is achieved by augmenting dynamic viscosity and thermal
conductivity by the same multiplicative factor (figure 3) resulting in Reτ in the
range of 342–394 (table 2). This choice leaves the Prandtl number unaltered and
reproduces the correct trend of transport properties in the transcritical regime (see
appendix A). The reference simulation has been carried out at Reτ =366, 1x+=10.98,
1y+ = 0.43–5.93, 1z+ = 5.63 for the bottom wall and Reτ = 386, 1x+ = 11.58,
1y+ = 0.46–6.25, 1z+ = 5.94 for the top wall.

3. First- and second-order statistics

In this section, a statistical analysis limited to the first- and second-order moments
of turbulent fluctuations in the transcritical channel flow set-up of figure 2 is carried
out in comparison with a reference simulation at pb = 2pcr, exhibiting very mild
thermodynamic gradients at the pseudoboiling point (see comparison in figure 27 in
appendix A).
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FIGURE 4. Reynolds-averaged density (a), temperature (b) and compressibility factor (c)
for pb = 1.1pcr and 1T = 5 K (——), 10 K (- - -) and 20 K (· · · · · ·) and reference data
for pb = 2pcr and 1T = 20 K (u) (see § 2.3). Average location of pseudotransition for
1T = 5 K (E), 10 K (A) and 20 K (@).

3.1. Mean flow quantities
Figure 4 shows Reynolds-averaged profiles of density, temperature and compressibility
factor Z = p/(ρRgasT), where Rgas= 81.49 J kg−1 K−1 is the gas constant for R-134a.
The top-to-bottom density difference (table 3) of 1ρ = 447.5 kg m−3 achieved
under transcritical conditions at 1.1pcr for 1T = 20 K is about 2.67 times higher
than 1ρ = 167.4 kg m−3, obtained at twice the critical pressure for the same 1T .
Remarkably, as shown later, density fluctuation intensities for 1T = 20 K and 2pcr
are very similar to those observed for 1T = 5 K and 1.1pcr; in the latter case,
however, higher temperature fluctuations are obtained. As expected for higher pressure
conditions (see figure 27), a gradual change is also observed in the compressibility
factor for the reference data analogous to the density.

As 1T is increased, the average location of pseudotransition ypb, where the real
fluid effects are expected to be the most accentuated, moves from a near-centreplane
location to the upper wall. The same holds when keeping 1T constant and lowering
the base pressure. It is important to recall that the isothermal wall conditions are
selected to be exactly 1T/2 warmer (top) and colder (bottom) than the pseudoboiling
temperature; yet the location of the pseudotransition in the channel is not located at
the centreplane and it is an output of the calculation. The shift of the pseudotransition
location is related to the highly nonlinear and asymmetric thermophysical properties
of the fluid about the pseudoboiling point, especially the specific heat capacity.
In the transcritical regime, the pseudophase change is accompanied by a finite
peak in the specific heat capacity which acts as a thermal barrier. We make an
approximation that the enthalpy difference from the cold wall to the pseudoboiling
point, 1hpl (pseudoliquid), is approximately equal to the enthalpy difference from the
pseudoboiling point to the warm wall, 1hpg (pseudogas). In other words, we assume:
1hpl≈1hpg. Given the small temperature difference between both walls, the error of
this approximation is between 3.5 % (for the 15 K case) and 4.6 % (for the 120 K
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Supercritical turbulent channel flow 61

case) based on the NIST data. Using this simplifying assumption, we can relate the
total enthalpy of the pseudogas and pseudoliquid domain of the flow by the following
relationship:

Vpg

∫ Tpb

Tpb−1T/2
ρcp dT = Vpl

∫ Tpb+1T/2

Tpb

ρcp dT, (3.1)

where the terms Vpg and Vpl respectively denote the volume of the pseudogas and
pseudoliquid phases. By computing this relation based on the tabulated properties,
we can estimate the relative volume of pseudogas and pseudoliquid in the simulation.
It is clear that under perfect gas conditions and/or modest density variation (e.g.
away from the critical point), the volume of fluid below and above the average
temperature would be equal. In fact, our reference simulation at pb = 2pcr, which
shows a very modest variation in thermophysical properties compared to the other
runs at pb = 1.1pcr, contains about 55 % volume of pseudoliquid based on the
above relation. This compares favourably to the simulation results which show the
pseudotransition point at the middle of the domain (figure 4b). When considering the
cases at pb ≈ 1.1pcr, we find the pseudoliquid volume takes up 37.0 %, 69.6 % and
76.1 % for the 1T = 5, 10 and 20 K cases, respectively, based on this simple model.
This trend corresponds favourably to the average pseudotransition height computed
from the DNS which is 38.5 %, 77.5 % and 94.5 %. These results support the idea
that high nonlinearity of the thermophysics near the critical point will dictate the
location of the pseudoboiling point relative to the solid walls. As shown here, this is
in fact a first-order real fluid effect.

In all cases, the transition from a seemingly fully thermally mixed region in channel
core (i.e. T(y) is relatively uniform and close to the pseudoboiling value) is more
defined than in the reference simulation. Such steep mean flow gradients near the
walls sustain significant density and enthalpy fluctuations, up to ρrms,max=44.1 kg m−3

and hrms,max = 8.9 kJ kg−1, respectively (as discussed later in figures 11 and 12) for
the 1T= 20 K case. The very high heat capacity of the fluid undergoing pseudophase
transition, on the other hand, limits the temperature fluctuations to Trms,max < 2 K.

The mean turbulent streamwise velocity profile (figure 5a) becomes more
asymmetric (with a slight acceleration of the pseudogaseous layer) with increasing 1T ,
with an upwards shift in the maximum velocity location, y/h = 0.06 for 1T = 5 K,
0.11 for 1T = 10 K and 0.17 for 1T = 20 K (see inset in figure 5b), following the
same trend of the pseudotransition location, ypb. As a result, a larger velocity gradient
magnitude is found near the top wall (the magnitude ratio of top-to-bottom velocity
gradient is 1.24 for 1T= 5 K, 1.32 for 1T= 10 K, 1.44 for 1T= 20 K in figure 5b).
In figure 6, while top-down asymmetries in the temperature gradient are confined
to the sublayer regions, the mean density gradient profile is more visibly affected
by the location of pseudotransition. A logarithmic increment of the centreplane of
the temperature gradient is observed as 1T is also increased logarithmically (i.e.
d(1T)/1T = const.), suggesting a linear relation between the overall top-to-bottom
equilibrium heat flux and 1T . The latter is a surprising result given that the level
of hydrodynamic and thermodynamic nonlinearity of the problem. These results also
suggest that transcritical heat flux rates are amenable to straightforward dimensionless
scaling in similar canonical set-ups. While the velocity gradient increase (decrease)
in the pseudogaseous (pseudoliquid) region as 1T is increased is not as significant
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FIGURE 5. Reynolds-averaged streamwise velocity component (a) and its wall-normal
gradient (b) for pb = 1.1pcr and 1T = 5 K (——), 10 K (- - -) and 20 K (· · · · · ·)
and reference data for pb = 2pcr and 1T = 20 K (u) (see § 2.3). Average location of
pseudotransition for 1T = 5 K (E), 10 K (A) and 20 K (@).
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FIGURE 6. Wall-normal gradient of Reynolds-averaged mean density (a) and temperature
(b) for pb = 1.1pcr and 1T = 5 K (——), 10 K (- - -) and 20 K (· · · · · ·) and reference
data for pb = 2pcr and 1T = 20 K (u) (see § 2.3). Average location of pseudotransition
for 1T = 5 K (E), 10 K (A) and 20 K (@).

as the corresponding variations in density and temperature gradients, the real fluid
effects are very apparent when attempting to scale the mean velocity profiles with
commonly used scaling laws.
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Variables for turbulence statistics Semi-local scaling factors ( )∗

y δ∗v =µ(y)/(ρ(y)u
∗

τ (y))
u′′rms, v

′′

rms, w′′rms u∗τ (y)
ũ′′v′′ u∗τ (y)

2

ρ ′rms ρ(y)

TABLE 4. Semi-local scaling factors where u∗τ (y)=
√
τw/ρ(y).

For all 1T values, the mean streamwise velocity profiles are scaled following
the recently proposed approach by Trettel & Larsson (2016) which accounts for
the wall heat transfer effects, the van Driest transformation (van Driest 1951) and
the semi-local scaling (Huang et al. 1995) (figure 7). The expressions of the three
transformations considered are reported here for convenience and completeness.

The van Driest transformation (van Driest 1951) is given by

u+VD =

∫ u+

0

(
ρ(y)
ρw

)1/2

du+, (3.2)

where u+ = u(y)/uτ and the conventional set of scaling parameters reads

y+ =
y
δv
=

y
µw/(ρwuτ )

, uτ =
√
τw/ρw, (3.3)

whereas, for the semi-local scaling (Huang et al. 1995), it reads

y∗ =
y
δ∗v
=

y
µ(y)/(ρ(y)u∗τ (y))

, u∗τ (y)=
√
τw/ρ(y), (3.4)

and its factors for various quantities are shown in table 4.
Finally, the transformation by Trettel & Larsson (2016) reads

u+TL =

∫ u+

0

(
ρ(y)
ρw

)1/2 [
1+

1
2

1
ρ(y)

dρ(y)
dy

y−
1
µ(y)

dµ(y)
dy

y
]

du+. (3.5)

While the reference results at pb = 2pcr collapse profiles from both walls in the
log-law region with the Trettel & Larsson (2016) transformation, the widest spread
is observed with the semi-local scaling. The transformed top- and bottom-wall
streamwise velocity profiles at transcritical temperature conditions result in higher
intercepts than the classic incompressible log-law as the pressure increases. In the
recent publication by Ma et al. (2018) replicating our same set-up, very large values
of the transformed velocity u+TL in the log region were obtained by erroneously
adopting a semi-locally scaled velocity differential in (3.5), suggesting inadequacy
of this transformation for this flow. The present results show, instead, an acceptable
collapse using the Trettel & Larsson (2016) transformation.

Effects of varying 1T are visible (hence not collapsed perfectly) in all adopted
transformations. Increasing 1T results in an enhancement of real fluid effects (at the
present conditions) yielding variations of the state of turbulence in the wall-normal
direction, analysed below via extraction of the semi-local friction Reynolds number
and density fluctuation intensity profiles.
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FIGURE 7. (Colour online) Mean streamwise velocity versus wall-normal coordinate in
wall units scaled based on the conventional van Driest transformation plotted against wall-
normal distance in classic wall units (a) and semi-locally scaled (Huang et al. 1995) (b),
transformed following Trettel & Larsson (2016) (c) for pb = 1.1pcr and 1T = 5 K (——,
thickened), 10 K (- - -) and 20 K (· · · · · ·); reference data for pb = 2pcr and 1T = 20 K
(circles); bottom wall (blue, u) and top wall (red, E). Profiles of the law of the wall
(u+= y+ for the viscous sublayer; u+= 1/κ ln y++C, where κ = 0.41 and C= 5.2 for the
log-law region) are shown with a thin solid black line for reference.
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FIGURE 8. Semi-local friction Reynolds number at the bottom (a) and top (b) wall for
pb = 1.1pcr and 1T = 5 K (——), 10 K (- - -) and 20 K (· · · · · ·).

Figure 8 shows the semi-local friction Reynolds number

Re∗τ = Reτ
√
ρ(y)/ρw/(µ(y)/µw), (3.6)

where Reτ = ρwuτh/µw and the semi-locally scaled wall-normal coordinate, y∗, is here
intended as the relative distance from either the top or the bottom wall. The values
of Re∗τ in the bottom-wall viscous sublayer are lower than those near the top wall;
the opposite occurs in the respective log-law regions. However, values of Re∗τ ,bot in
the log-law region are comparable across the different 1T considered, while Re∗τ ,top
systematically decreases in the respective log-law region as 1T increases (and as the
pseudophase transitioning region of the flow approaches the top-wall buffer layer). The
overall higher sensitivity of Re∗τ to 1T on the heated top wall is manifest in the van
Driest transformed velocity (figure 7a,b) showing the systematic increase in value with
1T for the top wall more than the bottom wall. Also, as noted by Patel, Boersma
& Pecnik (2016), the van Driest transformed velocity profiles plotted as a function
of y∗ in figure 7(b) for the bottom-wall region resemble the profiles of Re∗τ ,bot and
the inverse of Re∗τ ,top (vice versa for the top wall). Changes in mean velocity profiles,
as well as in the turbulence, are related to wall-normal variations of Re∗τ . On the
other hand, the Trettel & Larsson transformed profiles collapse the data across the
various 1T cases considered, in equal manners on both walls, despite the real fluid
effects being more pronounced at the top wall (as also discussed later and illustrated
in figures 12 and 13).

Although the Trettel & Larsson transform results in a collapse between the top
and bottom walls for a given simulation (or given 1T), we do note a non-negligible
spread among the simulations. More specifically, the same slope in the log law is
obtained, but the intercept value increases with the wall-to-wall temperature difference.
Such spread in the intercept values (compared to a universal profile) can arise either
due to the error in the derivation of the stress balance condition or due the log-law
assumptions; both are investigated here.
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In regard to the closure of the stress balance, all the above wall scaling models
rely on Morkovin’s hypothesis, which assumes that the compressibility effects on
turbulence are only related to the mean density variations, not the density fluctuations.
Further, all the scalings neglect the correlation between the viscosity and fluctuating
velocity derivative as a component of the total shear. These hypotheses are evoked to
simplify the near-wall stress balance, yielding

µ
∂u
∂y
− ρu′v′ ≈µ

∂u
∂y
− ρu′v′ +µ′

∂u′

∂y
− ρ ′u′v′︸ ︷︷ ︸= τw. (3.7)

For ideal-gas flows in the subsonic and low-supersonic regime, the terms highlighted
by the underbrace are negligible. In the transcritical regime, where the fluctuations of
viscosity and density are significant, the error due to neglecting µ′(∂u′/∂y) and ρ ′u′v′
may be significant. In the simulations presented herein, they are, respectively, up to
2 % and 5 % of the total shear (for 1T = 20 K). This makes Morkovin’s hypothesis
and the assumption of negligible viscosity fluctuation correlations questionable for the
low-speed transcritical flows analysed herein.

We now move on to considering the assumptions underlying the log law. Its
intercept value corresponds to the integration constant in the scaled velocity profile
(Marusic et al. 2013), and is known to vary for wall roughness (Bradshaw 1994),
heated (Lee et al. 2013) or superhydrophobic (Min & Kim 2004) boundary-layer
flows. Therefore, the intercept value is highly dependent on the near-wall conditions.
Using dimensional scaling arguments, Bradshaw (1994) argues that the velocity
derivative in the log layer is proportional to a velocity scale (friction velocity) and
inversely to the wall distance:

du
dy
=

1
κ

1
y

uτ . (3.8)

In the compressible regime, a heuristic argument (Bradshaw 1994) is evoked in which
the friction factor is replaced by a locally varying velocity scale (Trettel & Larsson
2016):

du
dy
=

1
κ

1
y

(
τw

ρ

)1/2

. (3.9)

The above equation, along with the stress-balance condition, is central to the Trettel
& Larsson transform. When assessing the validity of (3.9) in the transcritical flows
analysed herein, we note a significant relative error in the log region when applying
the above relation. The error is above 20 % in the log layer in the bottom portion
of the channel for 1T = 20 K; the error on the top half of the channel is even
more significant. In other words, this observation informs us that the selection of the
characteristic velocity scales within the van Driest and Trettel & Larsson derivation
of the log-law conditions is not straightforwardly extendable to transcritical flows.

3.2. Turbulent fluctuation intensities
Other real fluid effects associated with transcritical thermal conditions are observable
in the variance of the hydrodynamic turbulent fluctuations as shown in figure 9. As
1T increases, the asymmetries with respect to the channel centreplane grow and the
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FIGURE 9. Root-mean-square of streamwise (a), wall-normal (b) and spanwise (c) Favre
fluctuating velocity component and Reynolds shear stress (d) for pb=1.1pcr and 1T=5 K
(——), 10 K (- - -) and 20 K (· · · · · ·) and reference data for pb = 2pcr and 1T = 20 K
(u) (see § 2.3). Average location of pseudotransition for 1T = 5 K (E), 10 K (A) and
20 K (@).

1T 1(u′′rms,peak) 1(v′′rms,peak) 1(w′′rms,peak) 1(ρ ′′rms,peak) 1(T ′′rms,peak) 1(p′′rms,peak)

(K) (%) (%) (%) (%) (%) (%)

5 −2.60 −6.69 −3.69 −31.71 −7.27 −18.83
10 −4.65 −11.31 −10.36 3.90 13.37 −35.44
20 −5.77 −19.74 −12.72 31.84 27.47 −25.30

TABLE 5. Top-to-bottom difference in root-mean-square peak values of streamwise, wall-
normal and spanwise velocity components, density, temperature and pressure as percentage
of the bottom peak root-mean-square value.

peak fluctuation intensity values at the top wall (pseudogaseous region towards which
the pseudotransition location migrates) are attenuated corresponding to the values in
the pseudoliquid flow as shown in table 5. This suggests the occurrence of damping
of hydrodynamic turbulence due to the proximity to the region of pseudophase
change. Such attenuation is noted in all Reynolds stress terms, but is strongest in
the wall-normal velocity component, directly involved in the turbulent heat and mass
transport working against the steep mean temperature and density gradient. Following
Morinishi, Tamano & Nakabayashi (2004), in figure 10 we show the semi-local
scaled profiles of turbulent velocity fluctuations (see table 4 for the semi-local scaling
factors). The semi-local scaling collapses well the high-pressure data 2pcr onto the
near-critical 1.1pcr cases, with the exception of the streamwise velocity fluctuations;
a much better collapse is observed across the various 1T conditions for the same
near-critical case in terms of the peak value level and its location in the semi-local
wall unit, y∗ (see table 6).

On the contrary, the proximity to the pseudophase change location ypb (locally)
and the increasing top-to-bottom temperature difference 1T (globally) enhance the
intensity of all thermodynamic fluctuations (figures 11 and 12a). In spite of damping
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FIGURE 10. Semi-local scaled root-mean-square of streamwise, wall-normal and spanwise
Favre fluctuating velocity component (a,c) and Reynolds shear stress (b,d) at the bottom
(a,b) and top (c,d) wall for pb = 1.1pcr and 1T = 5 K (——), 10 K (- - -) and 20 K
(· · · · · ·) and reference data for pb=2pcr and 1T=20 K (u) (see § 2.3). Semi-local scaling
factors are given in table 4.

(u′′rms,peak)
∗ (v′′rms,peak)

∗ (w′′rms,peak)
∗

|(ũ′′v′′peak)
∗
|

Bot 3.25–3.34 0.91–0.92 1.25–1.27 0.81–0.83
(y∗ = 17.45–18.77) (y∗ = 93.51–103.24) (y∗ = 46.07–46.55) (y∗ = 47.91–54.06)

Top 3.19–3.23 0.83–0.89 1.20–1.24 0.77–0.80
(y∗ = 16.82–17.53) (y∗ = 84.18–86.04) (y∗ = 37.70–42.14) (y∗ = 42.41–45.94)

TABLE 6. Peak ranges of the root-mean-square of streamwise, wall-normal and spanwise
Favre fluctuating velocity component and Reynolds shear stress at the bottom and top wall
and their wall-normal location using the semi-local scaling.

in the wall-normal velocity fluctuations, the wall-normal turbulent enthalpy flux is
enhanced (figure 12b) by increasing 1T , as expected by the statistical steadiness of
the flow, implying equilibrium conditions for the turbulent heat transfer.

For any given 1T , the root-mean-square peak of density, temperature and enthalpy
closer to the location of pseudophase transition, ypb, has a higher value than that
farther away. This is not surprising as the thermophysical gradients are the largest at
y∼ ypb (see figure 1), and therefore pseudoboiling conditions are expected to enhance
the local thermodynamic fluctuations, concomitantly enhancing the asymmetry in
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FIGURE 11. Root-mean-square of Reynolds fluctuations (a–c) and their normalized
quantities (d–f ) with respect to the local mean values for density (a,d), temperature (b,e)
and pressure (c, f ) for pb = 1.1pcr and 1T = 5 K (——), 10 K (- - -) and 20 K (· · · · · ·)
and reference data for pb = 2pcr and 1T = 20 K (u) (see § 2.3). Average location of
pseudotransition for 1T = 5 K (E), 10 K (A) and 20 K (@).

the fluctuating profiles; in fact, based on the transport equation for density variance
(Chassaing et al. 2013), the mean density gradient is responsible for production of
density fluctuations, consistently with the data presented in this paper. Moreover, as
ypb moves upwards for increasing 1T , it approaches the peak of the shear Reynolds
stress and enthalpy flux (figure 12b), only significantly increasing the latter roughly
proportionally to 1T .

The density fluctuation intensity normalized by its mean local value shown in
figure 11 is significantly higher than the temperature fluctuation (for 1T = 20 K,
(ρ ′rms/ρ)max ' 26 × (T ′rms/T)max). These real fluid effects have a direct impact on the
structure of near-wall turbulence and are attenuated with increasing pressure.

Previous calculations involving dense gases in a supersonic channel flow by
Sciacovelli et al. (2017) observed the maximum density fluctuation intensity located
in the viscous sublayer and, as such, it was argued that it did not alter the turbulence
structure significantly while satisfying Morkovin’s hypothesis. In the present results,
the ρ ′rms peak is located in the buffer layer, and much more pronounced at the top
wall (where the real fluid effects become more concentrated as 1T increases) therein
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FIGURE 12. Root-mean-square of Favre fluctuations for enthalpy (a) and wall-normal
turbulent enthalpy flux (b) for pb = 1.1pcr and 1T = 5 K (——), 10 K (- - -) and 20 K
(· · · · · ·). Average location of pseudotransition for 1T = 5 K (E), 10 K (A) and 20 K (@).
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FIGURE 13. Semi-local scaled root-mean-square of Reynolds fluctuating density at the
bottom (a) and top (b) wall for pb = 1.1pcr and 1T = 5 K (——), 10 K (- - -) and 20 K
(· · · · · ·) and reference data for pb=2pcr and 1T=20 K (u) (see § 2.3). Semi-local scaling
factors are shown in table 4.

contributing to the inhomogeneity of the state of turbulence, as discussed earlier in
the analysis of the semi-local friction Reynolds number (figure 8). The bottom and
top near-wall peaks of ρ ′rms based on the semi-local scaling for the 1T conditions in
this study are located in y∗ = 7–13 approximately corresponding to the buffer layer
and the location moves slightly towards the channel centreplane with increasing 1T
(see figure 13).
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FIGURE 14. Skewness of the streamwise (a) and wall-normal (b) velocity component,
density (c) and temperature (d) for pb = 1.1pcr and 1T = 5 K (——), 10 K (- - -) and
20 K (· · · · · ·) and reference data for pb = 2pcr and 1T = 20 K (u) (see § 2.3). Average
location of pseudotransition for 1T = 5 K (E), 10 K (A) and 20 K (@).

4. High-order statistics, p.d.f.s and turbulent spectra
The skewness profiles of the fluctuating hydrodynamic and thermodynamic

quantities are presented in figure 14. Although the high-order moments of the velocity
fluctuations are, for the most part, unaffected by the real fluid effects with increasing
1T , more negative skewness of the streamwise velocity fluctuations is observed at
higher pressure near the bottom wall. The noticeable difference is in the magnitude
and sign of the skewness of density and temperature in the buffer layer regions; here
comparing to the near-critical cases (1.1pcr), the density fluctuation skewness of the
reference data is damped, especially near its peak values.

The positive peak in density skewness at the bottom wall is the result of intermittent
events (discussed in more detail in § 5) which eject dense fluid from the pseudoliquid
sublayer into the channel core kept in the pseudoboiling conditions. Identical
considerations hold for the top wall, but in reverse, justifying the negative skewness
peak of density observed there. The skewness of temperature follows a specular
pattern with respect to density suggesting that the fluctuations in pressure might not
play a dominant role in the mass and momentum transport.

To gain more insight into the structure of thermodynamic fluctuations, p.d.f.s of
density and temperature have been extracted at all locations (figures 15 and 16).
Confirming the previous observations that the p.d.f.s widen as 1T increases as
expected, the largest variance is observed when pseudotransition takes place in the
turbulent buffer layer, occurring at the top-wall buffer layer for 1T = 20 K. While
the variance of the turbulent velocity fluctuations decreases with increasing 1T , the
broader p.d.f. of thermodynamic fluctuations is associated with the steepening of the
corresponding gradients (figure 6).

The analysis in figures 17 and 18 focuses on three locations, the two buffer layers
and the pseudophase transitioning location, and includes a comparison with the
reference data. For both density and temperature, it is observed that the pseudophase
transitioning region exhibits much narrower distribution of the p.d.f.s, whereas the
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FIGURE 15. (Colour online) Contour of p.d.f. of total density and the average location
of pseudotransition, y= ypb, pseudoboiling density value ρ = ρpb (– –) for pb = 1.1pcr and
1T = 5 K (a), 10 K (b) and 20 K (c). The solid black line corresponds to the isocontour
level p.d.f.ρ = 10−3. Note that the plot extremes on the horizontal axis are increased for
increasing 1T .
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FIGURE 16. (Colour online) Contour of p.d.f. of total temperature and the average
location of pseudotransition, y = ypb, pseudoboiling density value ρ = ρpb (– –) for pb =

1.1pcr and 1T = 5 K (a), 10 K (b) and 20 K (c). The solid black line corresponds to
the isocontour level p.d.f.ρ = 10−3. Note that the plot extremes on the horizontal axis are
increased for increasing 1T .

buffer layers display a very pronounced kurtosis. Such p.d.f. with very high kurtosis
is not observed in the density p.d.f. of the reference case, while it is observed for
the temperature p.d.f. (see table 7 for details).

Figure 19(a) presents the p.d.f. conditioned to a density range centred about its
pseudotransitioning value. These results provide the probability of an instantaneous
pseudophase change event at a given y location (or equivalently, the probability of
the pseudointerface being instantaneously located at a given y location). The location
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FIGURE 17. The p.d.f. of fluctuating density at the bottom (——, u) and top (- - -, E)
locations of peak ρrms and at the average location of pseudotransition y= ypb (· · · · · ·) for
pb = 1.1pcr and 1T = 5 K (a), 10 K (b) and 20 K (c) and reference data for pb = 2pcr
and 1T = 20 K (circles) (see § 2.3).
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FIGURE 18. The p.d.f. of fluctuating temperature at the bottom (——,u) and top (- - -,
E) locations of peak Trms and at the average location of pseudotransition y= ypb (· · · · · ·)
for pb= 1.1pcr and 1T = 5 K (a), 10 K (b) and 20 K (c) and reference data for pb= 2pcr
and 1T = 20 K (circles) (see § 2.3).

1T (K) y=−0.97h y= 0.97h y= ypb

ρ ′min ρ ′max T ′min T ′max ρ ′min ρ ′max T ′min T ′max ρ ′min ρ ′max T ′min T ′max
(kg m−3) (K) (kg m−3) (K) (kg m−3) (K)

5 −49.58 53.33 −1.18 1.13 −37.76 41.11 −1.04 1.24 −23.36 20.26 −0.38 0.44
10 −67.58 65.93 −2.07 1.56 −59.18 90.18 −1.83 2.51 −42.69 41.93 −0.73 0.83
20 −101.55 81.23 −4.03 3.34 −91.68 148.37 −3.35 5.39 −124.41 94.67 −1.88 4.06

TABLE 7. Minimum and maximum values of fluctuating density and temperature at the
approximate bottom wall (y ' −0.97h) and top wall (y ' 0.97h) root-mean-square peak
locations and at the average location of pseudotransition, y= ypb.
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FIGURE 19. The p.d.f. of y/h values conditional to |ρ − ρpb|6 5.9 kg m−3, where ρpb =

453.5 kg m−3, corresponding to Tpb ± 0.1 K (a) and Q = 2.49 × 109–2.51 × 109 s−2 (b)
with average locations of the pseudotransition for pb = 1.1pcr and 1T = 5 K (——, E),
10 K (- - -,A) and 20 K (· · · · · ·,@).
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FIGURE 20. (Colour online) Isosurfaces of Q-criterion at Q= 2.5× 109 s−2 (a) and
0.5× 109 s−2 (b) coloured by the wall-normal velocity for pb = 1.1pcr and 1T = 20 K.

corresponding to the highest event count moves upwards in the channel as 1T
increases and the distribution is narrowed: y/h = −0.17 for 1T = 5 K, 0.78 for
1T = 10 K and 0.93 for 1T = 20 K. However, these values do not exactly match
the average pseudotransition locations determined by the mean quantities (shown
in figure 4 and indicated with symbols in figure 19), especially for 1T = 10 K.
As a result, despite having a mean pseudotransition location at ypb/h = 0.55 in the
1T = 10 K case, the greatest probability is much closer to the top wall, at about
y/h= 0.8–0.9.

A coherent-structure-based probability distribution is also extracted (figure 19b).
Conditioning the p.d.f. on a selected Q-criteria value (Q= 2.49× 109–2.51× 109 s−2

as used in figures 20a and 23b) allows one to identify the effects of increasing 1T on
the structural make-up of turbulence under transcritical temperature conditions. In line
with the observed turbulence damping in the vicinity of pseudotransition conditions,
a reduction of the population density of turbulent structures in the top half of the
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channel is observed with increasing 1T as quantitatively shown by the reduction in
the number of observed events in the conditional statistics in figure 19(b). This effect
is observed for several values of the Q-criterion (figure 20) and is consistent with the
increasing asymmetry in the turbulent velocity profiles for increasing 1T as shown
in figure 9.

Figure 21 shows one-dimensional energy spectra of fluctuating density, wall-normal
velocity and temperature in the near-wall regions which are heavily affected by
the wall-generated turbulence. All the profiles roll off rapidly at high wavenumbers,
providing further evidence of the adequacy of the resolution of both the hydrodynamic
and thermodynamic quantities (see appendix B for grid convergence study which
presents a systematic sensitivity analysis of investigated simulations to the grid
resolution for 1T = 20 K exhibiting the strongest turbulent fluctuation). The
co-spectrum of the wall-normal velocity and temperature fluctuations, EvT , is also
analysed here to gain insight into the fundamental nature of their interaction. Its
value increases with 1T , as expected, meaning an increase of the wall-to-wall heat
flux. Normalizing the co-spectrum based on the single-variable spectra (figure 22)
reveals an unexpected loss of transport efficiency, or coherence, at the pseudophase
changing location for intermediate wavenumbers as 1T is increased; this is observed
for both the streamwise and spanwise directions. Overall, the hydrodynamic and
thermodynamic effects are highly correlated at or around the energy-containing
turbulent length scale.

5. Coherent structures and thermodynamics

Instantaneous isosurfaces of density and Q-criterion as well as corresponding
flooded contours of temperature gradient are shown in figure 23 for the bottom
wall only to investigate the coupling between heat and mass transfer effects and
the role of coherent turbulent structures in the transport. The density isosurface at
ρ = 468 kg m−3 (value which corresponds to y/h=−0.9 in the mean density profile
shown in figure 4) exhibits clear ejection events from the pseudoliquid region (near
the cold bottom wall) as the near-wall turbulence lifts up the dense fluid into the
lighter core of the channel. As the ejected fluid has more inertia than its lighter
surrounding (note that no gravitational effects are accounted for in these simulations),
it reaches the core of the channel where the fluid undergoes a pseudophase change,
effectively achieving mass transport. Naturally, the gravitational forces (in a stably
stratified flow set-up) would play a mitigating role in the observed mixing dynamics.
This pseudophase change and the concomitant effects on the thermodynamics are a
unique characteristic of transcritical flows and explain the high positive values of
skewness of density (figure 14) in the bottom half of the channel.

The Q-criterion isosurface identifies the turbulent structures based on the velocity
gradients alone. Interestingly, large-scale streamwise-aligned structures are observed
near the wall (see the circles), leading to the choice of a long computational domain
length in the streamwise direction, 12 times the half-channel width, approximately
twice the typical length required by the current friction Reynolds number (see table 2).
Figure 23(c) shows the corresponding elongated streaks in the wall heat flux, spatially
correlated with the ejection locations caused by the streamwise-elongated turbulent
structures.

Two-point velocity correlations in the streamwise and spanwise direction (figure 24)
are extracted to confirm that the computational box size has been adequately picked.
A large streamwise and small spanwise coherence is observed near the top and
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FIGURE 21. One-dimensional energy spectra of Reynolds-averaged fluctuating density
(a,b), wall-normal velocity (c,d) and temperature (e, f ) and one-dimensional co-spectra
between the Reynolds-averaged fluctuating wall-normal velocity and temperature (g,h) in
the streamwise (a,c,e,g) and spanwise (b,d, f,h) direction extracted at the two near-wall
peaks of density fluctuation intensity (y/h=±0.97) for pb= 1.1pcr and 1T = 5 K (——),
10 K (- - -) and 20 K (· · · · · ·). Spectra for the top-wall data have been shifted vertically
by two decades for clarity.

bottom wall confirming the visual observation of the narrow elongated streaks from
figure 23. We note a much longer streamwise correlation length in the u velocity
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FIGURE 22. One-dimensional coherence between the Reynolds-averaged fluctuating wall-
normal velocity and temperature in the streamwise (a) and spanwise (b) direction extracted
at the two near-wall peaks of density fluctuation intensity (y/h=±0.97) and the average
location of the pseudotransition based on the mean quantities for pb=1.1pcr and 1T=5 K
(——), 10 K (- - -) and 20 K (· · · · · ·). Coherence for the pseudotransition and the top
near-wall peak data have been shifted vertically by 0.5 and 1.0, respectively, for clarity.

(correlation reaches zero at about 0.15rx/Lx) than in w (correlation reaches zero at
about 0.05rx/Lx). The lateral two-point correlations are consistent with the longitudinal
ones and the three-dimensional visualizations. The signature of streamwise-aligned
streaks results in a short spanwise correlation length near the walls.

In the centre of the channel, turbulence is nearly isotropic, a fact observed from
the integral length scale analysis. The integral length scale (not shown) at the channel
centre is about 9 % of the width. The integral length scales relative to the local
Kolmogorov scale are presented in figure 25 revealing the remarkably extended
correlation length of the near-wall structures.

In addition to the hydrodynamic correlations, thermodynamic two-point correlations
are presented in figure 26. The two-point correlations for density and compressibility
factor reflect the real fluid characteristics discussed with figure 11. The correlations
have an identical tendency showing the long streamwise and short spanwise correlation
lengths near the walls and vice versa in the centre region. The large streamwise
coherence near the walls accords with the manifestation of pseudoliquid flow
streaks observed in figure 23. These longer streaky structures are also observed
in variable-density, supersonic wall-bounded flows with cooled walls (Coleman,
Kim & Moser 1995). As the fluctuating density is enhanced (see figure 13), so
is the momentum transfer along the wall-normal direction. As a result, the higher
momentum particles travel a longer distance, imparting an enhanced streaky structure
to the near-wall flow. The flow ejected from the walls in the long streamwise streaks
eventually takes on a blob-like form (shorter streamwise, longer spanwise structure)
as the ejected fluid reaches the channel centreplane. The strong similarity between
all 1T conditions is noted.

6. Conclusions
We have performed DNS of transcritical turbulent channel flow with differentially

heated walls (Ttop − Tbot = 1T) of R-134a (also called 1,1,1,2-tetrafluoroethane,
CH2FCF3) at a slightly supercritical pressure. By defining a statistically steady
turbulent channel flow at transcritical temperature conditions, the turbulence and
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FIGURE 23. (Colour online) Isosurfaces of density (ρ = 468 kg m−3) coloured by the
distance from the bottom wall (a), Q-criterion (Q= 2.5× 109 s−2) coloured by the wall-
normal velocity (b) and temperature gradient (c) for pb= 1.1pcr and 1T = 5 K (enhanced
online – https://www.youtube.com/embed/JqF_ZrucSqs).

thermodynamic coupling could be studied. The simulations were conducted by solving
the fully compressible Navier–Stokes equations using a conservative formulation.
Special attention was paid to fully resolving all scales of the hydrodynamics
and thermodynamics of the set-up to avoid non-physical oscillations which are
characteristics of these flows. The PR EoS was used with a consistent thermodynamic
formulation to investigate the real fluid effects. The simulations were run at a
friction Reynolds number of about Reτ = 373. A realistic Prandtl number is used
and computed from Chung’s model to estimate the dynamic viscosity and thermal
conductivity. By varying the differential heating of the channel walls, the average
location of the pseudophase change could be controlled, with y/h = −0.23, 0.55
and 0.89 for 1T = 5, 10 and 20 K, respectively. At the pseudophase change, the
thermodynamic nonlinearities are maximal, and therefore the resulting effects of the
thermodynamic nonlinearities on turbulence could be investigated.

Conventional near-wall velocity scaling laws cannot capture the velocity distribution
in transcritical flows due to the large density and thermophysical variations; even
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FIGURE 24. Normalized longitudinal (a,b) and lateral (c,d) two-point correlations of
velocity in the streamwise (a,c) and spanwise (b,d) direction extracted at y/h = −0.97,
−0.75,−0.50,−0.25, 0.00, 0.25, 0.50, 0.75 and 0.97 for pb= 1.1pcr and 1T = 5 K (——),
10 K (- - -) and 20 K (· · · · · ·). The lines have been shifted vertically corresponding to
each y/h from bottom to top. Average location of first zero-crossing points for 1T = 5,
10 and 20 K (u).

recent improvements to the scaling laws for heated and cooled walls cannot accurately
capture these effects. This leads us to conclude that additional wall modelling
for transcritical flow is essential to correctly capture the near-wall dynamics of
transcritical flows. One justification for the near-wall modelling challenges stems
from nonlinear thermodynamic effects in the wall turbulence. The real fluid
thermodynamic effects inhibit hydrodynamic turbulence through a decrease in the
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FIGURE 25. Ratio of the integral length scale (longitudinal (a,b) and lateral (c,d)) and the
local Kolmogorov scale in the streamwise (a,c) and spanwise (b,d) direction for 1T= 5 K
(——), 10 K (- - -) and 20 K (· · · · · ·).

dilatational production term of the enstrophy equation (not shown). The profiles of
the thermodynamic fluctuations show a higher intensity in the pseudogas (hot wall)
compared to the pseudoliquid (cold wall) region; this occurs despite a reduction in
the turbulence intensity near the top wall. The conditional p.d.f. of density shows
narrowing of the pseudotransition region with increasing differential heating. When
the pseudophase change occurs near the wall (1T = 20 K case), a highly skewed
and very narrow distribution is observed, which results from the nonlinear dynamics
as the pseudophase change occurs near the viscous sublayer. The structural signature
of the turbulence in transcritical flows remains the most striking. Near the wall, the
turbulence is aligned in the long, yet meandering, streamwise coherent structures
and the integral length scales are over 400 times the local Kolmogorov scale. The
instantaneous visualizations and the two-point correlations have shown that strong
ejections of heavy fluid into the channel core affect the structures and dynamics of
turbulent channel flow and leave streaks in the temperature gradients at the wall.
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Appendix A. Modelling of thermodynamic and fluid transport properties
The PR EoS (Peng & Robinson 1976) reads

p=
RuT
vm − b

−
aα

v2
m + 2bvm − b2

,

a=
0.45724R2

uT2
cr

pcr
, b=

0.07780RuTcr

pcr
,

α = [1+ (0.37464+ 1.54226ω− 0.26992ω2)(1− T0.5
r )]2,


(A 1)

where Ru is the universal gas constant, vm the molar volume, ω the acentric factor and
Tr = T/Tcr the reduced temperature. The terms, a, b and α account for intermolecular
attractive and repulsive effects and the non-spherical shape of the molecules.

The thermodynamic relations based on the PR EoS that incorporate departure
functions are

e(T, ρ)= e0(T)+
1

√
8bMw

[
T
(
∂aα
∂T

)
− aα

]
ln

(
Mw + (1+

√
2)bρ

Mw + (1−
√

2)bρ

)
, (A 2)

h(T, ρ)= e(T, ρ)+
p
ρ
, (A 3)

cv(T, ρ)= c0
v(T)+

T
√

8bMw

(
∂2aα
∂T2

)
ln

(
Mw + (1+

√
2)bρ

Mw + (1−
√

2)bρ

)
, (A 4)

cp(T, ρ)= cv(T, ρ)+
T
ρ2

(
∂p
∂T

)2

ρ

/(
∂p
∂ρ

)
T

, (A 5)

γ (T, ρ)=
cp(T, ρ)
cv(T, ρ)

, (A 6)

c(T, ρ)=

√
γ (T, ρ)

(
∂p
∂ρ

)
T

, (A 7)

where e is the internal energy, h the enthalpy, cv the heat capacity at constant volume,
cp the heat capacity at constant pressure, γ the specific heat ratio, c the speed of sound
and Mw the molecular weight. The superscript 0 denotes the thermodynamic property
of the equivalent ideal gas state.

Departure functions derived from the selected EoS ensure full thermodynamic
consistency (Ewing & Peters 2000) of the simulations. As an example, here the
partial derivatives in the relations for cp and c are given by(

∂p
∂T

)
ρ

=
ρRu

Mw − bρ
−

(
∂aα
∂T

)
ρ2

[Mw + (1+
√

2)bρ][Mw + (1−
√

2)bρ]
, (A 8)(

∂p
∂ρ

)
T

=
MwRuT

(Mw − bρ)2
−

2aαρMw(Mw + bρ)

[Mw + (1+
√

2)bρ]2[Mw + (1−
√

2)bρ]2
. (A 9)

Chung’s method (Chung et al. 1988) is used to obtain transport properties such as
dynamic viscosity and thermal conductivity. The dynamic viscosity is given by

µ=µ∗
36.344(MwTcr)

1/2

v
2/3
m,c

, (A 10)
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where vm,c is the critical molar volume and µ∗ is

µ∗ =
(T∗)1/2

Ωv

Fc[(G2)
−1
+ A6y] +µ∗∗. (A 11)

Parameters T∗, Ωv and Fc are given as

T∗ = 1.2593Tr, (A 12)
Ωv = [A(T∗)−B

] +C[exp(−DT∗)] + E[exp(−FT∗)] +GT∗B sin(ST∗W −H), (A 13)
Fc = 1− 0.2756ω+ 0.059035µ4

r + κa, (A 14)

where κa is the association factor for hydrogen bonding effect of highly polar
substances such as alcohols and acids and Ωv and Fc mean the viscosity collision
integral and consideration for the shape and the polarity of molecules for dilute gases,
respectively. The dimensionless dipole moment, µr, is given by

µr = 131.3
χ

(vm,cTcr)1/2
, (A 15)

where χ is the dipole moment of molecules.
The other terms appearing in the relationships above are as follows:

y=
ρvm,c

6
, (A 16)

G1 =
1− 0.5y
(1− y)3

, (A 17)

G2 =
A1[[1− exp(−A4y)]/y] + A2G1 exp(A5y)+ A3G1

A1A4 + A2 + A3
, (A 18)

µ∗∗ = A7y2G2 exp[A8 + A9(T∗)−1
+ A10(T∗)−2

], (A 19)
Ai = a0(i)+ a1(i)ω+ a2(i)µ4

r + a3(i)κa. (A 20)

The thermal conductivity was developed by following a similar approach to the
dynamic viscosity:

λ=
31.2µ0Ψ

M′w
(G−1

2 + B6y)+ qB7y2T1/2
r G2, (A 21)

where

µ0
= 40.785

Fc(MwT)1/2

v
2/3
m,cΩv

, (A 22)

Ψ = 1+ α
(

0.215+ 0.28288α − 1.061β + 0.26665Z
0.6366+ βZ + 1.061αβ

)
, (A 23)

α =
cv
Ru
− 1.5, (A 24)

β = 0.7862− 0.7109ω+ 1.3168ω2, (A 25)
Z = 2.0+ 10.5T2

r , (A 26)
M′w =Mw/103, (A 27)

q= 3.586× 10−3 (Tcr/M′w)
1/2

v
2/3
m,c

. (A 28)
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FIGURE 27. Thermodynamic properties predicted by the PR EoS and Chung’s model
(lines) and the NIST data (symbols) at various pressure conditions (—— E, pcr =

40.590 bar; - - - A, 1.1pcr = 44.649 bar; — · — @, 1.2pcr = 48.708 bar; u, 2pcr =

81.180 bar). (a) Density (u, critical point). (b) Speed of sound. (c) Heat capacity at
constant volume. (d) Heat capacity at constant pressure. (e) Internal energy. ( f ) Enthalpy.
(g) Dynamic viscosity. (h) Thermal conductivity. (i) Specific heat ratio. ( j) Prandtl number.

For the term G2, the form is identical to that of dynamic viscosity, but Ai is replaced
with Bi which has different values. All the other terms that are not defined here and
the empirical coefficients are found in Poling et al. (2001).
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FIGURE 28. Root-mean-square of streamwise (a), wall-normal (b) and spanwise (c) Favre
fluctuating velocity component and Reynolds shear stress (d) for pb = 1.1pcr and 1T =
20 K at grid resolution of 64×96×64 (· · · · · ·),128×128×96 (— · —), 192×128×128
(- - -), 384× 256× 256 (– –) and 512× 256× 256 (——).

Nx×Ny×Nz 64×96×64 128×128×96 192×128×128 384×256×256 512×256×256

Index
i, j or k− 1 0.00005 0.00015 0.00025 0.00045 0.00055

i, j or k 0.99990 0.99970 0.99950 0.99910 0.99890
i, j or k + 1 0.00005 0.00015 0.00025 0.00045 0.00055

TABLE 8. Filtering factors used in the top-hat filter.

Appendix B. Grid convergence study
Grid convergence of transcritical flows is essential for determining the adequacy

of DNS as we recall that the minimal thermodynamic length scale to be resolved in
transcritical flows is typically smaller than the Kolmogorov length scale. Insufficient
spatial resolution is typically evidenced by a large spectral pile-up in the thermodynamic
quantities; in which case, the obtained results should be considered erroneous. In order
to resolve the numerical error, we have used the top-hat filter with filtering factors
shown in table 8. Here, the grid sensitivity is investigated for the most critical case of
1T = 20 K. Figure 28 shows the grid sensitivity of the velocity root-mean-square. We
highlight the insensitivity of the streamwise fluctuations to the grid resolution, whereas
an unresolved simulation underestimates the peak fluctuations in the spanwise and
wall-normal velocity components. The overall trends of the root-mean-square profiles
(asymmetry, relative peak height, etc.) are independent of the grid resolution.

The grid sensitivity of thermodynamic fluctuations is shown in figures 29 and 30.
We note a slow convergence of the thermodynamic quantities, particularly for the
pressure. Figure 30 shows that the fluctuating enthalpy root-mean-square is well
captured on a coarse mesh. However, the turbulent enthalpy flux, an important
quantity for the characterization of the convective heat transfer, requires a large grid
count for a correct estimation. An insufficient grid resolution will underestimate the
magnitude of the turbulent effect on the heat transfer in this transcritical system.
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FIGURE 29. Root-mean-square of Reynolds fluctuations for density (a), temperature (b)
and pressure (c) for pb = 1.1pcr and 1T = 20 K at grid resolution of 64 × 96 × 64
(· · · · · ·),128 × 128 × 96 (— · —), 192 × 128 × 128 (- - -), 384 × 256 × 256 (– –) and
512× 256× 256 (——).
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FIGURE 30. Root-mean-square of Favre fluctuations for enthalpy (a) and wall-normal
turbulent enthalpy flux (b) for pb= 1.1pcr and 1T = 20 K at grid resolution of 64× 96×
64 (· · · · · ·),128× 128× 96 (— · —), 192× 128× 128 (- - -), 384× 256× 256 (– –) and
512× 256× 256 (——).

The one-dimensional energy spectra of fluctuating density, wall-normal velocity
and temperature in the streamwise and spanwise directions are presented in figure 31.
The profiles are extracted at y/h = −0.97, 0 and 0.97 which correspond to the
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FIGURE 31. One-dimensional energy spectra of Reynolds-averaged fluctuating density
(a,b), wall-normal velocity (c,d) and temperature (e, f ) in the streamwise (a,c,e) and
spanwise (b,d, f ) directions extracted at the two near-wall peaks of density fluctuation
intensity (y/h=±0.97) and the centreplane (y/h= 0) for pb = 1.1pcr and 1T = 20 K at
grid resolution of 64× 96× 64 (· · · · · ·),128× 128× 96 (— · —), 192× 128× 128 (- - -),
384 × 256 × 256 (– –) and 512 × 256 × 256 (——). Spectra for the centreplane and the
top-wall data have been shifted vertically by three decades and six decades, respectively,
for clarity.

location of the thermodynamic root-mean-square peaks (bottom and top wall) and the
centreplane. As the grid resolution increases, a spectral broadening is observed with a
slight increase at the high wavenumbers. Also, a build-up at high wavenumbers in the
energy spectra is observed as expected because of the higher sensitivity to inadequate
spatial resolution due to the coupling of conservative compressible methods with
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FIGURE 32. Normalized average Kolmogorov length scales ηK/1x (a), ηK/1y (b) and
ηK/1z (c), at pb= 1.1pcr and 1T= 20 K at grid resolution of 64× 96× 64 (· · · · · ·),128×
128× 96 (- · -),192× 128× 128 (- - -), 384× 256× 256 (– –) and 512× 256× 256 (——).

cubic equations of state. The latter were mitigated by adopting a higher numerical
resolution than that normally required for the given Reynolds number.

Figure 32 presents the average profiles of the normalized Kolmogorov length scale
in the streamwise, wall-normal and spanwise directions. The Kolmogorov scale, ηK ,
which quantifies the smallest turbulence length scale, is defined as

ηK ≡

(
ν3

ε

)1/4

, (B 1)

where ν and ε represent the kinematic viscosity and dissipation rate of turbulent
kinetic energy per unit mass. For compressible flows, ε reads

ε ≡
1
ρ
τij
∂u′′i
∂xj

. (B 2)

The profiles of the normalized Kolmogorov length scale approach unity as the grid
resolution increases. It is observed that the flow in the liquid-like phase needs a finer
grid than that in the gas-like phase to resolve the turbulence length scale. These
figures show adequate grid resolution in the wall-normal direction, especially near the
walls. This study highlights the importance of a sufficient resolution in the streamwise
direction as well.
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