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Abstract

If f : Γ̃→ Γ is a covering map between connected graphs, and H is the subgroup of π1(Γ, v) used to
construct the cover, then it is well known that the group of deck transformations of the cover is isomorphic
to N(H)/H, where N(H) is the normalizer of H in π1(Γ, v). We show that an entirely analogous result
holds for immersions between connected graphs, where the subgroup H is replaced by the closed inverse
submonoid of the inverse monoid L(Γ, v) used to construct the immersion. We observe a relationship
between group actions on graphs and deck transformations of graph immersions. We also show that
a graph immersion f : Γ̃ → Γ may be extended to a cover g : ∆̃ → Γ in such a way that all deck
transformations of f are restrictions of deck transformations of g.
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1. Introduction

It is well known that group theory provides a powerful algebraic tool for studying
covering spaces of topological spaces. For example, under mild conditions on
a connected topological space X, the connected covers of X may be classified
via subgroups of the fundamental group of X. This may be used to study deck
transformations of covering spaces and actions of groups on topological spaces.
However, the study of immersions between connected topological spaces seems to
require somewhat different algebraic tools, even for graphs (one-dimensional CW-
complexes).

In his paper [16], Stallings made use of immersions between finite graphs to study
finitely generated subgroups of free groups. Here by an immersion between graphs we
mean a locally injective graph morphism, that is, a graph morphism that is injective
on star sets. Subsequently, Margolis and Meakin [7] showed how the theory of inverse
monoids may be used to classify immersions between connected graphs. These results
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38 C. Groothuis and J. Meakin [2]

have been extended by Meakin and Szakács [9, 10] to classify immersions between
higher-dimensional cell complexes.

In the present paper we extend the ideas of [7] to show how inverse monoids may
be used to study deck transformations of immersions between connected graphs. By a
deck transformation we mean a graph automorphism that respects the immersion.

In Section 2 of the paper we introduce the terminology needed to describe covers
and immersions of graphs. We then summarize some of the classical algebraic
and topological ideas involving the classification of covers and the theory of deck
transformations of connected covers of graphs.

Section 3 summarizes some of the basic theory of inverse monoids that will be
needed subsequently. We then describe the use of closed inverse submonoids of free
inverse monoids to classify immersions between connected graphs. We prove an
apparently new result constructing the group of right ω-cosets of a closed inverse
submonoid of an inverse monoid in its normalizer.

In Section 4 we provide a calculation of the group of deck transformations of a
connected immersion between graphs. If H is the closed inverse submonoid of the
free inverse monoid that is used to construct the immersion, then the group of deck
transformations of the immersion is the group of right ω-cosets of H in its normalizer
(Theorem 4.4).

In Section 5 we describe how the results of earlier sections of the paper specialize in
the case that the graph immersion is actually a cover of connected graphs. In Section 6
we make an observation relating graph immersions to actions of groups on graphs. In
Section 7 we prove that an immersion between graphs may be extended to a covering
map between graphs in such a way that deck transformations of the immersion are
restrictions of deck transformations of the cover.

2. Covers and immersions of graphs

By a graph Γ = (Γ0, Γ1) we mean a graph in the sense of Serre [15]. Here Γ0 is
the set of vertices and Γ1 is the set of edges of Γ. Thus every directed edge e : v→ w
comes equipped with an inverse edge e−1 : w→ v such that (e−1)−1 = e and e−1 , e.
The initial vertex of e is denoted by α(e) and the terminal vertex of e is denoted
by ω(e): thus α(e−1) = ω(e) and ω(e−1) = α(e). For each edge e we designate one
of the edges in the set {e, e−1} as being positively oriented, and its inverse edge as
being negatively oriented. We normally only indicate the positively oriented edges
in a sketch of a graph. A path in the graph Γ is a finite string p = e1e2 · · · en where
ω(ei) = α(ei+1) for i = 1, . . . , n − 1: here the edges ei may be either positively or
negatively oriented. We denote the initial vertex of p by α(p) and the terminal vertex
by ω(p): that is, if p = e1e2 · · · en, then α(p) = α(e1) and ω(p) = ω(en). The inverse
of the path p = e1e2 · · · en is the path p−1 = e−1

n · · · e
−1
2 e−1

1 . The path p is a circuit if
α(p) = ω(p). A tree is a connected graph in which every circuit e1e2 · · · en contains
a subpath of the form ee−1 for some edge e. Thus the Cayley graph Γ(X) of the free
group FG(X) with respect to a set X of free generators is a tree.
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[3] Graph immersions, inverse monoids and deck transformations 39

The free category on a graph Γ is the category FC(Γ) whose objects are the vertices
of Γ and whose morphisms are the paths in Γ. The product p.q of paths p and q is
defined in FC(Γ) if and only ifω(p) = α(q) and in that case p.q = pq, the concatenation
of the path p followed by the path q. We say that a path p1 is an initial segment of a
path p if there is a path p2 such that p = p1 p2, and in this case p2 is a terminal segment
of p.

A morphism from the graph Γ to the graph Γ′ is a pair of functions f : Γ→ Γ′ that
takes vertices to vertices and edges to edges, and preserves incidence and orientation
of edges. (Here we abuse notation slightly by using the same symbol f to denote the
corresponding function that takes vertices to vertices and the function that takes edges
to edges.) If v ∈ V(Γ), let star(Γ, v) = {e ∈ E(Γ) : α(e) = v}. A morphism f : Γ→ Γ′

induces a map fv : star(Γ, v)→ star(Γ′, f (v)) between star sets in the obvious way.
Following Stallings [16], we say that a graph morphism f is a cover if each fv is a
bijection and that f is an immersion if each fv is an injection.

In his paper [16], Stallings made use of immersions between graphs to study
subgroups of free groups. Since then, Stallings foldings and Stallings graphs have
been used extensively to study subgroups of free groups. See, for example, the survey
paper by Kapovich and Myasnikov [4] or the paper by Birget et al. [1] for just some
of the relevant literature.

It is clear from the definition of a graph that it is possible to label the edges of a
graph with labels of positively oriented edges coming from some set X so that no two
positively oriented edges with the same initial or terminal vertex are assigned the same
label. The labeling of positively oriented edges may be extended to a labeling of all
edges in the graph in such a way that if e is a positively oriented edge labeled by x ∈ X
then e−1 is labeled by x−1 ∈ X−1, where X−1 is a set disjoint from X and in one-to-one
correspondence with X via the map x→ x−1. We denote the label on an edge e by
`(e). Thus `(e) ∈ X if e is a positively oriented edge, and in general `(e) ∈ X ∪ X−1.
The labeling of edges in Γ extends to a labeling of paths in Γ in the obvious way via
`(pq) = `(p)`(q) if pq is defined. Thus if p is a path in Γ then `(p) ∈ (X ∪ X−1)∗.

For example, the Cayley graph Γ(G,X) of a group G relative to a set X of generators
is obviously labeled over X ∪ X−1: its vertices are the elements of G and there is a
directed edge labeled by x from g to gx for each g ∈ G and each x ∈ X ∪ X−1. The
bouquet of circles BX has one vertex and one positively oriented edge labeled by x
for each x ∈ X: of course BX also has negatively oriented edges labeled by elements
x−1 ∈ X−1 for each x ∈ X.

If Γ is labeled over X ∪ X−1 as above, then the associated natural map fΓ from
Γ to BX that preserves edge labeling is a graph immersion. If f : Γ→ Γ′ is a graph
immersion and the edges of Γ′ are labeled over X ∪ X−1 as above, then this labeling
induces a labeling of the edges of Γ in a natural way so that f preserves edge labeling
and fΓ′ ◦ f = fΓ.

While the essential results in this paper may be formulated without resort to labeling
the edges of our graphs, it is more convenient to do so. Hence we adopt the convention
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that all graphs that we will consider in this paper will be edge-labeled as described
above and all immersions will preserve edge labeling.

A simple example illustrating these ideas is provided in Figure 1: the natural map
from the graph Γ1 to B{a,b} is a cover, while the natural map from Γ2 to B{a,b} is an
immersion that is not a cover.

We now list some straightforward propositions that will be used in the sequel.

Proposition 2.1. An immersion f : Γ→ Γ′ between connected edge-labeled graphs is
uniquely determined by the image f (v) of any vertex v in Γ. More precisely, if v is
a vertex of Γ and v′ is a vertex of Γ′, then there is at most one graph immersion
f : Γ→ Γ′ such that f (v) = v′. Such an immersion exists if and only if, for every path
p in Γ with α(p) = v, there is a path p′ in Γ′ with α(p′) = v′ and `(p′) = `(p) and such
that p′ is a circuit if p is a circuit.

Proof. Suppose that there is an immersion f from Γ to Γ′ such that f (v) = v′. Let v1

be any vertex of Γ and p any path in Γ from v to v1. Since f preserves edge labels, it
maps paths in Γ to paths in Γ′ with the same label, so there must be a path p′ in Γ′ with
α(p′) = v′ and `(p′) = `(p). Furthermore, the path p′ is unique since edge labeling is
consistent with an immersion into BX . It follows that we must have f (v1) = ω(p′). If p
is a circuit, then ω(p) = v so ω(p′) = f (ω(p)) = f (v) = v′, and so p′ is a circuit. Also, if
e is an edge in Γ with α(e) = v1, then we must have an edge e′ in Γ′ with α(e′) = ω(p′)
and f (e) = e′. The uniqueness of such an edge follows since `(e′) = `(e). So if there is
an immersion from Γ to Γ′ that maps v to v′, there is only one such immersion.

Suppose conversely that, for every path p in Γ with α(p) = v, there is a path p′ in Γ′

with α(p′) = v′ and `(p′) = `(p) and such that p′ is a circuit if p is a circuit. Let v1 be
a vertex in Γ and p a path from v to v1 in Γ. Then there is a (necessarily unique) path
p′ in Γ′ with α(p′) = v′ and `(p′) = `(p). Define f (v1) = ω(p′). If p1 is another path
in Γ from v to v1, then, as above, there is a unique path p′1 in Γ′ with α(p′1) = v′ and
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`(p′1) = `(p1). Since p1 p−1 is a circuit in Γ from v to v it follows by hypothesis that there
is a circuit q′ in Γ′ at v′ with `(q′) = `(p1 p−1) = `(p1)`(p−1) = `(p′1)`(p′−1). So p′1 is an
initial segment of q′ and p′−1 is a terminal segment of q′, and hence p′1 p′−1 is a circuit
in Γ′ from v′ to v′ with `(p′1 p′−1) = `(q′). It follows that ω(p′1) = ω(p′), so f is well
defined on vertices. If e is an edge in Γ with α(e) = v1, then pe is a path in Γ starting at
v so there is some path s′ in Γ′ starting at v′ with `(s′) = `(pe) = `(p)`(e) = `(p′)`(e).
By uniqueness of a path starting at v′ with this label and the fact that p′ is a path
starting at v′ with `(p′) = `(p), it follows that there must be a (unique) edge e′ in
Γ′ with α(e′) = ω(p′) and `(e′) = `(e). Then define f (e) = e′. This is well defined by
uniqueness of the edge e′. So f is a well-defined morphism from Γ to Γ′ which is
clearly an immersion since it preserves edge labeling. �

An isomorphism from the edge-labeled graph Γ onto the edge-labeled graph Γ′ is
a (label-preserving) graph morphism that is a bijection from vertices of Γ to vertices
of Γ′ and also a bijection from edges of Γ to edges of Γ′. Such an isomorphism must
restrict to isomorphisms between the connected components of Γ and the connected
components of Γ′ and, by Proposition 2.1, it is determined by the image of any vertex
in Γ if Γ is connected. The following fact is an easy consequence of Proposition 2.1.

Proposition 2.2. Let Γ and Γ′ be (edge-labeled) connected graphs, v a vertex in Γ and
v′ a vertex in Γ′. Then a bijective map f : Γ→ Γ′ such that f (v) = v′ is an isomorphism
from Γ onto Γ′ if and only if there is a label-preserving bijection p↔ p′ between the
paths p in Γ starting at v and the paths p′ in Γ′ starting at v′ such that p is a circuit at
v if and only if p′ is a circuit at v′.

Let f : Γ̃→ Γ be an immersion of connected graphs, v a vertex in Γ and ṽ ∈ f −1(v).
Then we say that a path p in Γ starting at v lifts to ṽ if there is a path p̃ in Γ̃ starting at ṽ
such that f (p̃) = p. In this case it is clear that the lifted path p̃ is uniquely determined
by ṽ and p since `(p̃) = `(p). We refer to the proposition below as the “path lifting”
proposition.

Proposition 2.3. Let f : Γ̃→ Γ be an immersion between connected graphs. Then f is
a cover if and only if, for each vertex v in Γ and each vertex ṽ in f −1(v), every path p
in Γ starting at v lifts to a (unique) path in Γ̃ starting at ṽ.

Proof. If f is a cover, then the fact that every path p lifts to all preimages of v is
easy to prove and may be viewed as a very special case of a much more general path
lifting property for covers of topological spaces (see, for example, Proposition 1.30 of
Hatcher’s book [3]). Conversely, suppose that every path in Γ starting at v lifts to a path
in Γ̃ starting at ṽ. It follows that if e is an edge in Γ with α(e) = v, then there is an edge ẽ
in Γ̃ with α(ẽ) = ṽ and f (ẽ) = e. So the map fṽ from star(Γ̃, ṽ) to star(Γ, v) is surjective.
Since it is also injective by hypothesis, it is a bijection, and so the immersion f is a
cover. �

The path lifting proposition above does not hold for immersions that are not covers
in general, but it is easy to see that maximal initial segments of paths in Γ lift uniquely
to paths in Γ̃, as described in the following proposition.

41
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Proposition 2.4. Let f : Γ̃→ Γ be an immersion between connected graphs, let v be
a vertex of Γ and let p be a path in Γ with α(p) = v. Then for every vertex ṽ ∈ f −1(v)
there is a unique (possibly empty) maximal initial segment p1 of p that lifts to a path
at ṽ. Furthermore, the lift of p1 at ṽ is unique.

Proof. Since an immersion is locally injective on star sets, it is clear that an edge e of
Γ starting at v lifts to at most one edge ẽ in Γ̃ starting at ṽ. The result then follows by
an easy inductive argument. �

We briefly summarize some of the most basic facts linking group theory and covers
of graphs. Recall (see Stallings [16]) that two paths p and q in a graph Γ are said to
be homotopy equivalent (written p ∼ q) if and only if it is possible to pass from p to
q by a finite sequence of insertions or deletions of paths of the form ee−1 for various
edges e of Γ. Clearly α(p) = α(q) and ω(p) = ω(q) if p ∼ q. We denote the equivalence
class (homotopy class) of a path p in Γ by [p]. The fundamental groupoid π1(Γ) is a
groupoid whose objects are the vertices of Γ and whose morphisms are the homotopy
classes [p]. We regard [p] as a morphism from α(p) to ω(p). The multiplication in the
groupoid is defined by [p][q] = [pq] if ω(p) = α(q) and is undefined otherwise.

For each vertex v of Γ the set π1(Γ, v) = {[p] : p is a circuit from v to v in Γ} is
a group with respect to the multiplication in π1(Γ), called the fundamental group of
Γ based at v. The following fact is classical and can be found in many sources, for
example [16].

Proposition 2.5. Let Γ be a connected graph and v,w vertices of Γ. Then:

(a) π1(Γ, v) is a free group whose rank is the number of positively oriented edges of
Γ that are not in a spanning tree for Γ.

(b) If p is a path in Γ from v to w, then the map [q]→ [p][q][p−1] for [q] ∈ π1(Γ,w)
defines an isomorphism from π1(Γ,w) onto π1(Γ, v).

It is well known (see, for example, Hatcher’s book [3]) that under suitable
conditions on a connected topological space X, connected covers of X may be
classified via conjugacy classes of subgroups of the fundamental group of X. The
following version of this result for graph covers may be found in many sources, for
example [3] or [16].

Theorem 2.6.

(a) Let f : Γ̃→ Γ be a cover of connected graphs, let v be a vertex of Γ and
ṽ ∈ f −1(v). Then f induces an embedding of π1(Γ̃, ṽ) into π1(Γ, v). If ṽ1 is another
vertex in f −1(v), then the groups f (π1(Γ̃, ṽ)) and f (π1(Γ̃, ṽ1)) are conjugate
subgroups of π1(Γ, v).

(b) Conversely, let Γ be a connected graph, v a vertex in Γ and H ≤ π1(Γ, v). Then
there exist a unique (up to labeled graph isomorphism) connected graph Γ̃, a
unique (up to equivalence) covering map f : Γ̃→ Γ and a vertex ṽ ∈ Γ̃ such that
f (ṽ) = v and f (π1(Γ̃, ṽ)) = H.
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If f : Γ̃→ Γ is an immersion of connected graphs, a labeled graph automorphism
γ of Γ̃ is called a deck transformation of Γ̃ if f = f ◦ γ, that is, f (ṽ) = f (γ(ṽ)) for
all vertices ṽ in Γ̃. The deck transformations of Γ̃ form a group G(Γ̃) with respect to
composition of automorphisms.

A graph cover f : Γ̃→ Γ is called a normal cover if, for every vertex v in Γ and
every pair of vertices ṽ1, ṽ2 ∈ f −1(v), there is a deck transformation that takes ṽ1 to
ṽ2; equivalently [3, Proposition 1.39], f is a normal cover if and only if the subgroup
H = f (π1(Γ̃, ṽ)) of π1(Γ, f (v)) that defines the cover is a normal subgroup of π1(Γ, f (v)).
The universal cover of Γ is the cover Γ̃ corresponding to the trivial subgroup of
π1(Γ, f (v)): a cover of Γ is isomorphic to the universal cover if and only if it is a
tree.

If f : Γ̃→ Γ is a cover of connected graphs, then there is a well-known connection
between the group G(Γ̃) of deck transformations and the fundamental group of Γ. The
following result is a special case of a more general standard result in topology (see, for
example, [3, Proposition 1.39]).

Theorem 2.7. Let f : Γ̃→ Γ be a cover of connected graphs, let ṽ be a vertex of Γ̃ with
f (ṽ) = v and let H be the subgroup H = f (π1(Γ̃, ṽ)) of π1(Γ, v). Then G(Γ̃) � N(H)/H,
where N(H) is the normalizer of H in π1(Γ, v). In particular, if Γ̃ is the universal cover
of Γ, then G(Γ̃) � π1(Γ, v).

While group theory provides a powerful algebraic tool for classifying and studying
covers of graphs (or topological spaces in general), it appears that groups do not
provide an adequate algebraic tool to classify immersions between graphs. For
example, let Γ(a) denote the Cayley graph of Z = Gp〈a : ∅〉 with respect to the
generating set {a}. The vertices of Γ(a) may be identified with the integers and there
is a directed edge labeled by a from n to n + 1 for each integer n. Then Γ(a) is the
universal cover of the circle B{a}. Any connected subgraph of Γ(a) immerses into B{a}
but all such graphs have trivial fundamental groups, so they cannot be distinguished
by subgroups of Z. We need a different algebraic tool to classify immersions and to
encode the fact that paths only sometimes lift under immersions (Proposition 2.4). In
subsequent sections of this paper, we show that the theory of inverse monoids provides
a useful algebraic tool to study graph immersions and, in particular, to obtain analogues
of Theorems 2.6 and 2.7.

3. Inverse monoids and their closed inverse submonoids

An inverse monoid is a monoid M such that for every element a ∈ M there is a
unique element a−1 in M such that

a = aa−1a and a−1 = a−1aa−1.

It is clear that the elements aa−1 and a−1a of an inverse monoid are idempotents
of M. In general, aa−1 , a−1a and neither of these idempotents is necessarily equal
to the identity 1 of M. We denote the set of idempotents of an inverse monoid M
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by E(M). An important elementary fact about inverse monoids is that their idempotents
commute, that is, e f = f e for all e, f ∈ M. In fact inverse monoids may be characterized
alternatively as (von Neumann) regular monoids whose idempotents commute.

Inverse monoids provide an appropriate algebraic tool for studying partial
symmetry of mathematical objects in much the same way as groups are used to study
symmetry. We refer the reader to the book by Lawson [5] for an exposition of this
point of view and for much basic information about inverse monoids.

A standard example of an inverse monoid is the symmetric inverse monoid S IM(X)
on a set X. This is the set of bijections between subsets of X with respect to the usual
composition of partial maps. The inverse of a bijection f ∈ S IM(X) with domain A
and range B is the inverse map f −1 with domain B and range A: the idempotents of
S IM(X) are the identity maps on subsets of X (including the empty map 0 with domain
the empty subset). The analogue for inverse monoids of Cayley’s theorem for groups
is the Wagner–Preston theorem, namely, every inverse monoid embeds in a suitable
symmetric inverse monoid (see [5] for a proof of this theorem).

The natural partial order on an inverse monoid M is defined by a ≤ b if and only
if a = eb for some idempotent e ∈ E(M) (equivalently a = b f for some idempotent
f ∈ E(M), or equivalently a = aa−1b, or equivalently a = ba−1a). This extends the
natural partial order on E(M) defined by e ≤ f if and only if e = e f = f e. With respect
to this partial order, E(M) forms a lower semilattice with meet operation e ∧ f = e f for
all e, f ∈ E(M). For the symmetric inverse monoid S IM(X), the natural partial order
corresponds to restriction of a partial one-to-one map to a subset of its domain. The
semilattice of idempotents of S IM(X) is of course the Boolean lattice of subsets of X
with respect to inclusion.

For each subset N of an inverse monoid M, we denote by Nω the set of all elements
m ∈ M such that m ≥ n for some n ∈ N. The subset N of M is called closed if
N = Nω. Closed inverse submonoids of an inverse monoid M arise naturally in the
representation theory of M by partial injections on a set, developed by Schein [14].
An inverse monoid M acts by injective partial functions on a set Q if there is a
homomorphism from M to S IM(Q). Denote by qm the image of q under the action
of m if q is in the domain of the action by m. (Here we are considering M as acting on
the right on Q.)

If an inverse monoid M acts on Q by injective partial functions, then for every
q ∈ Q, Stab(q) = {m ∈ M : qm = q} is a closed inverse submonoid of M. Conversely,
given a closed inverse submonoid H of M, we can construct a transitive representation
of M as follows. A subset of M of the form (Hm)ω where mm−1 ∈ H is called a right
ω-coset of H. Let XH denote the set of right ω-cosets of H. If (Hn)ω ∈ XH and m ∈ M,
define an action by (Hn)ωm = (Hnm)ω if (Hnm)ω ∈ XH and undefined otherwise. This
defines a transitive action of M (on the right) on XH . Conversely, if M acts transitively
on Q, then this action is equivalent in the obvious sense to the action of M on the
right ω-cosets of Stab(q) in M for any q ∈ Q. See [14] or [12] for details. Dually, left
ω-cosets of H in M (sets of the form (mH)ω where m−1m ∈ H) arise in connection with
left actions of M by partial one-to-one maps on some set.
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Figure 2.

If M is generated as an inverse monoid by a set X and H is a closed inverse
submonoid of M then the graph of right ω-cosets of H in M is the graph with vertices
the set XH of right ω-cosets of H in M and with an edge labeled by x ∈ X ∪ X−1 from
(Hm)ω to (Hmx)ω if mm−1,mxx−1m−1 ∈ H.

It is well known that free inverse monoids exist. We will denote the free inverse
monoid on a set X by FIM(X). The structure of free inverse monoids on one generator
was determined by Gluskin [2]. The structure of free inverse monoids in general was
determined much later independently by Scheiblich [13] and Munn [11]. Scheiblich’s
description for elements of FIM(X) is in terms of rooted Schreier subsets of the free
group FG(X), while Munn’s description is in terms of birooted edge-labeled trees.
Scheiblich’s description provides an important example of a McAlister triple, in the
spirit of the McAlister P-theorem [8], while Munn’s description lends itself most
directly to a solution to the word problem for FIM(X). It is not difficult to see the
equivalence of the two descriptions.

A variation on Scheiblich’s approach is provided in Lawson’s book [5]. The version
below is a slight variation on Munn’s approach, the essential difference being that for
some purposes it is somewhat more convenient to regard Munn’s birooted trees as
subtrees of the Cayley graph of the free group FG(X), with the initial root identified
with the vertex 1 in the Cayley graph.

Denote by Γ(X) the Cayley graph of the free group FG(X) with respect to the
usual presentation, FG(X) = Gp〈X : ∅〉. Thus Γ(X) is an infinite tree whose vertices
correspond to the elements of FG(X) (in reduced form) and with a directed edge
labeled by x ∈ X from g to gx (and an inverse edge labeled by x−1 from gx to g).
For each word w ∈ (X ∪ X−1)∗, denote by MT(w) the finite subtree of the tree Γ(X)
obtained by reading the word w as the label of a path in Γ(X), starting at 1. Thus, for
example, if w = aa−1bb−1ba−1abb−1, then MT(w) is the tree pictured in Figure 2.

One may view MT(w) as a birooted tree, with initial root 1 and terminal root
r(w), the reduced form of the word w in the usual group-theoretic sense. Munn’s
solution [11] to the word problem in FIM(X) may be stated in the following form.

Theorem 3.1. If u, v ∈ (X ∪ X−1)∗, then u = v in FIM(X) if and only if MT(u) = MT(v)
and r(u) = r(v).
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Thus elements of FIM(X) may be viewed as pairs (MT(w), r(w)) (or as birooted
edge-labeled trees, which was the way that Munn described his results). Multiplication
in FIM(X) is performed as follows. If u, v ∈ (X ∪ X−1)∗, then MT(uv) = MT(u) ∪
r(u).MT(v) (just translate MT(v) so that its initial root coincides with the terminal root
of MT(u) and take the union of MT(u) and the translated copy of MT(v): the terminal
root is of course r(uv)). The idempotents of FIM(X) are the Dyck words, that is the
words w whose reduced form is 1: two Dyck words represent the same idempotent of
FIM(X) if and only if they have the same Munn tree. Munn’s approach has been greatly
extended by Stephen [17] to a general theory of presentations of inverse monoids by
generators and relations.

In their paper [7], Margolis and Meakin studied closed inverse submonoids of
free inverse monoids and showed how they could be used to classify immersions
between connected graphs. In particular, they showed that closed inverse submonoids
of free inverse monoids have surprisingly nice finiteness properties, and they may be
constructed from free actions of groups on trees. A closed inverse submonoid of a free
inverse monoid is not necessarily a free inverse monoid, but it admits an idempotent
pure morphism onto a free inverse monoid. We briefly recall some of the results from
the paper [7] that are relevant for our current purposes.

Recall that an inverse category C is a category with the property that for each
morphism p there is a unique morphism p−1 such that p = pp−1 p and p−1 = p−1 pp−1.

The loop monoid of such a category at the vertex (object) v is the set L(C, v) = {p : p
is a morphism in C from v to v}. Then L(C, v) is an inverse monoid. Let Γ be a
(connected) graph. Recall from [7] that the free inverse category FIC(Γ) on Γ is the
quotient of the free category FC(Γ) on Γ by the category congruence ∼i induced by
all relations of the form p = pp−1 p and pp−1qq−1 = qq−1 pp−1 if α(p) = α(q) for paths
p, q in Γ. Denote the ∼i-class of p by [[p]]. Then FIC(Γ) is an inverse category. Of
course if Γ = BX then FIC(Γ) = FIM(X).

The loop monoid of FIC(Γ) at the vertex v of Γ is

L(Γ, v) = {[[p]] : p is a circuit in Γ based at v}.

If Γ is labeled over X ∪ X−1 consistent with an immersion into BX it follows that if
p ∼i q for paths p, q in Γ, then `(p) and `(q) are equal in FIM(X). So we will view
labels of paths in Γ as elements of FIM(X) throughout the sequel. We note that FIM(X)
acts on Γ0 in a natural way (namely, w ∈ FIM(X) acts on v1 and takes v1 to v2 if there is
a path labeled by w from v1 to v2). Then L(Γ, v) is the stabilizer of v under this action,
so each loop monoid is a closed inverse submonoid of FIM(X). See [7, Proposition 4.3]
for details.

Recall that two closed inverse submonoids H and K of an inverse monoid M are
said to be conjugate (written H ≈ K) if there exists m ∈ M such that mHm−1 ⊆ K
and m−1Km ⊆ H. Conjugation is an equivalence relation on the set of closed
inverse submonoids of M. However, we caution that, unlike the situation in group
theory, conjugate closed inverse submonoids of inverse monoids are not necessarily
isomorphic. For example, the subsets {1, aa−1, a2a−2} and {1, aa−1, a−1a, aa−2a} of
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FIM({a}) are conjugate closed inverse submonoids of FIM({a}) that are clearly not
isomorphic.

Immersions of connected graphs over BX are classified via conjugacy classes of
closed inverse submonoids of FIM(X) as indicated in the following theorem [7,
Theorem 4.4].

Theorem 3.2. Let Γ be a connected graph with edges labeled over X ∪ X−1 consistent
with an immersion into BX . Then each loop monoid is a closed inverse submonoid
of FIM(X) and the set of all loop monoids L(Γ, v) for v a vertex of Γ is a conjugacy
class of the set of closed inverse submonoids of FIM(X). Conversely, if H is any closed
inverse submonoid of a free inverse monoid FIM(X) then there exist some graph Γ and
an immersion f : Γ→ BX such that H is a loop monoid of FIC(Γ). Furthermore, Γ is
unique (up to graph isomorphism) and f is unique (up to equivalence).

The results of this theorem can be extended somewhat to obtain a classification
of immersions over arbitrary graphs, as indicated in the following theorem [7,
Theorem 4.5]. This theorem may be viewed as the analogue for graph immersions
of the classification theorem for graph covers (Theorem 2.6 above).

Theorem 3.3. Let f : ∆→ Γ be an immersion of connected graphs where ∆ and Γ

are edge-labeled over X ∪ X−1 consistent with immersions into BX . If v is a vertex of
Γ and v1 ∈ f −1(v) then f induces an embedding of L(∆, v1) into L(Γ, v). Conversely,
let Γ be a graph edge-labeled over X ∪ X−1 as usual and let H be a closed inverse
submonoid of FIM(X) so that H ⊆ L(Γ, v) for some vertex v in Γ. Then there exist
a graph ∆, an immersion f : ∆→ Γ and a vertex v1 in ∆ such that f (v1) = v and
f (L(∆, v1)) = H. Furthermore, ∆ is unique (up to graph isomorphism) and f is
unique (up to equivalence). If H, K are two closed inverse submonoids of FIM(X)
with H,K ⊆ L(Γ, v), then the corresponding immersions f : ∆→ Γ and g : ∆′ → Γ are
equivalent if and only if H ≈ K in FIM(X).

Remark 3.4. From the proof of Theorem 3.3 in [7], it follows that the graph ∆

constructed in this theorem is the graph of right ω-cosets of H in FIM(X).

Theorems 3.2 and 3.3 have been extended to classify immersions between
two-dimensional CW-complexes and more generally between finite-dimensional ∆-
complexes in the papers by Meakin and Szakács [9, 10]. In these more general cases
it is necessary to construct closed inverse submonoids of certain inverse monoids
presented by generators and relations associated with the complexes.

We close this section with a result about normalizers of closed inverse submonoids
of inverse monoids. Part (a) of Proposition 3.5 below was observed in a paper by
Lawson, Margolis and Steinberg [6, Lemma 2.10], but as far as we know the other
parts of the proposition are new. This result will be needed in the construction of the
group of deck transformations of a graph immersion later in this paper.

Let H be a closed inverse submonoid of an inverse monoid M. Define the normalizer
N(H) of H in M to be the set

N(H) = {a ∈ M : aHa−1, a−1Ha ⊆ H},
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Proposition 3.5. Let H be a closed inverse submonoid of an inverse monoid M. Then:

(a) N(H) is a closed inverse submonoid of M and H is a full inverse submonoid of
N(H) (that is, H contains all of the idempotents of N(H));

(b) if a ∈ N(H) then the right ω-coset (Ha)ω and the left ω-coset (aH)ω both exist
and (Ha)ω = (aH)ω;

(c) the relation ρH on N(H) defined by a ρH c if and only if (Ha)ω = (Hc)ω is a
congruence on N(H) and N(H)/ρH is a group with operation (Ha)ω.(Hb)ω =

(Hab)ω.

Proof. (a) It is clear that a−1 ∈ N(H) if a ∈ N(H) and also that N(H) contains the
identity of M. Also if a, b ∈ N(H) then (ab)−1H(ab) = b−1a−1Hab ⊆ b−1Hb ⊆ H, and
similarly (ab)H(ab)−1 ⊆ H. Thus ab ∈ N(H), so N(H) is an inverse submonoid of
FIM(X). If a ∈ N(H) and b ≥ a then a = be for some idempotent e ∈ M. Hence if h ∈ H
then beheb−1 = aha−1 ∈ H. Hence bhb−1 ∈ H since H is closed and bhb−1 ≥ beheb−1.
Thus bHb−1 ⊆ H; similarly, b−1Hb ⊆ H. Hence b ∈ N(H) and so N(H) is a closed
inverse submonoid of M. It is clear that H ⊆ N(H). If e is an idempotent of N(H), then
e = e1e−1 ∈ H since 1 ∈ H, so H is a full inverse submonoid of N(H).

(b) If a ∈ N(H) then aa−1, a−1a ∈ H since H has an identity, so both left and right
ω-cosets exist. Note that if a ∈ N(H) then aHa−1 ⊆ H and so a−1aHa−1a ⊆ a−1Ha ⊆ H,
so via conjugation by a we get aHa−1 = aa−1aHa−1aa−1 ⊆ aa−1Haa−1 ⊆ aHa−1. It
follows that aHa−1 = aa−1Haa−1 and so aHa−1a = aa−1Ha.

Let x ∈ (Ha)ω, so x ≥ ha, for some h ∈ H. Hence x ≥ aa−1ha = ah1a−1a for some
h1 ∈ H by the observation above. Since h2 = h1a−1a ∈ H and x ≥ ah2, it follows that
x ∈ (aH)ω. Hence (Ha)ω ⊆ (aH)ω. A similar argument shows the converse inclusion.

(c) If a ∈ N(H) then, by part (b), (Ha)ω exists and clearly a ∈ (Ha)ω. This shows
that ρH is a reflexive relation on N(H). Since ρH is obviously symmetric and transitive,
it is an equivalence relation on N(H). It is well known that (Ha)ω=(Hc)ω if and only
if ac−1 ∈ H (see, for example, [12, Lemma IV.4.5]). Suppose a ρH c and b ρH d, so that
(Ha)ω=(Hc)ω and (Hb)ω=(Hd)ω. Then ac−1, bd−1 ∈ H. We have abd−1c−1 ∈ aHc−1,
so abd−1c−1 = ahc−1, for some h ∈ H. But ah ∈ (aH)ω = (Ha)ω since a ∈ N(H), so
ah ≥ h1a for some h1 ∈ H. Hence abd−1c−1 ≥ h1ac−1 ∈ H and so abd−1c−1 ∈ H. Hence
(Hab)ω = (Hcd)ω, that is, ρH is a congruence on N(H).

The operation of congruence classes in N(H)/ρH is of course (Ha)ω.(Hb)ω =

(Hab)ω. Clearly H = (H1)ω is a right ω-coset. It follows that, by definition,
(H1)ω.(Ha)ω = (Ha)ω = (Ha)ω.(H1)ω, so H acts as an identity. Also, if a ∈ N(H),
then a−1 ∈ N(H) and (Ha)ω.(Ha−1)ω = (Haa−1)ω = H since aa−1 ∈ H. Similarly,
(Ha−1)ω.(Ha)ω = H, so N(H)/ρH is a group. �

We denote the group N(H)/ρH by N(H)/H and refer to it as the group of ω-cosets
of H in N(H).
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4. The group of deck transformations

Throughout this section f : Γ̃→ Γ is an immersion of connected graphs, v0 is a
fixed basepoint in Γ, ṽ0 ∈ f −1(v0) is a fixed basepoint in Γ̃ and H = f (L(Γ̃, ṽ0)), a closed
inverse submonoid of L(Γ, v0).

A partial isomorphism of Γ̃ is a (labeled graph) isomorphism φ : ∆1 → ∆2 between
subgraphs ∆1 and ∆2 of Γ̃ that respects the immersion, that is, f (ṽ) = f (φ(ṽ)) for all
vertices ṽ in ∆1. It follows that f (ẽ) = f (φ(ẽ)) for all edges ẽ in ∆1. It is convenient
to also consider the empty map from ∅ to ∅ as a partial isomorphism: this is denoted
by 0. We denote the set of partial isomorphisms of Γ̃ by PI(Γ̃). Partial isomorphisms
may be composed in the usual way. Namely, if φ1 : ∆1 → ∆2 and φ2 : ∆3 → ∆4 are
partial isomorphisms, then φ2 ◦ φ1 is the corresponding partial isomorphism from
φ−1

1 (∆2 ∩ ∆3) to φ2(∆2 ∩ ∆3) defined by (φ2 ◦ φ1)(ẽ) = φ2(φ1(ẽ)) for all vertices and
edges ẽ ∈ φ−1

1 (∆2 ∩ ∆3).

Proposition 4.1. With respect to the multiplication above, PI(Γ̃) is an inverse
monoid. The idempotents of PI(Γ̃) are the identity automorphisms on subgraphs of
Γ̃ and the corresponding maximal subgroups are isomorphic to the group of deck
transformations of the subgraph. In particular, the group of units of PI(Γ̃) is the group
G(Γ̃) of deck transformations of Γ̃. The natural partial order on Γ̃ is defined by φ1 ≤ φ2
if the domain of φ1 is a subgraph of the domain of φ2 and φ1 is the restriction of φ2 to
the domain of φ1.

Proof. The proof that PI(Γ̃) is an inverse semigroup that has the stated properties is
a standard routine argument similar to the proof of the corresponding properties for
S IM(X). For example, the identity of PI(Γ̃) is clearly the identity automorphism of
Γ̃. A partial isomorphism φ : ∆1 → ∆2 is in the group of units of PI(Γ̃) if and only if
∆1 = ∆2 = Γ̃, so it follows that the group of units is G(Γ̃). �

If ∆ is a connected subgraph of Γ̃ and ṽ is a vertex of ∆, then we define H(∆, ṽ) =

f (L(∆, ṽ)). By Theorem 3.3 this is a closed inverse submonoid of FIM(X) that is
contained in L(Γ, v) where v = f (ṽ). In particular, if ṽ0 ∈ ∆, then H(∆, ṽ0) ≤ H =

H(Γ̃, ṽ0).

Lemma 4.2. Let ∆1 and ∆2 be connected subgraphs of Γ̃ containing vertices ṽ1 and ṽ2,
respectively. Then there is a partial isomorphism from ∆1 onto ∆2 that maps ṽ1 onto ṽ2
if and only if H(∆1, ṽ1) = H(∆2, ṽ2).

Proof. By Proposition 2.2 a partial isomorphism φ from ∆1 onto ∆2 that maps ṽ1
onto ṽ2 induces a label-preserving bijection from paths in ∆1 that start at ṽ1 to paths
in ∆2 that start at ṽ2 and maps circuits to circuits. This bijection also maps ∼i-
equivalent paths to ∼i-equivalent paths, so it induces an isomorphism from L(∆1, ṽ1)
onto L(∆2, ṽ2). Also f (ṽ1) = f (ṽ2). Denote this vertex of Γ by v. Since L(∆i, ṽi) �
H(∆i, ṽi) by Theorem 3.3, this means that there is a labeled graph isomorphism from
H(∆1, ṽ1) onto H(∆2, ṽ2) that fixes v. But this implies that H(∆1, ṽ1) = H(∆2, ṽ2) since
the labeling of edges in Γ is consistent with an immersion into BX .
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Conversely, suppose that H(∆1, ṽ1) = H(∆2, ṽ2). Let q̃1 be a path in ∆1 starting at
ṽ1 and let q be its projection into Γ. Then q̃1q̃−1

1 ∈ L(∆1, ṽ1), so qq−1 ∈ H(∆1, ṽ1) =

H(∆2, ṽ2), so qq−1 lifts to a path q̃2q̃−1
2 with q̃2q̃−1

2 ∈ L(∆2, ṽ2). Hence q lifts to the
path q̃2 in ∆2 starting at ṽ2. Clearly `(q̃1) = `(q̃2) = `(q). Dually, if q̃2 is a path in
∆2 starting at ṽ2 then there is a corresponding path q̃1 in ∆1 starting at q̃1. The
correspondence q̃1 ↔ q̃2 is one-to-one by equality of labels on these paths. Since it
also maps circuits to circuits, it induces an isomorphism from ∆1 onto ∆2 that maps ṽ1

onto ṽ2 by Proposition 2.2. �

If v is a vertex in the connected graph Γ and H is a closed inverse submonoid of
L(Γ, v), then we denote by N(H, v) the normalizer of H in L(Γ, v), that is, N(H, v) =

{p ∈ L(Γ, v) : pHp−1, p−1Hp ⊆ H}.

Lemma 4.3. Let f : Γ̃→ Γ be an immersion between connected graphs, v0 a vertex of
Γ, ṽ0 ∈ f −1(v0) and H = f (L(Γ̃, ṽ0)). Then:

(a) If there is a deck transformation that maps ṽ0 to ṽ1, then any path p̃ from ṽ0 to ṽ1

projects onto a path p ∈ N(H, v0).
(b) Each path p ∈ N(H, v0) lifts to a path p̃ in Γ̃ starting at ṽ0.
(c) Each path p ∈ N(H, v0) determines a deck transformation φp of Γ̃ that maps ṽ0

to ω(p̃) ∈ f −1(v0). Furthermore, if q is another element of N(H, ṽ0), then φp = φq

if and only if ω(p̃) = ω(q̃).

Proof. (a) Suppose there is a deck transformation that maps ṽ0 to ṽ1 and p̃ is
a path from ṽ0 to ṽ1. Then p̃L(Γ̃, ṽ1)p̃−1 ⊆ L(Γ̃, ṽ0) and p̃−1L(Γ̃, ṽ0)p̃ ⊆ L(Γ̃, ṽ1).
Since f (L(Γ̃, ṽ1)) = f (L(Γ̃, ṽ0)) = H by Lemma 4.2, this implies that pHp−1 ⊆ H and
p−1Hp ⊆ H, so p ∈ N(H, v0).

(b) Let p ∈ N(H, v0). Since pp−1 ∈ H and every circuit in H based at v0 lifts to a
circuit in Γ̃ based at ṽ0, it follows that pp−1 lifts to a circuit which has the same label as
pp−1 based at ṽ0. By uniqueness of a path starting at ṽ0 with a given label, this circuit
must be of the form p̃ p̃−1 for some lift p̃ of the path p starting at ṽ0.

(c) Let p and p̃ be as in part (b) above, denote ω(p̃) by ṽ1 and let H1 = f (L(Γ̃, ṽ1)).
If h ∈ H, then php−1 ∈ H since p ∈ N(H, v0). This lifts to a circuit p̃h̃1 p̃−1 based at ṽ0

since every circuit in H lifts to a circuit in Γ̃ based at ṽ0. This forces h̃1 to be a circuit
in Γ̃ based at ṽ1 and with the same label as h, and so h = f (h̃1) ∈ H1. Hence H ⊆ H1.

Conversely, suppose that h ∈ H1. Then h lifts to a circuit h̃1 in Γ̃ based at ṽ1.
So p̃h̃1 p̃−1 ∈ L(Γ̃, ṽ0), and so php−1 ∈ H. It follows that p−1 php−1 p ∈ H since p ∈
N(H, v0), so this lifts to a circuit of the form p̃−1 p̃h̃ p̃−1 p̃ based at ṽ0 for some path h̃
with the same label as h. This path h̃ must be a circuit based at ṽ0, and so f (h̃) = h ∈ H.
Hence H1 ⊆ H and so H1 = H. By Lemma 4.2 this implies that there is a deck
transformation φp of Γ̃ that maps ṽ0 onto ṽ1. The last statement of part (c) of the
lemma is immediate since automorphisms of an edge-labeled graph are determined by
where they send a point. �

The following theorem provides an analogue for graph immersions of Theorem 2.7.
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Theorem 4.4. Let f : Γ̃→ Γ be an immersion of connected graphs with ṽ0 ∈ f −1(v0)
and H = f (L(Γ̃, ṽ0)). Then G(Γ̃) � N(H, v0)/H.

Proof. Define r : N(H, v0)→ G(Γ̃) by r(p) = φp in the notation of Lemma 4.3. If
p, q ∈ N(H, v0), then by Proposition 2.2 the deck transformation φp maps ω(q̃) to
ω(q̃1) where q̃1 is a path starting at ω(p̃) with `(q̃1) = `(q̃). So φpq(ṽ0) = ω(p̃q̃1) =

ω(q̃1) = φp(ω(q̃)) = φp(φq(ṽ0)), and so φpq = φp ◦ φq. Hence r is a homomorphism.
It is surjective by Lemma 4.3. Now Γ̃ is identified with the graph of right ω-cosets
of H in FIM(X), and under this identification a vertex ṽ of Γ̃ is identified with the
right ω-coset (Hp)ω where p lifts to a path p̃ in Γ̃ starting at ṽ0 and ending at ṽ. By
Lemma 4.3, φp = φq if and only if ω(p̃) = ω(q̃), so the kernel of the map r coincides
with the equivalence relation ρH that identifies p and q if (Hp)ω = (Hq)ω. It follows
that G(Γ̃) � N(H, v0)/H. �

5. Covers

In this section we characterize covers of graphs in terms of the concepts introduced
earlier. A result related to part (a) of the following theorem was obtained by Meakin
and Szakács [9] in the more general context of immersions between 2-complexes.

Theorem 5.1. Let f : Γ̃→ Γ be an immersion of connected graphs. Choose basepoints
v0 ∈ Γ and ṽ0 ∈ Γ̃ such that ṽ0 ∈ f −1(v0) and let H = f (L(Γ̃, ṽ0)). Then:

(a) Γ̃ is a cover of Γ if and only if H is a full inverse submonoid of L(Γ, v0).
(b) Γ̃ is a normal cover of Γ if and only if N(H, v0) = L(Γ, v0).
(c) Γ̃ is the universal cover of Γ if and only if H consists of the idempotents in

L(Γ, v0), that is, H = {p ∈ L(Γ, v0) : `(p) is a Dyck word}.

Proof. (a) Suppose that Γ̃ is a cover of graphs. Then every path p in Γ that starts at
v0 lifts to a (unique) path p̃ starting at ṽ0 by Proposition 2.3. In particular, if e is an
idempotent of L(Γ, v0), then `(e) is a Dyck word since the only idempotents in FIC(Γ̃)
are Dyck words, so `(ẽ) is a path starting at ṽ0 whose label is a Dyck word. This forces
ẽ to be a circuit at ṽ0, so e = f (ẽ) ∈ H. Hence H is full in L(Γ, v0). Conversely, suppose
that H is full in L(Γ, v0). Let v1 be any vertex in Γ and ṽ1 any vertex in f −1(v1) and let p
be a path in Γ starting at v1. There is a path q̃ in Γ̃ from ṽ0 to ṽ1 and the projection of this
path is a path q in Γ from v0 to v1. Then qpp−1q−1 is an idempotent in L(Γ, v0) so it is
in H and hence it lifts to a path q̃1 p̃1 p̃−1

1 q̃−1
1 in Γ̃ starting at ṽ0. Since `(q̃1) = `(q) = `(q̃)

we must have q̃1 = q̃. Hence ω(q̃1) = ṽ1, and so p̃1 is a lift of p that starts at ṽ1. Hence
all paths in Γ lift everywhere, so Γ̃ is a cover of Γ by Proposition 2.3.

(b) Suppose that Γ̃ is a normal cover of Γ and v0 ∈ Γ. Then for all vertices
ṽ0, ṽ1 ∈ f −1(v0) there is a (unique) deck transformation φ mapping ṽ0 onto ṽ1. If
p ∈ L(Γ, v0) then pp−1 is an idempotent in L(Γ, v0) so pp−1 ∈ H by part (a). Hence
pp−1 lifts to a path p̃ p̃−1 at ṽ0 and so p lifts to the path p̃ from ṽ0 to some vertex ṽ1.
Since there is a deck transformation φ that maps ṽ0 onto ṽ1, part (a) of Lemma 4.3
implies that p ∈ N(H, v0). Hence L(Γ, v0) ⊆ N(H, v0) and so L(Γ, v0) = N(H, v0).
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Conversely, suppose that L(Γ, v0) = N(H, v0) and e is an idempotent in L(Γ, v0).
Then e ∈ N(H, v0). But H is full in N(H, v0) by Proposition 3.5, so e ∈ H. Hence Γ̃

is a cover of Γ by part (a). Now let ṽ0, ṽ1 ∈ f −1(v0). There is some path r̃ from ṽ0

to ṽ1 that projects to a path r ∈ L(Γ, v0) = N(Γ, v0). So by Lemma 4.3 there is a deck
transformation that maps ṽ0 to ṽ1, and so Γ̃ is a normal cover of Γ.

(c) Suppose that Γ̃ is the universal cover of Γ. Then Γ̃ is a tree, so the label of any
circuit p̃ in Γ̃ based at any point is a Dyck word. Such circuits project onto circuits in
Γ whose label is also a Dyck word, so H consists just of idempotents in L(Γ, v0). On
the other hand, if e is an idempotent in L(Γ, v0) then `(e) is a Dyck word (since any
idempotent in FIC(Γ) is a path whose label is a Dyck word). Since e lifts to a path ẽ
based at ṽ0 and since `(ẽ) is a Dyck word, ẽ is a circuit based at ṽ0, so f (ẽ) = e ∈ H.
Hence H consists exactly of all the Dyck words in L(Γ, v0). Conversely, if H consists
of these idempotents, then H is full in L(Γ, v0), so Γ̃ is a cover of Γ by part (a). By
definition of H, any circuit in Γ̃ based at ṽ0 projects onto a circuit in H based at v0, so
its label must be a Dyck word. It follows that Γ̃ is a tree. Hence Γ̃ is the universal cover
of Γ. �

6. Actions of groups on graphs

By an action of a group G on a graph Γ we mean a homomorphism φ : G→ Aut(Γ)
of G into the group of (labeled graph) automorphisms of Γ. Here we adopt the
convention that the action is a left action and denote the image under φ(g) of the vertex
v (or edge e) by g.v (respectively, g.e). If f : Γ̃→ Γ is an immersion between connected
graphs then there is an obvious action of the group G(Γ̃) on Γ̃. The following fact is well
known for covers of connected graphs, but also holds for immersions (with essentially
the same proof).

Proposition 6.1. If f : Γ̃→ Γ is an immersion of connected graphs with group G =

G(Γ̃) of deck transformations, then the quotient map g : Γ̃→ Γ̃/G is a normal covering
and G is the group of deck transformations of this cover.

Proof. If γ is a deck transformation of the immersion f then, by Proposition 2.1, γ
is uniquely determined by the image of any vertex in Γ, and it follows that if v is a
vertex and e is a edge of Γ and γ is not the identity automorphism of Γ, then γ(v) , v
and γ(e) , e. From this it follows that the action of G on Γ̃ satisfies condition (∗) on
page 72 of Hatcher [3] and so the result follows by [3, Proposition 1.40]. �

Example 6.2. The graph Γ̃ in Figure 3 has four vertices v1, v2, v3 and v4 and six
positively labeled edges. It immerses in the obvious way into the bouquet B{a,b} of
two circles via the map f that preserves edge labels.

Let e1 be the directed edge from v1 to v4 with label a; e2 the directed edge from v2

to v3 with label a; e3 the directed edge from v3 to v2 with label a; e4 the directed edge
from v4 to v1 with label a; e5 the directed edge from v1 to v2 with label b; and e6 the
directed edge from v4 to v3 with label b.
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Figure 3.

The stabilizer of the vertex v1 under the action by FIM(a, b) is the closed inverse
submonoid H of FIM(a, b) generated by the elements ba2b−1, aba−1b−1 and bab−1a.
The graph Γ̃ is the graph of right ω-cosets of H in FIM(a, b). The distinct right ω-
cosets of H are of course H, (Hb)ω, (Hba)ω and (Ha)ω, and they may be identified
with the four vertices v1, v2, v3 and v4, respectively.

The map that interchanges e1 and e4, interchanges e2 and e3, and interchanges e5
and e6 defines a deck transformation γ of the immersion f that interchanges v1 with v4
and v2 with v3. This is the only nontrivial deck transformation, so the group G = G(Γ̃)
is isomorphic to the cyclic group Z2 of order 2. Note that the only right ω-coset of H
that lies in N(H) is (Ha)ω, so N(H)/H = {H, (Ha)ω} is isomorphic to Z2 in accord with
Theorem 4.4.

The group G = Z2 acts on Γ̃ in the obvious way and the quotient graph Γ = Γ̃/G
is the graph with two vertices w1,w2 and one positively oriented edge from w1 to w2
with label b, as depicted in Figure 3. Clearly the map g from Γ̃ to Γ that preserves edge
labels is a normal cover of Γ = Γ̃/G, in accord with Proposition 6.1. �

7. Extending immersions to covers

Theorem 7.1. Let f : Γ̃→ Γ be an immersion of connected graphs. Then there is a
graph cover g : ∆̃→ Γ such that:

https://doi.org/10.1017/S1446788720000087 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788720000087


54 C. Groothuis and J. Meakin [18]

(a) Γ̃ is a subgraph of ∆̃ and f is the restriction of g to Γ̃; and
(b) any deck transformation of Γ̃ is the restriction of some deck transformation of ∆̃.

Proof. (a) If f : Γ̃→ Γ is a cover of graphs there is nothing to prove, so assume that
this is not the case. Let the edges of Γ and Γ̃ be labeled over a set X ∪ X−1 consistent
with an immersion into BX as usual. Then there is a vertex ṽ of Γ̃ for which there is
an edge e in Γ with f (ṽ) = α(e) such that e does not lift to any edge in Γ̃ starting at
ṽ. If `(e) = x ∈ X ∪ X−1 then there is no edge with label x starting at ṽ. We refer to
such a vertex as an incomplete vertex of Γ̃ and say that ṽ is missing an edge labeled
by x. Enlarge the graph Γ̃ by adding a new vertex ṽx and a new edge ẽx from ṽ to ṽx

for each incomplete vertex ṽ of Γ̃ that is missing an edge labeled by x. Since distinct
edges starting at f (ṽ) have distinct labels, the new vertices and edges that we added to
Γ̃ are all distinct. Clearly the graph ∆̃1 immerses into Γ via the map that preserves edge
labeling. Then apply the same process to ∆1, adding new edges as necessary at any
incomplete vertices, to form the graph ∆2. Continue in this fashion to build a sequence
of graphs Γ̃ ⊆ ∆̃1 ⊆ ∆̃2 ⊆ · · · by adding new vertices and edges to the previous graph
at any incomplete vertices. Let ∆̃ be the union of the graphs ∆̃i as i ranges from 1 to
∞. The graph ∆̃ is obtained from Γ̃ by adding (possibly infinite) trees to incomplete
vertices of Γ̃. Then the map g : ∆̃→ Γ that extends f and maps paths in ∆̃ \ Γ̃ to their
obvious images in Γ is a covering map since ∆̃ has no incomplete vertices.

(b) Suppose now that γ is a deck transformation of the immersion f : Γ̃→ Γ that
takes a vertex ṽ to a vertex ṽ1. Any path p̃ in ∆̃ starting at ṽ factors in the form
p̃ = p̃1q̃1 p̃2q̃2 · · · p̃nq̃n, where p̃1 p̃2 · · · p̃n is a path in Γ̃ and the q̃i are circuits in the
forest ∆̃ \ Γ̃ based at ω(p̃i) for i = 1, . . . , n − 1 and q̃n is a path in ∆̃ \ Γ̃ starting at
ω(p̃n). By Proposition 2.2, there is a path p̃′1 in Γ̃ starting at ṽ1 with `(p̃′1) = `(p̃1).
Also by the same proposition, there is an edge ẽ in Γ̃ starting at ω(p̃1) with label x if
and only if there is an edge ẽ′ in Γ̃ starting at ω(p̃′) with the same label. It follows
that there is a path of the form q̃′1 in ∆̃ \ Γ̃ with `(q̃′1) = `(q̃1), α(q̃′1) = ω(p̃′1), and q̃′i
is a circuit if and only if q̃i is a circuit. Continuing in this fashion, we see that there
is a path p̃′ = p̃′1q̃′1 p̃′2q̃′2 · · · p̃

′
nq̃′n with `(p̃′) = `(p̃). Furthermore, p̃′ is a circuit if and

only if p̃ is a circuit, since ω(p̃′) = γ(ω(p̃)). Hence by Proposition 2.2 there is a deck
transformation γ̃ of ∆̃ that takes ṽ to ṽ1. The bijection γ̃ extends γ and maps a path
in ∆̃ \ Γ̃ starting at an incomplete vertex w̃ to the path with the same label starting at
γ(w̃). �

We remark that it is not clear that it is possible to extend finite immersions between
graphs to finite covers in such a way that deck transformations of the immersion are
restrictions of deck transformations of the cover.
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