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Innate Immunity and brain inflammation:
the key role of complement

Karen Francis, Johan van Beek, Cecile Canova, Jim W. Neal and
Philippe Gasque

The complement inflammatory cascade is an essential component of the
phylogenetically ancient innate immune response and is crucial to our natural
ability to ward off infection. Complementis involved in host defence by triggering
the generation of a membranolytic complex (the C5b-9 complex) at the surface
of the pathogen. Complement fragments (opsonins; C1qg, C3b and iC3b) interact
with complement cell-surface receptors (C1gRp, CR1, CR3 and CR4) to promote
phagocytosis and alocal pro-inflammatory response that, ultimately, contributes
to the protection and healing of the host. Complement is of special importance
in the brain, where entrance of elements of the adaptive immune system is
restricted by a blood—brain barrier. There is now compelling evidence
that complement is produced locally in response to an infectious
challenge. Moreover, complement biosynthesis and activation also occurs in
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neurodegenerative disorders such as Alzheimer’s, Huntington’s and Pick’s
diseases, and the cytolytic/cytotoxic activities of complement are thought to
contribute to neuronal loss and brain tissue damage. However, recent data
suggest that at least some of the complement components have the ability to
contribute to neuroprotective pathways. The emerging paradigm is that
complementis involved in the clearance of toxic cell debris (e.g. amyloid fibrils)
and apoptotic cells, as well as in promoting tissue repair through the anti-
inflammatory activities of C3a. Knowledge of the unique molecular and cellular
innate immunological interactions that occur in the development and resolution
of pathology in the brain should facilitate the design of effective therapeutic

strategies.

In tissues other than the central nervous system
(CNS), immune responses involving both the
innate (nonspecific phagocytosis) and adaptive
(antibody-mediated) immune systems have
pivotal roles in the efficient clearance of pathogens
(Ref. 1). However, the brain is “immunoprivileged’
in that it is relatively isolated from peripheral
immunosurveillance by neutrophils/monocytes
and lymphocytes (Ref. 2) (Fig. 1). The limitation
of an adaptive immune response in the CNS
has been attributed to the intricate nature of
susceptible neuronal networks and is thought to
derive from an evolutionary adaptation (Ref. 3).
The most prominent element preventing the
infiltration of intruders (immune cells or pathogens)
in the CNS is the blood-brain barrier (BBB). In
addition, there is an immunological barrier,
manifested by: (1) the reduced expression of
adhesion molecules, major histocompatibility
complex (MHC) HLA molecules and costimulatory
molecules; and (2) an immunosuppressive
microenvironment mediated by astrocytes and
microglia, which suppress infiltration of
peripheral immunocompetent lymphocytes.
For instance, there is compelling evidence that
astrocytes and microglia can express abundant
levels of tumour necrosis factor (TNF)-related
death ligands that mediate apoptosis of
infiltrating cells (T cells and neutrophils)
(reviewed in Ref. 4). Overall, these observations
have lead to the conclusion that all forms of CNS
inflammation would potentially do more harm
than good and, hence, control of immune
activation is required to prevent extensive
damage.

Despite the general effectiveness of the BBB,
pathogens infiltrate the CNS on rare occasions.

When this happens, it is generally accepted that
two principle defensive strategies developed by
the resident cells come into play. Stimulated glial
cells produce several soluble cytotoxic and
cytolytic innate immune molecules, such as
complement (C) proteins and perforin, which
have a destructive effect on invading pathogens.
In addition, specialised professional and amateur
phagocytes engulf (phagocytose) and kill the
intruders. The cells that shoulder the main
burden of CNS-specific phagocytic defence
are the microglia (Ref. 5) (Fig. 2). These cells
are thought to derive from the monocyte/
macrophage population that have infiltrated the
CNS during embryogenesis; they express only
low levels of MHC molecules, which makes
them inefficient stimulators of T cells, thereby
suppressing any immune response. Moreover,
there is mounting evidence that astrocytes,
oligodendrocytes, endothelial cells and perhaps
a subset of neurons also have nonprofessional
phagocytic properties (Ref. 6).

This review will examine the role of the local
innate immune response in host defence and
inflammation associated with neurodegenerative
diseases such as Alzheimer’s disease (AD) and
Huntington’s disease (HD). Given the multiple
functions of many innate immune molecules, it is
important to pinpoint the roles of the local innate
immune response in specific pathophysiological
situations and to highlight the ‘double-edged
sword’ that it creates, in that sustained expression
of innate immune proteins can either promote or
counteract neurodegenerative processes. Finally,
the concept of directing and instructing the brain
immune response for therapeutic purposes will
be discussed.
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Figure 1. The blood-brain barrier (BBB). The BBB is created by the tight apposition of endothelial cells
lining blood vessels in the brain, forming a barrier between the circulation and the brain parenchyma ( astrocytes,
microglia). Blood-borne immune cells such as lymphocytes, monocytes and neutrophils cannot penetrate this
barrier. Athin basement membrane, comprising lamin, fibronectin and other proteins, surrounds the endothelial
cells and associated pericytes, and provides mechanical support and a barrier function. Thus, the BBB is
crucial for preventing infiltration of pathogens and restricting antibody-mediated immune responses in the
central nervous system, as well as for preventing disorganisation of the fragile neural network. This, together
with a generally muted immune environment within the brain itself, protects the fragile neuronal network from
the risk of damage that could ensue from a full-blown immune response. On rare occasions, pathogens (e.g.
viruses, fungi and prions) and autoreactive T cells breach the endothelial barrier and enter the brain. A local
innate immune response is mounted in order to limit the infectious challenge, and pathogens are destroyed
and cell debris is removed, a vital process that must precede tissue repair (fig001pgc).

The innate immune response in the CNS  have proposed that soluble and membrane
Recognition of PAMPs defence molecules of the innate immune system
Extrapolating from the concept originally expressed by activated glial cells in the CNS are
presented by Medzhitov and Janeway (Ref. 7), we  able to recognise pathogen-associated molecular
______________________________________________________________________________________________________|
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Figure 2. Cells involved in the innate immune response in the brain. Most phagocytosis occurring within
the central nervous system is undertaken by microglia (a; insert shows migroglia stained for HLA-DR in a
section of inflamed human brain). However, other cell types such as astrocytes (b), oligodendrocytes, endothelia
and even neurons may act as nonprofessional phagocytes. For details of the staining procedure used, see

Refs 54 and 101. Magnification = x200 (fig002pgc).

patterns (PAMPs) (Ref. 4). PAMPs are conserved
microbe structures shared by large groups of
pathogens that, upon interaction with elements
of the host innate immune system, trigger the
initiation of host protective responses, resulting
in the clearance of the pathogen by phagocytic
cells (Ref. 7).

The innate immune system is also involved in
the clearance of foreign, potentially dangerous
and toxic entities such as apoptotic cells (Ref. 8).
By analogy to PAMPs, we and others have
proposed that CNS-derived innate immune
molecules recognise apoptotic-cell-associated
molecular patterns (ACAMPs) expressed de novo
by cells undergoing programmed cell death
(Refs 4, 9). It is suggested that glial cells,
endothelial cells and neurons recognise
PAMPs and ACAMPs through specific pattern-
recognition receptors (PRRs; e.g. phagocytic
receptors such as CD14 and macrophage
mannose receptor), which lead to clearance
of the different target cells (Refs 8, 9). Another
group of molecules that recognise PAMPs
and ACAMPs has been collectively named the
‘defence collagens’ (Ref. 10). Usually, the globular
C-terminal domain of these proteins recognises

relatively broad categories of molecules and
the collagen-like N-terminal domain links
the invading organism to powerful effectors of
the immune system (i.e. PRRs) expressed by
macrophages. Soluble members of the defence
collagens include Clq (the recognition C
component of the classical pathway) and the
collectins mannan-binding lectin (MBL) and
pulmonary surfactant protein A (SPA) (Ref. 10).
However, although there is a strong body of
evidence that Clq is expressed in the CNS
(Ref. 4), particularly in disease conditions, the
expression of MBL and SPA by brain cells has not
been reported.

Routes of C activation: pathogens,
apoptotic cells and toxic cell debris

The C system consists of some 30 fluid-phase and
cell-membrane proteins and is important in
innate immunity to recognise and kill pathogens
such as bacteria, virus-infected cells and parasites
yet preserving normal ‘self’ cells (reviewed in
Ref. 11). Recent studies have indicated a
marked conservation of the C system between
invertebrates and mammals, which points to a
common ancestry of this system in host
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defence and raises the paradigm of a critical
role of C in tissue homeostasis (Refs 12, 13, 14).
Ininvertebrates (e.g. insects), the C system is very
simple, comprising only a small number of
components that, surprisingly, are not produced
in the fat body (the functional equivalent of
the mammalian liver) but are expressed instead
by phagocytes (Refs 15, 16). In mammals,
hepatocytes in the liver are the major source of
most C proteins, with the exception of Clq, factor
D (fD) and C7 (Ref. 17). Many cell types including
monocytes, fibroblasts, epithelial cells and
endothelial cells can also synthesise most of the
C components (Ref. 17).

C can be activated by three distinct routes: the
classical, alternative and lectin pathways (Fig. 3).
The classical pathway (involving Clq, Clr, Cls,
C4, C2 and C3 components) is activated primarily
by the interaction of C1q with immune complexes
(i.e. antibody—antigen). However, activation can
also be achieved after interaction of Clq with
nonimmune molecules such as polyanions
[bacterial lipopolysaccharides (LPS), DNA and
RNA], certain small polysaccharides, viral
membranes, C-reactive protein (CRP), serum
amyloid P (SAP) and, more importantly, some
bacterial, fungal and viral membranes (reviewed
in Ref. 18). Initiation of the alternative pathway
[involving C3, factor B (fB), fD and properdin]
does not depend upon the presence of immune
complexes and leads to the deposition of C3
fragments on the target cells (Ref. 18). The lectin
pathway shares several molecules with the
classical pathway and is activated by binding of
MBL to carbohydrates expressed on pathogens
but not generally found on ‘self’ cells. Two serine
proteases, the MBL-associated serine proteinases
(MASP-1 and MASP-2) are activated upon
binding of MBL and subsequently cleave C4 and
C2 (Ref. 4).

Recently, several lines of evidence have
suggested that C1q has an important role in the
clearance of apoptotic cells. Three independent
studies have shown that C1q can bind directly and
specifically to surface blebs of ultraviolet light-
induced apoptotic cells (keratinocytes and T cells),
leading to the activation of the classical pathway
(Refs 19, 20, 21). Moreover, it has been reported
by Botto and colleagues that C1g-knockout mice
show a profound impairment in the clearance of
apoptotic cells, which then accumulate in the
kidney and lead to glomerulonephritis with
immune deposits (Ref. 22). C1q-deficient mice that

also lack C2 and fB develop glomerulonephritis
without glomerular C3 deposition (Ref. 23).
However, Clqg-sufficient mice lacking C2 and {B
do not develop either glomerulonephritis or
autoantibodies. These observations support the
hypothesis that C1q serves as an opsonin in the
efficient recognition and physiological clearance
of apoptotic cells. Interestingly, C1qg mRNA is not
detectable in the liver and the lung but is
expressed in spleen, thymus and heart, as well as
by tissue macrophages (Ref. 24). In the brain,
microglia and astrocytes express Clq, albeit at a
lower level (Refs 25, 26, 27). Clq can also bind
spontaneously to apoptotic neurons, amyloid-3
protein (BA4), myelin basic protein (MBP) and
myelin oligodendrocyte glycoprotein (MOG)
(reviewed in Ref. 4). This suggests that C1q may
be involved in the clearance of cell debris and toxic
components from the CNS.

Role of C receptors in phagocytosis and
signalling events

Coating of the target cell with C opsonins (i.e.
opsonisation with Clq, C3 and C4 fragments:
C3b, iC3b) results in specific recognition and
phagocytosis by macrophages bearing C receptors
(C1gRp, CR1, CR3, CR4; see Table 1) (Refs 28, 29,
30, 31, 32, 33, 34, 35, 36).

In recent years, it has emerged that a cell-
surface molecule, designated the Clq receptor
(C1qRp), functions as a defence collagen receptor
for C1g, MBL and SPA. Indeed, monocytes that
have adhered to surfaces coated with C1q (or MBL
or SPA) display a 4-10-fold enhancement of
ingestion of targets opsonised with IgG or C
(Ref. 37). Monoclonal antibodies selected for their
ability to inhibit this C1q-mediated enhancement
of phagocytosis were used to clone the C1qRp
cell-surface transmembrane glycoprotein
(Ref. 38). C1qRp has been shown to be the analog
of the rodent foetal stem cell marker AA4, which
is involved in cell-cell interactions during
haematopoietic and vascular development (Refs
39, 40, 41, 42). AA4 is abundantly expressed by
endothelial cells and microglia, and recent studies
in humans further support the concept that
ClqRp/AA4 is involved in cell signalling to
promote phagocytosis and adhesion (Ref. 43).
Interestingly, C1qRp is the antigen recognised
by a pro-adhesive monoclonal antibody,
mNI-11, and several antibodies against CD93
(Ref. 44). Understanding of the cellular and
molecular properties of this receptor is still in
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Figure 3. Activation and regulation of the complement system. Complement is a highly conserved innate
immune cascade of 30 or so proteins that interact to recognise and kill pathogens. Activation is triggered by
one of three pathways — classical, alternative and lectin — depending on the nature of the foreign molecule and
therefore the activating surface. The classical pathway is activated primarily by the interaction of C1q with
immune complexes of antibody with antigen, but can also be achieved after interaction of C1q with nonimmune
molecules. The alternative pathway does not depend upon the presence of immune complexes and leads to
the deposition of C3 fragments on the target cells. The lectin pathway shares several molecules with the
classical pathway and is activated by binding of MBL to carbohydrates expressed on pathogens but not generally
found on ‘self’ cells. The end result of all three pathways is either the opsonisation or the destruction (through
formation of the lytic molecule C5b-9) of nonself cells and target organisms. The system is regulated by proteins
such as C1-INH, C4bp, fl, fH, DAF, CR1, MCP, CD59, S protein and clusterin, which help to protect the host
from immune attack. Some of these inhibitors are soluble (in bold, italics) and some are membrane associated
(in bold, boxed). Abbreviations: C, complement component; C1-INH, C1 inhibitor; C4bp, C4b-binding protein;
DAF, decay accelerating factor; f, factor; MASP, MBL-associated serine proteinase; MBL, mannan-binding
lectin; MCP, membrane cofactor protein (fig003pgc).

its infancy and certainly warrants further
investigation.

When activated on a cell surface, C3 becomes
covalently bound (opsonised) as C3b, which is
subsequently cleaved to yield a very stable
fragment, iC3b. There is well-documented
evidence that CR3 (CD11b/CD18) and CR4
(CD11¢/CD18; also known as p150,95) are
involved in the phagocytosis of targets opsonised
with C3b and iC3b fragments (reviewed in Refs

33, 35). Perhaps more importantly, the binding of
phagocytes by way of CR3 recognition, either of
natural microbial surface components, such as -
glucan, LPS, lipophosphoglycan and other as-yet-
undefined structures, or by way of iC3b, is the
crucial event leading to the elimination of
pathogens, toxic debris and apoptotic cells. ACR3-
like molecule has recently been described in
invertebrates, and CR3 is now considered a key
receptor in innate immunity and legitimately joins
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Table 1. Role of opsonins, anaphylatoxins and C5b-9 in the brain? (tab001pgc)

Ligand®

Opsonins
Ciqg

iC3b

C1g, C3b, C4b

Anaphylatoxins
Cba

C3a

Lytic complex
C5b-9

Receptor or
binding molecules

Uncharacterised ‘C1q receptor’
Amyloid fibrils

CRP, SAP, myelin

C1gRp (renamed CD93)

CR3 (CD11b/CD18)

CR4 (CD11¢/CD18)
CR1 (CD35)

C5aR (CD88)
(coupled to Gp)

C3aR
(coupled to Gp)

Lytic
Sublytic (low level of C5b-9)

Target Established and
proposed roles¢

Neurons Activation of CP

Plaques Activation of CP

Plaques Activation of CP

Microglia Clearance of amyloid fibrils,
C1g-opsonised cells and
apoptotic cells?

Endothelium  Cell adhesion, PECAM-like?

Microglia Phagocytosis of C3-opsonised
target
Role in adhesion/phagocytosis?

Astrocytes Phagocytosis of C1g/C3-
opsonised target?

Microglia Chemotaxis, 1 cytokines and
chemokines?

Astrocytes Chemotaxis, 1 cytokines and
chemokines?

Neurons Apoptosis

Microglia " or ¥ cytokines/chemokines?
M growth factors (NGF and
neurotrophins)

Astrocytes A or ¥ cytokines/chemokines?
N growth factors?

Neurons Apoptosis?

Neurons Cytotoxicity, cytolysis

Neurons M C inhibitors?

Glial cells M C inhibitors?

N release AA, LTB,

N mitotic signalling

N cytokines/chemokine
adhesion molecules?

2 Table adapted with permission from Elsevier © 2000 (Ref. 4), which provides further references.

b C ligands: activation of the C cascade leads to the opsonisation (coating) of the target by C opsonins (C1q,
C3b, iC3b and C4b), which are then recognised by professional (microglia) or amateur (astrocyte)
phagocytes bearing CRs. C anaphylatoxins (C3a and C5a) are soluble polypeptides cleaved from the parent
C molecules (i.e. C3 and C5, respectively) to attract by chemotaxis cells expressing anaphylatoxin
receptors. Finally, although high levels of C5b-9 will cause lysis of the target cells, there is emerging
evidence that sublytic doses of C5b-9 can induce signalling.
¢ AN, indicates increased production; ¥, indicates decreased production; ?, indicates the effect has been
described on a non-brain-cell type and remains to be tested on glial or neuronal cells.

Abbreviations: AA, arachidonic acid; C, complement; CR, complement receptor; CRP, C-reactive protein;
CP, classical pathway; Gp, G protein; LTB,: leukotriene B,; NGF, nerve growth factor; PECAM, platelet/
endothelial cell adhesion molecule; SAP, serum amyloid protein.

the ranks of the host PRRs such as CD14 and the
macrophage mannose receptor (Refs 45, 46). CR3
and CR4 belong to the 32 subgroup of the integrin
superfamily mainly expressed by phagocytes and
natural killer (NK) cells, and perhaps binding of
CR3 to other ligands on the endothelium [e.g.

intercellular cell adhesion molecule (ICAM-1)]
might be a necessary step in the migration of
leukocytes into the brain parenchymal tissue.
Microglia within the parenchyma and Kolmer
cells of the choroid plexus express abundant levels
of CR3 and CR4 (Ref. 47). The interactions of
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CR3/CR4 with different extracellular matrix
molecules (such as fibronectin, laminin and
collagen) might contribute further to tissue
invasion.

CR1 (CD35) is also a multifunctional receptor
both inits ligand specificity and in its C-regulatory
activities (Ref. 34). CR1 binds to C4b, C3b, iC3b
and Clq, and is involved in phagocytic activities.
CR1 is broadly expressed and has been found on
CNS macrophages (Ref. 48).

Role of C anaphylatoxins

One aspect of the C system that has received
consistent attention is the functions and
mechanisms of action of C anaphylatoxins C3a
and C5a, which are biologically active fragments
derived from C molecules. These molecules are
small polypeptides (less than 12 kDa) that are
cleaved from large and abundant C components
C3 and C5 during C activation and released into
the fluid phase (Refs 4, 11). They are important
pro-inflammatory molecules involved in the
stimulation and chemotaxis of myeloid cells
bearing specific anaphylatoxin receptors (C3aR
and C5aR), and they mediate pro-inflammatory
activities such as the release of lysosomal
enzymes from leukocytes and the secretion of
histamine from mast cells, as well as smooth
muscle contraction and the chemoattraction of
eosinophils and mast cells (Ref. 11).

C3a has been shown to regulate inflammatory
functions by interacting with C3aR, which belongs
to the rhodopsin family of seven-transmembrane,
G-protein-coupled receptors (Refs 49, 50). C3aR
was thought to be present only on myeloid cells
such as macrophages, eosinophils and mast cells
(Refs 51, 52, 53). However, the demonstration that
C3aR mRNA is expressed throughout the body,
and particularly in the adrenal gland, pituitary
and CNS, is consistent with C3aR having a much
broader role in the pathogenesis of inflammatory
and autoimmune diseases than was previously
suspected (Refs 50, 54, 55).

Several investigators have found a close
relationship between elevated plasma levels of
C3a and inactivated C3a (known as C3adesArg)
in patients with septic shock and the risk of
developing either adult respiratory distress
syndrome or multiorgan failure (Refs 56, 57, 58).
Although the accepted wisdom has been that C3a
participates positively in inflammatory reactions
(Ref. 59), recent reports have strongly suggested
that C3a can also exhibit anti-inflammatory

properties by suppressing LPS-induced secretion
of TNF-q, interleukin 1B (IL-1B) and IL-6 from
isolated peripheral blood mononuclear cells
(PBMCs), and can attenuate TNF-a and IL-6
secretion from lymphocytes (Refs 60, 61, 62, 63).
Furthermore, in an elegant and pioneering study,
the genetic deletion of C3aR in mice demonstrated
an important protective role for C3aR in endotoxin
shock, notably by attenuating LPS-induced
production of pro-inflammatory cytokines (Ref.
64). The role of C3a and C5a in neurodegeneration
is discussed below.

Role of the membranolytic terminal
complex and C inhibitors

The end-point of activation of the classical,
alternative and lectin pathways is the formation
of a membrane attack complex (MAGC; also called
the C5b-9 complex as it involves C5, C6, C7, C8
and C9 components) (Fig. 3). This disrupts and
forms a lytic pore (hole) in the phospholipid
bilayer of the target cell, through which the cell
contents leak, leading to cell death. Activation of
this terminal pathway of the C system at an
inappropriate site and/or to an inappropriate
extent is remarkably effective at damaging
host tissues and causing pathology, as seen in
degenerative disorders of the CNS such as
multiple sclerosis. To avoid this self-destructive
tendency, host cells are protected by a battery of
regulatory molecules (C inhibitors), which inhibit
assembly of either the C3-cleaving enzymes or the
formation of the MAC (Fig. 3). C1 inhibitor (C1-
INH), C4b-binding protein (C4bp), factor H (fH),
factor I (fI), S protein (Sp) and clusterin are all
soluble C inhibitors that are secreted and released
in the fluid phase. The other C inhibitors are
expressed on the cell membrane and include CR1,
membrane cofactor protein (MCP; CD46),
decay accelerating factor (DAF; CD55) and
CD59 (Ref. 65).

Expression of the innate C system by glial
and neuronal cells

In 1987, Levi-Strauss and Mallat were the first to
demonstrate that brain cells were capable of
producing C (Ref. 66). They showed that cultured
rodent astrocyte cell lines and primary murine
astrocytes produced C3 and fB and that the
expression of C was increased after stimulation
with LPS. The astrocyte is the most abundant glial
cell type and, at that time, was thought to have a
predominantly structural role, making this an
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unexpected finding. However, in the past
decade, these reports have been extended to
include astrocytes, microglia, neurons and
oligodendrocytes (reviewed in Ref. 4). Primary
cultures and cell lines of human origin were used
to show that glial cells and neurons in vitro were
capable of producing almost all C proteins,
particularly after stimulation with cytokines.
Interferon y (IFN-y) was the most effective
cytokine at upregulating the expression of almost
all C proteins by glial and neuronal cells. By
contrast, TNF-a and IL-1B were shown to
upregulate mainly C3, C2 and {B synthesis.

From these studies, it was proposed that
brain cells, after appropriate stimulation with
cytokines, could generate a full C system to
assemble a toxic and lytic activity against
pathogens. C mRNAs were also found to be
expressed, albeit at a low level, in human brain
tissues by reverse transcriptase polymerase chain
reaction (RT-PCR), northern blot and in situ
hybridisation (ISH) analysis (Refs 67, 68, 69).
Moreover, there is now considerable evidence
that local expression of C by resident cells can
be dramatically increased following brain
infection. The level of C mRNAs was found to be
significantly increased in human brains following
meningitis (Ref. 70) and in experimental models
of brain infection and inflammation such as
scrapie and encephalitis (Refs 25, 71, 72).

Role of the C system in the CNS: clinical
implications

Susceptibility of brain cells to C and the
protective role of C inhibitors

Most nucleated cells can express various C
inhibitors (see above) to control C activation on
their membranes. In 1989, Scolding and colleagues
(Refs 73, 74) made the first observation that brain
cells were extremely susceptible to C lysis. It was
demonstrated that antibody-independent C
activation occurs in vitro at the oligodendrocyte
cell membrane, whereas O-2A oligodendrocyte
progenitors and type I and II astrocytes
remained unaffected (Refs 73, 74). C activation
was taking place through the classical pathway
and further studies have demonstrated that rat
oligodendrocytes lack the major inhibitor of
C lysis, CD59 (Ref. 75). The situation in
humans appears to be different with respect to
the C susceptibility of brain cells. Human
oligodendrocytes and human oligodendroglioma
cell lines have been shown to express abundant

levels of C inhibitors (particularly CD59) and fail
to activate the C system spontaneously (Refs 76,
77, 78). Human astrocytes and microglia, from
either primary cultures or cell lines, express
several membrane (CD59>MCP>DAF) and
soluble (fH, fI, C1-INH, Sp and clusterin, but not
C4bp) C inhibitors and are well protected against
C killing (reviewed in Ref. 79). In addition, there
is no evidence that astrocytes and microglia
activate the C system.

In contrast to oligodendrocytes, human
neurons are extremely susceptible to killing by
homologous C. Indeed, human foetal neurons
and neuroblastoma cultured in the presence of
human serum as a source of C are rapidly lysed
via MAC formation on their membranes
(Refs 80, 70, 81, 82). C1q binds specifically to the
membrane of neurons and leads to activation
of the classical pathway in an antibody-
independent manner. C1q might bind to an as-
yet-uncharacterised neuronal ‘Clq receptor’.
Furthermore, neurons and neuroblastoma cell
lines seem to be particularly susceptible to C-
mediated lysis because they express low levels of
C inhibitors (CD59, MCP, C1-INH, fH) and lack
DAF (Refs 81, 83).

Thus, with the exception of neurons, it seems
that human brain cells are relatively well
protected from C-mediated lysis by expressing
membrane-bound and soluble C inhibitors.
Other recent investigations (Refs 84, 85) using
immunohistochemistry, ISH and RT-PCR have
confirmed that C inhibitors (membrane and
soluble forms) are constitutively expressed in vivo
by glial, neuronal and endothelial cells in the
CNS, albeit at a low level compared, for example,
with the level in the placenta or kidney. The
immunostaining for CD59, MCP and DAF was
stronger on microglia compared with astrocytes,
whereas neurons were found to express CD59 and
MCP weakly and to lack DAF. The expression of
soluble C inhibitors (e.g. C1-INH and clusterin
mRNAs) was also demonstrated by RT-PCR
analysis of normal brain tissues (Refs 84, 85).

Overall, it is clear that brain cells can
generate a C system to kill pathogens and yet be
relatively well protected from direct or bystander
C lysis through expression of soluble and
membrane C inhibitors. However, there is now
considerable evidence that increased local C
biosynthesis and uncontrolled C activation in the
CNS are contributing factors in the pathology of
degenerative disorders leading to neuronal loss
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and local inflammation (see below). It should be
stressed that the participation of C in neuronal
loss and brain inflammation is nonspecific and
must be regarded as a consequence, and not as
the primary cause, of the neuropathology.

Increased local C biosynthesis in the brain
As mentioned above, the liver is regarded as the
principal source of C proteins to be released in
the serum. In neurodegenerative disorders such
as AD, there is clear evidence that the BBB is intact,
excluding the possibility of transudation of serum
from the plasma as a potential source of C. The
hypothesis that the brain itself acts as a source of
C arose from in vitro work showing that glial cells
and neuronal cells can synthesise C components
(Ref. 4). Early studies used RT-PCR analysis to
measure the level of C mRNAs in AD, HD
and normal age-matched brains (reviewed in
Ref. 4). Although the level of C mRNAs was
found to be weak in normal brains, diseased
brains showed markedly upregulated C mRNA
expression particularly in areas of primary
pathology (entorhinal cortex, hippocampus and
midtemporal gyrus in AD, and caudate in HD).
In AD, the level of C1g mRNA was increased from
11-80-fold when compared with normal brain.
The levels of C3, C4 and C9 mRNAs were also
found to be upregulated in AD (Ref. 67) and the
levels of C3 and C4 mRNAs were increased in HD
caudate compared with the temporal lobe.
Surprisingly, immunohistochemical and ISH
analysis indicated that not only were reactive glial
cells abundant sources of C (microgliasastrocytes),
but so were neurons.

It has been postulated that pro-inflammatory
cytokines (e.g IL-1B and TNF-a) expressed in
neurodegenerative disorders constitute a
driving force in stimulating local C biosynthesis
by resident cells (Ref. 4). RT-PCR, ISH and
immunohistochemistry have indicated that the
levels of C inhibitors are barely increased in
neurodegenerative disorders, suggesting that
brain cells would be highly susceptible to
damage by increased local C biosynthesis
(reviewed in Ref. 4). Moreover, there is now
considerable evidence that C is synthesised
and activated in the brain of several animal
models of neurodegenerative diseases [e.g.
amyloid precursor protein (APP)-transgenic mice
and stroke models] (Refs 26, 86). Together, these
data indicate that a full C system can be generated
in situ to promote an innate immune response

primarily involved in the safe clearance of toxic
cell debris. If uncontrolled, C proteins might also
contribute to cytotoxic and cytolytic activities
against neurons.

Role of C1q-binding molecules and C
activation in neurodegeneration

AD is the commonest cause of dementia and is
a multifactorial syndrome rather than a
single disease. Senile (neuritic) plaques and
neurofibrillary tangles (NFTs) comprise the major
neuropathological lesions, particularly in limbic
and association cortices (reviewed in Refs 86, 87).
Neuritic plaques contain extracellular deposits of
BA4 as abundant amyloid fibrils intermixed with
nonfibrillar forms of this peptide, and also contain
degenerating axons and dendrites (neurites).
Such plaques can be specifically stained with
thioflavine, which labels only BA4 in a (-sheet
conformation. Plaques contain variable numbers
of activated microglia as well as reactive astrocytes
surrounding the core. Immunohistochemistry
using antibodies against BA4 reveals an even
larger number of thioflavine-negative plaques in
AD brains; these plaques seem to lack microglia,
astrocytes and dystrophic neurites. They are
referred to as diffuse plaques and are exclusively
composed of the highly amyloidogenic 42 amino
acid form of the BA4 peptide.

Several groups have clearly demonstrated the
presence of C proteins in senile amyloid plaques and
NFTs in AD brains using immunohistochemical
techniques (for comprehensive review see Ref. 4). By
contrast, immunohistochemical staining for two
alternative pathway proteins, fB and properdin, has
not been observed in the AD brain. Interestingly,
Clq immunostaining was co-localised to nearly
all neuritic plaques, whereas no staining was
detected in diffuse plaques (Ref. 88). It has since
been shown in vitro that C1q can bind directly to
fibrillar but not soluble A4, resulting in activation
of the classical pathway as seen in AD brains
(Table 1). Thus, it appears that conversion from
the nonfibrillar diffuse plaques correlates with the
initiation of C activation. There is now some
debate as to whether Clq binds to BA4 through
its collagen stalk (Refs 89, 90) or by one of its
globular heads (Fig. 4), as recently demonstrated
using purified C1 components (Ref. 91).

Other molecules associated with AD lesions
such as SAP and CRP are known to interact with
the collagen part of C1q and could also contribute
to activation of the C cascade (Fig. 4). NFTs were
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also immunopositive for Clq, C3 and C4, but not
for fB and properdin. The mechanism involved
in the activation of the classical pathway on NFTs
remains unknown but it is possible that NFTs
express a ‘Clq receptor’, allowing Clq binding
and initiation of the classical pathway (Ref. 4).

C activation has also been detected in other
human neurodegenerative disorders: HD and
Pick’s disease (PiD) (Refs 92, 93). HD is an
autosomal dominant inherited neurodegenerative
disease and the gene associated with the disease
encodes a mutant protein named huntingtin,
which has expanded polyglutamine repeats
compared with its wild-type counterpart (Ref. 94).
The neuropathological hallmark of HD is atrophy
of the caudate nucleus with a profound loss of
neurons in the putamen accompanied by reactive
gliosis (loss of astrocytes and microglia). It has
been shown that neurons, myelin and astrocytes
in HD brains stain strongly with antibodies to

Clq, C4, C3, iC3b-neoepitope and C9 neoepitope
(Ref. 4). C activation takes place via the classical
pathway on neurons and astrocytes, both of which
express huntingtin. By analogy with the role of
BAA4 fibrils in initiating the classical pathway in
AD, we have proposed that mutant huntingtin
with a long glutamine stretch could be involved
in C activation in HD caudate (Ref. 4). Moreover,
since mutant huntingtin is involved in apoptosis
of neurons, and since C1q can bind directly to the
surface of apoptotic cells (Ref. 19), we propose
that C activation in HD caudate could occur
primarily on apoptotic neurons. Although the
activation of the C system would initially be
restricted to very few apoptotic cells, it is possible
that C would cause damage to surrounding cells
by bystander lysis, with the capacity of soluble
C5b6/C5b7 to diffuse and bind nonspecifically
to cell membranes to form a lytic MAC. These
attractive hypotheses could be tested using an

Collagen-like
fibrous portion
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Globular head binds to:
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+ apoptotic cells
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Figure 4. Structure and interactions of C1lq. C1q is a key component of the classical complement pathway
and acts as a recognition molecule that interacts with antibody—antigen complexes or nonimmune molecules
to activate the complement cascade. C1q consists of six subunits, each with a collagen-like fibrous portion at
its N-terminal and a globular head that is involved in binding to diverse targets. It has recently been determined
that C1q may also opsonise damaged and dying cells, amyloid fibrils and myelin proteins, leading to their
recognition and clearance (fig004pgc).
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in vitro model of neurons hyperexpressing
mutant huntingtin.

The histological hallmark of PiD is the
neuronal Pick body, which strongly expresses
aggregated forms of the microtubule-associated
protein tau and ubiquitin. Neuronal loss and
gliosis occur in the areas of disease that appear to
be restricted to frontal and temporal lobes.
Although it has been reported that Pick bodies
stain strongly with antibodies to the MAC
(Ref. 93), other data demonstrate strong staining
for components of the classical pathway but
little or no evidence for MAC (Ref. 92). Thus,
the mechanism underlying the activation of
the classical pathway in PiD is currently
uncharacterised. Nevertheless, the possibility of
Clq binding to a specific component of the Pick
body, or even to apoptotic cells or necrosed cells,
must be considered. For instance, it is well
known that C can be activated by a variety of
intracellular components released by necrosed
cells (e.g. nucleic acids, intermediate filaments,
mitochondrial membranes) (reviewed in Ref. 18).
It should also be stressed that neurons, at least in
culture, seem to have a natural propensity to
activate the C system spontaneously (see above).
The hypothesis that the putative neuronal ‘Clq
receptor’ mediates C activation on neurons, Pick
bodies and NFTs is attractive and worthy of
consideration.

Role of C1q receptors and other opsonins
in neurodegeneration

The obvious and well-defined role of Clq is
to bind to immune complexes and ‘nonself’
membranes (i.e. pathogens) to initiate activation
of the classical pathway leading to lysis of the cell
by the MAC. However, Clq is also an important
opsonin that specifically labels a target cell so that
it can be recognised by macrophages bearing Clq
receptors, either CR1 or the phagocytic Clq
receptor C1qRp (Table 1). CR1 is mainly expressed
by phagocytes in the CNS (Ref. 48), although
foetal astrocytes and some astrocyte cell lines were
found to express CR1 in vitro (Ref. 95). By contrast,
microglia, but not astrocytes, express C1qRp
(Ref. 43). Interestingly, the immunoreactivity of
microglia for C1qRp was particularly prominent
in HD and PiD compared with age-matched
normal brains, indicating that this receptor may
be involved in brain inflammation. However, the
function of CR1 and C1qRp on microglia in
neurodegeneration remains to be identified. It is

possible that microglia and astrocytes in concert
are involved in the clearance by phagocytosis of
Clqg-opsonised cells (i.e. neurons, NFTs, Pick
bodies) as well as Clg-opsonised BA4 amyloid
fibrils residing in the neuritic plaques. The
possibility that glial cells could clear necrosed or
apoptotic cells as well as amyloid deposits in the
CNS is fascinating and future work along this
promising line is warranted.

The role of other C receptors (CR3 and CR4)
in mediating phagocytosis of C-opsonised target
cells should not be underestimated. Macrophages
and microglia express both receptors and will
phagocytose C3-opsonised targets. At least in
vitro, it is now well established that C and
CRs expressed by glial cells are involved in
the efficient clearance of amyloid fibrils (Refs 96,
97) (Table 1).

Taken together, these data would suggest that
C activation, at least in the early stages of these
neurological diseases, could play an important
and beneficial role in phagocytosis and clearance
of otherwise toxic molecules. It is important that
cell debris is removed efficiently to prevent
further elicitation of the local inflammation.
Pioneering studies have recently shown that
active or passive vaccination of a transgenic
mouse hyperexpressing mutant human APP
using the BA4 peptide caused accelerated
clearance of neuritic amyloid plaques from
the mouse brain and reduced the extent and
progression of the AD-like pathology (Refs 98, 99).
It was proposed that microglia expressing a high
level of immunoglobulin Fc receptors were able
to phagocytose the Ig-BA4 complex. The role of
C was not investigated in this model although,
from data discussed above, it is likely that
increased C biosynthesis and classical pathway
activation were taking place. Therefore, the
possibility of glial cells expressing C receptors to
phagocytose the opsonised antibody-amyloid
complex coated with C is an interesting and
attractive hypothesis that remains to be tested.

Role of anaphylatoxins in
neurodegeneration

As discussed earlier, C3a and C5a are important
mediators of pro-inflammatory reactions
involving the stimulation and chemotaxis of
myeloid cells. Although it was thought that only
myeloid cells (including microglia) expressed
C5aR, it has now been shown that astrocytes
and neurons also express the receptor (Refs
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100, 101, 102, 103, 104, 105, 106) (Table 1). C5a is
an important chemoattractant molecule and
stimulates cells to express increased level of
cytokines, chemokines, adhesion molecules and
C components (reviewed in Ref. 57). Therefore, it
is possible that C5a released during C activation,
for example in AD, could induce chemotaxis and
stimulate glial cells to produce pro-inflammatory
cytokines, contributing to exacerbated pathology.
Interestingly, it has recently been shown that
human astrocyte cell lines stimulated with C5a
produced increased levels of IL-6, while the level
of IL-1, TNF-a and transforming growth factor 8
(TGF-B) remained unaffected (Ref. 105).

Unexpectedly, C5a has been reported to
induce apoptosis of neurons in vitro. Farkas
and colleagues have shown that a human
neuroblastoma cultured in the presence of a C5a
peptide analogue underwent programmed cell
death as judged by DNA fragmentation (Ref. 107).
This experiment has not yet been confirmed using
primary neurons but nevertheless indicates that
C5a could contribute directly to neuronal damage.
Conversely, C5a was recently found to be
mitogenic for human neuroblastoma cells,
involving several signalling pathways (Ref. 106).

The human C3aR was cloned in 1996 by
several groups (reviewed in Ref. 4), allowing
the production of specific reagents for ISH and
immunohistochemistry. The distribution of the
C3aR in the CNS is similar to that of the C5aR.
However, the role of C3a in tissue inflammation
is less certain (Ref. 108). In contrast to the broad
pro-inflammatory effects of C5a, the effects of
C3a appear to be much more selective and rather
anti-inflammatory. C3a is a chemoattractant but
only for mast cells and not for either macrophages
or microglia. Heese and collaborators have shown
that a human microglia cell line stimulated with
C3a expressed de novo nerve growth factor
(NGF), a molecule involved in neuronal growth
(Ref. 109). Moreover, it has been shown recently
that C3a induces the release of a neuroprotective
astroglial factor that has yet to be identified (Ref.
110). These types of study need to be extended to
other glial and neuronal cell cultures and should
assess the expression of anti-inflammatory
cytokines and growth factors following C3a
stimulation.

Roles of C5b-9
The MAC is by definition involved in cytotoxic
and cytolytic activities. Aside from these

functions, at sublytic level, the MAC is also
involved in cell stimulation and programmed cell
death (reviewed in Refs 111, 112) (Table 1). It was
initially established that cultured glial cells release
phospholipid and generate arachidonic acid (AA)
and AA-derived pro-inflammatory mediators
such as leukotriene B in response to sublytic
levels of C5b-9 (Ref. 113). Since these effects were
observed on cell lines, it remains unproven as to
whether the same effects can be reproduced on
primary cultures of either astroglial cells or
neurons. Sublytic MAC has also been shown to
stimulate endothelial cells to express increased
levels of C regulators and to protect against
secondary C attack (Ref. 114). Taken together,
these data suggest that sublytic MAC could act
as a stress signal to stimulate cells to express
increased levels of C inhibitors. It will be
interesting to test whether the same effects are
observed on glial and neuronal cultures. In
addition, it remains to be ascertained whether
brain cells stimulated with sublytic MAC
alter their expression of pro-inflammatory or
immunosuppressive molecules.

Conclusion: control of C in diseases and
therapeutic intervention
The studies described here implicate C activation
in the initiation and/or exacerbation of
inflammation and tissue injury in diseases of the
CNS such as AD, HD and PiD. It will soon be
possible to ascertain the exact role of the C system
using knockout animals. Until then, given the
reported increase in local C biosynthesis, together
with the strong propensity of C to be activated
locally, it would be surprising if C was not a
contributing factor in the pathology of these
neurodegenerative disorders. Hence, effective
inhibition of C might be of potential therapeutic
value. Several C inhibitors have been developed,
some of which are recombinant forms of the
naturally occurring C inhibitors. Soluble CR1 has
been used successfully to control C activation in
animal models of CNS disorders (Refs 115, 116),
but the use of this molecule in chronic disorders
such as AD would not be possible, since it is
expensive, must be administered systemically
(thereby also affecting the C system in the rest of
the body) and has a short half-life in vivo. In order
to be used in CNS diseases, the next generation
of C inhibitors will have to be designed either to
be delivered specifically to the brain (by the use
of specific targeting moieties) or to be expressed
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in the brain (by gene therapy). The former strategy repair. Trends Neurosci 22, 295-299, PubMed:

is part of a unique technology platform that has 99299528

been developed by Adprotech (Little Chesterford, 4 Gasque, P. et al. (2000) Complement components
Cambridge, UK) and consists of fusing a C of the innate immune system in health and
inhibitor to a small targeting moiety (peptide) disease in the CNS. Immunopharmacology 49,
(Ref. 117). In addition, it will be interesting to 171-186, PubMed: 20366175

search for new drugs that might control the pro- 5 Perry, V.H. (1998) A revised view of the central
inflammatory activities, if any, of C-derived nervous system microenvironment and major
fragments such as C3a and C5a in the brain. The histocompatibility complex class Il antigen

use of specific receptor antagonists (either presentation. ] Neuroimmunol 90, 113-121,
peptides or chemical drugs) could prove to be PubMed: 99032376

useful for this purpose. A combination of these 6 Flugel, A. et al. (2000) Neuronal FasL induces cell
therapeutic approaches with anti-inflammatory death of encephalitogenic T lymphocytes. Brain
drugs such as indomethacin might be of clinical Pathol 10, 353-364, PubMed: 20340163

benefit in the treatment of neurodegeneration. 7 Medzhitov, R. and Janeway, C.A., Jr. (1997)

By contrast, it is important to stress that Innate immunity: the virtues of a nonclonal
there is a growing body of evidence that C system of recognition. Cell 91, 295-298, PubMed:
plays a beneficial role in the early phase of 98028567
neuroinflammation to induce the clearance 8 Savill, J. and Fadok, V. (2000) Corpse clearance
of toxic cell debris and apoptotic cells. The defines the meaning of cell death. Nature 407,
efficient scavenging of these debris by C is of 784-788, PubMed: 20500224
paramount importance to drive successful tissue 9 Franc, N.C., White, K. and Ezekowitz, R.A. (1999)
repair together with the release of growth factors Phagocytosis and development: back to the
by neighbouring glial cells stimulated by C future. Curr Opin Immunol 11, 47-52, PubMed:
anaphylatoxins. Hence, a very discrete balance 99158660
exits between the beneficial and detrimental roles 10 Tenner, A.J. (1999) Membrane receptors for
of Cin CNS inflammation, and novel therapeutic soluble defense collagens. Curr Opin Immunol
avenues will need to take this paradigm of a 11, 34-41, PubMed: 99158658
‘double-edged sword’ into consideration. 11 Frank, M.M. and Fries, L.F. (1991) The role of

complement in inflammation and phagocytosis.
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