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Abstract

The grain-size distribution (GSD) of sediments provides information on sediment provenance, transport processes, and the
sedimentary environment. Although a wide range of statistical parameters have been applied to summarize GSDs, most
are directed at only parts of the distribution, which limits the amount of environmental information that can be retrieved.
Endmember modeling provides a flexible method for unmixing GSDs; however, the calculation of the exact number of
endmembers and geologically meaningful endmember spectra remain unresolved using existing modeling methods. Here
we present the methodology hierarchical clustering endmember modeling analysis (CEMMA) for unmixing the GSDs of
sediments. Within the CEMMA framework, the number of endmembers can be inferred from agglomeration coefficients,
and the grain-size spectra of endmembers are defined on the basis of the average distance between the samples in the
clusters. After objectively defining grain-size endmembers, we use a least squares algorithm to calculate the fractions of
each GSD endmember that contributes to individual samples. To test the CEMMA method, we use a grain-size data set
from a sediment core from Wulungu Lake in the Junggar Basin in China, and find that application of the CEMMA
methodology yields geologically and mathematically meaningful results. We conclude that CEMMA is a rapid and
flexible approach for analyzing the GSDs of sediments.
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INTRODUCTION

Grain-size distributions (GSDs) are one of the most widely
used proxies in paleoenvironmental and paleoclimatological
investigations of sedimentary deposits, as they provide
information on sediment source, depositional processes, and
the sedimentary environment (Visher, 1969; Ghosh and
Mazumder, 1981; Qiang et al., 2007; He et al., 2015).
Statistical parameters such as the mean, median, standard,
deviation, kurtosis, and skewness have been used to
characterize GSDs and to infer variations in hydrodynamic
conditions, eolian activity, and sediment source (Inman,
1952; Blott and Pye, 2001; Fournier et al., 2014). In addition
to these summary statistics, approaches to the decomposition

of grain-size frequency distributions into components include
graphic methods (e.g., CM patterns, where C the one
percentile and M the median diameter) (Passega, 1964),
analytic methods (Court, 1949; Clark, 1976), and numerical
methods (Clark, 1976). A more recent analytic approach is
the standard deviation method, which is used for classifying
the GSD to determine the most environmentally sensitive
components (Boulay et al., 2003). However, these appro-
aches are generally based on the analysis of one percentile-
median diameter part of, rather than the entire, GSD.
Several methods have been developed for mathematical

unmixing of complete GSDs, such as curve fitting (Sun et al.,
2002; Paterson and Heslop, 2015), eigenspace analysis
(Weltje, 1997; Weltje and Prins, 2003; Dietze et al., 2012),
and a recently developed Bayesian method (Yu et al., 2015).
These methods have proved effective in extracting informa-
tion on provenance, transport processes, and the depositional
environment of sediments; however, all of these methods
have deficiencies. As discussed by Weltje and Prins (2007),
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the curve-fitting method is based solely on the fitting of
a series of empirical curves to the GSD and ignores their
geologic context. Eigenspace analysis may produce uneven
spectra because of the transformation and communality of
grain-size compositional data, which makes interpretation
difficult and confusing (Yu et al., 2015). The Bayesian
method, because of the large number of iterations needed,
may require a large amount of computation time if the data set
is very large; furthermore, low-probability distributions may
be ignored even though they may potentially be important.
Cluster analysis is a genetic type of multivariate statistical

analysis and has been widely applied in statistics, mathe-
matics, computer science, economics, and biology. Cluster
analysis applied to sedimentary grain-size data is usually
used for stratigraphic subdivision or to determine the sources
of sediments (Donato et al., 2009; Grimm et al., 2011; Liu
et al., 2017). However, most of the studies have only
employed the method to group a limited number of GSD
parameters, such as the mean and standard deviation, and few
studies have taken advantage of the entire distribution (Zhou
et al., 1991; Nelson et al., 2014; Ordóñez et al., 2016). In
addition, because of the problems of determining cluster
number and cluster centers, no prior study has used cluster
analysis for endmember modeling. Here we propose a new
endmember model for unmixing GSDs based on hierarchical
clustering endmember modeling analysis (CEMMA). Within
our new model, the number of endmembers is inferred based
on changes in agglomeration coefficients, and the spectra of
endmembers are determined from the average distance
between the samples in the clusters. Our proposed method
thus provides a new way to objectively determine the number
and spectrum of GSD endmembers that contribute to sedi-
ment, allowing us to unmix varying GSDs in time.

OVERVIEW OF ENDMEMBER MODELING
ANALYSIS

Endmember modeling of GSDs was first proposed by Weltje
(1997), who showed that the compositional variation among
a series of GSDs can be regarded as the result of the physical
mixing of a fixed number of endmembers. This relationship
can be expressed as a linear mixing model:

X =M �B + E: (Eq. 1)

In this model, matrix X(n×p) is the GSD data set in which
each row represents one observed GSD with p different
sizes that sum to 100%. Matrix M(n×q) represents the
proportional contributions of endmembers to each obser-
vation; B(q× p) is a matrix containing q endmembers, each of
which is a vector consisting of p elements; and E(n×p) repre-
sents the errors of the model. In order to accurately apply this
model, three issues must be addressed: the number of end-
members, the spectra of the endmembers, and the fractions of
the endmembers in each sample (Renner, 1991). These pro-
blems can be addressed by using endmember model analysis
based on hierarchical clustering (HC), described subsequently.

HIERARCHICAL CLUSTERING ENDMEMBER
MODELING ALGORITHM

The sediments accumulating within lake basins have a range
of provenances and are transported by various mechanisms.
Sediment accumulation integrates these sources and pro-
cesses, such that the GSD of a given sediment sample
represents a mixture of sediments that correspond to different
provenances and/or transport mechanisms. However, it can
be assumed that given a sufficiently long time series of GSDs,
there will be relatively brief intervals in which sediment
provenance and transport are sufficiently stable to produce
uniform GSDs that will represent those specific conditions.
Therefore, what is required is a method of determining GSDs
that represent those intervals.

The hierarchical clustering algorithm

The HC algorithm organizes data into a hierarchical structure
according to a proximity matrix. HC attempts to construct a
treelike nested structure that partitions original data and
builds a hierarchy of clusters (Xu and Wunsch, 2005). Two
major issues must be solved when using HC analysis. The
first is the similarity measure that can be used as a scalar
distance between different clusters, and the second is the
linkage method that orders the clusters to produce a unique
and meaningful solution (Johnson, 1967; Gruvaeus and
Wainer, 1972; Langfelder et al., 2008). In this study, we used
the average linkage as the linkage method between groups,
which is defined on the basis that the similarity between two
clusters is equal to the mean distance between elements of
each cluster (http://home.deib.polimi.it/matteucc/Clustering/
tutorial_html/hierarchical.html [accessed December 6, 2016]),
and the city-block distance, which is less influenced by very
large differences between just a few of the variables in high
dimensional vectors (Kaufman and Rousseeuw, 2009), is
used to quantify the similarity between GSDs. The city-block
distance between two GSDs (xi, xj) is expressed as follows:

d i;jð Þ=
Xp

k=1

xik � xjk
�� ��; (Eq. 2)

where d(i, j) is the distance between two GSDs xi and xj, p is the
number of size classes in each GSD, and d(i, j) expresses the
degree of difference between curves xi and xj. If observations
xi and xj are highly similar, d(i, j)will be small, whereas dij is large
if the distributions are highly dissimilar (Nelson et al., 2014).
The principal steps in calculating a hierarchical cluster,

after Johnson (1967), are as follows:
Step 1: Assign each GSD to be its own cluster, and

calculate the distance d(i, j) between all pairs of clusters using
the city-block distance (Eq. 2).
Step 2: Find the most similar pair of clusters in the initial

clustering and merge them into a new single cluster, desig-
nated pair rs, as follows:

d rsð Þ =min d i;jð Þ; (Eq. 3)

where d(rs) is the minimum d(i, j) of all distances of clusters.
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Step 3: Compute the distance between the new cluster and
the other clusters.
Step 4: Repeat steps 2 and 3 until all clusters are merged

into a single cluster.

Estimating the number of clusters

A major challenge in cluster analysis is determining the
optimal number of clusters. Many methods have been used,
including the gap statistic (Tibshirani et al., 2001), the
dynamic tree cut method (Langfelder et al., 2008), and the
density peak (Rodriguez and Laio, 2014). However, all of
these methods have inherent limitations, and few of them can
be used efficiently in the analysis of GSDs.
In the “bottom-up” hierarchical cluster analysis used here,

the agglomeration coefficient indicates the within-group
variance of two clusters combined at each successive stage
of the clustering and therefore provides a simple and objec-
tive means of determining the optimum stage for terminating
the clustering and the total number of clusters (Everitt et al.,
2011). This is because a large change in the agglomeration
coefficient between two stages of clustering indicates that
heterogeneous clusters are being combined, and the result has
a larger total variance. Thus, this approach can be used to
judge whether an optimal cluster solution has been achieved
(Hill et al., 1998). A significant change in the agglomeration
coefficient can be termed a “knee” (Salvador and Chan,
2004), which can be determined by calculating and graphing
the change in agglomeration coefficients as a function of the
stages in the cluster analysis (i.e., the total number of
clusters). Large changes in the agglomeration coefficient as a
function of the number of clusters will signify the merger of
dissimilar clusters and therefore indicate the optimum
number of clusters. As suggested by Salvador and Chan
(2004) and Chiu et al. (2001), there are two efficient ways to
find the “knee” of a curve. One is to look for the largest
magnitude difference between two adjacent points of the
change in the agglomeration coefficient; the other is to
calculate the jump in ratio change between two points. Here,
we use the first method to find the “knee” because it involves
little computation and easy operation.

Determining the unmixed grain-size distributions

The unmixed GSDs are defined as the most typical GSDs
in the data set that are representative of their clusters—in
other words, they have the maximum degree of similarity to
every GSD within their cluster. This is calculated to be
the GSD that produces the minimum average distance in
the clusters:

C qð Þ =min d q;ksð Þ; (Eq. 4)

where ks is a cluster in which all the GSDs can be assumed to
have been generated by similar depositional processes, and q
denotes the most representative GSDs, which have maximum
similarity to every GSD in cluster ks.

Fractions of each endmember within a sample

In the linear mixing model, if the number of endmembers and
their compositions can be determined accurately, the fraction
of each endmember contributing to each sample can be esti-
mated using standard least squares techniques (Weltje, 1997).
For compositional data (i.e., GSDs), the fraction of each
endmember in each sample should be nonnegative and sum
to 1, so that the fraction of each endmember can be calculated
by a nonnegative least squares algorithm and scaled to a
constant sum (Weltje and Prins, 2007), as follows:

Xq

k=1

mik = 1; (Eq. 5)

where mik is the proportional contribution of the end-
members to each observation, and q is the number of the
endmember. All of the mik values constitute the fractions
matrix M(n× q).

A CASE STUDY: THE SEDIMENTS OF
WULUNGU LAKE, JUNGGAR BASIN, CHINA

A GSD data set from the sediments of Wulungu Lake in the
Junggar Basin, China (Fig. 1), was used to test the CEMMA
method. Wulungu Lake is a hydrologically closed terminal
lake fed mainly by the Wulungu River. The sediments
studied are from a 7-m-long core (WLG11E) taken from the
central part of the lake (47°14.40′N, 87°13.10′E) in a water
depth of 18m. The sediments studied here accumulated
during Marine Oxygen Isotope Stage 3, between ~25,300
and 51,600 cal yr BP (Zhang et al., 2016). The core is mainly
composed of silty clay with occasional thin intercalated
layers of silt or gypsum. Five lithologic units can be defined
on the basis of sediment color and composition, as follows
(see Fig. 2): unit I (901–769 cm) is dominated by gray silty
clay; unit II (769–613 cm) consists of yellowish silty clay
(769–711 cm), gray silty clay (711–662 cm), and brown silty
clay (662–613 cm); unit III (613–400 cm) consists of
yellowish silty clay; unit IV (400–294 cm) consists of gray
silty clay (400–371 cm and 349–294 cm) and yellowish silty
clay with gypsum (371–349 cm); and unit V (294–193 cm)
consists mainly of brown silty clay.
A total of 373 samples were obtained at 2 to 3 cm intervals

from the core for grain-size analysis. The samples were pre-
treated with 10% H2O2 to remove organic matter and 10%
HCl to remove carbonates, rinsed with deionized water, and
then dispersed with 10mL of 0.05mol/L (NaPO3)6 in an
ultrasonic bath for 10 minutes. GSDs between 0.02 and
2000 μm were measured using a Malvern Mastersizer 2000
laser grain-size analyzer and assigned to 100 size classes. The
GSDs are relatively uniform (Fig. 3a), with most samples
possessing a modal grain size of around 11 μm (silt), whereas
a few samples have additional peaks at around 40 μm (coarse
silt) or between 300 and 800 μm (sand).
Applying the CEMMA method to the Wulungu Lake data,

the agglomeration coefficients show a large change at four
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clusters (the red dot in Fig. 4), which thus defines the “knee”
and indicates that the clustering should be terminated.
Therefore, four optimal endmembers can be inferred from the
CEMMA model in this example. The GSDs of the clustering
endmembers (CEMs) are illustrated in Figure 3c. CEM 1

exhibits a unimodal peak with a dominant mode at around
8 μm (very fine silt and coarse clay), CEM 2 exhibits a
symmetrical unimodal peak in the very fine silt range (mode
at 13 μm), CEM 3 is characterized by an asymmetrical
unimodal peak centered at around 40 μm (coarse silt), and

Figure 1. (a) Topography of the study area. The red dot indicates the location of Wulungu Lake. Gray-shaded areas are mountains
(elevation >4374m). Inset map shows the location of the study area within Asia, with trajectories of the major atmospheric circulation
systems indicated by red arrows and the modern Asian summer monsoon limit indicated by the red dashed line (after Chen et al., 2008,
2010). EASM, East Asian summer monsoon; ISM, Indian summer monsoon. (b) Bathymetry of Wulungu Lake (contours at 2m intervals)
with the location of core WLG11E indicated by the red dot (Wu et al., 2013). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Figure 2. (color online) Lithologic units, graphic lithology, and changes in sediment median size and endmember fractions (clustering
endmember [CEM] 1 to CEM 4) plotted against depth for core WLG11E.
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CEM 4 exhibits a bimodal structure with a dominant mode at
around 522 μm (sand) and a minor mode at around 8 μm (very
fine silt and coarse clay). The GSDs of three modern sedi-
ment samples are also plotted (Fig. 3b). Surface sediments
from the center of Wulungu Lake exhibit a unimodal dis-
tribution with a peak at around 10 μm, an eolian dust sample
trapped in the Wulungu Lake area exhibits a slightly bimodal
GSD with a dominant mode at around 58 μm and a minor
mode at around 6 μm (Liu et al., 2008), and sand from
Wulungu River exhibits an asymmetrical unimodal distribu-
tion with a peak at around 522 μm.

Changes in the fractions of endmembers versus depth are
plotted in Figure 2. The first endmember (CEM 1) is domi-
nant in brown silty clay, corresponding to lithologic unit V,
and has an average fractional abundance of 0.47. CEM 2
exhibits high values in gray silty clay (units I and IV, with
average values of 0.67 and 0.69, respectively). CEM 2 is also
relatively high in yellowish silty clay (units II and III, with
average values of 0.57 and 0.60, respectively). The third
endmember (CEM 3) exhibits relatively low values down
core (average of 0.15) and comparatively high values in
yellowish silty clay (average of 0.21). CEM 4 is only
recorded in a few layers with gray silt; it is represented in the
interval from 247–234 cm, with an average value of 0.32.

DISCUSSION

In the CEMMA results (Fig. 3), CEM 1 and CEM 2 exhibit a
similar GSD to surface sediments from the center of
Wulungu Lake but have slightly different modal grain-size
values of 8 and 13 μm, respectively. As indicated by the
lithologies corresponding to these endmembers, CEM 1 is
represented in brown silty clay and CEM 2 in gray silty clay.
According to the results of a previous study (Zhang et al.,
2016), gray silty clay contains relatively high feldspar (17%)
and low illite (35%), whereas brown silty clay has a high
concentration of illite (47%) and a low concentration of
feldspar (11%). Illite-rich sediments have been interpreted
as representing relatively dry conditions (Singer, 1984).
Together with the lithology, it can be inferred that CEM 1

Figure 3. (a) Grain-size distributions (GSDs) of samples from sediment core WLG11E from Wulungu Lake (light-gray lines), including
the maximum, minimum, and mean for each grain-size class. (b) GSD curves for surface sediment from the center of Wulungu Lake
(black curve), eolian dust trapped near the ground surface in Wulungu Lake area (blue curve) (after Liu et al., 2008), and sand from the
Wulungu River (magenta curve). (c) Results of clustering endmember modeling analysis for the sediments of core WLG11E from
Wulungu Lake: four clustering endmember (CEM) unmixed GSDs (colored lines) and clusters (light-gray lines). Inset image shows the
lithology of the relevant interval of the core. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Figure 4. Change of the agglomeration coefficient versus number
of clusters. The red dot is the “knee.” (For interpretation of the
references to color in this figure legend, the reader is referred to
the web version of this article.)
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reflects the hydrodynamic energy of a very shallow lake
environment, whereas CEM 2 reflects the hydrodynamic
energy of a deep lake environment. Comparison of the GSDs
of the CEM endmembers with those of modern samples
(Fig. 3) indicates that CEM 3 exhibits a similar GSD to the
eolian dust trapped in the Wulungu Lake area. Thus, this
GSD indicates eolian transport of a local dust source via
short-term suspension and saltation processes, probably by
local storms in winter and spring when near-surface turbulent
airflow prevails (Qin et al., 2005; Qiang et al., 2007; Yu et al.,
2015). CEM 4 has a similar distribution to a mixture of
lacustrine suspended sediment andWulungu River sediments
and therefore can be interpreted as indicating the strength of
the runoff into the lake.

To estimate the performance of our CEMMA methods, we
compare our CEMMA results with the corresponding end-
members obtained from the eigenvector rotation endmember
modeling analysis (EMMA) (Dietze et al., 2012) (Fig. 5a) and
hierarchical Bayesian endmember modeling analysis
(BEMMA) (Yu et al., 2015) (Fig. 5b). We calculate the modal
size, sorting, skewness, and kurtosis of endmember spectra as
suggested by Folk and Ward (1957) and also fit the end-
member spectra to the WLG11E data set to calculate the error
of reconstructed GSDs and the correlation coefficient between
the reconstruction and original data (Table 1). The results
show that the EMMA method gets the biggest error value
(0.51) and poor reconstruction results (data set R2 is 0.77).
However, BEMMA and CEMMA results show similar values
for the goodness-of-fit test; they both show lower error values
(0.16) and higher correlation coefficient values (data set R2 is
0.98). As to each endmember spectrum, the first endmember
defined by all three methods is broadly similar, with a domi-
nant mode at around 8 μm (Table 1). However, there are
marked differences between the other three endmembers. First,
as to the second endmember, the results for BEMMA (Baye-
sian endmember [BEM] 2) and CEMMA (CEM 2) exhibit a
similar distribution with a symmetrical unimodal peak at
around 13μm. However, the EMMA result (endmember
[EM] 2) is quite different, with a unimodal peak around 30μm.
With regard to the third endmember, the results for BEM 3
and CEM 3 exhibit a similar distribution with a modal peak
at around 40μm and with moderate sorting (1.94 and 1.84,
respectively); however, EM 3 is poorly sorted (2.95) and
exhibits a multimodal distribution with a fine peak around
3 μm and a coarse peak around 400μm (Folk andWard, 1957).
If the second and third endmembers are combined, the results
for BEMMA and CEMMA are similar, but they differ from
that of EMMA. This difference results from the absence of
data for the fine and coarse size fractions, because in the
EMMA method problems arise as a result of the transforma-
tion and communality of grain-size compositional data if the
grain-size data have many zero components (Yu et al., 2015).
BEMMA does not calculate a fourth endmember. This is

because the results of the Bayesian method can be influenced
by the prior distributions and maximum likelihood of
samples, with the consequence that information of low

Figure 5. (color online) Comparison of endmember spectra for
core WLG11E obtained using the eigenspace method (a),
hierarchical Bayesian endmember modeling analysis (b), and
hierarchical clustering endmember modeling analysis (this study) (c).
BEM, Bayesian endmember; CEM, clustering endmember; EM,
endmember.

Table 1. The parameters of endmember spectra and goodness-of-fit statistics for fitting the endmember spectra to the WLG11E data set using
different endmember methods. BEM, Bayesian endmember; BEMMA, Bayesian endmember modeling analysis; CEM, clustering end-
member; CEMMA, clustering endmember modeling analysis; EM, endmember; EMMA, endmember modeling analysis.

EMMA BEMMA CEMMA

EM 1 EM 2 EM 3 EM 4 BEM 1 BEM 2 BEM 3 CEM 1 CEM 2 CEM 3 CEM 4

Modal (μm) 5.71 31.53 45.47 11.87 8.23 13.42 31.53 8.23 13.42 40.24 522.30
Sorting 1.40 1.31 2.95 1.96 1.67 1.39 1.94 1.59 1.66 1.84 3.10
Skewness 0.09 0.10 0.28 −0.26 −0.06 0.06 0.26 0.10 0.03 0.24 −0.17
Kurtosis 1.14 1.08 0.84 1.48 1.34 1.10 1.02 1.12 1.05 1.00 0.63
Error 0.51 0.16 0.16
Data set R2 0.77 0.98 0.98
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probability (frequency) may be ignored, even though it may
potentially be of environmental significance (i.e., the fourth
endmember).
With regard to the fractions of each endmember produced

by the different methods (Fig. 6), the results are generally in
agreement with each other, and all of them coincide with the
lithologic units. However, in contrast, because of the differ-
ences between the endmember spectra, “eolian energy” (the
third endmember) exhibits slight differences between the
three methods, and a value for “runoff energy” (the fourth
endmember) is not provided by the BEMMA results. In
summary, CEMMA endmembers show much better agree-
ment with major lithologic units in our sediment core and
major sedimentary processes operating in Wulungu Lake
than do the other endmember modeling methods tested here.
In addition, our CEMMA method has several advantages

over the EMMA and the improved BEMMAmethods: (1) the
computation time for large data sets is very low because the
method does not use iterations; (2) CEMMA is not influenced
by zero data values in the leading and trailing sides of com-
positional data; and (3) it takes advantage of lithologic
information, which aids understanding of the depositional
environments reflected by the endmembers.
Despite the overall effectiveness of the methodology pre-

sented here, the endmembers produced by our algorithm may

not correspond exactly to the hydrodynamic and eolian pro-
cesses that they reflect. In addition, the effectiveness of the
method is restricted by the sampling resolution and the
sediment accumulation rate. Finally, because of the fact that
the fractions of the endmembers are nonnegative and always
sum to 1, the endmember fractions do not correspond exactly
to the strength of the corresponding environmental processes.

CONCLUSIONS

Endmember modeling analysis provides an effective means
of unmixing GSDs in order to determine the provenance,
transport mechanisms, and depositional environment of
sediments. The fractions of endmembers can potentially be
used as proxies for paleoenvironmental and paleoclimatic
processes through different depositional environments. In
this study, the CEMMA method, based on cluster analysis
combined with least squares fitting is used to define GSD
endmembers. The number of endmembers can be readily
determined from the agglomeration coefficients, the end-
member spectra are selected based on the average distance
between samples within the clusters, and the fractions of each
endmember are determined by a nonnegative least squares
algorithm. In the lake sediment case study presented here, the
interpretation of the endmembers uses variations in lithology

Figure 6. (color online) Lithologic units, graphic lithology, and comparison of endmember fractions from hierarchical clustering
endmember modeling analysis (clustering endmembers [CEMs], this study), hierarchical Bayesian endmember modeling analysis
(Bayesian endmembers [BEMs]), and the eigenspace method (endmembers [EMs]).
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to aid the assessment of sediment provenance. We conclude
that the methodology provides an efficient means of identi-
fying the most representative samples in very large data sets.
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