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COMPATIBILITY OPERATORS IN ABSTRACT ALGEBRAIC LOGIC

HUGO ALBUQUERQUE, JOSEP MARIA FONT, AND RAMON JANSANA

Abstract. This paper presents a unified framework that explains and extends the already successful
applications of the Leibniz operator, the Suszko operator, and the Tarski operator in recent developments
in abstract algebraic logic. To this end, we refine Czelakowski’s notion of an S-compatibility operator, and
introduce the notion of coherent family of S-compatibility operators, for a sentential logic S. The notion
of coherence is a restricted property of commutativity with inverse images by surjective homomorphisms,
which is satisfied by both the Leibniz and the Suszko operators. We generalize several constructions and
results already existing for the mentioned operators; in particular, the well-known classes of algebras
associated with a logic through each of them, and the notions of full generalized model of a logic and a
special kind of S-filters (which generalizes the less-known notion of Leibniz filter). We obtain a General
Correspondence Theorem, extending the well-known one from the theory of protoalgebraic logics to
arbitrary logics and to more general operators, and strengthening its formulation. We apply the general
results to the Leibniz and the Suszko operators, and obtain several characterizations of the main classes of
logics in the Leibniz hierarchy by the form of their full generalized models, by old and new properties of the
Leibniz operator, and by the behaviour of the Suszko operator. Some of these characterizations complete
or extend known ones, for some classes in the hierarchy, thus offering an integrated approach to the Leibniz
hierarchy that uncovers some new, nice symmetries.

§1. Introduction. Abstract algebraic logic (AAL) is an area of algebraic logic
that takes a global perspective on the algebraic study of the different logics, mainly
propositional, that have been considered in several fields like philosophy, computer
science, or the foundations of mathematics. Since the early 1930’s (or even earlier)
a plethora of logics have been introduced in those fields, for example intuitionistic
logic, expansions of classical logic (such as the different modal, epistemic, temporal,
deontic, dynamic logics and related systems), quantum logics, the broad family
of substructural logics (which includes linear logic, relevance logics, many-valued
logics such as Łukasiewicz’s, and many others), etc.; and new logics continue to
emerge. The many similarities in the existing algebraic studies of each one of them
led to an abstract study of the very process of the algebraization of the different
logics in itself. This study introduced general concepts and theorems in order to
organize several of the results obtained for specific logics as particular cases of
general results applicable to wide classes of logics. This approach can be traced back
to the research of some Polish logicians in the 1960’s and was definitely pursued and
consolidated by thework ofWillem J. Blok,Don Pigozzi, and JanuszCzelakowski in
the 1980’s. It led to the area of research that is now known as AAL. The perspective
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taken in AAL with respect to the algebraic study of logics is similar to the one
universal algebra takes with respect to classical algebra; in fact, the connections
between AAL and universal algebra are quite strong. As general references on
AAL, see [5,14,15,18,20].
One of the main goals of abstract algebraic logic is to associate a class of algebras
with every logic in a canonical way and to classify logics according to the kind of
relation they have with their algebraic counterpart. This purpose has led to classify
logics in the so-called Leibniz and Frege hierarchies. Another main goal of abstract
algebraic logic is to obtain theorems that relate properties that a logic might have
with properties that its algebraic counterpart has. For example, one of the main
results, due to Blok and Pigozzi, is that a finitary and finitely algebraizable logic
has a deduction-detachment theorem if and only if its algebraic counterpart has
principal relative congruences equationally definable. Another one relates enjoying
a version of Craig’s interpolation theorem with the property that the algebras in the
algebraic counterpart have the amalgamation property.
A methodology that has proven to be very fruitful in classifying logics in a theo-
retically useful way is the so-called “operator approach” [5, p. 5]; this methodology
consists in considering operators that associate certain congruences with subsets
of an algebra and in studying their behaviour on the lattices of filters of the logic
on arbitrary algebras. The Leibniz hierarchy is defined (mainly) using the Leibniz
operator, introduced and studied by Blok and Pigozzi [1,2] and further studied by
Herrmann [22,23], Czelakowski [5], Czelakowski and Jansana [7], and Raftery [25].
The Leibniz operator associates with every logical filter F of a logic S on an algebra
A of the appropriate type the largest congruence compatible with F , known as the
Leibniz congruence of F . The study of this operator originated the systematic con-
struction of a theory of the class of protoalgebraic logics and its subclasses (mainly,
the classes of equivalential, weakly algebraizable, and algebraizable logics), and the
definition of a new class, the class of truth-equational logics, which are not necessar-
ily protoalgebraic. The classes so obtained form the Leibniz hierarchy. On the other
hand, the study of the Suszko operator, initiated by Czelakowski [6] and continued
by Raftery [25], has also been instrumental in the study of truth-equational logics.
The Suszko operator associates with any logical filter F of a logic S on an algebra
A the largest congruence compatible with all filters of the logic onA that include F .
Finally, the Tarski operator, first considered by Font in [10] under the name of
extended Leibniz operator and further studied by Font and Jansana [18] and by
Font, Jansana and Pigozzi [21], led to the definition of the notion of full generalized
model of a logic, to the proof of some results of general validity beyond the Leibniz
hierarchy and to the establishment of the Frege hierarchy [12,13], whose classes can
be characterized by properties of the Tarski operator.Given a logic, the Tarski oper-
ator associates with every closure system of logical filters of an algebra the largest
congruence compatible with all the members of the closure system. Note that the
Tarski operator is of a higher type than the Leibniz and the Suszko operators: these
two act on filters of a logic, while the Tarski operator acts on families of filters
(i.e., generalized matrices) of the logic.
Many of the results on the mentioned operators obtained in abstract algebraic
logic concern the definability of the Leibniz congruence by means of a set of for-
mulas in two variables (and possibly parameters), a generalization of the situation
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encountered in several logics where the biimplication x ↔ y defines the largest
congruence compatible with a filter of the logic on the appropriate algebras. Other
results consider the definability of the logical filters by means of a set of equations
in one variable, a situation that generalizes the fact that in many logics the logi-
cal filters of the algebras associated with them are definable by an equation such
as x ≈ 1 or x ∧ 1 ≈ 1. These definability properties are closely related to the
issues typically considered in the operator approach, namely to the behaviour of
the Leibniz and the Suszko operators as mappings from the lattice of logical filters
on an algebra to the lattice of the congruences of the algebra relative to the algebraic
counterpart of the logic under consideration. Examples of properties studied are
whether the operator is monotonic, whether it respects arbitrary intersections or
unions of up-directed families, etc.
There are significant differences between the behaviour of the Leibniz and of the
Suszko operators: for example, the second is always monotone and the first is not;
the first always commutes with inverse images by surjective homomorphisms while
the second does not; etc. However, they share, as we will show, enough properties
as to be fruitfully treated as instances of some general concepts that serve to unify
their theories. This sharing of some properties is in part due to the fact that the
Suszko operator is defined in a very specific way using the Leibniz one, and this
forces that some properties we manage to isolate of the latter operator are inherited
by the former; these properties serve to build a common mathematical ground
for both.
One of our aims in this paper is to find this common ground and to start devel-
oping the mathematical theory necessary to obtain interesting results from which
both the known results of the theory of the Leibniz operator and the theory of the
Suszko operator will follow, and new ones will emerge. The general notions that
allow us to do this are those of S-compatibility operator, family of S-compatibility
operators (one for each algebra of the relevant type), and coherence, which is a
restricted property of commutativity of the operators with inverse images by sur-
jective homomorphisms. An S-compatibility operator associates with any filter of
a logic a congruence compatible with it; the Leibniz operator is the largest of
these operators, and the Suszko operator is the largest of the order preserving ones
among them.
In this paper we study, for an arbitrary family of S-compatibility operators,
several of the constructions that exist in the literature for either the Leibniz or the
Suszkooperator, or both, and several times wefind that the assumptionof coherence
is crucial in making everything work in a smooth way and to obtain significant
results. The main results in the paper are several Correspondence Theorems (which
generalize and strengthen in several directions those obtained by Blok and Pigozzi
using the Leibniz operator and by Czelakowski using the Suszko operator) and
several characterizations of some of the already mentioned classes of logics in the
Leibniz hierarchy in terms of the form of their full generalized models, in terms
of properties of their Leibniz operator, and in terms of their Suszko operator. For
example, since 1986 it is known that a logic is protoalgebraic if and only if the
Leibniz operator is order preserving over its filters, a property that the Suszko
operator always has. Here we establish (Theorem 6.29) the dual result that a logic is
protoalgebraic if and only if the Suszko operator commutes with inverse images by
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surjective homomorphisms, a property that the Leibniz operator always has. This
is however only one among the many outcomes of our approach to the study of the
Leibniz and Suszkooperators under themore general framework ofS-compatibility
operators.
After recalling in Section 2 some key points of the terminology and notation to
be used throughout the paper, in Section 3 we introduce the notion of an S-operator
on an algebra A as any map ∇A that associates a congruence of A with each filter
of the logic S on A. With each such operator we associate two more operators,
its lifting

∼∇A to the power set of S-filters, and its relativization ∼∇AS , which is again
an S-operator, in the technical sense just introduced; these definitions generalize
the way the Tarski and the Suszko operators, respectively, are obtained from the
Leibniz operator.We use these operators to define a Galois connection between the
power set of S-filters and the lattice of congruences of A, thus obtaining a dual
order isomorphism between the sets of the fixed points of the associated closure
operators; these fixed points, on each side of the connection, are called ∇A-full.
We show that in the case of the Leibniz operator �, the �A-full sets of S-filters
coincide with the full generalized models of S [18], and that the�A-full congruences
are the congruences ofA relative to the class AlgS; as a consequence, we see that the
Isomorphism Theorem of [18, Theorem 2.30] is but one aspect of the mentioned
Galois connection. We also introduce the notion of the ∇A-class of an S-filter F ,
which is the set of all filters whose Leibniz congruence includes ∇A(F ), and that
of a ∇A-filter, which is an S-filter that coincides with the smallest member of its
own ∇A-class (which always exists). The section also contains the main general
properties of several of the notions introduced.
Section 4 is the central one in the paper as far as the general theory is regarded.
In Section 4.1 Czelakowski’s notion of an S-compatibility operator is recalled;
it is an S-operator ∇A such that the congruence ∇A(F ) is compatible with F ,
or, in other words, such that ∇A(F ) is included in the Leibniz congruence of
F , for all F ∈ F iSA. After giving some general properties of these operators,
we focus on global properties of a family ∇ that consists of one S-compatibility
operator ∇A for each algebra A, without assuming that the operators on different
algebras are defined in any particular or uniform way. We introduce the notions
that such a family commutes with inverse images by surjective homomorphisms,
or with inverse images by all homomorphisms, and a restricted version of this
commutativity, which we call coherence. This notion happens to be the key to
many of the subsequent results. It is noteworthy that both the Leibniz operator
and the Suszko operator form coherent families of S-compatibility operators, and
that the former is the only family of S-compatibility operators that commutes
with inverse images by surjective homomorphisms (Theorem 4.6). The main result
in this section is the General Correspondence Theorem 4.17, which states that
if ∇ is a coherent family of S-compatibility operators, then for every surjective
homomorphism h : A→ B and every F ∈ F iSA such that h is∇A-compatible with
F (a technical notion introduced in this section), the extension of h to the power
sets induces an order isomorphism between the ∇A-class of F and the ∇B -class
of h(F ), whose inverse is given by h−1. When we apply this result to the Leibniz
and to the Suszko operators (Theorems 5.7 and 5.15, respectively), we will see
that it generalizes and strengthens Blok and Pigozzi’s well-known Correspondence
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Theorem for protoalgebraic logics [1,2], andCzelakowski’s theorem [6] for arbitrary
logics, which establish order isomorphisms between the smaller sets of all S-filters
ofA containing F and all S-filters ofB containing h(F ). The result also generalizes
the first strengthening obtained for protoalgebraic logics by Font and Jansana [17].
In Section 4.2 we do in general, for any family ∇ of S-operators, what is done
in the standard theory of abstract algebraic logic for each of the three operators
(Leibniz, Suszko and Tarski): we use the operators to associate classes of algebras
with the logic S in several natural ways. Namely, given a family ∇, we consider the
classes of algebras that support the (generalized)models of the logic that are reduced
with respect to one of the operators ∇A , ∼∇AS , and

∼∇A, and those that are obtained
from arbitrary (generalized) models by a process of reduction under each operator;
in all cases we close the classes under isomorphic images. In principle we obtain
six classes of algebras, but we show (Corollary 4.30) that under the assumption of
coherence these classes reduce to only two.
The general study is then instantiated for the Leibniz and the Suszko operators
in Section 5, where special attention is payed to the relation of some of the studied
notions with that of full generalized model of the logic. We see that the present
notion of a Leibniz filter (the �A-filter of Section 3) coincides with that with
the same name introduced in [17] for protoalgebraic logics (Lemma 5.2) and we
characterize Leibniz filters as the least elements of the full generalized models
of S (Theorem 5.5). As to the Suszko filters (the ∼

�AS -filters of Section 3), we
see that every Suszko filter is a Leibniz filter but not conversely (Example 6.21),
we characterize Suszko filters as the least elements of the full generalized models of
S that are up-sets in the poset of all S-filters, and we show that in fact there will
be only one such model for every Suszko filter, namely that consisting of all the
S-filters containing it (Theorem 5.13).
The final Section 6 uses the results established in the previous section to give char-
acterizations of several of the classes of logics in the Leibniz hierarchy. Section 6.1
gathers those concerning the notion of full generalized model and related ones.
It is well known that a logic is protoalgebraic if and only if the Leibniz and the
Suszko operators coincide on its logical filters, for every algebra. We add to this,
among several results, that a logic is protoalgebraic if and only if all its full general-
ized models are up-sets, and actually determined by a Suszko filter (Theorem 6.5),
and if and only if its full generalized models coincide with its Suszko-full ones
(Proposition 6.6). We also show that a logic is truth-equational if and only if every
filter is a Suszko filter (Theorem 6.10) and if and only if the up-set of all filters con-
taining a given one is always full (Theorem 6.13). As a by-product, we obtain a new
proof of Theorem 3.8 of [18], which states that a logic is weakly algebraizable if and
only if its full generalized models are exactly those given by closure systems of filters
that are up-sets. Theorems 6.18 and 6.19 end the section with characterizations of
truth-equational logics and weakly algebraizable logics, respectively, in terms of a
Correspondence Theorem they satisfy.
Section 6.2 gathers characterizations in terms of order-theoretic properties of the
Leibniz operator, which complete several existing ones in the literature for the higher
classes in the Leibniz hierarchy. The main result is Theorem 6.24, which says that
a logic S is protoalgebraic if and only if for every algebra A the Leibniz operator
restricts to an order isomorphism between the posets of all Suszko filters of S on
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A and of the congruences of A relative to the class Alg∗S. After Corollary 6.25, we
show that this result provides a new proof of Theorem 4.8 of [7], which states that
a logic is weakly algebraizable if and only if the above result holds for the set of all
filters instead.
Finally in Section 6.3 we undertake a similar study for the Suszko operator; this
time there are more new results, as this operator has only been used up to now to
characterize the class of truth-equational logics as those where the Suszko operator
on every algebra is injective on the set of all filters (Theorem 28 of [25]); in fact
we begin by giving a proof of this result inside our framework. Then we go on
to show (Theorem 6.28) that a logic is protoalgebraic if and only if the Suszko
operator commutes with inverse images by surjective homomorphisms, and if and
only if, restricted to Suszko filters, it is surjective onto the set of congruences of
the algebra relative to the class AlgS. This result is then extended in two directions,
giving characterizations along two lines. One (Theorem 6.29) adds a character-
ization of the class of equivalential logics as those where the Suszko operator
commutes with inverse images by arbitrary homomorphisms; from this, charac-
terizations of weakly algebraizable logics and algebraizable logics are obtained by
combining injectivity with the previous properties. The other line (Theorem 6.30)
completes Theorem 6.28 by showing that a logic is protoalgebraic if and only
if the Suszko operator restricts to an order isomorphism between the poset of
all Suszko filters and the set of congruences of the algebra relative to the class
AlgS. In the same result, truth-equational logics are characterized by the Suszko
operator being an order embedding of the poset of all filters into the mentioned
poset of congruences; from this, weakly algebraizable logics are obtained when
the order embedding is turned into an order isomorphism, and finally algebraiz-
able logics when commutativity with inverse images by arbitrary homomorphisms
is added.
From this summary it becomes clear that, in our opinion, besides the intrinsic
mathematical interest that the framework developed may have, the interest of the
present study lies both in the new results obtained and in the realization of how
several already known results fit in the general framework constructed. To some
extent this can be taken as a deeper explanation of why they hold. We believe that
it provides a novel view on the Leibniz hierarchy and on the relations between its
main classes.

§2. Preliminaries. In this paper we work in an arbitrary but fixed logical lan-
guage L, understood as a set of operation symbols, also called connectives, each of
finite arity. We will always be working with L-structures (L-algebras, L-matrices,
L-generalized matrices), so that generally the language L will not be mentioned,
but phrases such as “for all algebras” or “for all logics” should be understood as
limited to the language L. In general, algebras will be denoted by A,B, . . ., and
their universes by A,B, . . . respectively. IfA andB are algebras, we write h : A→ B
to indicate that h is an homomorphism from A to B. The set of congruences of an
algebra A is denoted by ConA; this set is well known to be a complete lattice when
ordered under the subset relation. Given a class of algebrasK and an algebraA (not
necessarily in K), we shall denote the set of all K-relative congruences of A (i.e., the
� ∈ ConA such that A/� ∈ K) by ConKA. Given F ⊆ A and � ∈ ConA, we denote
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by � the canonical projection � : A → A/�, defined by �(a) = a/� for all a ∈ A.
The set {a/� : a ∈ F } is interchangeably denoted either by F/� or by �(F ).
Given any map f : A → B we denote its natural extension to the power sets
with the same symbol; that is, we consider f : P(A) → P(B) defined, for each
X ⊆ A, by f(X ) := {f(a) : a ∈ X} ⊆ B. The associated “inverse image” map,
which is usually denoted as f−1 : P(B) → P(A), is defined, for each Y ⊆ B, by
f−1(Y ) := {a ∈ A : f(a) ∈ Y} ⊆ A; this map is not the set-theoretic inverse of
the extendedmapf, but its residuum, because it satisfies, for everyX ⊆ A and every
Y ⊆ B, that X ⊆ f−1(Y ) if and only if f(X ) ⊆ Y . This implies that for every
X ⊆ A , X ⊆ f−1(f(X )), and for every Y ⊆ B , f(f−1(Y )

) ⊆ Y . It is useful
to recall that f is surjective if and only if for every Y ⊆ B , f(f−1(Y )

)
= Y .

This extension construction will be iterated in a natural way, still keeping the same
symbol; for instance, for a family C ⊆ P(A) we define f(C ) :=

{
f(X ) : X ∈ C

}
,

and for D ⊆ P(Y ) , f−1(D) :=
{
f−1(Y ) : Y ∈ D

}
. We are sure that these

notational simplifications will not cause any misunderstanding.
Similarly, a map f : A→ B is extended to the cartesian powers component-wise;
in particular f : A × A → B × B is defined as f(〈a , a′〉) = 〈f(a), f(a′)〉 for
any a , a′ ∈ A. This map can also be extended to the power sets as before, and we
will use the property that the original map f is surjective if and only if for every
R ⊆ B × B , f(f−1(R)

)
= R.

The following notion plays a central rôle in abstract algebraic logic, and in par-
ticular in this paper. A congruence � ∈ ConA is compatible with a subset F ⊆ A
if for every a, b ∈ A, if 〈a, b〉 ∈ � and a ∈ F , then b ∈ F ; that is, if � does not
identify elements in F with elements outside F . The following characterizations of
compatibility should be born in mind, as we will make use of them without explicit
mention.
Lemma 2.1. Let A be an algebra, � ∈ ConA and F ⊆ A. The following conditions
are equivalent.
(i) � is compatible with F .
(ii) a ∈ F ⇔ a/� ∈ F/�, for every a ∈ A.
(iii) F = �−1

(
�(F )

)
.

(iv) F =
⋃
a∈F a/�; in other words, F is a union of blocks of �.

Recall that the kernel of h : A→ B is the congruence Ker(h) := {〈a, b〉 ∈ A×A :
h(a) = h(b)

}
; it will be useful to record here two of its elementary properties.

Lemma 2.2. Let h : A→ B.
1. For every F ⊆ A, Ker(h) is compatible with F if and only if h−1(h(F )) = F .
2. For every � ∈ ConA, if Ker(h) ⊆ �, then h−1(h(�)) = �.
Let us also fix a countably infinite set of variables Var, disjoint from L. The
formula algebra Fm is the absolutely free algebra generated by the set Var over
the language L. Its universe is denoted by Fm, and its members are called
(L-)terms or (L-)formulas. Every map from Var to Fm can be uniquely extended to
an endomorphism of Fm; such a map is called a substitution.

Order properties and Galois connections. Let P1 = 〈P1,≤1〉 and P2 = 〈P2,≤2〉
be two posets. A map f : P1 → P2 is order preserving if for every x, y ∈ P1,
x ≤1 y implies f(x) ≤2 f(y); order reversing, if for every x, y ∈ P1, x ≤1 y implies
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f(y) ≤2 f(x); order reflecting, if for every x, y ∈ P1,f(x) ≤2 f(y) implies x ≤1 y;
and, assuming P1 and P2 are complete lattices, f is completely order reflecting if for
every {xi : i ∈ I } ∪ {y} ⊆ P1,

∧
i∈I f(xi) ≤2 f(y) implies

∧
i∈I xi ≤1 y. A pair

〈f, g〉 of mapsf : P1 → P2 and g : P2 → P1 establishes aGalois connection between
P1 and P2 if for every x ∈ P1 and every y ∈ P2 , x ≤1 g(y) if and only if y ≤2 f(x).
If P = 〈P,≤〉 is a poset, a map f : P → P is a closure on P if it is expansive, order
preserving and idempotent; that is, if for every x, y ∈ P, it satisfies
(a) x ≤ f(x);
(b) if x ≤ y, then f(x) ≤ f(y); and
(c) f

(
f(x)

)
= f(x).

We now state the basic properties of Galois connections; for the proofs, as well
as general facts about them, see for example [8, Chapter 7] (though here the maps
are order preserving rather than order reversing).

Proposition 2.3. Let P1 = 〈P1,≤1〉 and P2 = 〈P2,≤2〉 be two posets and let
f : P1 → P2 and g : P2 → P1 establish a Galois connection between P1 and P2.
1. f and g are both order reversing.
2. The composition function g ◦ f is a closure on P1.
3. The composition function f ◦ g is a closure on P2.
4. The set of fixed points of g ◦ f is Ran(g).
5. The set of fixed points of f ◦ g is Ran(f).
6. The maps f and g restrict to mutually inverse dual order isomorphisms between
the set of fixed points of g ◦ f and the set of fixed points of f ◦ g.

All the posets considered in this paper will be power sets or families of subsets of
some universe (including a cartesian product, as in the case of the set of congruences
of some algebra), and the order will always be the subset relation; in these cases
the posets will be denoted by just their universe, and the order relation will not be
specified.

Closure relations, closure operators, and closure systems. Let A be an arbitrary
set. A relation � ⊆ P(A) × A is a closure relation over A if it satisfies, for every
X,Y ⊆ A, the following properties.
(i) X � x, for every x ∈ X .
(ii) If X � z and X ⊆ Y , then Y � z, for every z ∈ A.
(iii) If X � y, for every y ∈ Y , and Y � z, then X � z, for every z ∈ A.
For closure relations over the set Fm of terms, it makes sense to consider the
following property.

(iv) If Γ � ϕ, then�(Γ) � �(ϕ), for every substitution� and everyΓ ∪{ϕ}⊆Fm.
A closure relation over Fm satisfying (iv) is said to be structural, or substitution
invariant. A consequence relation over Fm is a structural closure relation over Fm. A
logic (in the languageL) is a pair S = 〈Fm,�S〉, where �S is a consequence relation
over Fm.
A closure operator over A is a closure on the power set of A, when this is ordered
under the subset relation; that is, a map C : P(A) → P(A) satisfying, for all
X,Y ⊆ A,
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(i’) X ⊆ C (X );
(ii’) if X ⊆ Y , then C (X ) ⊆ C (Y ); and
(iii’) C (C (X )) = C (X ).

Given a closure relation � ⊆ P(A) × A, the map C : P(A) → P(A) defined by
C (X ) := {z ∈ A : X � z} for everyX ⊆ A, is a closure operator overA. Conversely,
given a closure operatorC overA, the relation � defined by X � z ⇐⇒ z ∈ C (X )
for every X ⊆ A and every z ∈ A, is a closure relation over A. Furthermore, these
correspondences are inverse of each other.
A closure system is a family of subsets of A containing A itself and closed under
intersections of arbitrary nonempty families. It is well known that a closure system,
when ordered under the subset relation, is a complete lattice, with intersection as
meet. Every closure operator C over A (and hence, every closure relation as well)
naturally induces a closure system, namely the set of allC -closed setsC := {X ⊆ A :
X = C (X )}. Conversely, given a closure system C ⊆ P(A), the map C defined by
C (X ) :=

⋂{Y ∈ C : X ⊆ Y}, for every X ⊆ A, is a closure operator over A. Once
again, these two correspondences are inverse of each other.
The following notationwill be used very often and in an essential way in the paper.
For any family C ⊆ P(A) and any F ⊆ A, we define C F := {G ∈ C : F ⊆ G}.
Note that such a family is always an up-set in the poset C (ordered under set
inclusion), and when C is a closure system, C F is one as well.

Filters, and the Leibniz, Suszko, Tarski and Frege operators. Let S be a logic and
A an algebra. An S-filter of A is a subset F ⊆ A such that, for every h : Fm → A
and every Γ ∪ {ϕ} ⊆ Fm, if Γ �S ϕ and h(Γ) ⊆ F , then h(ϕ) ∈ F . The set of
all S-filters of A will be denoted by F iSA. This set is easily seen to be a closure
system, and the associated closure operator will be denoted by FgAS . According to a
previous definition, the set of all S-filters of A containing a given F ∈ F iSA will be
denoted by (F iSA)F ; sets of this formwill play an important rôle in the paper. Note
that a closure system C ⊆ F iSA is an up-set of F iSA with respect to set inclusion
if and only if C = (F iSA)F for some F ∈ F iSA; in fact, only F =

⋂
C qualifies.

The next (easy) lemma, stating sufficient conditions for S-filters to be preserved
under images and inverse images by homomorphisms, will be crucial.

Lemma 2.4. Let S be a logic, A,B algebras, h : A→ B, and G ⊆ B.
1. If G ∈ F iSB, then h−1(G) ∈ F iSA.
2. If h is surjective and h−1(G) ∈ F iSA, then G ∈ F iSB.
3. If h is surjective andKer(h) is compatible with F ∈ F iSA, then h(F ) ∈ F iSB.
The set of all congruences onA compatible with a given F ⊆ A forms a complete
sublattice of the lattice ConA. Its least element is, of course, the identity congruence
on A. Its largest element, known as the Leibniz congruence of F , plays a prominent
rôle in abstract algebraic logic, and is denoted by �A(F ). Observe that � ∈ ConA
is compatible with F ⊆ A if and only if � ⊆ �A(F ).
Two other particular types of congruences, both important to abstract algebraic
logic, arise naturally from the notion of a congruence being compatible with a set.
The first, for F ⊆ A, is called the Suszko congruence of F , and can be defined as the
largest congruence of A compatible with every G ∈ (F iSA)F , or, equivalently, by

∼
�AS(F ) :=

⋂{
�A(G) : G ∈ F iSA , F ⊆ G}. (1)
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The second, for C ⊆ P(A), is called the Tarski congruence of C , and is defined as
the largest congruence compatible with every G ∈ C , or equivalently by

∼
�A(C ) :=

⋂{
�A(F ) : F ∈ C

}
. (2)

Notice that the Suszko congruence is strictly relative to the logic S under consider-
ation, as reflected in the notation, while the other two congruences are independent
of S. Moreover, from (1) and (2) it follows that the Suszko congruence can be
defined in terms of the Tarski congruence by the identity

∼
�AS(F ) =

∼
�A

(
(F iSA)F

)
. (3)

We can consider the map assigning to each subset F ⊆ A its Leibniz congruence
�A(F ); when restricting its domain to the set of S-filters of A, we refer to the map
�A : F iSA → ConA as the Leibniz operator on A. Similarly, the Suszko operator
on A is the map

∼
�AS : F iSA → ConA defined by F �→ ∼

�AS(F ). Finally, the Tarski
operator onA is themap

∼
� : P(F iSA)→ ConA definedbyC �→ ∼

�A(C ).Although
formally defined with domainP(F iSA), the Tarski operator is often restricted to
the closure systems of S-filters of A, or even further restricted to the “full” closure
systems of S-filters of A, a notion to be introduced later on.
Given that these congruences and operators are defined on every algebra, it is nat-
ural to consider the family� := {�A : A an algebra} and call it theLeibniz operator.
Similarly, we call the family

∼
� S := { ∼�AS : A an algebra} the Suszko operator.

This terminology makes it easy to name properties that necessarily involve the
whole family, i.e., that relate the operators on different algebras (see Definitions 4.5
and 4.8). On the other hand, we will also deal with properties that involve just a
single algebra; we say then that one of these operators globally has one such property
when for each algebra A, the operator on A has that property. For instance, it is
obvious from the definition that the Suszko operator is globally order preserving.
It will be later useful, and rather intuitive to have in mind right from the start,
the behaviour of each one of these operators with respect to inverse images by
homomorphisms.

Proposition 2.5. Let S be a logic, let A,B be algebras, and let h : A → B. For
every G ∈ F iSB it holds that h−1

(
�B(G)

) ⊆ �A(h−1(G)). If furthermore h is
surjective, then for every C ∪ {G} ⊆ F iSB, the following hold :
1. h−1

(
�B(G)

)
= �A

(
h−1(G)

)
;

2. h−1
(∼
�B(C )

)
=

∼
�A

(
h−1(C )

)
; and

3.
∼
�AS

(
h−1(G)

) ⊆ h−1( ∼�BS(G)
)
.

Proof. The first statement and point 1 are well-known properties of the Leib-
niz operator; see [5, Proposition 0.5.5]. 2 follows from expression (2), using the
property in 1, because h−1 commutes with intersections. To prove 3, observe that
h−1

(
(F iSB)G

) ⊆ (F iSA)h−1(G). Then, using the antimonotonicity of the Tarski
operator, the expression (3) and the property in 2, we have

∼
�AS

(
h−1(G)

)
=

∼
�A

(
(F iSA)h−1(G)

) ⊆ ∼
�A

(
h−1

(
(F iSB)G

))

= h−1
(∼
�B

(
(F iSB)G

))
= h−1

( ∼
�BS(G)

)
. �
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In principle the Suszko operator does not seem to behave as well as the Leibniz
and Tarski operators, at least with respect to inverse images by surjective homo-
morphisms, in the sense that h−1(

∼
�BS(G)) need not be equal to

∼
�AS

(
h−1(G)

)
.

To support this statement we must wait until Theorem 4.6, but it can already be
foreseen that, when working with the Suszko operator, the usual arguments used
with the Leibniz operator will not go as smoothly as one could hope. The quest for
some weaker properties that are shared by the two operators is one of the leading
ideas of this paper.
The Frege relation of F ⊆ A on A (again, relative to S) is

�AS(F ) :=
{〈a, b〉 ∈ A× A : FgAS(F, a) = FgAS(F, b)

}
.

Notice that, unlike the previous operators we have seen so far, the equivalence
relation �AS(F ) is not necessarily a congruence. Nevertheless, for simplicity we call
themap given by F �→ �AS(F ), restricted toF iSA, theFrege operator onA. It can be
proven that the largest congruence below �AS(F ) is the Suszko congruence

∼
�AS(F ).

Another observation worth mentioning is that the Frege operator is always order
preserving.

Matrices, generalized matrices, andmodels of a logic. Amatrix (or logical matrix)
is a pair 〈A, F 〉, where A is an algebra and F ⊆ A. Every matrix M = 〈A, F 〉
induces a logic whose consequence relation �M is defined as follows: For every
Γ ∪ {ϕ} ⊆ Fm,

Γ �M ϕ ⇐⇒ for all h : Fm → A , h(Γ) ⊆ F ⇒ h(ϕ) ∈ F .
Similarly, every classM of matrices induces a logic whose consequence relation �M

is defined by
�M :=

⋂
M∈M

�M . (4)

Let S be a logic. A matrixM is a model of S if �S ⊆ �M. It follows from the
definition itself that 〈A, F 〉 is a model of S if and only if F is an S-filter of A.
The notion of matrix is in fact a particular case of a more general notion.
A generalized matrix, or g-matrix for short, is a pair M = 〈A,C 〉, where A is an
algebra and C ⊆ P(A) is a closure system. Every g-matrixM = 〈A,C 〉 induces a
consequence relation �M as in (4) by taking the class of matrices

{〈A, F 〉 : F ∈ C
}
.

A g-matrixM is a generalized model (g-model for short) of a logic S if �S ⊆ �M.
One can easily check that 〈A,C 〉 is a g-model of S if and only if C ⊆ F iSA.
Often, for simplicity, the term “g-model” is applied to C rather than to the
pair 〈A,C 〉.
Among the g-models of a logic there are some of crucial importance in this
research. They arise from the following notion, which in principle applies to
arbitrary families of filters.

Definition 2.6. Let A be an algebra. A family C ⊆ F iSA is full if C =
{
G ∈

F iSA : ∼�A(C ) ⊆ �A(G)
}
.

This notion is obviously relative to the logic, but in general there will be no
need to specify it. It is easy to see that every full family of S-filters is a closure
system, because a congruence compatible with every element of a family of subsets
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is compatible with its intersection. Therefore, when speaking of full families of
S-filters, we can equivalently speak of full g-models. Note also that, given an
arbitrary family C ⊆ F iSA, it always holds that ∼

�A(C ) ⊆ �A(G) for every
G ∈ C . Thus, C is full when it is exactly the set of all the S-filters on A with which
∼
�A(C ) is compatible.
We have chosen as definition of the notion of full g-model one among its many
equivalent formulations, namely the one that will suit better within the framework
we intend to set. Nevertheless, we shall make use of the following characterizations,
one of which is the original definition [18, Definition 2.8].

Proposition 2.7. Let A be an algebra and C ⊆ F iSA, and let � : A→ A/ ∼�A(C )
be the canonical projection. The following conditions are equivalent.

(i) C is full.
(ii) �(C ) = F iS

(
A/

∼
�A(C )

)
.

(iii) C = �−1
(F iS

(
A/

∼
�A(C )

))
.

(iv) C = h−1(F iSB), for some algebra B and some surjective h : A→ B.
LetM = 〈A, F 〉 andN = 〈B, G〉 be matrices. Amatrix homomorphism fromM
to N is an h : A→ B such that h−1(G) ⊆ F ; and it is strict if h−1(G) = F .
The classical reference for the theory of matrices is [26], but all we need can be
also found in [5, Chapter 0] or in [18, Chapter 1].

The classes of algebras Alg∗S and AlgS. The operators we have defined so
far produce, when applied to models or g-models of a logic S, several classes
of algebras. A matrix 〈A, F 〉 is Leibniz-reduced, or simply reduced, if �A(F ) =
IdA, where IdA denotes the identity relation on A; and it is Suszko-reduced if
∼
�AS(F ) = IdA. A g-matrix 〈A,C 〉 is reduced if ∼

�A(C ) = IdA. Then the follow-
ing classes of algebras, supporting models or g-models that are reduced in one
of these ways, are considered as naturally and intrinsically associated with the
logic.

Alg∗S := {
A : there is F ∈ F iSA such that �A(F ) = IdA}, (5)

AlgSuS := {
A : there is F ∈ F iSA such that ∼�AS(F ) = IdA}, (6)

AlgS := {
A : there is C ⊆ F iSA such that ∼�A(C ) = IdA}, (7)

Observe that, since the Tarski operator is order reversing, definition (7) is equivalent
to the following.

AlgS := {
A :

∼
�A(F iSA) = IdA}. (8)

The conditions in next lemma state the standard characterizations of these classes, as
well as the known relations between them (notice that two of the classes always coin-
cide). The first four conditions tell us that these classes can be equivalently obtained,
instead of considering reduced (g-)models as above, by taking the reductions of
arbitrary (g-)models of the logic, and closing under isomorphisms.

Lemma 2.8. Let S be a logic.
1. Alg∗S = I

{
A/�A(F ) : A an algebra, F ∈ F iSA

}
.

2. AlgSuS = I
{
A/

∼
�AS(F ) : A an algebra, F ∈ F iSA

}
.
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3. AlgS = I
{
A/

∼
�A(C ) : A an algebra, C ⊆ F iSA full

}
.

4. AlgS = I
{
A/

∼
�A(C ) : A an algebra, C ⊆ F iSA

}
.

5. AlgS = AlgSuS.
6. AlgS = PS(Alg

∗S).
(PS is the subdirect product operator and I is the isomorphic image operator.)

The proofs, except the one of 4, can be found explicitly in [1, Lemma 1.3],
[6, Theorem 3.2], [18, Section 2.2], [6, Theorem 5.6], and [18, Theorem 2.23],
respectively. As to 4, which is easy to prove directly, we will see that it follows
from 3 as a particular case of Lemma 4.26.1. Notice that, as a consequence of 6,
Alg∗S ⊆ AlgS.
The Leibniz hierarchy. We present here a set of definitions of those classes of
logics in the Leibniz hierarchy that will appear in this paper. Among many equiv-
alent characterizations of these classes, we have chosen to define them in terms of
properties of the Leibniz operator, as these fit more naturally within the framework
we wish to develop.

Definition 2.9. Let S be a logic.
• S is protoalgebraic if the Leibniz operator is globally order preserving.
• S is equivalential if the Leibniz operator is globally order preserving and com-
mutes with inverse images by homomorphisms (in the standard sense, recorded
here in Definition 4.5).

• S is truth-equational if the Leibniz operator is globally completely order
reflecting.

• S is weakly algebraizable if it is protoalgebraic and truth-equational.
• S is algebraizable if it is equivalential and truth-equational.
As it is obvious from the definitions, an equivalential logic is a fortiori protoalge-
braic. As a consequence, a logic is algebraizable if and only if it is equivalential and
weakly algebraizable; in some sense this is not a “best” characterization, but will be
useful at several points in the paper. Figure 1 displays the main relations between
these classes.
For an exhaustive study of the Leibniz hierarchy and other results in abstract
algebraic logic, see [3,5,14,15,18,20].

algebraizable
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��
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��

��
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weakly
algebraizable

����
��
��
��
�

� ��
��

��
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��

protoalgebraic truth-equational

Figure 1. The fragment of the Leibniz hierarchy relevant for this paper.

https://doi.org/10.1017/jsl.2015.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.39


430 HUGO ALBUQUERQUE, JOSEP MARIA FONT, AND RAMON JANSANA

§3. S-operators. In every statement in the paper where nothing is explicitly
assumed aboutS,A, andB, these symbols represent an arbitrary logic and arbitrary
algebras respectively (over the same language), and the statement is understood as
universally quantified over them.

3.1. General properties. The term “operator” is used in abstract algebraic logic
to denote several kinds of maps that, given an algebra, assign one congruence either
to a subset (e.g., the Leibniz operator, or the Suszko operator) or to a family of
subsets (e.g., the Tarski operator); it is also used, in a more loose way, for the
Frege operator, which maps a subset to an equivalence relation that needs not be a
congruence. Now we want to be more specific.

Definition 3.1. An S-operator on A is a map ∇A : F iSA → ConA. An
S-operator is order preserving when for all F,G ∈ F iSA, if F ⊆ G , then
∇A(F ) ⊆ ∇A(G). For eachS-operator∇A onA the following threemaps associated
with it are considered.

• The lifting of∇A to the power set is the map ∼∇A : P(F iSA)→ ConA, defined
by

∼∇A(C ) := ⋂{∇A(F ) : F ∈ C
}
, for every C ⊆ F iSA.

• The relativization of ∇A (to the logic S) is the map ∼∇AS : F iSA → ConA,
defined by

∼∇AS (F ) :=
⋂{∇A(F ′) : F ′ ∈ F iSA , F ⊆ F ′} = ∼∇A((F iSA)F

)
, for

every F ∈ F iSA.
• The map ∇A−1 : ConA → P(F iSA) is defined by ∇A−1(�) := {G ∈ F iSA :
� ⊆ ∇A(G)}, for every � ∈ ConA.
The following elementary properties are immediate consequences of the defini-
tions.

Lemma 3.2. Let ∇A be an S-operator on A.
1.

∼∇AS is an S-operator.
2.

∼∇AS (F ) ⊆ ∇A(F ) for every F ∈ F iSA.
3.

∼∇AS is order preserving.
4.

∼∇A(C ) ⊆ ∇A(F ) for every C ⊆ F iSA and every F ∈ C .
5. ∇A is order preserving if and only if ∇A = ∼∇AS .
The Leibniz and the Suszko operators are the primary examples of S-operators.
The Suszko operator, which is the relativization of the Leibniz operator, is the
primary order preserving example. The lifting of the Leibniz operator is the Tarski
operator.
Note that ∇A−1(�) = {

G ∈ F iSA : ∇A(G) ∈ [�,A × A]}, which justifies the
notation, though∇A−1 is not, of course, the set-theoretic inverse of∇A.
Proposition 3.3. Let∇A be anS-operator onA. Themaps∼∇A and∇A−1 establish
a Galois connection between P(F iSA) and ConA (both ordered under the subset
relation).

Proof. Let C ⊆ F iSA and � ∈ ConA. Suppose that � ⊆ ∼∇A(C ). If F ∈ C ,
then

∼∇A(C ) ⊆ ∇A(F ), and hence � ⊆ ∇A(F ), that is, F ∈ ∇A−1(�). Thus,
C ⊆ ∇A−1(�). Conversely, suppose that C ⊆ ∇A−1(�). Then, � ⊆ ∇A(G), for
every G ∈ C . Thus, � ⊆ ∼∇A(C ). �
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Several consequences follow from Proposition 3.3, by applying the results in
Proposition 2.3.

Corollary 3.4. Let ∇A be an S-operator on A.
1. The maps

∼∇A and∇A−1 are order reversing.
2. The map ∇A−1 ◦ ∼∇A is a closure operator over F iSA, i.e., is a closure on

P(F iSA).
3. The map

∼∇A ◦ ∇A−1 is a closure on ConA.
4. The set of fixed points of ∇A−1 ◦ ∼∇A is Ran(∇A−1).
5. The set of fixed points of

∼∇A ◦ ∇A−1 is Ran(∼∇A).
6. The maps

∼∇A and ∇A−1 restrict to mutually inverse dual order isomorphisms
between the set of fixed points of ∇A−1 ◦ ∼∇A and the set of fixed points of
∼∇A ◦ ∇A−1.

In the following, we shall be interested in characterizing the fixed points of both
closures ∇A−1 ◦ ∼∇A and ∼∇A ◦ ∇A−1; therefore, they receive a proper name.
Definition 3.5. Let ∇A be an S-operator on A. A family C ⊆ F iSA is ∇A-full
if C = ∇A−1(∼∇A(C )), i.e., if C ∈ Ran(∇A−1). A congruence � ∈ ConA is ∇A-full
if � =

∼∇A(∇A−1(�)), i.e., if � ∈ Ran(∼∇A).

Thus, the maps
∼∇A and ∇A−1 restrict to mutually inverse dual order isomor-

phismsbetween the sets of all∇A-full g-models ofS onAandof∇A-full congruences
ofA. A useful characterization of these∇A-full objects, which is also a consequence
of the Galois connection, is the following.

Proposition 3.6. Let ∇A be an S-operator on A.
1. C ⊆ F iSA is ∇A-full if and only if it is the largest D ⊆ F iSA such that

∼∇A(D) = ∼∇A(C ).
2. � ∈ ConA is ∇A-full if and only if it is the largest � ′ ∈ ConA such that

∇A−1(� ′) = ∇A−1(�).
From this it follows that the closure system F iSA is always ∇A-full, for any

S-operator∇A on A.
3.2. The Leibniz operator as an S-operator. The Leibniz operator is an S-
operator defined in a particular way, so that besides the general properties obtained
in Section 3.1, it enjoys some further ones, which combined with the previous ones
yield some better descriptions of the notions there introduced. As already remarked,
the lifting of the Leibniz operator�A is the familiar Tarski operator

∼
�A. As to the

map �A
−1
, observe that if � ∈ ConA, then

�A
−1
(�) =

{
F ∈ F iS(A) : � ⊆ �A(F )

}

=
{
F ∈ F iS(A) : � is compatible with F

} ⊆ F iSA.

Proposition 3.7. For every � ∈ ConA, �A−1(�) = �−1(F iS(A/�)
)
and

F iS(A/�) = �
(
�A

−1
(�)

)
. Moreover, the extended mappings � : P(A)→ P(A/�)
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and �−1 : P(A/�)→ P(A) restrict to order isomorphisms between the sets�A
−1
(�)

and F iS(A/�).
Proof. LetF ∈ �A−1(�). Thismeans that � is compatible withF , andhence that
�−1

(
�(F )

)
= F ∈ F iSA. Since � is surjective, by Lemma 2.4.2 �(F ) ∈ F iS(A/�).

So, F ∈ �−1(F iS(A/�)
)
. Conversely, letG ∈ F iS(A/�). It follows by Lemma 2.4.1

that �−1(G) ∈ F iSA. Moreover, again by the surjectivity of �, �
(
�−1(G)

)
= G .

So, �−1
(
�
(
�−1(G)

))
= �−1(G), which tells us that � is compatible with �−1(G).

Thus, �−1(G) ∈ �A−1(�). This proves the first equality, and the second follows
from it by surjectivity of �. As to the second part of the statement, observe that
we have just seen that both � and �−1 are into (actually, onto) the respective co-
domains. Moreover

(
� � F iSA

) ◦ (
�−1 � F iS(A/�)

)
= IdF iS (A/�), because � is

surjective, and
(
�−1 � F iS(A/�)

) ◦ (��F iSA
)
= IdF iSA, by of �

A−1(�). So, they
are mutually inverse bijections. Since they are both order preserving, they are in fact
order isomorphisms. �
Since order isomorphisms send least elements to least elements, it is easy to see
the following.

Corollary 3.8. For every � ∈ ConA, if F ∈ F iSA, then F is the least element of
�A

−1
(�) if and only if F/� is the least element of F iS(A/�).

Moreover, from the first equality in Proposition 3.7 and the characterization in
Proposition 2.7(iv), we also obtain the following.

Corollary 3.9. For every � ∈ ConA, the set�A−1(�) is full, and hence a closure
system.

Now we characterize the �A-full sets of S-filters and the �A-full congruences.
Proposition 3.10. A set C ⊆ F iSA is �A-full if and only if it is full.
Proof. Observe that in general �A

−1(∼
�A(C )

)
=

{
G ∈ F iS(A) : ∼

�A(C ) ⊆
�A(G)

}
. But by definition, C is �A-full when it equals the left-hand side of the

equality, and it is full when it equals the right-hand side; this proves the statement. �
Proposition 3.11. A congruence � ∈ ConA is �A-full if and only if � ∈
ConAlgSA.

Proof. If � ∈ ConA, we know by Corollary 3.9 that the set �A−1(�) is
full. So, by Lemma 2.8.3, A/

∼
�A

(
�A

−1
(�)

) ∈ AlgS. But if � is �A-full, then
A/

∼
�A

(
�A

−1
(�)

)
= A/�. Thus, � ∈ ConAlgSA. Conversely, if A/� ∈ AlgS, by the

equivalent definition (8) of this class,
∼
�A/�

(F iS(A/�)
)
= IdA/� . Then,

� = Ker(�) = �−1(IdA/�) = �−1
(∼
�A/�

(F iS(A/�)
))

=
∼
�A

(
�−1

(F iS(A/�)
))
=

∼
�A

(
�A

−1
(�)

)
,

where we have used Propositions 2.5 and 3.7 in the last two steps. This proves that
� is �A-full. �
The two preceding results allow us to instantiate Proposition 3.3 and Corollary
3.4 for the Leibniz operator in a particularly suggestive form.
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Corollary 3.12. The maps
∼
�A and �A

−1
establish a Galois connection between

P(F iSA) andConA and restrict tomutually inverse dual order isomorphisms between
the poset of all full g-models of S on A and the poset ConAlgSA.
The second part of this statement is the well-known Isomorphism Theorem [18,
Theorem 2.30]; we now see it arises naturally as a by-product of the Galois connec-
tion established starting from the Leibniz operator. Finally, from Propositions 3.6
and 3.10 the following characterization of the full g-models follows immediately.

Proposition 3.13. A subset C ⊆ F iSA is full if and only if C is the largest
D ⊆ F iSA such that ∼�A(C ) = ∼

�A(D).

3.3. ∇A-classes and∇A-filters. Thenotions of∇A-class and∇A-filterwe consider
now are introduced for arbitrary S-operators, although we will use them more
extensively for the special kinds of operators considered in the next sections.

Definition 3.14. Let ∇A be an S-operator on A and F ∈ F iSA. The ∇A-class
of F is the set

�F �∇
A

:= �A
−1(∇A(F )) = {

G ∈ F iSA : ∇A(F ) ⊆ �A(G)
}
.

A justification of the usage of the term “class” in this context will be found in
the discussion after Proposition 5.1. Let us start by collecting some basic properties
concerning ∇A-classes. As a particular case of Corollary 3.9, taking � = ∇A(F ),
we immediately have the following.

Proposition 3.15. Let ∇A be an S-operator on A and F ∈ F iSA. The ∇A-
class �F �∇

A

is full. As a consequence, it is a closure system, and �F �∇
A

=

�A
−1( ∼
�A

(
�F �∇

A))
.

Thus, given that every closure system is closed under intersections, it makes sense
to consider the smallest element in each class.

Definition 3.16. Let ∇A be an S-operator on A and F ∈ F iSA. The least
element of the∇A-class of F will be denoted by F∇A ; i.e., F∇A :=

⋂
�F �∇

A

. We say
that F is a ∇A-filter if F = F∇A. The set of all ∇A-filters of A will be denoted by
F i∇AS A.

Notice that if S is a logic without theorems, then for any A the only ∇A-filter
of A is the empty filter, because then ∅ ∈ F iSA, and since �A(∅) = A × A, for
every F ∈ F iSA , ∅ ∈ �F �∇

A

and hence necessarily ∅ =
⋂

�F �∇
A

. It is therefore
clear that the interesting applications of the notions of ∇A-class and ∇A-filter will
concern only logics with theorems; however, technically we will not need to assume
this in any result.

Proposition 3.17. Every S-operator ∇A on A is order reflecting, and therefore
injective, on F i∇AS A.

Proof. Let F,G ∈ F i∇AS A be such that∇A(F ) ⊆ ∇A(G). Then �G�∇
A ⊆ �F �∇

A

.
Thus, F =

⋂
�F �∇

A ⊆ ⋂
�G�∇

A

= G . �
We now collect a few other basic properties of the notions just introduced.
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Lemma 3.18. Let ∇A be an S-operator on A. For every F,G ∈ F iSA,
1. �F �∇

A ⊆ (F iSA)F∇A
; and

2. if �F �∇
A ⊆ �G�∇

A

, then G∇A ⊆ F∇A .

If moreover∇A is order preserving, then
3. if F ⊆ G , then �G�∇

A ⊆ �F �∇
A

and F∇A ⊆ G∇A ; and
4. every ∇A-full g-model of S is an up-set of F iSA.
Proof. 1. This is a straightforward consequence of the fact that F∇A =

⋂
�F �∇

A

.
2. If �F �∇

A ⊆ �G�∇
A

, then G∇A =
⋂

�G�∇
A ⊆ ⋂

�F �∇
A

= F∇A . 3. If F ⊆ G , then
∇A(F ) ⊆ ∇A(G) by order preservation, and therefore �G�∇

A ⊆ �F �∇
A

. Moreover,
F∇A ⊆ G∇A by 2. Finally, 4 is a straightforward consequence of the definition of
∇A-full g-model, taking order preservation into account. �

§4. S-compatibility operators and coherent families. In this section we will be
interested in a special kind of S-operators, namely those satisfying a compatibility
property with respect to the S-filters of the underlying algebra. The general frame-
work developed here will be instantiated for the Leibniz and the Suszko operators
in Section 5.
The starting notion of this section was first introduced in [6, p. 199], with a name
very similar to the one we now choose.

Definition 4.1. An S-compatibility operator on A is an S-operator ∇A on A
such that for each F ∈ F iSA, the congruence∇A(F ) is compatible with F , that is,
satisfies∇A(F ) ⊆ �A(F ).
An alternative formulation of the definition is that an S-operator ∇A on A is
an S-compatibility operator if and only if F ∈ �F �∇

A

, for every F ∈ F iSA. The
largestS-compatibility operator onA is obviously�A, and the leastS-compatibility
operator on A is the one sending every S-filter to the identity relation IdA on A.
Another well-known example of an S-compatibility operator is the Suszko operator
relative to S, which turns out to be the largest order preserving S-compatibility
operator on A; this follows trivially from Lemma 3.2.5.
For future reference it will be useful to record here a few elementary general
properties, which enhance those of Lemma 3.18.

Lemma 4.2. Let∇A be an S-compatibility operator onA. For every F ∈ F iSA,
1. F ∈ �F �∇

A

; and
2. F∇A ⊆ F .
If moreover∇A is order preserving, then
3. (F iSA)F ⊆ �F �∇

A

;
4. �F �∇

A

= (F iSA)F if and only if F = F∇A , i.e., if and only if F is a ∇A-filter;
and

5. �F �∇
A ⊆ �F∇A�∇

A

.

Proof. 1 and 2 are direct consequences of the definition of �F �∇
A

and the notion
of S-compatibility. 3. If F ′ ∈ (F iSA)F , then ∇A(F ) ⊆ ∇A(F ′) ⊆ �A(F ′), and
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thereforeF ′ ∈ �F �∇
A

. 4. Suppose that �F �∇
A

= (F iSA)F . Then,F∇A =
⋂

�F �∇
A

=⋂
(F iSA)F = F . Conversely, suppose that F = F∇A . It follows by Lemma 3.18.1
that �F �∇

A ⊆ (F iSA)F and by 3 that (F iSA)F ⊆ �F �∇
A

, thus establishing the
equality. 5 follows from 2 and Lemma 3.18.3. �
The fact that ∇A(F ) is compatible with F allows to rewrite Corollary 3.8, for
congruences of the form∇A(F ) with F ∈ F iSA, as follows.
Corollary 4.3. Let ∇A be an S-compatibility operator on A and F ∈ F iSA.
Then F is a∇A-filter of A if and only if F/∇A(F ) is the least S-filter of A/∇A(F ).
The following straightforward consequence of the definitions will turn out to have
some significance later on.

Corollary 4.4. Let ∇A be an S-compatibility operator on A. The following
conditions are equivalent.
(i) Every S-filter is a∇A-filter of A.
(ii) For every F,G ∈ F iSA, if ∇A(F ) ⊆ �A(G), then F ⊆ G .
4.1. The General Correspondence Theorem. We now move towards the main
theorem of this section — the General Correspondence Theorem 4.17. This result,
the notions it involves, and subsequent ones, concern the behaviour of operators
on different algebras. By a family of (S-compatibility) operators we understand a
(proper) class {∇A : A an algebra} such that for eachA,∇A is an (S-compatibility)
operator on A. Such a family will be denoted collectively by ∇, generalizing the
usage of the notations for the Leibniz and Suszko families introduced in Section 2.

Definition 4.5. Let ∇A and ∇B be S-compatibility operators on A and B,
respectively. The pair 〈∇A,∇B〉 commutes with inverse images by (surjective)
homomorphisms if for every (surjective) h : A→ B and every G ∈ F iSB,

∇A(h−1(G)) = h−1(∇B(G)) .
A family∇ ofS-compatibility operators commutes with inverse images by (surjective)
homomorphisms if for all algebrasA andB the pair 〈∇A,∇B〉 commutes with inverse
images by (surjective) homomorphisms in the above sense.

Note that this definition packs two into one (the surjective case and the general
case). The difference is significant: Proposition 2.5.1 tells us that the Leibniz oper-
ator always commutes with inverse images by surjective homomorphisms, while in
general it does not commute with inverse images by arbitrary homomorphisms: for
instance, inside the class of protoalgebraic logics, this happens only for equivalen-
tial logics (Definition 2.9). Anyway, an important fact is that the more restricted
commutativity property is an exclusive feature of the Leibniz operator.

Theorem 4.6. If ∇ is a family of S-compatibility operators that commutes with
inverse images by surjective homomorphisms, then∇ is the Leibniz operator.
Proof. Let A be an algebra, let F ∈ F iSA, and let � : A → A/�A(F ) be the
canonical map, which is surjective. Since ker(�) = �A(F ) is compatible with F ,
we have that F = �−1

(
�(F )

)
and �(F ) = F/�A(F ) ∈ F iS

(
A/�A(F )

)
. Now, by

S-compatibility of∇,
∇A/�A(F )(F/�A(F )) ⊆ �A/�A(F )(F/�A(F )) = IdA/�A(F ).
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Hence,∇A/�A(F )(F/�A(F )) = �A/�A(F )(F/�A(F )). Using the previous facts and
that both the Leibniz operator and ∇ commute with inverse images by surjective
homomorphisms, we have that

∇A(F ) = ∇A(�−1(�(F ))) = �−1(∇A/�A(F )(F/�A(F )))

= �−1
(
�A/�

A(F )(F/�A(F ))) = �A(�−1(�(F ))) = �A(F ).
Since A and F ∈ F iSA are arbitrary, we conclude that∇ = �. �
It is hence clear that the Suszko operator does not commute, in general, in any
of the two senses. In order to find a commutativity property that makes a unified
treatment of the properties of the two operators possible, we need to introduce the
following technical notion.

Definition 4.7. Let ∇A be an S-compatibility operator on A, F ∈ F iSA and
C ⊆ F iSA. An h : A → B is ∇A-compatible with F if Ker(h) ⊆ ∇A(F ); and it is
∇A-compatible with C if it is ∇A-compatible with every member of C .
This is a generalization of two well-known notions. First, h : A → B is �A-
compatible with F in the sense of Definition 4.7 if and only if the congruence
Ker(h) is compatible with F , and if and only if the matrix homomorphism
h : 〈A, F 〉 → 〈B, h(F )〉 is strict. Second, it turns out that h is a deductive matrix
homomorphism between 〈A, F 〉 and 〈B, h(F )〉 in the sense of [6] if and only if h
is

∼
�AS-compatible with F , viewed as an algebraic homomorphism, in the sense of

Definition 4.7. This is because the property of being “deductive” means that for
every a, b ∈ A , h(a) = h(b) implies FgAS(F, a) = FgAS(F, b); but this condition can
be written as Ker(h) ⊆ �AS(F ), which we know is equivalent to Ker(h) ⊆

∼
�AS(F ),

and this is just to say that h is
∼
�AS-compatible with F , in the sense of Definition 4.7.

Deductive homomorphisms have been used in [6] to obtain a version of the Cor-
respondence Theorem, which we will find in Theorem 5.15 as an instance of our
General Correspondence Theorem 4.17, which is obtained under the generalized
assumption of ∇A-compatibility now introduced.
Observe that for each F ∈ F iSA, the canonical projection � : A → A/∇A(F ) is
always∇A-compatible with F . Moreover, since∇A is an S-compatibility operator,
if h is ∇A-compatible with F then it is also �A-compatible with F , that is, Ker(h)
will be compatible with F ; then, by Lemmas 2.2.1 and 2.2.2, F = h−1

(
h(F )

)
and

∇A(F ) = h−1(h(∇A(F ))).
Definition 4.8. A family∇ of S-compatibility operators is coherent if for every
surjective h : A→ B and everyG ∈ F iSB, if h is∇A-compatible with h−1(G), then
∇A(h−1(G)) = h−1(∇B(G)).
ByProposition 2.5.1, theLeibniz operator is a coherent family. InProposition 4.19
we will show that coherence is preserved under relativization, and as a consequence
the Suszko operator is also a coherent family. This confirms that this restricted
commutativity property is common to both operators.
Observe that a family∇ of S-compatibility operators is coherent if and only if for
every surjective h : A→ B and everyG ∈ F iSB, h is∇A-compatible with h−1(G) if
and only if ∇A(h−1(G)) = h−1(∇B(G)). The only difference with Definition 4.8 is
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the backwards implication in the property asserted for h−1(G); but this implication
always holds, because if ∇A(h−1(G)) = h−1(∇B(G)) then Ker(h) = h−1(IdB ) ⊆
h−1

(∇B(G)) = ∇A(h−1(G)), which means that h is ∇A-compatible with h−1(G).
It is possible, and also practical, to re-state Definition 4.8 in terms of
commutativity with images by surjective homomorphisms instead of inverse images.

Lemma 4.9. A family ∇ of S-compatibility operators is coherent if and only if for
every surjective h : A→ B and every F ∈ F iSA, if h is ∇A-compatible with F , then
h
(∇A(F )) = ∇B(h(F )).
Proof. Suppose ∇ is coherent, and let F ∈ F iSA and h : A → B be surjective
and ∇A-compatible with F . Hence, F = h−1(h(F )) and h(F ) ∈ F iSB. It follows
by coherence that ∇A(F ) = ∇A(h−1(h(F ))) = h−1(∇B(h(F ))), and hence that
h(∇A(F )) = ∇B(h(F )) because h is surjective. Conversely, let G ∈ F iSB and let
h : A→ B be surjective and∇A-compatible with h−1(G). Since h−1(G) ∈ F iSA, it
follows by the assumption and the surjectivity of h that

h
(∇A(h−1(G))) = ∇B(h(h−1(G))) = ∇B(G).

Applying the property in Lemma 2.2.2 to the ∇A-compatibility of h with h−1(G),
we obtain

∇A(h−1(G)) = h−1(h(∇A(h−1(G)))) = h−1(∇B(G)) ,
which shows that∇ is coherent. �
Isomorphisms are both surjective and ∇A-compatible with any S-filter and for
any operator∇A, as their kernel is the identity.
Corollary 4.10. If ∇ is a coherent family of S-compatibility operators and
h : A → B is an isomorphism, then for every F ∈ F iSA and every G ∈ F iSB
we have h

(∇A(F )) = ∇B(h(F )) and∇A(h−1(G)) = h−1(∇B(G)).
We now see that for coherent families of S-operators, the ∇-full objects defined
in Section 3.1 can be given finer characterizations. We first prove the following
technical result.

Proposition 4.11. Let ∇ be a coherent family of S-compatibility operators. For
every surjective homomorphism h : A→ B,

∇A−1(Ker(h)) = {
F ∈ F iS(A) : h−1

(∇B(h(F ))) = ∇A(F )}.
Proof. Let F ∈ ∇A−1(Ker(h)). Thus, Ker(h) ⊆ ∇A(F ) ⊆ �A(F ). There-
fore, F = h−1(h(F )) and hence h(F ) ∈ F iSB. Since ∇ is a coherent family,
h−1(∇B(h(F )) = ∇A(F ). Conversely, if F ∈ F iS(A) is such that h−1(∇B(h(F )) =
∇A(F ), since Ker(h) ⊆ h−1(∇B(h(F )) always holds, it follows that Ker(h) ⊆
∇A(F ) and therefore that F ∈ ∇A−1(Ker(h)). �
As a particular case we have:

Corollary 4.12. If ∇ is a coherent family of S-compatibility operators, then for
every � ∈ ConA,

∇A−1(�) = {
F ∈ F iS(A) : �−1

(∇A/�(�(F ))) = ∇A(F )}

= �−1
({
G ∈ F iS(A/�) : �−1

(∇A/�(G)) = ∇A(�−1(G))}).
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Proof. For the first equality we apply Proposition 4.11 to the quotient homo-
morphism � : A → A/�. To obtain the second note that the inclusion from left to
right is clear. The other inclusion follows from the fact that if F ∈ F iS(A) is such
that �−1

(∇A/�(�(F ))) = ∇A(F ), then Ker(�) is compatible with F and therefore
�(F ) ∈ F iS(A/�). �
An interesting corollary to Proposition 4.11 is the following characterization of

∇A-full models for coherent families ∇ of S-compatibility operators.
Corollary 4.13. Let ∇ be a coherent family of S-compatibility operators and

C ⊆ F iSA. Then C is a ∇A-full model of S if and only if C =
{
F ∈ F iS(A) :

h−1
(∇B(h(F ))) = ∇A(F )} for some surjective homomorphism h : A→ B.

Proof. Suppose that C ⊆ F iSA is a ∇A-full model of S, i.e., C =
∇A−1(∼∇A(C )). Let B := A/∼∇A(C ) and let � : A → A/

∼∇A(C ) the quo-
tient homomorphism. Then C = ∇A−1(Ker(�)). Thus from Proposition 4.11
we obtain C =

{
F ∈ F iS(A) : �−1

(∇B(�(F ))) = ∇A(F )}. Assume now that
C =

{
F ∈ F iS(A) : h−1

(∇B(h(F ))) = ∇A(F )} for some surjective homomor-
phism h : A → B. Then again by Proposition 4.11 we have C = ∇A−1(Ker(h)).
Thus C ∈ Ran(∇A−1) and hence it is ∇A-full. �
Considering the proof above and Corollary 4.12, a slightly different corollary can
be stated as follows:

Corollary 4.14. Let ∇ be a coherent family of S-compatibility operators, and
C ⊆ F iSA. Then C is ∇A-full if and only if C = �−1

({
G ∈ F iS(A/�) :

�−1
(∇A/�(G)) = ∇A(�−1(G))}) for some � ∈ ConA, which can be taken to be

∼∇A(C ).
Corollary 4.14 is particularly interesting in view of Propositions 3.7 and 3.10.
There we saw that �A-full models of S are families of S-filters of the form
�−1

(F iS(A/�)
)
for some � ∈ ConA. But from ∇A(F ) ⊆ �A(F ) it follows that

∇A−1(�) ⊆ �A−1(�) = �−1(F iS(A/�)
)
, therefore ∇A−1(�) must be a family of

the form �−1(D) for some D ⊆ F iS(A/�). Corollary 4.14 determines one such
family, which we will see has other interesting properties. We first need the following
technical result, which is parallel to Definition 4.8 and Lemma 4.9.

Lemma 4.15. Let ∇ be a coherent family of S-compatibility operators, and let
h : A→ B be surjective.
1. For any D ⊆ F iSB, if h is ∇A-compatible with h−1(D), then ∼∇A

(
h−1(D)

)
=

h−1
(∼∇B(D)).

2. For any C ⊆ F iSA, if h is ∇A-compatible with C , then h
(∼∇A(C )) =

∼∇B(h(C )).
Proof. 1. Assume that h is ∇A-compatible with h−1(D), i.e., that Ker(h) ⊆

∼∇A(h−1(D)). For each G ∈ D ,
∼∇A(h−1(D)) ⊆ ∇A(h−1(G)), and hence h is
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∇A-compatible with h−1(G). So, by coherence,
∼∇A(h−1(D)) =

⋂
G∈D

∇A(h−1(G)) =
⋂
G∈D

h−1
(∇B(G))

= h−1
( ⋂
G∈D

∇B(G)
)
= h−1

(∼∇B(D)).

2. Assume now that h is ∇A-compatible with C . Thus, if F ∈ C , then h is ∇A-
compatible with F , which implies that h−1

(
h(F )

)
= F . Therefore, h−1

(
h(C )

)
=

C , so that we can say that h is ∇A-compatible with h−1(h(C )). Moreover, since
Ker(h) ⊆ ∇A(F ) for each F ∈ C , we also have that Ker(h) ⊆ ∼∇A(C ), which by
Lemma 2.2.2 implies that h−1

(
h
(∼∇A(C ))) = ∼∇A(C ). Then we can apply point 1

to find that
∼∇A(C ) = ∼∇A(h−1(h(C ))) = h−1(∼∇B(h(C ))) and then by surjectivity

of h we conclude that h
(∼∇A(C )) = h(h−1(∼∇B(h(C )))) = ∼∇B(h(C )). �

Proposition 4.16. Let ∇ be a coherent family of S-compatibility operators and
� ∈ ConA. Then � is∇A-full if and only if ∼∇A/�({G ∈ F iS(A/�) : �−1

(∇A/�(G)) =
∇A(�−1(G))}) = IdA/� .
Proof. To simplify notation, put D := {G ∈ F iS(A/�) : �−1

(∇A/�(G)) =
∇A(�−1(G))}. Then observe that by the comment after Definition 4.8, � is ∇A-
compatible with D , and therefore, using Corollary 4.12 and Lemma 4.15.1, � is
∇A-full if and only if � = ∼∇A(∇A−1(�)) = ∼∇A(�−1(D)) = �−1(∼∇A/�(D)). This
implies, by surjectivity of �, that

∼∇A/�(D) = �(�−1(∼∇A/�(D))) = �(�) = IdA/� .
Conversely, if

∼∇A/�(D) = IdA/� , then � = �−1(IdA/�) = �−1
(∼∇A/�(D)), which

establishes that � is ∇A-full by the above consideration. �
Observe that by instantiating the above results to the case of the Leibniz operator,
which is a coherent family of S-compatibility operators, we find the result proved
directly in Proposition 3.7, namely that�A

−1
(�) = F iS(A/�), because the Leibniz

operator commutes with inverse images by all surjective homomorphisms, so that
the family D in the above proof is just the family of all S-filters in the quotient.
We also find the result in Proposition 3.11, for the condition that

∼
�A/�(D) is the

identity amounts to saying that � ∈ ConAlgSA.
Theorem 4.17 (General Correspondence Theorem). Let ∇ be a coherent family
of S-compatibility operators. For every surjective h : A→ B and every F ∈ F iSA, if
h is∇A-compatible with F , then h induces an order isomorphism between �F �∇

A

and
�h(F )�∇

B

, whose inverse is given by h−1.
Proof. Recall that from the assumption that h is∇A-compatible withF it follows
that h−1

(
h(F )

)
= F , and that h(F ) ∈ F iSB.

Take first any F ′ ∈ �F �∇
A

. Then Ker(h) ⊆ ∇A(F ) ⊆ �A(F ′) and hence by
Lemma 2.4.3, h−1

(
h(F ′)

)
= F ′ and h(F ′) ∈ F iSB. Moreover, since h is both�A-

compatible with F ′ and ∇A-compatible with F and both � and ∇ are coherent,
we can apply Lemma 4.9 to both and obtain that ∇B(h(F )) = h(∇A(F )) ⊆
h
(
�A(F ′)

)
= �B

(
h(F ′)

)
. This tells us that h(F ′) ∈ �h(F )�∇

B

.

Now take any G ∈ �h(F )�∇
B

, i.e., such that∇B(h(F )) ⊆ �B(G). We know that
h−1(G) ∈ F iSA and that h

(
h−1(G)

)
= G . Observe that h is ∇A-compatible with
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h−1
(
h(F )

)
, since this is F . Then, by coherence, we have

∇A(F ) = ∇A(h−1(h(F ))) = h−1(∇B(h(F ))) ⊆ h−1(�B(G)) = �A(h−1(G)).
This shows that h−1(G) ∈ �F �∇

A

.
Thus,wehave established that h induces a bijection between �F �∇

A

and �h(F )�∇
B

,
whose inverse is given by h−1. Since both maps are obviously order preserving, they
are in fact order isomorphisms. �
By considering the least elements of the two∇-classes present in the theorem, we
obtain a generalization of Corollary 3.8.

Corollary 4.18. Under the assumptions of Theorem 4.17, F is a∇A-filter ofA if
and only if h(F ) is a∇B -filter of B.
Wenowwish to obtain an analogousCorrespondence Theorem for the relativized
operators

∼∇AS . In order to do that, we prove that the notion of coherence is preserved
under relativization.

Proposition 4.19. If ∇ is a coherent family of S-compatibility operators, then
the family

∼∇S = {∼∇AS : A an algebra} is also a coherent family of S-compatibility
operators.

Proof. First, from the definition of
∼∇AS it immediately follows that if ∇ is a

family of S-compatibility operators, also ∼∇S is. Now, to show the coherence of
∼∇S , let G ∈ F iSB, let h : A → B be surjective and ∼∇AS -compatible with h−1(G),
i.e., such that Ker(h) ⊆ ∼∇AS

(
h−1(G)

)
. Consider any F ′ ∈ (F iSA)h−1(G), i.e., such

that h−1(G) ⊆ F ′. Then Ker(h) ⊆ ∼∇AS (h−1(G)) ⊆
∼∇AS (F ′) ⊆ ∇A(F ′). Hence, h

is ∇A-compatible with F ′, and therefore F ′ = h−1(h(F ′)) and h(F ′) ∈ F iSB. It
follows by hypothesis that

∇A(F ′) = ∇A(h−1(h(F ′)
))
= h−1

(∇B(h(F ′)
))
. (9)

We claim that h
(
(F iSA)h−1(G)

)
= (F iSB)G : Let F ′ ∈ F iSA be such that h−1(G) ⊆

F ′. We have already seen that under the present assumptions, h(F ′) ∈ F iSB, and
obviously G = h

(
h−1(G)

) ⊆ h(F ′). Conversely, let G ′ ∈ F iSB be such that
G ⊆ G ′. Then we know thatG ′ = h

(
h−1(G ′)

)
and h−1(G ′) ∈ F iSA, andmoreover

h−1(G) ⊆ h−1(G ′). This proves the claim. Now, using (9), commutativity of h−1

with intersections, and the claim,
∼∇AS (h−1(G)) =

⋂{∇A(F ′) : F ′ ∈ (F iSA)h−1(G)
}

=
⋂{
h−1

(∇B(h(F ′)
))
: F ′ ∈ (F iSA)h−1(G)

}

= h−1
(⋂{∇B(h(F ′)

)
: F ′ ∈ (F iSA)h−1(G)

})

= h−1
(⋂{∇B(G ′) : G ′ ∈ (F iSB)G

})
= h−1

(∼∇BS (G)
)
.

This proves that the family
∼∇S is coherent. �

In particular, this shows that the Suszko operator is coherent. Finally, as a con-
sequence of the General Correspondence Theorem 4.17 and of Proposition 4.19 we
obtain the following.

https://doi.org/10.1017/jsl.2015.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.39


COMPATIBILITY OPERATORS IN ABSTRACT ALGEBRAIC LOGIC 441

Theorem 4.20. Let∇ be a coherent family of S-compatibility operators. For every
surjective h : A → B and every F ∈ F iSA, if h is ∼∇AS -compatible with F , then h
induces an order isomorphism between �F �

∼∇AS and �h(F )�
∼∇BS , whose inverse is given

by h−1.

4.2. Classes of algebras associated with a family of S-operators. We saw in
Lemma 2.8 that the classes of algebras usually associated with a logic through
the Leibniz and the Suszko operators can be obtained either by considering reduced
models, or by a process of reduction. By analogy, we can apply the two procedures
to arbitrary families of S-operators, but in principle the classes of algebras resulting
from each procedure may be different.

Definition 4.21. Let ∇ be a family of S-operators. The following classes of
algebras are associated with it, either directly,

Alg∇S := I
{
A/∇A(F ) : A an algebra, F ∈ F iSA

}
,

Alg∇S := I
{
A : there is F ∈ F iSA such that∇A(F ) = IdA

}
,

or by applying these definitions to its relativization
∼∇S (which is again a family of

S-operators):
Alg

∼∇SS := I
{
A/

∼∇AS (F ) : A an algebra, F ∈ F iSA
}
,

Alg∼∇SS := I
{
A : there is F ∈ F iSA such that ∼∇AS (F ) = IdA

}
.

Our goal is to see that for coherent families of S-compatibility operators the two
classes of algebras associated with each operator coincide, and that in one of the
two definitions the isomorphism operator is superfluous. The key point is to see
that the “process of reduction” applied to an arbitrary model of S always produces
a “reduced” model.

Lemma 4.22. If ∇ is a coherent family of S-compatibility operators, then for every
F ∈ F iSA and every � ∈ ConA, if � ⊆ ∇A(F ), then ∇A/�(F/�) = ∇A(F )/�. In
particular∇A/∇A(F )(F/∇A(F )) = IdA/∇A(F ).
Proof. Consider the canonical projection � : A → A/�, which is surjec-
tive, and is ∇A-compatible with F by the assumption. Then, by coherence and
Lemma 4.9, ∇A/�(F/�) = ∇A/�(�(F )) = �(∇A(F )) = ∇A(F )/�. Taking
� := ∇A(F ), the assumption is trivially satisfied, therefore∇A/∇A(F )(F/∇A(F )) =
∇A(F )/∇A(F ) = IdA/∇A(F ). �
Proposition 4.23. If ∇ is a coherent family of S-compatibility operators, then

Alg∇S = Alg∇S. Moreover, the class {A : there is F ∈ F iSA such that∇A(F ) =
IdA} is closed under isomorphic copies.
Proof. The inclusion Alg∇S ⊆ Alg∇S holds in general, because A ∼= A/IdA, and
the reverse inclusion is a consequence of Lemma 4.22. That the mentioned class is
closed under isomorphisms, is a consequence of Corollary 4.10. �
Moreover, we can apply Propositions 4.19 and 4.23 to

∼∇S .
Corollary 4.24. If ∇ is a coherent family of S-compatibility operators, then

Alg
∼∇SS = Alg∼∇SS, and the class {A : there is F ∈ F iSA such that ∼∇AS (F ) = IdA}

is closed under isomorphic images.
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In the particular cases of the Leibniz operator and the Suszko operator, Proposi-
tion 4.23 and Corollary 4.24 yield the equalities Alg�(S) = Alg�(S) = Alg∗S,
and Alg

∼

� S (S) = Alg ∼

� S (S) = AlgSuS, respectively, which are already known
(Lemma 2.8).
One can also consider analogous classes for the family

∼∇ = {∼∇A : A an algebra}
of the liftings of the operators ∇A. However, in this case there are several ways to
do it; let us choose one for the definition and see that the others yield equivalent
results (in one case, under an additional assumption).

Definition 4.25. For any logic S and any family ∇ of S-operators, we consider
the following classes of algebras.

Alg
∼∇S := I

{
A/

∼∇A(C ) : A an algebra, C ⊆ F iSA
}
,

Alg∼∇S := I
{
A : there is C ⊆ F iSA such that ∼∇A(C ) = IdA

}
.

We are going to see that in fact we get no new classes. However, we first see that,
exactly like what happens in the case of the Leibniz operator and its lifting the
Tarski operator, each of these classes can be obtained in another way, namely by
considering only the∇-full g-models ofS, and in the second case also by considering
the largest g-model (which is always∇-full).
Lemma 4.26. Let ∇ be a family of S-operators. The following hold.
1. Alg

∼∇S = I
{
A/

∼∇A(C ) : A an algebra, C ⊆ F iSA ∇-full}.
2. Alg∼∇S = I

{
A : there is a ∇-full C ⊆ F iSA such that ∼∇A(C ) = IdA

}
=

I
{
A :

∼∇A(F iSA) = IdA
}
.

Proof. 1. The inclusion ⊇ is obvious. To see ⊆, observe that given any C ⊆
F iSA, by theGalois connection (Proposition 3.3 and related results) the congruence
∼∇A(C ) is a∇-full congruence and hence there is some ∇-full D ⊆ F iSA such that
∼∇A(D) = ∼∇A(C ); therefore, A/∼∇A(C ) = A/∼∇A(D) ∈ Alg

∼∇S.
2. The first equality is proved by the same argument as point 1. As to the second,⊇ is
again obvious, and⊆ is a consequence of ∼∇A being order reversing: if ∼∇A(C ) = IdA
for some C ⊆ F iSA, then also ∼∇A(F iSA) = IdA. �
In general, one of the classes associated with

∼∇ is already equal to one of those
associated with

∼∇S , and the other one is almost so.
Proposition 4.27. If ∇ is a family of S-operators, then Alg∼∇S = Alg∼∇SS and

Alg
∼∇SS ⊆ Alg

∼∇S.
Proof. By definition, for eachF ∈ F iSA , ∼∇AS (F ) =

∼∇A((F iSA)F
)
. From this it

follows thatAlg∼∇SS ⊆ Alg∼∇S and thatAlg
∼∇SS ⊆ Alg

∼∇S. To see the reverse inclusion
in the first case, assume thatA ∈ Alg∼∇S. By Lemma 4.26.2, ∼∇A(F iSA) = IdA. But,
if we put F0 :=

⋂F iSA, then ∼∇AS (F0) =
∼∇A((F iSA)F0

)
=

∼∇A(F iSA) = IdA.
Therefore, A ∈ Alg∼∇SS. �
The proofs of the next two results are completely analogous,moduloLemma 4.15,
to those of Lemma 4.22 and Proposition 4.23, respectively; the last equality in
Proposition 4.29 completes Lemma 4.26 and is proved using the first part, and the
last equality in Lemma 4.22.2.
Lemma 4.28. If ∇ is a coherent family of S-compatibility operators, then for every

C ⊆ F iSA, ∼∇A/
∼∇A(C )(C /

∼∇A(C )) = IdA/∼∇A(C ).
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Proposition 4.29. If ∇ is a coherent family of S-compatibility operators, then
Alg

∼∇S = Alg∼∇S. Moreover, the class {A : there is C ⊆ F iSA such that ∼∇A(C ) =
IdA

}
is closed under isomorphic images, and Alg

∼∇S = I
{
A/

∼∇A(F iSA) :
A an algebra

}
.

Merging this with Corollary 4.24 and Proposition 4.27 we find what we
announced.
Corollary 4.30. If ∇ is a coherent family of S-compatibility operators, then

Alg
∼∇S = Alg∼∇S = Alg

∼∇SS = Alg∼∇SS.
Since, by Proposition 4.19,

∼∇S is a coherent family of S-compatibility operators
when ∇ is, one might try to apply to ∼∇S everything that has been done for ∇;
that is, to consider the relativization of

∼∇S to S, its lifting to the power sets, the
associated classes of algebras, etc. However, since

∼∇S is order preserving, in view
of Lemma 3.2.5 the relativization of

∼∇S is
∼∇S itself, and nothing new would be

obtained.

§5. Applications to the Leibniz and the Suszko operators.
5.1. TheLeibniz operator as anS-compatibility operator. In Section 3.2we looked
at the Leibniz operator as an S-operator. In this subsection we shall consider it as
an S-compatibility operator, and instantiate the results of Section 4 concerning it
and its lifting (the Tarski operator); the results concerning its relativization (the
Suszko operator) will be found in Section 5.2. In particular, the �A-class of an
S-filter and its least element will play an important rôle among the full g-models
and the S-filters, respectively.
When instantiating the general notions and constructions of previous sections
for ∇ = � we find some familiar ones, which have already well-settled notations
and terminology. It will hence be practical to make some changes in order to match
them; for instance, we write ( )∗ instead of ( )� , so that the class Alg�S becomes
the familiar class Alg∗S from (5). Recall that, by Definition 3.14, the�A-class of F
is defined by

�F �∗ := �A−1(�A(F )) = {
G ∈ F iSA : �A(F ) ⊆ �A(G)

}
;

here we shall call it the Leibniz class of F . By Definition 3.16, F ∗ denotes the least
element of the Leibniz class �F �∗; here we shall call this element the Leibniz filter of
F . We say that F is a Leibniz filter if F = F ∗, and we denote the set of all Leibniz
filters of A by F i∗SA.
The first observation worth mentioning is that every Leibniz class is a closure
system. In fact, it is a full closure system; these facts should come with no sur-
prise, given Proposition 3.15, and we collect them together with a couple of related
properties in the next proposition for later reference.
Proposition 5.1. For every F ∈ F iSA, the Leibniz class �F �∗ is full, hence it
is a closure system on A; it is such that

∼
�A

(
�F �∗) = �A(F ); and it is the largest

C ⊆ F iSA, and the only full, such that ∼�A(C ) = �A(F ).
Proof. By Proposition 3.15, taking ∇A = �A, it follows that �F �∗ =

�A
−1( ∼
�A

(
�F �∗)), and that �F �∗ is full. By Lemma 4.2.1, F ∈ �F �∗, which

together with the previous equality implies that
∼
�A(�F �∗) ⊆ �A(F ). Moreover,
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by Corollary 3.4.3, the map
∼
�A ◦ �A−1 is a closure on ConA, so that �A(F ) ⊆

∼
�A

(
�A

−1(
�A(F )

))
=

∼
�A(�F �∗). This establishes the second equality. The fact

that �F �∗ is full implies, by Proposition 3.6, that it is the largest C ⊆ F iSA such
that

∼
�A(C ) =

∼
�A

(
�F �∗) = �A(F ). Finally, by Corollary 3.12, the Tarski opera-

tor is injective on full g-models, and this proves the uniqueness in the last part of
the statement. �
We postpone the question of which full g-models are given by Leibniz classes to
Proposition 6.1. For the time being, let us turn our attention to the least elements
in these classes.
The term “Leibniz filter” was first used in [17, Definition 1], within the scope
of protoalgebraic logics (recall, logics for which the Leibniz operator is order
preserving), to denote the least elements of the sets of the form

[F ] :=
{
G ∈ F iSA : �A(F ) = �A(G)

}
,

for F ∈ F iSA. Observe that these sets are the equivalence classes of the kernel of
the Leibniz operator, which is an equivalence relation; this somehow explains why
the term “class” has been used later on for the related notion of the “Leibniz class”
�F �∗. Let us clarify the relations between the old and the new notions. Clearly
[F ] ⊆ �F �∗. Our present definition of Leibniz filter generalizes the former one, as
we next prove, in the sense that both notions coincide for protoalgebraic logics, and
furthermore, for arbitrary logics, every Leibniz filter according to Definition 3.16 is
a Leibniz filter according to [17].

Lemma 5.2. For every F ∈ F iSA,
1. F ∗ ⊆ ⋂

[F ] ⊆ F ;
2. if F = F ∗, then F = ⋂

[F ]; and
3. if S is protoalgebraic, then F = F ∗ (i.e., F is a Leibniz filter) if and only if
F =

⋂
[F ].

Proof. Let F ∈ F iSA. Since F ∈ [F ], it holds ⋂[F ] ⊆ F . Moreover, it is
clear that [F ] ⊆ �F �∗. Therefore, F ∗ = ⋂

�F �∗ ⊆ ⋂
[F ]. From (i), (ii) follows

immediately. Now to prove (iii) assume that S is protoalgebraic and F = ⋂
[F ].

Then, since F ∗ ⊆ F it follows by order preservation of�A that�A(F ∗) ⊆ �A(F ),
and since F ∗ ∈ �F �∗, it must also hold �A(F ) ⊆ �A(F ∗). Thus, �A(F ) =
�A(F ∗). So, F ∗ ∈ [F ], and hence F = ⋂

[F ] ⊆ F ∗. �
We warn the reader that a proposal has been made in [19, p. 177] of applying the
definition of Leibniz filter for protoalgebraic logics from [17] to arbitrary logics;
however, this does not yield our present notion, because while in general [F ] needs
not have a least element, �F �∗ always has one.
The first particular properties of Leibniz filters and Leibniz classes follow easily
from the fact that the Leibniz operator is the largest of all S-compatibility operators.
Lemma 5.3. Let ∇A be an S-compatibility operator on A. Then for every F ∈

F iSA,
1. �F �∗ ⊆ �F �∇

A

;
2. F∇A ⊆ F ∗; and
3. every ∇A-filter is a Leibniz filter.
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Proof. 1 follows from the definitions plus the fact that ∇A(F ) ⊆ �A(F ); 2
follows from 1 and the definitions, and 3 follows from 2 plus the fact that F ∗ ⊆ F
by Lemma 5.2.1. �
The terminological choice of calling F ∗ “the Leibniz filter of F ” is justified by
the fact that every such filter is indeed a Leibniz filter.

Proposition 5.4. For every F ∈ F iSA, F ∗ is a Leibniz filter of A.
Proof. The inclusion (F ∗)∗ ⊆ F ∗ follows by Lemma 5.2.1. As for the converse
inclusion, since F ∗ ∈ �F �∗, it follows �F ∗�∗ ⊆ �F �∗. Hence, F ∗ = ⋂

�F �∗ ⊆⋂
�F ∗�∗ = (F ∗)∗. �
Rephrasing Proposition 3.6 of [18] in terms of the present notion, and taking
Lemma 5.2.3 into account, we would find that for a protoalgebraic logic S, an
S-filter is a Leibniz filter if and only if it is the least element of some full g-model of
S. We can now see that this remains true for arbitrary logics if we replace the notion
of [17,18] by the present one.

Theorem 5.5. An S-filter F of A is a Leibniz filter if and only if there exists a full
g-model 〈A,C 〉 of S such that F = ⋂

C .

Proof. SupposeF ∈ F iSA is a Leibniz filter. It is, by definition, the least element
of its Leibniz class, which we have seen to be full in Proposition 5.1. Conversely,
suppose F =

⋂
C and 〈A,C 〉 is a full g-model of S. Since ⋂C ∈ C , it holds

∼
�A(C ) ⊆ �A(F ). Hence, �F �∗ = �A−1(�A(F )) ⊆ �A−1( ∼�A(C )) = C , where
the last equality follows by Proposition 3.10. Thus, F =

⋂
C ⊆ ⋂

�F �∗ = F ∗.
Since the converse inclusion always holds, it follows F = F ∗, i.e., F is a Leibniz
filter. �
Instantiating Corollary 4.3 for the Leibniz operator we obtain the next proposi-
tion; one can see that it generalizes [17, Proposition 10], if one takes the result in
Lemma 5.2.3 into account.

Proposition 5.6. Afilter F ∈ F iSA is a Leibniz filter ofA if and only if F/�A(F )
is the least S-filter of A/�A(F ).
Finally, we apply Theorem 4.17 to the Leibniz operator.

Theorem 5.7 (Correspondence Theorem forLeibniz classes). For every surjective
h : A→ B and every F ∈ F iSA, if h is�A-compatible with F , then h induces an order
isomorphism between �F �∗ and �h(F )�∗, whose inverse is given by h−1. Moreover, for
each G ∈ �F �∗, h induces an order isomorphism between [G ] and [h(G)].
Proof. By Proposition 2.5.1, the Leibniz operator is a coherent family of S-
compatibility operators, therefore we can apply Theorem 4.17 to it, and obtain
the first part of the statement. For the second part, take any G,H ∈ �F �∗; note
that from G ∈ �F �∗ it follows that [G ] ⊆ �F �∗. By the established isomorphism,
h−1

(
h(G)

)
= G and h−1

(
h(H )

)
= H . Now, using Proposition 2.5.1 and the

surjectivity of h,

�A(H ) = �A(G) iff �A
(
h−1

(
h(H )

))
= �A

(
h−1

(
h(G)

))

iff h−1
(
�B

(
h(H )

))
= h−1

(
�B

(
h(G)

))

iff �B
(
h(H )

)
= �B

(
h(G)

)
,
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which shows that H ∈ [G ] if and only if h(F ) ∈ [h(G)]. Thus, the order isomor-
phism induced by h between �F �∗ and �h(F )�∗ restricts to one between [G ] and
[h(G)]. �
It is not difficult to see that �F �∗ = ⋃

G∈�F �∗ [G ], that is, the sets [G ] divide
the Leibniz class �F �∗ into disjoint “layers” according to the value of the Leibniz
operator. Thus, the second part of Theorem 5.7 is telling us that the isomorphism
between the two Leibniz classes is the disjoint union of isomorphisms, one for each
corresponding pair of “layers”.
Theorem 5.7 generalizes and strengthens the well-known Correspondence
Theorem for protoalgebraic logics, as formulated in [2, Corollary 7.7], and its
strengthening given in [17, Corollary 9]: it extends its scope to arbitrary logics, and
it establishes an order isomorphism between larger sets of filters; in Theorem 6.17
we shall check how the theorem in [2] follows from Theorem 5.7.

Corollary 5.8. Under the assumptions of Theorem 5.7, F is a Leibniz filter of A
if and only if h(F ) is a Leibniz filter of B.

5.2. The Suszko operator as an S-compatibility operator. Now we do for the
Suszko operator what we did in Section 5.1 for the Leibniz operator. Since the
notation AlgSuS introduced in (6) on page 428 for what would be our Alg

∼

� SS
is already well settled in abstract algebraic logic, we shall change all superscripts
( )

∼

� S to ( )Su instead. Moreover, recall that, by Definition 3.14, the
∼
�AS-class of F

is defined by

�F �Su := �A
−1( ∼
�AS(F )

)
=

{
G ∈ F iSA : ∼�AS(F ) ⊆ �A(G)

}
;

we shall call it the Suszko class of F . By Definition 3.16, F Su denotes the least
element of the Suszko class �F �Su. We say that F is a Suszko filter if F = F Su, and
we denote the set of all Suszko filters of A by F iSuS A.
In general, by Lemma 5.3, the Suszko filters of a logic are Leibniz filters. As we
will see, Suszko filters and Leibniz filters always coincide in protoalgebraic logics,
but in these logics there might be logical filters that are not Leibniz. This situation
can also be found outside the class of protoalgebraic logics. For instance, in Positive
Modal Logic [9, 24], the logical filters of a positive modal algebra are its lattice
filters, whereas the Suszko filters and the Leibniz filters are the lattice filters closed
under the interpretation of�. However, in general, the inclusions between the sets of
Suszko filters, Leibniz filters, and S-filters may be proper. For instance, in the logic
preserving degrees of truthwith respect to the class ofMV-algebras [4,16], the logical
filters of an MV-algebra are the lattice filters, while the Leibniz filters are exactly
the implicative filters, and in many MV-algebras the set of Suszko filters is properly
included in the set of Leibniz filters. These results will be published elsewhere. There
are also logics where the three classes of filters on any algebra coincide; for example,
this holds for truth-equational logics, as we will see in Theorem 6.10.
Similarly to Proposition 5.1, one can prove the following.

Proposition 5.9. For every F ∈ F iSA, the Suszko class �F �Su is full, hence it
is a closure system on A; it is such that

∼
�A

(
�F �Su

)
=

∼
�AS(F ); and it is the largest

C ⊆ F iSA, and the only full, such that ∼�A(C ) = ∼
�AS(F ).
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That the Suszko operator is the largest order preserving S-compatibility operator
was proved in [6, Theorem 1.8]. A short proof of this fact can be given in our
setting. Indeed, let ∇A be an order preserving S-compatibility operator on A.
By compatibility, it follows that

∼∇AS (F ) ⊆
∼
�AS(F ) for every F ∈ F iS(A), and by

Lemma 3.2.5 we have ∇A = ∼∇AS ; therefore, ∇A(F ) ⊆
∼
�AS(F ). As straightforward

consequences of this fact and of Lemmas 3.18, 4.2, and 5.3 we have the following
two lemmas; the first one is completely parallel to Lemma 5.3.

Lemma 5.10. Let∇ be an order preservingS-compatibility operator.Then for every
F ∈ F iSA,
1. �F �Su ⊆ �F �∇

A

;
2. F∇A ⊆ F Su;
3. every ∇A-filter is a Suszko filter.
Lemma 5.11. Let F ∈ F iSA. Then,
1. F Su ⊆ F ∗ ⊆ F ;
2. every Suszko filter is a Leibniz filter;
3. if F ⊆ G , then �G�Su ⊆ �F �Su and F Su ⊆ GSu;
4. (F iSA)F ⊆ �F �Su ⊆ (F iSA)F Su ;
5. �F �Su ⊆ �F Su�Su; and
6. �F �Su = (F iSA)F if and only if F = F Su, i.e., if and only if F is a Suszko filter.
The converse of the implication in item 2 of Lemma 5.11 is false, as witnessed
by Example 6.21. On a related issue, you may have noticed that we are not calling
F Su “the Suszko filter of F ”. The reason is that we don’t have for Suszko filters the
nice property of Proposition 5.4 for Leibniz filters: in general, for an S-filter F , the
S-filter F Su need not be itself a Suszko filter; this is shown in the following example,
suggested to us by our colleague Tommaso Moraschini.

Example 5.12. Consider the language L = 〈�,�, c1, c2, c3,�〉, where � and �
are unary function symbols and c1, c2, c3,� are constant symbols. Consider the
set A = {a, b, c, d, 1} and the L-algebra A = 〈A,�A,�A, a, b, d, 1〉, where the
unary operations �A and �A are given by the table below. Consider also the logic
S = 〈Fm,�S〉 defined by the calculus with axiom and rules displayed below (x is a
variable).

�A �A

a a c
b b 1
c d d
d d 1
1 a d

Axiom: �
Rule 1: c1, c2 �S x
Rule 2: c2, c3 �S x

Fact 1. Clearly, the proper S-filters of A are the subsets containing 1, not con-
taining a, b simultaneously, and not containing b, d simultaneously. In particular,
the set F := {1, b, c} is an S-filter of A.
Fact 2. (F iSA)F = {F,A}, because the only proper subsets of A containing F
are {1, a, b, c} and {1, b, c, d}, but neither is an S-filter of A by the observation in
Fact 1.
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Fact 3.
∼
�AS(F ) = �

A(F ) =
{{1, c} , {a, d} , {b}}, where for simplicity a

congruence is described by its partition. One can check by hand that �A(F ) ={{1, c} , {a, d} , {b}}. The other equality follows by Fact 2, which implies that
∼
�AS(F ) = �

A(F ) ∩�A(A) = �A(F ).
Fact 4. F Su = {1, c}. To see this, first observe that �F �Su = �F �∗ = {

G ∈
F iSA : �A(F ) ⊆ �A(G)

}
, which is a direct consequence of Fact 3. But to say that

�A(F ) ⊆ �A(G) is to say that �A(F ) is compatible with G or, by Lemma 2.1,
that G is a union of blocks of �A(F ). Using the description of S-filters in Fact 1
and the description of the blocks of �A(F ) in Fact 3, we conclude that �F �Su ={{1, c} , F , {1, a, c, d} , A}. From this it follows that F Su = {1, c}, as claimed.
Fact 5.

∼
�AS(F

Su) = IdA. This is because F and {1, a, c} are two S-filters of A,
which contain F Su = {1, c}, and it is easy to check that �A(F ) ∩ �A({1, a, c}) =
IdA, using just compatibility arguments and the fact that for any congruence ≡ of
this algebra, 1 ≡ c if and only if a ≡ d .
Fact 6. (F Su)Su = {1}. It follows by Fact 5 that �F Su�Su = F iSA. Thus,
(F Su)Su = min �F Su�Su =

⋂F iSA = {1}.
We conclude that F Su �= (F Su)Su. That is, F Su is not a Suszko filter of A. �
We have seen in Theorem 5.5 that Leibniz filters are precisely the least elements
of full g-models. Since every Suszko filter is a Leibniz filter, in particular, they are
also least elements of full g-models. Now we characterize them as the least elements
of the full g-models that are up-sets; but the proof actually shows that there is only
one candidate for such a g-model, namely the principal up-set of F iSA determined
by the filter itself.

Theorem 5.13. For every F ∈ F iSA, the following conditions are equivalent.
(i) F is a Suszko filter of A.
(ii) 〈A, (F iSA)F 〉 is a full g-model of S.
(iii) F =

⋂
C , for some full up-set C ⊆ F iSA.

The principal up-set (F iSA)F is the only C ⊆ F iSA that satisfies (iii).
Proof. (i)⇒(ii): This follows from Lemma 5.11.6, which tells us that �F �Su =
(F iSA)F , and Proposition 5.9, which tells us that �F �Su is always full.
(ii)⇒(iii): This is because (F iSA)F is an up-set and F =

⋂
(F iSA)F .

(iii)⇒(i): On the one hand, observe that F ∈ C because C , being full, is a closure
system. This implies that (F iSA)F ⊆ C , because C is an up-set. On the other hand,
since F =

⋂
C by assumption, clearly C ⊆ (F iSA)F . That is,C = (F iSA)F , which

proves the final assertion. Moreover, since C is full, C = (F iSA)F =
{
G ∈ F iSA :

∼
�A

(
(F iSA)F

) ⊆ �A(G)}. But, ∼�A((F iSA)F
)
=

∼
�AS(F ). So, (F iSA)F = �F �Su,

and therefore F =
⋂

�F �Su is a Suszko filter. �
Note that this result does not exclude the possibility that a Suszko filter is at the
same time the least element of another full g-model, provided this one is not an
up-set. Actually, every Suszko filter is a Leibniz filter, and hence it is also the least
element of its Leibniz class, which is a full g-model.
We now instantiate Corollary 4.3 for the Suszko operator.
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Proposition 5.14. AfilterF ∈ F iSA is a Suszko filter ofA if and only ifF/∼�AS(F )
is the least S-filter of A/∼�AS(F ).
We have already seen that from Proposition 4.19 it follows that the Suszko oper-
ator

∼
� S := { ∼�AS : A an algebra} is a coherent family of S-compatible operators.

Therefore, Theorem 4.20 gives the following.

Theorem 5.15 (Correspondence Theorem for Suszko classes). For every
surjective h : A → B and every F ∈ F iSA, if h is ∼

�AS-compatible with F , then
h induces an order isomorphism between �F �Su and �h(F )�Su, whose inverse is given
by h−1.

We can now check that Theorem 5.15 strengthens Corollary 2.7 of [6], which
states (in the present terminology) that h is an isomorphism between (F iSA)F
and (F iSB)h(F ) under the assumption that h is a surjective and “deductive”
matrix homomorphism between 〈A, F 〉 and 〈B, h(F )〉. We have already seen, after
Definition 4.7, that the property of being deductive amounts to saying that h is
∼
�AS-compatible with F , viewed as an algebraic homomorphism. Thus, compared
with [6, Corollary 2.7], Theorem 5.15 extends the isomorphism to the whole Suszko
classes �F �Su and �h(F )�Su, which contain (F iSA)F and (F iSB)h(F ) respectively,
by Lemma 5.11.4.

Corollary 5.16. Under the assumptions of Theorem 5.15, F is a Suszko filter of
A if and only if h(F ) is a Suszko filter of B.

§6. Applications to the Leibniz hierarchy. In this last section we apply the results
on the Leibniz and Suszko operators established in Section 5 to obtain several
characterizations of the main classes of logics belonging to the Leibniz hierarchy.

6.1. Characterizations in terms of Leibniz and Suszko filters, and in terms of
full g-models. We start our discussion by addressing the issue, postponed after
Proposition 5.1, of which full g-models have the form of a Leibniz class.

Proposition 6.1. Let 〈A,C 〉 be a full g-model of S. The following conditions are
equivalent:

(i) C = �F �∗, for some F ∈ F iSA.
(ii) A/

∼
�A(C ) ∈ Alg∗S.

Proof. Suppose C = �F �∗, for some F ∈ F iSA. Then, ∼�A(C ) = ∼
�A(�F �∗) =

�A(F ), by Proposition 5.1, and therefore A/
∼
�A(C ) ∈ Alg∗S. Conversely, suppose

A/
∼
�A(C ) ∈ Alg∗S, and put B := A/ ∼�A(C ). By the assumption, there exists G ∈

F iSB such that�B(G) = IdB . This implies that �G�∗ = F iSB. Now, let � : A→ B
be the canonical projection. Since C is full by assumption, C = �−1(F iSB). Thus,
C = �−1

(
�G�∗). Finally, Ker(�) = �−1(IdB ) = �−1

(
�B(G)

)
= �A

(
�−1(G)

)
,

therefore � is �A-compatible with �−1(G). Now we can apply the Correspondence
Theorem 5.7 for Leibniz classes and conclude that C = �−1

(
�G�∗) = ��−1(G)�∗.

That is, F := �−1(G) ∈ F iSA witnesses the desired property. �
In general, it does not happen that every full g-model of a logic S will be of
the form �F �∗ for some F ∈ F iSA, because there are logics S for which Alg∗S is
properly included in AlgS. That it does happen turns out to be equivalent to an
interesting property.
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Proposition 6.2. Let S be a logic. The following conditions are equivalent.
(i) AlgS = Alg∗S.
(ii) For every A, the family of full g-models of S on A is {�F �∗ : F ∈ F iSA

}
.

(iii) For every A and every F ∈ F iSA there is G ∈ F iSA such that ∼
�AS(F ) =

�A(G).

Proof. (i)⇒(ii): If C is full, then A/
∼
�A(C ) ∈ AlgS. From the assumption it

follows thatA/
∼
�A(C ) ∈ Alg∗S, and from Proposition 6.1 thatC = �F �∗, for some

F ∈ F iSA.
(ii)⇒(iii): The assumption tells us that every full g-model of S is of the form of
some Leibniz class. In particular, since Suszko classes are full, we have that for every
F ∈ F iSA there exists G ∈ F iSA such that �F �Su = �G�∗. But this implies that
∼
�AS(F ) =

∼
�A

(
�F �Su

)
=

∼
�A

(
�G�∗) = �A(G), as desired.

(iii)⇒(i): Let A ∈ AlgS. Since AlgS = AlgSuS, there is F ∈ F iSA such that
∼
�AS(F ) = IdA. It follows by hypothesis that there exists G ∈ F iSA such that
∼
�AS(F ) = �

A(G) = IdA. Thus, A ∈ Alg∗S. This establishes that AlgS ⊆ Alg∗S;
the converse inclusion always holds. �
The class of logics S such that AlgS = Alg∗S is larger than it may seem at
first sight. It is shown in [18] that it includes all protoalgebraic logics, but also
all logics S such that Alg∗S is a quasivariety, and some of these are known to
be nonprotoalgebraic, such as the weak relevance logic WR [18, Example 5.4.1].
Nevertheless, wewill often use the fact that protoalgebraicity implies Alg∗S = AlgS;
for the sake of completeness, we will prove it here as a consequence of the following
fact, originally proved in [6], which is fundamental to our paper.

Proposition 6.3. A logic S is protoalgebraic if and only if the Leibniz and the
Suszko operators coincide, that is, if and only if for allA and all F ∈ F iSA, ∼�AS(F ) =
�A(F ).

Proof. Recall that we adopted as a definition that S is protoalgebraic if the
Leibniz operator is order preserving on F iSA for every A. Now, by Lemma 5, the
Leibniz operator is order preserving if and only if it coincides with the Suszko
operator. Therefore, when S is protoalgebraic both operators coincide. The con-
verse implication follows immediately because the Suszko operator is always order
preserving. �
As a consequence, when dealing with protoalgebraic logics, all pairs of notions
associated with each of the operators coincide, such as those of Leibniz and Suszko
classes, those of Leibniz and Suszko filters, and the associated classes of algebras;
in particular, Proposition 6.3 directly implies that Alg∗S = AlgS. From this, using
Proposition 6.2, we obtain the following characterization of the full g-models of
protoalgebraic logics in terms of Leibniz classes:

Corollary 6.4. If a logic S is protoalgebraic, then Alg∗S = AlgS and the full
g-models of S are the g-models of S the form �F �∗, for some F ∈ F iSA and some
algebra A.

As observed above, the converses of these implications do not hold in general,
but in Proposition 6.11 we will see that they do under stronger assumptions. It is
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nevertheless possible to characterize the protoalgebraicity of a logic by the form of
its full g-models:

Theorem 6.5. Let S be a logic. The following conditions are equivalent.
(i) S is protoalgebraic.
(ii) Every full g-model of S is an up-set; that is, every full g-model of S is of the
form (F iSA)F , for some S-filter F of some algebra A.

(iii) Every full g-model of S is of the form (F iSA)F , for some Suszko S-filter F of
some algebra A.

(iv) �F �∗ = (F iSA)F∗ , for every S-filter F ∈ F iSA and every algebra A.
Proof. (i)⇒(ii): Let 〈A,C 〉 be a full g-model of S. So, C = {G ∈ F iSA :

∼
�A(C ) ⊆ �A(G)}. Since by the assumption the Leibniz operator is order preserv-
ing, it trivially follows that C is an up-set. Since C is a closure system, it is in fact
of the form (F iSA)F , for some S-filter F of A, namely its intersection.
(ii)⇒(iii) is a direct consequence of Theorem 5.13.
(iii)⇒(iv): In general, for every F ∈ F iSA, �F �∗ is a full g-model of S. Therefore
by assumption �F �∗ = (F iSA)G , where G is the minimum of �F �∗; but this is F ∗
by definition.
(iv)⇒(i): Let A be an algebra and let F,G ∈ F iSA such that F ⊆ G . Then,
F ∗ ⊆ F ⊆ G . It follows by hypothesis that G ∈ �F �∗. So, �A(F ) ⊆ �A(G).
Thus, the Leibniz operator is order preserving on every A, and this shows that S is
protoalgebraic. �
Notice that we can replace Suszko filter by Leibniz filter in condition (iii). The
preceding result extends [18, Theorem 3.4], which proves only the equivalence
between items (i) and (ii). Moreover, this characterization of protoalgebraic logics
as those whose full g-models are up-sets implies the following enhancement of
Proposition 6.3: the coincidence of two more Leibniz- and Suszko-related notions
also characterizes protoalgebraicity:

Proposition 6.6. Let S be a logic. The following conditions are equivalent.
(i) S is protoalgebraic.
(ii) The full g-models of S coincide with its Suszko-full g-models.
(iii) �F �∗ = �F �Su for every F ∈ F iSA and every A.
Proof. The implications from (i) to (ii) and to (iii) are a direct consequence of
Proposition 6.3. Now assume (ii). Since every Suszko-full g-model is always an up-
set (Lemma 4.2.4), the condition implies that the full g-models of S are all up-sets,
and by Theorem 6.5 this implies that S is protoalgebraic. Finally, assume (iii) and
consider anyA and anyF,G ∈ F iSA such thatF ⊆ G . Then by Lemma 5.11.4,G ∈
�F �Su = �F �∗, which implies that �A(F ) ⊆ �A(G). This shows that the Leibniz
operator is order preserving on every A, which implies that S is protoalgebraic. �
By contrast, the coincidence of the following Leibniz- and Suszko-related notions
does not characterize protoalgebraicity.

• F ∗ = F Su, for every F ∈ F iSA and every A.
• F is a Suszko filter if and only if F is a Leibniz filter, for every F ∈ F iSA and
every A.
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The reason is that these two properties hold (vacuously) in all truth-equational
logics, because, as we will soon see in Theorem 6.10, in them all filters are Suszko
filters, and hence also Leibniz filters.
In order to find a characterization of truth-equational logics in a spirit similar
(but dual) to Theorem 6.5, we first need to take a closer look at Suszko classes,
specially at those associated with Suszko filters. Note that, given F ∈ F iSA, the
inclusion �F �Su ⊇ (F iSA)F always holds, by Lemma 5.11.4. So, by Lemma 5.11.6,
an F ∈ F iSA is a Suszko filter when the converse inclusion holds; that is, when it
satisfies

for all G ∈ F iSA, if ∼�AS(F ) ⊆ �A(G), then F ⊆ G . (10)

Now, it is not difficult to see that requiring this condition for all F ∈ F iSA is
equivalent to the property that the Leibniz operator on A is completely order
reflecting; this was first observed in [25, p. 108]:

Lemma 6.7. The Leibniz operator �A is completely order reflecting on F iSA if
and only if condition (10) holds for every F ∈ F iSA.
Proof. Suppose the Leibniz operator �A is completely order reflecting. Let
F,G ∈ F iSA such that ∼

�AS(F ) ⊆ �A(G). Since ∼
�AS(F ) =

∼
�A

(
(F iSA)F

)
=⋂{

�A(F ′) : F ′ ∈ (F iSA)F
}
, it follows by the assumption that F =⋂

(F iSA)F ⊆ G . Conversely, suppose condition (10) holds, for every F ∈ F iSA.
Let {Fi ∈ F iSA : i ∈ I } and G ∈ F iSA be such that

⋂
i∈I �

A(Fi) ⊆ �A(G).
Then,

∼
�AS(

⋂
i∈I Fi) ⊆

⋂
i∈I

∼
�AS(Fi) ⊆

⋂
i∈I �

A(Fi) ⊆ �A(G). It follows by (10)
that

⋂
i∈I Fi ⊆ G . Thus, �A is completely order reflecting on F iSA. �

This property, together with Corollary 4.4, instantiated to the case of the Suszko
operator, implies the following.

Proposition 6.8. The Leibniz operator�A is completely order reflecting onF iSA
if and only if every S-filter of A is a Suszko filter.
Independently, Corollary 4.4, instantiated for the Leibniz operator, gives the
following.

Proposition 6.9. The Leibniz operator�A is order reflecting onF iSA if and only
if every S-filter of A is a Leibniz filter.
Now, taking Definition 2.9 into account, we get the following.

Theorem 6.10. Let S be a logic. The following conditions are equivalent.
(i) S is truth-equational.
(ii) For every algebra A, every S-filter of A is a Suszko filter.
(iii) For every algebra A ∈ AlgS, every S-filter of A is a Suszko filter.
Proof. (i)⇒(ii): It follows immediately by Proposition 6.8, given Definition 2.9.
(ii)⇒(iii): Obvious.
(iii)⇒(i): Let A be an arbitrary algebra and F ∈ F iSA. Let � : A → A/

∼
�AS(F )

be the canonical map. Consider F0 :=
⋂F iS

(
A/

∼
�AS(F )

)
. Notice that �(F ) ∈

F iS
(
A/

∼
�AS(F )

)
, by Lemma 2.4.3. Since F0 ⊆ �(F ), using that the Suszko

operator is order preserving and Lemma 4.22 we obtain that
∼
�
A/

∼

� AS (F )
S

(
F0

) ⊆
∼
�
A/

∼

� AS (F )
S

(
�(F )

)
= IdA/ ∼� AS (F ). Hence,

∼
�
A/

∼

� AS (F )
S

(
F0

)
=

∼
�
A/

∼

� AS (F )
S

(
�(F )

)
.
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Now, by hypothesis, both F0 and �(F ) are Suszko filters of A/
∼
�AS(F ), because

A/
∼
�AS(F ) ∈ AlgSuS = AlgS. Since by Proposition 3.17 the Suszko opera-

tor is always injective over Suszko filters, it follows that F/
∼
�AS(F ) = F0 =⋂F iS

(
A/

∼
�AS(F )

)
. By Proposition 5.14, this establishes that F is a Suszko filter.

Finally, again by Proposition 6.8 and Definition 2.9, S is truth-equational. �
Now we are able to show that under the assumption of truth-equationality, the
converse to the implications in Corollary 6.4 holds:

Proposition 6.11. Let S be a truth-equational logic. If Alg∗S = AlgS, then S is
protoalgebraic.
Proof. If Alg∗S = AlgS, then by Proposition 6.2 every full g-model of S is of the
form �G�∗, for some G ∈ F iSA and some algebra A. In particular, so are Suszko
classes. Take any F ∈ F iSA, for an arbitrary A. Then, �F �Su = �G�∗, for some
G ∈ F iSA. Hence, F Su = G∗. But, since S is truth-equational by hypothesis, by
Theorem 6.10 every S-filter of A is a Suszko filter, and in general every Suszko
filter is a Leibniz filter, by Lemma 5.11.2. Therefore, F = F Su = G∗ = G . Thus,
�F �Su = �F �∗. Since this has been proved for all F ∈ F iSA and all A, this implies
protoalgebraicity by Proposition 6.6. �
Corollary 6.12. A logic S is weakly algebraizable if and only if it is truth-
equational and Alg∗S = AlgS.
We can now obtain a characterization of truth-equational logics in terms of the
form of their full g-models. Observe how the next condition (ii) is in some sense
symmetrical to condition (ii) of Theorem 6.5.

Theorem 6.13. Let S be a logic. The following conditions are equivalent.
(i) S is truth-equational.
(ii)

〈
A, (F iSA)F

〉
is a full g-model of S, for every F ∈ F iSA and every A.

(iii) �F �Su = (F iSA)F , for every F ∈ F iSA and every A.
Proof. It follows immediately by applying the characterizations of the notion of
Suszko filter in Lemma 5.11 and in Theorem 5.13 to Theorem 6.10. �
Putting Theorems 6.5 and 6.13 together we see that weakly algebraizable logics
can also be characterized by the form of their full g-models:

Corollary 6.14. A logic S is weakly algebraizable if and only if the full g-models
of S are exactly all the g-matrices of the form 〈

A, (F iSA)F
〉
for any algebra A and

any F ∈ F iSA.
By combining several of the previous results we obtain an interesting reformula-
tion.

Proposition 6.15. A logic S is weakly algebraizable if and only if all its full
g-models are Suszko classes and all its filters are Suszko filters.
Proof. If S is weakly algebraizable, then it is protoalgebraic, therefore by
Theorem 6.5 every full g-model of S is of the form (F iSA)F for some F ∈ F iSA.
But S is also truth-equational, so that by Theorem 6.13 (F iSA)F = �F �Su. Thus,
every full g-model of S is a Suszko class. And by Theorem 6.10 every S-filter is a
Suszko filter. Conversely, assume that the two properties hold. By the second one, S
is truth-equational, and by Theorem 6.13 this implies that any Suszko class is of the
form (F iSA)F for some F ∈ F iSA. Thus, by the first property, every full g-model
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of S is of this form, and by Theorem 6.5 this implies that S is protoalgebraic. Thus,
it is weakly algebraizable. �
Theorem 6.13 also allows us to prove one more characterization of truth-
equational logics:

Corollary 6.16. A logic S is truth-equational if and only if F iS
(
A/

∼
�AS(F )

)
=

(F iSA)F / ∼�AS(F ) for every A and every F ∈ F iSA.
Proof. LetA be an algebra andF ∈ F iSA, and consider the canonical projection
� : A→ A/ ∼�AS(F ). By Proposition 3.7 and the definition of Suszko class we know
that

�−1
(F iS

(
A/

∼
�AS(F )

))
= �A

−1(∼
�AS(F )

)
= �F �Su.

Now assume that S is truth-equational. From Theorem 6.13 and surjectivity of �
it follows that F iS

(
A/

∼
�AS(F )

)
= �

(
(F iSA)F

)
= (F iSA)F / ∼�AS(F ). Conversely, if

F iS
(
A/

∼
�AS(F )

)
= �

(
(F iSA)F

)
, then �(�F �Su) = �(

(F iSA)F
)
. Having in mind

that
∼
� S(F ) is compatible with every S-filter in �F �Su, and moreover (F iSA)F ⊆

�F �Su, it follows that �F �Su = (F iSA)F . Thus, S is truth-equational, again by
Theorem 6.13. �
To end this section we consider characterizations in terms of correspondence
theorems formulated for matrix homomorphisms (rather than for algebraic homo-
morphisms, as it has been up to now). The first result, with an almost equivalent
wording, was obtained Blok and Pigozzi in [2, Corollary 7.7]. The present formula-
tion can be found as Theorem 2.7 of [22] and as Theorem 1.1.8 of [5]; our interest
here is just to see how it follows from previous results.

Theorem 6.17 (Correspondence Theorem for protoalgebraic logics). A logic
S is protoalgebraic if and only if every strict surjective matrix homomorphism
h : 〈A, F 〉 → 〈B, G 〉 between S-models induces an order isomorphism between
(F iSA)F and (F iSB)G , whose inverse is given by h−1.
Proof. AssumeS is protoalgebraic. If h : 〈A, F 〉 → 〈B, G〉 is strict and surjective,
then F = h−1(G) and G = h

(
h−1(G)

)
= h(F ), so that F = h−1

(
h(F )

)
. This

means that, viewed as an algebraic homomorphism, h is �A-compatible with F .
Therefore, we can apply Theorem 5.7 to obtain that h induces an order isomorphism
between �F �∗ and �G�∗, with inverse given by h−1. This isomorphism restricts to an
order isomorphism between (F iSA)F and (F iSB)G , because by protoalgebraicity
and Lemma 5.11.4, these up-sets are contained in �F �∗ and �G�∗, respectively,
and F and G correspond to each other under h and h−1. The converse implication
would be proved as in [5], i.e., by showing that the stated condition easily implies
that the Leibniz operator is order preserving. �
A new characterization of truth-equational logics can be given which is similar
in spirit to the preceding one, though with two modifications, one in the class
of homomorphisms it applies to, and the other in the set of filters it involves.
It arises from the following observation. As we already mentioned, Theorem 5.15
implies Corollary 2.7 of [6], which in turn implies that every strict surjective matrix
homomorphism h : 〈A, F 〉 → 〈B, G〉 betweenS-models that is ∼�AS-compatiblewith
F induces an order isomorphism between (F iSA)F and (F iSB)G , whose inverse is
given by h−1. Notice that, when applied to truth-equational logics, one can write
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(F iSB)GSu instead of (F iSB)G in this property, because for these logics GSu = G
when G ∈ F iSB. Interestingly, it turns out that, reformulated in this way, the
property does indeed characterize truth-equational logics.

Theorem 6.18 (Correspondence Theorem for truth-equational logics). A logic
S is truth-equational if and only if every strict surjective matrix homomorphism
h : 〈A, F 〉 → 〈B, G〉 between S-models that is ∼

�AS-compatible with F induces
an order isomorphism between (F iSA)F and (F iSA)GSu , whose inverse is given
by h−1.
Proof. If S is truth-equational, the desired conclusion follows by the discus-
sion above. For the converse, we assume the stated property, and prove that every
S-filter is a Suszko filter, which by Theorem 6.10 shows that S is truth-equational.
Let F ∈ F iSA and put B := A/ ∼�AS(F ). Then, the canonical projection � : A→ B
is a strict and surjective matrix homomorphism between the S-models 〈A, F 〉
and 〈B, F/∼�AS(F )〉, and it is clearly

∼
�AS-compatible with F . Therefore, by the

assumption, � induces an order isomorphism between (F iSA)F and (F iSB)�(F )Su ,
with inverse given by �−1. But the Suszko operator is a coherent family of
S-compatible operators, therefore by Lemma 4.9, ∼�BS

(
�(F )

)
= �

(∼
�AS(F )

)
= IdB .

This implies that ��(F )�Su = F iSB and hence that �(F )Su =
⋂F iSB and

(F iSB)�(F )Su = F iSB. But on the other hand we can apply the General Corre-
spondence Theorem 5.15 to �, and we find that it induces an order isomorphism
between �F �Su and ��(F )�Su = F iSB, with inverse given by �−1 as well. Thus,
necessarily �F �Su = (F iSA)F , which tells us that F is a Suszko filter. �
Finally, by just extending the scope of the order isomorphism in the last result
to all strict and surjective matrix homomorphisms, we reach weakly algebraizable
logics.

Theorem 6.19. A logic S is weakly algebraizable if and only if every strict surjec-
tive matrix homomorphism h : 〈A, F 〉 → 〈B, G〉 between S-models induces an order
isomorphism between (F iSA)F and (F iSA)GSu , whose inverse is given by h−1.
Proof. If S is weakly algebraizable, in particular it is protoalgebraic and by
Theorem 6.17 we obtain the order isomorphism between (F iSA)F and (F iSA)G ;
but since S is also truth-equational, every S-filter is a Suszko filter and hence
GSu = G , which produces the desired result. Conversely, assume the stated property,
and remark that in particular it holds for all h that are

∼
�AS-compatible with F .

Therefore, by Theorem 6.18, S is truth-equational. But then all S-filters will be
Suszko, so that GSu = G , and the assumed condition establishes, for all the h
described, an order isomorphism between (F iSA)F and (F iSA)G . Thus we can
apply Theorem 6.17 and conclude that S is protoalgebraic as well. That is, S is
weakly algebraizable. �

6.2. Characterizations in terms of the Leibniz operator. One of the well-known
general properties of the Leibniz operator is that for every A its range is
ConAlg∗SA. Moreover, by Proposition 3.17, we know that it is also always
order reflecting, and hence injective, on the set of Leibniz filters of A, that
is, on F i∗S A. If we assume protoalgebraicity, then �A is order preserving on
F iSA, hence in particular on F i∗SA, and we find the result of [17, Theorem 3]:
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Proposition 6.20. If S is protoalgebraic, then for every A, �A : F i∗SA →
ConAlg∗SA is an order isomorphism.
The converse of this result does not hold. A counterexample is the Łukasiewicz
logic that preserves degrees of truth studied in [4, 16]; the details of why this is the
case will be presented elsewhere. On the other hand, we know that the property
need not hold for arbitrary logics, because the Leibniz operator need not be order
preserving even on the Leibniz filters, as the next example shows.

Example 6.21. Consider Dunn–Belnap’s four-valued logic B over the signature
L = 〈∧,∨,¬,�〉 [11]; note that we are adding the constant � to the signature
(which will be a theorem), whereas this logic is usually presented without it. Con-
sider the 6-element De Morgan lattice M6, with universe M6 = {0, a, b, c, d, 1},
sometimes called “the crystal lattice”, and whose structure is described in Figure 2.
By direct inspection of the table it is clear that the Leibniz B-filters ofM 6 are {1},
{1, c}, andM6. Now, �M 6 ({1}) = �1 and �M6 ({1, c}) = �2, but �1 and �2 are not
comparable. Thus, the Leibniz operator is not order preserving on the Leibniz filters
of this algebra. Moreover, it is easy to see that the Suszko filters are here {1} and
M6. Thus, this example also shows that not every Leibniz filter is a Suszko filter;
the converse implication does indeed hold, as seen in Lemma 5.11.

Now we consider whether it is possible to obtain some version of Proposi-
tion 6.20 with Suszko filters rather than with Leibniz filters. We start by relating
two conditions already seen to hold in protoalgebraic logics:

Lemma 6.22. If �A : F i∗S A → ConAlg∗SA is an order isomorphism, for every
A ∈ AlgS, then AlgS = Alg∗S.
Proof. Let A ∈ AlgS. Consider the S-filter F0 :=

⋂F iSA ∈ F iSA. It is clearly
the smallest Leibniz filter. Since we are assuming that �A is order preserving on
Leibniz filters, it follows that �A(F0) ⊆ �A(F ) for every F ∈ F i∗SA. So, �F �∗
⊆ �F0�

∗, for every F ∈ F i∗SA. Now, let G ∈ F iSA be arbitrary. Since �A(G) ∈
ConAlg∗SA, it follows by the assumption (surjectivity) that there exists some

¬0 = 1 • = �M6

¬d = c •

��
��
��
��
�

��
��

��
��

�

¬a = a •

��
��

��
��

� • b = ¬b

��
��
��
��
�

¬c = d •

¬1 = 0 •

F ∈ F iB(M 6) � = �
M6 (F ) blocks of �

M6 M6 ×M6 M6
{1}

�1
{1} {0}

{1, a, b, c, d} {a, b, c, d}
{1, c}

�2

{1, c}
{1, c, a} {a} {b}
{1, c, b} {d, 0}

Figure 2. The algebraM6, its B-filters, and their Leibniz congruences.
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F ∈ F i∗S A such that �A(G) = �A(F ); so, G ∈ �G�∗ = �F �∗ ⊆ �F0�
∗. Thus,

�F0�
∗ = F iSA. It follows by Proposition 6.1 thatA/ ∼�A(F iSA) ∈ Alg∗S. But since

A ∈ AlgS, ∼�A(F iSA) = IdA and A ∼= A/ ∼�A(F iSA). Therefore, A ∈ Alg∗S. This
shows that AlgS ⊆ Alg∗S. The converse inclusion always holds. �
It is not hard to show that if the condition in the lemma (that �A : F i∗S A →
ConAlg∗SA is an order isomorphism) holds for every for every A ∈ AlgS, as stated
there, then it holds for every algebra A. We leave the details to the interested reader.
The proof of Lemma 6.22 works, mutatis mutandis, for Suszko filters, since⋂F iSA ∈ F iSuS A, for every A. Therefore:
Lemma 6.23. If �A : F iSuS A → ConAlg∗SA is an order isomorphism, for every
A ∈ AlgS, then AlgS = Alg∗S.
With this lemma at hand, we are now able to prove the refinement of
Proposition 6.20 we are looking for.

Theorem 6.24. A logic S is protoalgebraic if and only if the Leibniz operator
restricted to the Suszko filters �A : F iSuS A → ConAlg∗SA is an order isomorphism,
for every A.

Proof. The direct implication is just a rephrasing of Proposition 6.20, because
under protoalgebraicity the Leibniz filters and the Suszko filters coincide. Now
assume the stated condition. We will prove separately that

∼
�AS(F ) = �

A(F Su) and
that �A(F ) = �A(F Su), for every F ∈ F iSA; this will imply that the Leibniz
and the Suszko operators coincide, which is equivalent to protoalgebraicity by
Proposition 6.3. So, let F ∈ F iSA. To prove the first equality note that since
∼
�AS(F ) ∈ ConAlgSA, it follows by Lemma 6.23 and the surjectivity of�A that there
exists G ∈ F iSuS A such that

∼
�AS(F ) = �

A(G). This implies that �F �Su = �G�∗,
and hence that F Su = G∗ = G , because every Suszko filter is a Leibniz filter. Thus,
∼
�AS(F ) = �

A(F Su).As to the second equality, since�A(F ) ∈ ConAlg∗SA, it follows
from the assumption that there exists H ∈ F iSuS A such that �A(F ) = �A(H ).
Then, �F �∗ = �H �∗, and hence F ∗ = H∗ = H , again because every Suszko
filter is a Leibniz filter. Thus, �A(F ) = �A(F ∗). Moreover, F ∗ = H is a Suszko
filter. That is, (F ∗)Su = F ∗. Now, since F ∗ ⊆ F , it holds �F �Su ⊆ �F ∗�Su, and
therefore (F ∗)Su ⊆ F Su. So, F ∗ ⊆ F Su. The converse inclusion always holds, by
Lemma 5.11.1. Thus, F ∗ = F Su, which implies that�A(F ) = �A(F Su). �
The preceding result is a weakened extension to protoalgebraic logics of several
characterizations in the same spirit existing in the literature for more restricted
classes of logics; see [7, Theorem 4.8] and [23]. From it, taking Definition 2.9 into
account, we readily obtain one such characterization for equivalential logics.

Corollary 6.25. A logic S is equivalential if and only if the Leibniz operator
commutes with inverse images by homomorphisms and for every A, the operator �A

restricts to an order isomorphism between F iSuS A and ConAlg∗SA.
Theorem 6.24 provides an alternative proof of the known fact, which is somehow
implicit in the way we chose to define the classes in the Leibniz hierarchy, that a
logic S is weakly-algebraizable if and only if for every A , �A is an order isomor-
phism between F iSA and ConAlg∗SA [7, Theorem 4.8]. Indeed, by Definition 2.9,
S is weakly algebraizable if and only if it is protoalgebraic and truth-equational.
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By Theorem 6.10, this second condition is equivalent to everyS-filter being a Suszko
filter, and this turns the characterization of Theorem 6.24 into the mentioned one.
The converse is less interesting, as the condition directly implies that for every
A , �A is both order preserving and completely order reflecting on the set of all
filters (because it is an order isomorphism between two posets which are actually
complete lattices, with intersection as meet), and this means that S is both protoal-
gebraic and truth-equational, that is, weakly algebraizable. If we add the condition
that the Leibniz operator commutes with inverse images by homomorphisms, then
by Corollary 6.25, we obtain the known characterization [21, Corollary 3.14] that
a logic S is algebraizable if and only if the Leibniz operator commutes with inverse
images by homomorphisms and for every A , �A is an order isomorphism between
F iSA and ConAlg∗SA.
6.3. Characterizations in terms of the Suszko operator. Let us start with the
characterization of truth-equationally in terms of the Suszko operator formulated
in [25, Theorem 28]; from it other characterizations will followwithout effort within
the framework we have settled.

Theorem 6.26. Let S be a logic. The following conditions are equivalent.
(i) S is truth-equational.
(ii) The Suszko operator is globally injective, that is,

∼
�AS is injective on F iSA for

every A.
(iii)

∼
�AS is injective on F iSA, for every A ∈ AlgS.

Proof. (i)⇒(ii): Observe that by Proposition 3.17 the Suszko operator is always
injective on Suszko filters. If S is truth-equational, then by Theorem 6.10 every
S-filter is a Suszko filter, so the Suszko operator is globally injective.
(ii)⇒(iii): Obvious.
(iii)⇒(i): Let A be an arbitrary algebra and F ∈ F iSA. Consider F0 :=⋂F iS

(
A/

∼
�AS(F )

)
. Notice that A/

∼
�AS(F ) ∈ AlgSuS = AlgS. Moreover, by

Lemma 2.4.3, F/
∼
�AS(F ) ∈ F iS

(
A/

∼
�AS(F )

)
. So F0 ⊆ F/

∼
�AS(F ), and since

the Suszko operator is order preserving, and using Lemma 4.22, we obtain that
∼
�
A/

∼

� AS (F )
S (F0) ⊆ ∼

�
A/

∼

� AS (F )
S

(
F/

∼
�AS(F )

)
= IdA/ ∼� AS (F ). It follows by hypothesis

that F/
∼
�AS(F ) = F0 =

⋂F iS
(
A/

∼
�AS(F )

)
. By Proposition 5.14, this establishes

that F is a Suszko filter. We have shown that every S-filter is a Suszko filter, which
implies that S is truth-equational, again by Theorem 6.10. �
Next, let us apply Proposition 3.17 to the Suszko operator:

Proposition 6.27. The Suszko operator restricted to Suszko filters
∼
�AS : F iSuS A→

ConAlgSA is an order embedding.
Proof. By its own definition, the Suszko operator

∼
�AS is order preserving on

F iSA, hence so is its restriction to F iSuS A. Moreover, by Proposition 3.17, the
Suszko operator

∼
�AS is order reflecting on F iSuS A. Finally,

∼
�AS is into Alg

SuS and
AlgSuS = AlgS, by Lemma 2.8. �
So, it is natural to ask under what assumptions is the operator

∼
�AS : F iSuS A →

ConAlgSA also surjective. It turns out that demanding surjectivity is equivalent to
protoalgebraicity, as the next result shows. Moreover, the equivalence is related to
yet another fundamental characterization of protoalgebraic logics as those where
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the Suszko operator (viewed as a family of S-operators) satisfies a property typical
of the Leibniz operator, namely commutativity with inverse images by surjective
homomorphisms.

Theorem 6.28. Let S be a logic. The following conditions are equivalent.
(i) S is protoalgebraic.
(ii) The Suszko operator commutes with inverse images by surjective homomor-
phisms.

(iii) The Suszko operator restricted to Suszko filters
∼
�AS : F iSuS A→ ConAlgSA is

surjective, for every A.
Proof. (i)⇔(ii): By Proposition 6.3, if S is protoalgebraic, then the Suszko
and the Leibniz operators coincide, and by Proposition 2.5.1 the Leibniz operator
always commutes with inverse images by surjective homomorphisms. Conversely,
by Theorem 4.6, the assumption implies that the Suszko operator coincides with the
Leibniz operator, which by Proposition 6.3 again implies that S is protoalgebraic.
(i)⇒(iii): By Proposition 6.3 and Corollary 6.4, if S is protoalgebraic, then
�A =

∼
�AS and AlgS = Alg∗S. Therefore ConAlgSA = ConAlg∗SA, and then

Theorem 6.24 in particular establishes (iii).
(iii)⇒(i): We prove that for every A, every full g-model on A is of the form
(F iSA)F for some F ∈ F iSA. This last condition implies protoalgebraicity,
by Theorem 6.5. So, let C be a full g-model of S on some A. Then, ∼

�A(C ) ∈
ConAlgSA. It follows by hypothesis that there exists a Suszko filter F ∈ F iSuS A such
that

∼
�A(C ) =

∼
�AS(F ) =

∼
�A

(
(F iSA)F

)
. But since F is a Suszko filter, by Theorem

5.13 (F iSA)F is full, and then the Isomorphism Theorem (Corollary 3.12) implies
that C = (F iSA)F , as wished. �
We then obtain a first set of characterizations of the main classes of the Leibniz
hierarchy by properties of the Suszko operator, which are set-theoretic rather than
order-theoretic.

Theorem 6.29. Let S be a logic.
1. S is protoalgebraic if and only if the Suszko operator commutes with inverse
images by surjective homomorphisms.

2. S is equivalential if and only if the Suszko operator commutes with inverse images
by homomorphisms.

3. S is truth-equational if and only if the Suszko operator is globally injective.
4. S is weakly algebraizable if and only if the Suszko operator is globally injective
and commutes with inverse images by surjective homomorphisms.

5. S is algebraizable if and only if the Suszko operator is globally injective and
commutes with inverse images by homomorphisms.

Proof. 1. This is the equivalence between the first two conditions of Theo-
rem 6.28.
2. Suppose S is equivalential. Then, by Definition 2.9, S is protoalgebraic and
the Leibniz operator commutes with inverse images by homomorphisms. But
protoalgebraicity implies the coincidence of the Suszko and Leibniz operators.
Thus the Suszko operator commutes with inverse images by homomorphisms.
Conversely, suppose that the Suszko operator commutes with inverse images by
homomorphisms. In particular, it does commute with inverse images by surjective
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homomorphisms. ByTheorem4.6, this implies that it is theLeibniz operator.Hence,
the Leibniz operator commutes with inverse images by homomorphisms. Thus S is
equivalential.
3 is Theorem 6.26, and 4 and 5 follow from the previous points, given the
definitions of the classes of weakly algebraizable and of algebraizable logics. �
It is interesting to notice that characterizations analogous to those in points 2 and
5 hold for the Leibniz operator if we require that it is order preserving, a property
that the Suszko operator has for free; see Theorems 3.13.2 and 3.13.5 of [20]. The
final set of characterizations involves the order-theoretic behaviour of the Suszko
operator either with respect to the Suszko filters or with respect to arbitrary filters:

Theorem 6.30. Let S be a logic.
1. S is protoalgebraic if and only if for each A , ∼

�AS restricts to an order
isomorphism between F iSuS A and ConAlgSA.

2. S is truth-equational if and only if for each A , ∼
�AS is an order embedding of

F iSA into ConAlgSA.
3. S is weakly algebraizable if and only if for each A , ∼

�AS is an order isomorphism
between F iSA and ConAlgSA.

4. S is algebraizable if and only if theSuszko operator commuteswith inverse images
by homomorphisms and for each A ,

∼
�AS is an order isomorphism betweenF iSA

and ConAlgSA.
Proof. 1. Suppose S is protoalgebraic. Then, by Proposition 6.27 and Theorem
6.28 we get the desired result. Conversely, suppose that

∼
�AS is an order isomorphism

between F iSuS A and ConAlgSA. In particular it is surjective over the Suszko filters.
Then, again by Theorem 6.28, S is protoalgebraic.
2. Observe that by Proposition 6.27 the Suszko operator

∼
�AS is always an

order embedding of F iSuS A into ConAlgSA. But truth-equationality implies that
F iSA = F iSuS A, by Proposition 6.9, so that

∼
�AS is actually an order embedding

of F iSA into ConAlgSA. Conversely, that ∼
�AS is an order isomorphism means in

particular that it is injective, for every A, and by Theorem 6.26 this implies that S is
truth-equational.
3. Suppose S is weakly algebraizable. By Theorems 6.10 and 6.24, �A is an iso-
morphism between F iSA and ConAlg∗SA, for every A. But S is also protoalgebraic,
therefore the Suszko operator and theLeibniz operator coincide, andAlg∗S = AlgS,
and we obtain the desired isomorphism. Conversely, suppose that the Suszko opera-
tor

∼
�AS is an isomorphism between F iSA and ConAlgSA, for every A. In particular,

it is injective on S-filters, and it follows from Theorem 6.26 that S is truth-
equational. Moreover, every S-filter is a Suszko filter, by Proposition 6.9, so that
the Suszko operator

∼
�AS is actually surjective over the Suszko filters. It follows from

Theorem 6.28 that S is protoalgebraic. In sum, S is weakly algebraizable.
4 follows from point 3 and Theorem 6.29.2. �
It is not known whether some of the characterizations in the previous results can
be limited to consider the Suszko operator on the formula algebra and restrict the
commutativity to substitutions, as happens with similar characterizations regard-
ing the Leibniz operator. However, we tend to be pessimistic in our case, because
the Suszko operator has been seen to behave in a different way; for instance,
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Raftery [25, Example 1] shows that its injectivity on theories does not imply it
is injective on filters of arbitrary algebras.
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Special issue in honor of Ryszard Wójcicki on the occasion of his 80th birthday.
[20] Font, J. M., Jansana, R., and Pigozzi, D., A survey of abstract algebraic logic. Studia Logica,

vol. 74 (2003), pp. 13–97. With an update in vol. 91 (2009), pp. 125–130. Special issue on Abstract
Algebraic Logic, Part II.

https://doi.org/10.1017/jsl.2015.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.39


462 HUGO ALBUQUERQUE, JOSEP MARIA FONT, AND RAMON JANSANA

[21] ,On the closure properties of the class of full g-models of a deductive system. Studia Logica,
vol. 83 (2006), pp. 215–278. Special issue in memory of Willem Blok.
[22] Herrmann, B., Equivalential Logics and Definability of Truth, Ph. D. Dissertation, Freie

Universität Berlin, 1993, p. 61.
[23] , Characterizing equivalential and algebraizable logics by the Leibniz operator. Studia

Logica, vol. 58 (1997), pp. 305–323.
[24] Jansana, R., Full models for positive modal logic.Mathematical Logic Quarterly, vol. 48 (2002),

pp. 427–445.
[25] Raftery, J., The equational definability of truth predicates. Reports on Mathematical Logic,

vol. 41 (2006), pp. 95–149. Special issue in memory of Willem Blok.
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