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We study the drawing of a Newtonian viscous sheet under the influence of cooling with
temperature dependence of the viscosity. Classically this problem has an instability
called draw resonance, when the draw ratio Dr , which is the ratio of the outlet
velocity relative to the inlet velocity, is beyond a critical value Drc. The heat transfer
from the surface compared to the bulk energy advection is conveniently measured
by the Stanton number St . Usual descriptions of the problem are one-dimensional
and rigorously apply for St � 1. The model presented here accounts for variations
of the temperature across the sheet and has therefore no restriction on St . Stability
analysis of the model shows two different cooling regimes: the ‘advection-dominated’
cooling for St � 1 and the ‘transfer-dominated’ cooling for St � 1. The transition
between those two regimes occurs at St = O(1) where the stabilizing effect due to
cooling is most efficient, and for which we propose a mechanism for stabilization,
based on phase shifts between the tension and axial-averaged flow quantities. Away
from this transition, the sheet is always shown to be unstable at smaller draw ratios.
Additionally, in the limit of St → ∞, the heat exchange is such that the temperature of
the fluid obtains the far-field temperature, which hence corresponds to a ‘prescribed
temperature’ regime. This dynamical situation is comparable to the isothermal regime
in the sense that the temperature perturbation has no effect on the stability properties.
Nevertheless, in this regime, the critical draw ratio for draw resonance can be below
the classical value of Drc = 20.218 obtained in isothermal conditions.

1. Introduction
Drawing or stretching viscous sheets are encountered in the polymer film industry,

e.g. the film casting process, as well as in the glass sheet industry. The basic fluid
mechanical problem is sketched in figure 1, which shows the thinning of a sheet. Sheet
stretching encountered in film casting processes shares many similarities with thread
drawing encountered in fibre spinning processes. Both fibre spinning and film casting
processes have been extensively studied in the literature (see e.g. Pearson 1985). One
of the similarities is the short residence time (∼10 s) of the fluid between the inlet and
the take-up. On the contrary, typical fluid residence time in glass sheet processes is
much longer (∼10 min), which may significantly modify the heat exchanges between
the fluid and its surrounding, and through temperature dependence of the viscosity,
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Figure 1. Stretching viscous sheet.

modify the hydrodynamic behaviour and consequently the stability properties for the
so-called draw resonance phenomenon.

Draw resonance is a well-known instability that occurs for stretching viscous sheets
(threads), which is characterized by oscillatory variations in thickness (diameter). The
principal control parameter is the draw ratio Dr , namely the take-up speed relative
to the speed at the inlet; the stretching process is unstable for Dr >Drc. In fact, the
spatially uniform but time-dependent tension provides a natural feedback mechanism
between the exit and the inlet, which sustains oscillations above the critical draw ratio
Drc.

In isothermal conditions, Drc =20.218 for both threads and sheets. However, in
industrial processes, fibres can be stably drawn at very high speeds, e.g. Dr = O(105).
Shah & Pearson (1972a) found that convective heat transfer is responsible for such
a strong stabilization. However, as shown by these authors and subsequent works
(see e.g. Gupta et al. 1996), regimes in fibre spinning intrinsically correspond to small
Stanton numbers (St � 1) – the Stanton number is the ratio of the surface heat
transfer relative to the bulk energy advection. In contrast, sheet stretching processes
can in certain circumstances correspond to large Stanton numbers (St � 1). Again
from the fibre spinning literature, Fisher & Denn (1977) have shown that though the
cooling by convective heat transfer has a stabilizing effect for small Stanton numbers,
there should be a reverse trend towards large Stanton numbers. Indeed, the limit
St → ∞ means the liquid has obtained the ambient temperature and is effectively in
isothermal conditions. However, this is rigorously true if (i) the ambient temperature
is constant, which is never the case in practice, (ii) the one-dimensional assumption
is applicable (i.e. no radial temperature variations), which strictly forbids the study
of large Stanton number (St � 1) regimes. We also mention that Geyling & Homsy
(1980) and Willien, Demay & Agassant (1988) have shown for glass fibres that
though pure convective heat transfer is always stabilizing, adding radiative heat
transfer can be destabilizing for sufficiently large values of the radiative heat transfer
coefficient. This result indicates the non-monotonic behaviour of the neutral stability
for increasing Stanton number when it depends on both convective and radiative heat
transfer coefficients.

Despite the extended literature for the stability of fibre spinning in non-isothermal
conditions, to our knowledge, the stability of film casting in non-isothermal conditions
has only been treated by Minoshima & White (1983) in the limit of small St . Here
we aim to explore the entire range of St . Moreover, though the one-dimensional
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stress and continuity equations describing the evolution of the cross-sectional area
are identical for fibres and films (Yeow 1974), the similarity does not hold for the
energy equation. There is indeed a square root of the cross-sectional area that appears
in the denominator of the transverse heat diffusion term in the one-dimensional heat
equation for fibres and not for films. As a consequence, stability results obtained for
non-isothermal fibre drawing are not applicable to the stability of non-isothermal
film drawing, i.e. the critical draw ratios are not comparable. While most works
on draw resonance focus on cooling for practical reasons, Wylie, Huang & Miura
(2007) have recently investigated heating during thread drawing. They found that
steady-state solutions are not unique – i.e. several possible states exist for a certain
draw ratio – if the viscosity varies sufficiently abruptly with temperature and heating
is strong enough to cause sufficiently large variations. In these specific conditions,
they found ‘thermal’ instabilities (both oscillatory and non-oscillatory) that occur in
small isolated windows of the draw ratio. However, as far as it has been explored so
far and as shown in this paper, no multiple solutions or new types of instability other
than draw resonance have ever been observed under cooling conditions for threads
or for film drawing; nevertheless, cooling can significantly alter the threshold and
frequency of draw resonance.

In numerical simulations for non-isothermal film casting processes, efforts have been
focused on studying the influence of non-isothermal conditions on the neck-in and
edge bead defects in steady-state conditions and for polymer melts; e.g. Sollogoub,
Demay & Agassant (2006) used a two-dimensional model and Zheng et al. (2006)
used a three-dimensional description. In both cases, it is shown that the effect of
viscoelasticity and heat transfer coefficient is similar, which is to concentrate the
film stretching in the flow area near the inlet. This observation is also made in the
present paper, which is a consequence of the abrupt variation of the viscosity with
temperature. Shin et al. (2007) additionally performed time-dependent simulations
using a two-dimensional model and showed transient solutions of the dynamics in
non-isothermal polymer film casting. They found that both the amplitude and period
of oscillations for draw resonance are in good agreement with available experimental
data.

In this paper we investigate the stretching of a Newtonian liquid film using a
one-dimensional model that aims to explore the entire range of Stanton numbers
by allowing the temperature to vary across the thickness of the film. Because
convective/radiative heat transfer characteristics can strongly differ depending on
practical applications and because they are rarely known with sufficient accuracy, we
have chosen to use the Newton’s cooling law with a constant heat transfer coefficient.
Also we allow the ambient temperature to vary along the stretching direction. Though
more arbitrary and simpler than that in practical applications, prescribing the ambient
temperature distribution along the stretching direction is the same (when multiplied
by the constant heat transfer coefficient) as imposing a heat flux distribution, which
thus mimics realistic operating conditions.

We also model the transition to a solid by increasing the viscosity to a large value as
the temperature approaches the transition temperature. Though this approach ignores
details of solidification such as anisotropy depending on the processing conditions
in the case of polymer crystallization (see e.g. Barot & Rao 2004 for details), this
approach is expected to be satisfactory in accounting for glass transition. In any case,
assuming that heat released during solidification can be ignored is valid because the
glass transition occurs at take-up, after the geometry is no longer changing (see e.g.
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Smith & Stolle 2000). In the case of glass fibres, Forest, Zhou & Wang (2000) have
considered a more general two-phase model with a solidification front at the transition
temperature. They nevertheless reached the conclusion that a ‘one-phase’ model has
the crucial advantage that solutions have continuous gradients at the glass transition
free boundary, which not only is consistent with experiments but further enables one
to perform a linear stability analysis of these steady-boundary-value states; it is a
‘one-phase’ approach that we thus adopt herein.

In draw resonance, and because of the nature of the equations, none of the
dependent variables are in phase with each other, at any position from the inlet
to the take-up, which challenges both intuition and understanding of the basic
mechanisms underlying the instability. In isothermal conditions and for Newtonian
fluids, Hyun (1978) proposed an approximate criterion for the occurrence of draw
resonance based on the fact that the mass of fluid that enters the system at a constant
rate must leave the system in a fixed amount in every cycle of draw resonance.
Kim et al. (1996) later refined Hyun’s criterion by using kinematic wave theory.
They showed that draw resonance can occur only if the time (2tL) needed for two
successive unity-throughput waves augmented by half a period of oscillation (P/2)
is equal or smaller than the travelling time (2ϑL) for two successive extremum-
thickness waves to cover the entire length of the system. This criterion has thus the
form

2tL + P
2

� 2ϑL for Dr � Drc. (1.1)

The time ϑL is the time that takes either the maximum or the minimum of a ‘resonant’
thickness perturbation to propagate from the inlet to the take-up position. Jung, Hyun
and co-workers have furthermore demonstrated that (1.1) also applies for viscoelastic
fluids, using both nonlinear simulations (Jung, Song & Hyun 2000) and linear theory
(Lee, Jung & Hyun 2005). These results suggest universality of the criterion by Kim
et al. (1996), which should thus also apply for non-isothermal draw resonance, as we
will verify in this paper. Despite the extended number of works on draw resonance in
non-isothermal conditions, to our knowledge, none of them have explicitly addressed
the physical mechanism responsible for such a stabilization. Some elements of an
answer can be found in Jung, Choi & Hyun (1999) who showed through dedicated
numerical simulations that the sensitivity of the axial tension to disturbances decreases
as the cooling increases, which is a response in favour of stability. Using insights from
the vast research of the ‘Korean school’ on draw resonance, spread over the last three
decades – research mainly based on nonlinear simulations with the exception of Lee
et al. (2005) – we further elucidate in this paper the stabilizing mechanism due to
cooling, using results exclusively obtained from linear stability theory.

The model used in this paper is presented in § 2. We then outline the stability
calculation in § 3 and systematically investigate the influence of heat transfer in § 4.
We will identify a new regime for high Stanton numbers where the heat transfer to the
surroundings can play a destabilizing role. The prescribed temperature regime in the
limit of infinite Stanton number is discussed in § 5. In § 6, we propose a scenario for
the stabilizing mechanism of draw resonance due to cooling based on a new idea that
involves phase shifts between axial tension and relevant spatially averaged quantities
of the system. Finally in § 7, we test both the criteria of Hyun (1978) and Kim et al.
(1996) and show how the different times involved in those criteria are affected by
cooling. Concluding remarks are presented in § 8.
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2. The model
We consider a two-dimensional viscous liquid sheet with thickness h0, velocity u0

and temperature T0 at the inlet being stretched over a length L to the take-up speed
uL, as sketched in figure 1. The draw ratio is denoted by Dr = uL/u0. The sheet has
thickness h(x, t) and is assumed to be symmetric around y =0, where the positions
of the upper and lower interfaces are denoted by h± ≡ ±(1/2)h(x, t).

2.1. The flow field

The flow field is assumed to be described by the continuity and the Stokes equations

∇ · u = 0, (2.1a)

∇ · σ = 0, (2.1b)

with the operator ∇ =(∂x, ∂y), the velocity field u = (u, v) and the Newtonian stress
tensor σij = − pδij + η(∂jui + ∂iuj ), where p is the pressure and η = η(T ) is the
dynamical viscosity with T the temperature. The boundary conditions at the free
surfaces y =h± are the kinematic condition and the stress balance

∂th± + u|
h±

∂xh± − v|
h±

= 0, (2.2a)

n± · σ |
h±

= 0, (2.2b)

where n± = ± (−∂xh±, 1)/n is the outward normal vector with n=
√

1 + (1/4)(∂xh)2.
Note the ambient pressure has been taken to be zero for simplicity and the influence
of surface tension has been neglected. We follow standard characterizations of thin-
films flow (e.g. see Howell 1996) and for completeness provide the main steps. The
above system is made dimensionless through the following transformations:

x → Lx, y → εLy, h → εLh, t → L

u0

t, u → u0u, v → εu0v, η → η0η, p → η0u0

L
p ,

(2.3)
where ε = h0/L is the film parameter and η0 = η(T0), which indicates the average
viscosity at the inlet. The dimensionless momentum equations then have the form,
with σyx = σxy ,

ε2∂xσxx + ∂yσ
∗
xy = 0, (2.4a)

∂xσ
∗
xy + ∂yσyy = 0, (2.4b)

where the shear stress component becomes

σ ∗
xy = η∂yu + ε2η∂xv. (2.5)

The dimensionless tangential and normal stress conditions at the interfaces are,
respectively,

σ ∗
xy |

h±
(1 − ε2(∂xh±)2) + ε2(σyy |

h±
− σxx |

h±
)∂xh± = 0, (2.6a)

ε2σxx |
h±

(∂xh±)2 − 2σ ∗
xy |

h±
∂xh± + σyy |

h±
= 0. (2.6b)

At this stage, we shall invoke the smallness of the film parameter ε � 1 such that ε

is used as an ordering parameter. Therefore, at leading order for ε2 → 0 (2.4a) and
(2.6a) yield

σ ∗(0)
xy = η∂yu

(0) = 0, (2.7)

where superscripts refer to the corresponding order in the ε2-expansion. Integrating
(2.7) once leads to u(0) = ū(x, t) where ū is the extensional velocity that remains to be
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determined. Note the flow is extensional at leading order, whatever the variation of
the viscosity across the sheet. Likewise (2.4b) and (2.6b), using (2.7), yield

σ (0)
yy = −p(0) + 2η∂yv

(0) = 0. (2.8)

At leading order, the dimensional transversal stress remains uniform in the viscous
sheet and equal to the ambient pressure. This feature is sometimes referred to as
the ‘membrane approximation’ (Silagy, Demay & Agassant 1996). Integrating (2.1a)
across the thickness, given v|0 = 0 by symmetry, leads to

v(0) = −y∂xū, (2.9)

which substituted in (2.8) yields

p(0) = −2η∂xū.

The leading-order longitudinal stress σxx can thus be rewritten as

σ (0)
xx = 4η∂xū, (2.10)

where the factor 4 is referred to as the ‘Trouton ratio’, namely the extensional
viscosity relative to the shear viscosity. The kinematic condition (2.2a) together with
(2.9) provides the one-dimensional evolution equation for the film thickness

∂th + ∂x(hū) = 0. (2.11)

To close the model for h and ū, we must examine the field equations and boundary
conditions at the next order in the expansion. The relevant parts of the O(ε2) problem
are obtained from the longitudinal stress balance (2.4a),

∂yσ
∗(1)
xy = −∂xσ

(0)
xx , (2.12)

and from the tangential surface stress balance (2.6a) with the use of (2.8),

σ ∗(1)
xy |

h±
= σ (0)

xx |
h±

∂xh±. (2.13)

Consideration of transverse stress balance (2.4b) would lead to the conclusion that the
sheet’s centreline will remain straight if it is initially straight (Buckmaster, Nachman &
Ting 1975), at least as far as the stretching is concerned. However, here this result has
been a priori accounted through the symmetry condition used to determine v0.

Integration of (2.12) between the lower and upper surfaces, using (2.13), yields

∂x

[∫ h+

h−

σ (0)
xx dy

]
= 0, (2.14)

which indicates that the depth-averaged tension remains constant along the sheet.
An equivalent constant-tension condition has been derived for fibres by Dewynne,
Ockendon & Wilmott (1992). Substituting (2.10) into (2.14), and integrating with
respect to x, we finally get

η̂h∂xū = f (t), (2.15)

where η̂ = (1/h)
∫ h+

h−
η dy is the depth-averaged effective viscosity and f (t) the

dimensionless tension in the sheet, per unit length in the spanwise direction (the
actual tension is obtained by scaling by 4εη0u0). Equation (2.15) extends the classical
equation for an extensional flow of a Newtonian fluid (e.g. see Pearson 1985) to the
case of in-depth variations of the viscosity, which remains in turn to be determined
through the temperature field. System (2.11) and (2.15) for the three unknowns h, ū
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and f is solved with the boundary conditions

h(0, t) = 1, ū(0, t) = 1 and ū(1, t) = Dr. (2.16)

2.2. The temperature field

The temperature field in the sheet is described by the thermal energy equation, which
neglecting viscous heating, is

ρcp (∂tT + u · ∇T ) = k∇2T , (2.17)

where ρ is the fluid density, cp the specific heat capacity and k the thermal
conductivity; we assume these properties to be independent of the temperature.
At the free surfaces, we impose the classical Newton’s cooling boundary condition

−k n± · ∇T |
h±

= α
(
T |

h±
− Ta(x)

)
, (2.18)

where α is the heat transfer coefficient (identical on the two surfaces) and Ta = Ta(x)
is the prescribed far-field ambient temperature, which for generality we assume may
vary along the sheet. The temperature is non-dimensionalized with the following
transformations:

T → T0 T and Ta → T0 Ta. (2.19)

Equation (2.17) thus has the dimensionless form

εPe(∂tT + u∂xT + v∂yT ) = ε2∂xxT + ∂yyT . (2.20)

The Péclet number Pe = ρcpu0h0/k measures the rate of convection of energy ρcpu0

in the flow direction relative to the rate of heat conduction k/h0 in the transverse
direction. In turn, boundary condition (2.18) has the dimensionless form(

1 + ε2 1

4
(∂xh)2

)−1/2 (
∂yT |

h±
− ε2∂xh± ∂xT |

h±

)
= ∓Bi

(
T |

h±
− Ta

)
, (2.21)

where the Biot number Bi = αh0/k describes the rate of heat transport from the
liquid to the surroundings. In this study, we shall consider large Péclet numbers such
that εPe = O(1). At leading order, i.e. ε2 → 0, (2.20) and (2.21) then reduce to

∂yyT
(0) = εPe

(
∂tT

(0) + ū ∂xT
(0) + v(0) ∂yT

(0)
)
, (2.22a)

∂yT
(0)|

h±
= ∓Bi

(
T (0)|

h±
− Ta

)
. (2.22b)

In order to eliminate the transverse coordinate y in the above system, we assume a
parabolic temperature profile that satisfies boundary conditions (2.22b) and explicitly

introduces the average temperature θ = θ(x, t) ≡ (1/h)
∫ h+

h−
T (0) dy. Thus we write

T (0)(x, y, t) = Ta(x) +
θ(x, t) − Ta(x)

1 + (Bi/6)h(x, t)

(
1 + Bi h(x, t)

(
1

4
− y2

h(x, t)2

))
. (2.23)

Substituting (2.9) and (2.23) into (2.22a), and integrating the latter between the lower
and upper surfaces yields, using (2.11),

∂tθ + ū ∂xθ = −St
θ − Ta(x)

h(1 + (Bi/6)h)
, (2.24)

which is to be solved with the boundary condition θ(0, t) = 1. The Stanton number is
defined as

St =
2Bi

εPe
=

2αL

ρcpu0h0

, (2.25)
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and compares the actual heat transfer across both interfaces to the energy advected
by the main flow.

In the limit of St → 0, the sheet retains all of its thermal energy along the stretching
direction and the average temperature remains constant everywhere, i.e. θ =1. This
situation occurs for two particular cases: (i) Pe → ∞ which is the case of a poorly
conducting fluid and/or relatively fast speeds, though T (0) can still depend on y

for finite Bi; (ii) Bi → 0 in the case of no heat loss at the interfaces, i.e. T (0) = 1
everywhere. In contrast, the limit St → ∞, when Bi remains finite, means that the
typical speed is slow enough and possibly the heat transfer high enough, such that
the liquid obtains the ambient temperature, i.e. T (0) = Ta .

In the case now of small heat transfer, Bi = O(ε), the temperature profile across
the sheet tends to be flat, i.e. T (0) = θ(x, t) (as shown by 2.23). If in addition, we set
the far-field temperature to be constant, say Ta = 0, and the speed to be moderate
such that St = O(1) (2.24) reduces to

∂tθ + ū∂xθ = −St
θ

h
. (2.26)

This form of the thermal energy equation was first derived by Shah & Pearson (1972a)
for fibre spinning – in which case h denotes the fibre radius – by solving (2.20) and
(2.21) with the assumption Bi ≈ εPe = O(ε). Consequently, the temperature is found
to be uniform across the thickness at leading order and the balance in (2.26) is found
at next order. Equation (2.26) thus corresponds to the one-dimensional assumption
for the temperature field, which is valid rigorously in the limited range of St = O(1).
It is worth noting that first-order balance (2.26) can be recovered from leading order
one (2.24) by taking the limit Bi → 0. Therefore the parameter Bi in (2.24) appears
as a measure of the departure from the one-dimensional assumption for the thermal
energy equation. Indeed, our model (2.24) has been written with no restriction on
Bi or Pe, which should allow us to explore the entire range of Stanton numbers.
Nevertheless, we note that for very large Pe, inertial effects that we have neglected in
the momentum equation could become non-negligible as shown by Shah & Pearson
(1972b) for fibre spinning and Cao, Khayat & Puskas (2005) for film casting.

2.3. The average viscosity

The momentum and thermal energy equations are linked via the viscosity η(T ).
We shall base our model for viscosity variations on the assumptions that no freezing
occurs and that the fluid viscosity obeys the Arrhenius equation for molecular kinetics.
In dimensionless form, we have

η(T ) = eμ (1/T − 1), (2.27)

where μ measures the thermal sensitivity of the viscosity. For (2.15), we need the
average viscosity over the thickness, which is essentially non-algebraic in y for a
parabolic temperature profile T (0) as defined in the previous section. To proceed
analytically, we then have to make an additional assumption on the temperature field,
namely that its variation across the sheet remains small compared to the variations
along the sheet, i.e. |T (0) − θ | � 1. This step allows us to average (2.27) across the
thickness and truncate the result at first order in T (0) − θ to obtain

η̂(θ) ≈ eμ (1/θ − 1). (2.28)

eμ

(
1

1 − bx
− 1

)
= μ

bx

1 − bx
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2.4. The far-field temperature

Practical applications of stretching viscous sheets might involve heat transfer by
convection and/or radiation, which we simulate by using a non-constant ambient
temperature, which can mimic in turn an imposed heat flux distribution, namely
Bi Ta(x) since the Biot number is constant. We follow here the same approach as
used by Willien et al. (1988) for fibre spinning and assume the far-field temperature
to decrease exponentially along the stretching direction,

Ta(x) = e−b x, (2.29)

where b is a positive parameter. Note that Ta(0) = 1, which sets the dimensional
far-field temperature equal to the surface temperature T0 at inlet. This is necessary to
ensure |T (0) − θ | � 1 at the inlet, regardless of the possibility of large Bi. Note some
authors (e.g. Shah & Pearson 1972a; Gupta et al. 1996) have instead assumed that
the heat transfer coefficient depends on the fluid velocity and hence increases along
the stretching direction. Nevertheless, this has a significant influence only for large
draw ratios, i.e. in a small region of the parameter space for critical conditions, and
we therefore chose to keep the heat transfer coefficient α constant for simplicity. In
fact, we shall show below that for St � 1, the critical draw ratio is as small as in
isothermal conditions (St = 0) and the dependence of α with u can safely be neglected
(see § 5).

3. Stability problem
Let us analyse the stability of our model by writing the variables as

ū(x, t) = us(x)(1 + U (x) eλt ), (3.1a)

h(x, t) = hs(x)(1 + H (x) eλt ), (3.1b)

θ(x, t) = θs(x)(1 + Θ(x) eλt ), (3.1c)

f (t) = fs(1 + F eλt ), (3.1d )

where the subscript ‘s ’ identifies the stationary solutions; U , H , Θ and F represent
the perturbations (only the three first are complex) and λ is the eigenvalue. This
approach to stability is common when analysing viscous sheets (see e.g. Yeow 1974).
The system of equations to be solved can thus be recast into a set of ODEs for the
base state and the perturbations.

3.1. The base state

Setting ∂th = 0 in (2.11), together with boundary condition (2.16), leads to

hs =
1

us

, (3.2)

while the stress and temperature equations (2.15)–(2.24) for the base state are

u′
s =

fsus

η̂(θs)
, (3.3a)

θ ′
s = −St

θs − Ta

1 + (Bi/6)hs

, (3.3b)

where the prime denotes the x-derivative. These ODEs are to be solved with
us(0) = θs(0) = 1. Notice that if we neglect the thickness variation of the temperature
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(by setting Bi → 0), the base-state temperature, using (2.29), becomes

θs(x) =
b e−St x − St e−b x

b − St
,

which reduces to θs = e−St x for Ta =0, to θs = 1 for St = 0 and to θs = Ta for St → ∞.

3.2. The perturbation equations

Substituting (3.1) into (2.11), (2.15) and (2.24), while using the stationary solutions
(3.2) and (3.3) for simplifications, yields three coupled ODEs

H ′ = −U ′ − λhsH, (3.4a)

U ′ =
fs

η̂(θs)

(
F − U − H + μ

Θ

θs

)
, (3.4b)

Θ ′ = −λhsΘ − St

θs(1 + (Bi/6)hs)

[
TaΘ − (θs − Ta)

(
U +

1 + (Bi/3)hs

1 + (Bi/6)hs

H

)]
, (3.4c)

which are to be solved with H (0) = U (0) = U (1) = Θ(0) = 0. The amplitude F remains
undetermined since eigenvalue problem (3.4) is linear and homogeneous. This feature
means the other amplitudes should be interpreted relative to F . Here, we set F = 0.1.

4. Neutral stability
We focus in this work on the neutral stability of the system that separates stable and

unstable regions in the parameter space formed by Dr, St, Bi, μ, Ta(x) and b. Thus
we find solutions to the coupled system of ODEs (3.3) and (3.4), considering only the
first mode of instability, i.e. the largest eigenvalue, when its real part is zero, namely
λR = Re(λ) = 0. Solutions to the problem have been sought by continuation using the
software AUTO-07p (Doedel et al. 1997). As a starting point we used the analytical
solution found by Renardy (2006) for isothermal conditions (St = 0) that belongs
to the neutral stability curve with λI =14.01 and fs = 3.006, which corresponds to
the classical result for the critical draw ratio Drc = 20.218, first obtained by Kase,
Matsuo & Yoshimoto (1966), Pearson & Matovich (1969) and Gelder (1971) for fibre
spinning and by Yeow (1974) for film casting. We note that Kase et al. (1966) and
Pearson & Matovich (1969) showed independently that the isothermal fibre-spinning
process has unstable normal modes, or resonances, at certain operating conditions in
terms of draw ratio and forcing frequency, of which the lowest is for Dr = 20.218.
Gelder (1971) determined that additionally to these resonances, the process is linearly
unstable in the classical sense (i.e. temporal instability) for any draw ratio greater
than 20.218.

Neutral curves giving the critical draw ratio Drc, the frequency λI and the base-state
tension fs , versus the Stanton number St are plotted in figure 2 for Bi = 6, b = 1 and
four different sensitivities μ of the viscosity with temperature. A maximum occurs at
St = O(1) and corresponds to the largest critical draw ratio, denoted by ‘S’. On the
left of this maximum, the critical draw ratio increases with St , indicating a stabilizing
effect of the heat transfer. This region will be referred hereafter to the advection-
dominated regime, denoted by ‘A’. On the right of the maximum, the stability region
decreases with increasing Stanton number. This region will be referred hereafter to
the transfer-dominated regime, denoted by ‘T’. In the limit of very large St , the critical
draw ratio Drc can even lie below 20.218, which is unusual, at least for Newtonian
liquids: Drc < 20.218 has indeed been reported for viscoelastic fluids (e.g. Smith &
Stolle 2003).
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Figure 2. Neutral stability curves for Bi/6 = b = 1 and for different values of μ. Filled circles
indicate solutions lying in the different regime of cooling: A, advection-dominated regime; T,
transfer-dominated regime; S, largest critical draw ratio regime.

As shown in figure 2, the frequency λI and the tension fs follow the same trend
as for Drc, except in the limit of very large St where their values are significantly
larger than those in isothermal conditions. This result means that a sheet with
increasing viscosity along its stretching direction has a smaller period P = 2π/λI of
draw resonance than that for a constant viscosity. Furthermore, except for this limit
that will be analysed in § 5, increasing μ always stabilizes the system, as is observed
commonly in fibre spinning and film casting.

Next, we want to compare our model that assumes a parabolic temperature profile
across the sheet with the one-dimensional model assuming a constant temperature
profile. The one-dimensional model is recovered simply by setting Bi → 0 in (2.24).
The neutral stability curves for μ =3 are plotted in figure 3(a), which shows that
temperature variations across the sheet are stabilizing. Though this effect is small, it
is obviously more pronounced as the Stanton number increases, i.e. in the region of
large heat transfer (St � 1). Of course, temperature variations across the sheet should
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Figure 3. Neutral stability curve for μ= 3. (a) Influence of the Biot number with Ta = e−x ,
i.e. b =1. (b) Influence of constant ambient temperatures Ta with Bi → 0.
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Figure 4. Solutions to the eigenvalue problem (3.3) and (3.4) at criticality for Drc = 25 and
μ= 3, as identified in figure 2: A, St = 0.123 (dashed lines) and T, St = 40.92 (solid lines).
The top panel shows the base-state solutions and the bottom panel the complex-valued
perturbations, with ‘Re’ their real parts and ‘Im’ their imaginary parts.

vanish in the limit of St → ∞, for which the liquid temperature is everywhere identical
to the ambient temperature Ta .

Figure 3(b) also shows the consequences of setting the ambient temperature to
a constant. For Ta = 0 and Bi → 0, (2.24) reduces to (2.26) as studied by Shah &
Pearson (1972a) for fibre spinning. As found by these authors, the critical draw ratio
rises abruptly as St increases, still in the region St � 1, leaving on the right of the
neutral curve a large region of unconditional stability. However, the divergence of
the neutral curve for Ta = 0 should only be attributed to the concomitant divergence
of the viscosity as the fluid temperature approaches Ta , i.e. θ → 0 (see (2.28)), when
the Stanton number is increased. Figure 3(b) then shows that there is a range of
finite values for Ta for which the neutral curves can be computed numerically up to
large values of St , where they in turn all converge to the isothermal critical draw
ratio Drc = 20.218: in the limit of infinite heat transfer coefficient, and for constant
ambient temperature, the system exactly recovers its isothermal state.

We next examine typical solutions for the steady-state and amplitudes of the
perturbations. The results are plotted in figure 4 and correspond to the two different
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regions of the neutral stability curve for μ = 3 in figure 2. In the region St � 1, the
solution ‘A’ (dashed lines) in figure 4 shows a gentle temperature decrease along
the stretching direction, hence the viscosity at take-up is only 12 % larger than the
inlet viscosity, so that the stretched profiles (us, hs) resemble those for isothermal
stretching. Likewise, the corresponding amplitudes of the perturbations have no
significant differences from the isothermal case. On the contrary, in the region of
St � 1, the solutions (solid lines) show a different behaviour, which is determined
mainly by the strong decrease of the temperature θs that makes the viscosity at take-
up about 140 times the inlet value. Most of the stretching thus occurs in the region of
low viscosity as shown from the solutions for hs and us in figure 4. The amplitudes of
the perturbations are also distributed differently than those for isothermal conditions.
The most significant difference is the real part of the velocity perturbation U (thick
line), which reaches its maximum in the first half of the film where the viscosity is
the lowest, and decreases rapidly to zero in the second half. Though less obvious, this
behaviour is also the fate of the thickness perturbation, keeping in mind from (3.1)
that the effective perturbation is the product of H with the base state hs , which is a
minimum in the second half of the film.

Finally, in terms of the cooling process, and based on the definition of the Stanton
number (2.25), we can summarize our observations as follows: (i) The region of
St � 1 corresponds to an advection-dominated cooling for which an increase of the
heat transfer coefficient stabilizes the system with respect to the draw resonance
instability. These conditions are the usual situations found in industry for film casting
and fibre spinning, where the system is found to be stable for draw ratios as large as
Dr =O(105). Typical Stanton numbers are smaller than unity, St < 1, and correspond
to ‘fast’ flows, Pe = O(100), and large film parameter, ε =O(10−1). Note that the heat
transfer coefficient in this regime can still be very high, i.e. Bi = O(1). (ii) The region of
St � 1 corresponds to a transfer-dominated cooling, which, in contrast, is destabilized
by an increase of the heat transfer coefficient. Practical examples would correspond
to ‘slow’ flows, Pe = O(10), and small film parameter, ε = O(10−3), together with a
large heat transfer coefficient. Typical processes that meet such conditions are found
in the glass sheet industry where the Stanton number is commonly of O(100).

5. Prescribed temperature limit
As mentioned in § 2.2, in the limit of St → ∞, the temperature of the sheet obtains

the prescribed temperature of the ambient, i.e. θs = Ta =e−b x . If for the sake of
simplicity, we further assume that the far-field temperature slightly decreases along
the stretching direction, i.e. b � 1, then the temperature can be written as θs ≈ 1−b x,
which once substituted in (2.28) yields η̂ ≈ eμb x . Consequently, the viscosity is a
prescribed function of position that only depends on the product μb and the stability
problem can then be solved independently of the temperature equation and with μb

as the only free parameter.
Neutral stability curves and solutions for this case are plotted in figure 5. For an

exponential increase of the viscosity along the stretching axis, the results show that
the critical draw ratio can be significantly below 20.218. However, as μb increases, the
neutral curve saturates at Drc ≈ 16.5, while the frequency of the instability increases
quasi-linearly. Solution ‘c’ in figure 5 corresponds to a sheet whose viscosity at take-up
is e10 ≈ 22 000 times the inlet viscosity. Such a large difference is common in the
processing of highly viscous sheets.
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Figure 5. The Top panel shows neutral stability curves for Drc and λI in the ‘prescribed
temperature’ limit. Bottom panel shows typical solutions relative to μb.

Because the viscosity is an explicit function of position, η̂(x), there is an analytical
solution for the base state,

us(x) = efs

∫ x

0 (1/η̂(x′))dx′
with fs =

lnDr∫ 1

0
(1/η̂(x)) dx

, (5.1)

and consequently the residence time τL of the fluid from the inlet to the take-up is

τL =

∫ 1

0

dx

us

. (5.2)

Since hs = 1/us , it is straightforward to observe from figure 5 that the residence time
decreases as the viscosity contrast μb increases; the liquid obtains a velocity close to
the take-up speed in a shorter distance. For instance, solution ‘a’ (μb =0) in figure 5
corresponds to τL = 0.32, while solution ‘c’ (μb = 10) corresponds to τL = 0.1, which
yields a factor three between the two residence times. According to the criterion
proposed by Hyun (1978) and discussed in § 6, a decrease of the residence time should
be stabilizing, and this is the usual effect observed in the advection-dominated region.
But as we have found in this study, this criterion is valid only if the period of draw
resonance, denoted by P = 2π/λI , remains unchanged as compared to the isothermal
conditions. From figure 5, we rather see the frequency λI to be about three times
larger for μb =10 than for a constant viscosity (μb = 0). We conjecture here that
this strong frequency increase of the draw resonance is related to the fact that the
stretching naturally occurs in the region close to the inlet where the viscosity is the
lowest. In other words, these results are consistent with the idea that in the large
Stanton number limit, a decrease of the effective stretching length is accompanied by
an increase of the frequency of draw resonance.

6. Mechanism of draw resonance
Based on the observations we have made so far, we propose in this section a

scenario that simultaneously explains the stabilizing mechanism of draw resonance
due to cooling, enhanced for increasing μ, and the destabilizing effect of strong
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viscosity variations along the stretching axis in the prescribed temperature limit. We
first describe the mechanism of draw resonance in isothermal conditions and then
propose a mechanism for non-isothermal conditions.

6.1. Isothermal conditions: St = 0 (i.e. η̂ =1)

Draw resonance, in principle, can be seen as a resonance mechanism between a
perturbation of the flow rate q = ūh, which evolves with time and position, and a
perturbation of the film tension f , which only evolves in time (see e.g. Hyun 1999).
The tension is spatially independent, which ensures the instantaneous transfer of
information between the two extremities of the sheet and hence allows for sustained
oscillations of the thickness h around the centreline. Indeed, because at the take-up
position the speed Dr is fixed (2.15) shows that the tension f is proportional to h(1, t)
or equivalently to the flow rate Dr h(1, t). Next, because h is fixed at the inlet position
(i.e. ∂th|0 = 0), continuity equation (2.11), using (2.15) and the boundary conditions,
has the form

∂xh|0 = −f (t). (6.1)

Note that (6.1) is always true, even in non-isothermal conditions. This result shows
that a positive perturbation of the tension, say for fmax , induces a negative variation of
the thickness right after the inlet, hence a negative variation of the flow rate (and vice-
versa for fmin). As time evolves, this negative thickness variation reaches the take-up
position, which constrains the force to decrease, inducing instantaneously an increase
of the thickness variation at the inlet, again through (6.1). This cyclic mechanism was
first outlined by Hyun (1978), who also proposed an approximate criterion for the
onset of draw resonance that involves the comparison of two characteristic times in
the system: the unity-throughput time tL, which is the time for a wave of constant
flow rate q = 1, also named a ‘unity-throughput wave’, to travel the system from the
inlet to the take-up (see also appendix A) and the residence time τL, namely the
time for the fluid to travel the system. Hyun (1978) established therefore that for
the draw resonance instability to occur, a full cycle of throughput waves, a ‘positive’
(df/dt > 0) and a ‘negative’ (df/dt < 0) one, should travel through the system in a
time smaller than the residence time. This criterion is based on the fact that the mass
of fluid that enters the system at a constant rate (i.e. constant ‘throughput’) must
leave the system in a fixed amount in every cycle of draw resonance.

In fact, as observed by Kim et al. (1996) from time-dependent simulations, the
exact criterion should also account for a ‘time delay’, denoted by t , between the
tension that does not depend on position and the flow rate at take-up q(1, t) (see
also appendix B). This result follows because every half of a period, the vanishing
of a perturbation of the tension f precedes by time t the moment at which a
unity-throughput wave reaches the take-up. Therefore, for the instability to occur, i.e.
for Dr > Drc,

2tL + t < τL. (6.2)

The important observation made by Hyun (1978), which is useful for understanding
the mechanism underlying the draw resonance instability, is that during a full cycle
of draw resonance, two unity-throughput waves travel the system, one triggered at
fmax and the other one at fmin. A ‘negative’ (respectively, ‘positive’) wave is thus
concomitant with a decrease (respectively, increase) of the axial tension. Figure 6
shows the time evolution of the local flow rate q(x, t) = ūh, as reconstructed from
the solutions of the linear stability analysis. It shows half a cycle and illustrates with
circles the travelling of the ‘negative’ unity-throughput wave. Because we focus on

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

78
36

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009007836


170 B. Scheid, S. Quiligotti, B. Tran, R. Gy and H. A. Stone

0 0.2 0.4 0.6 0.8 1.0

0.9

1.0

1.1

q

x

t = 0

tL

P/2

Figure 6. Time evolution of the flow rate q at criticality (Drc = 20.218) for isothermal
conditions (St = 0): the results start at t = 0 and are at intervals of P/16 (dashed lines)
until half a period P/2, with P = 0.448. Circles represent the unity-throughput wave for q = 1
that starts at x = 0 at t = 0 and ends at x = 1 after a time tL =0.142.

the linear response of the system, the picture is symmetric for the second half of
the cycle: at time t = P/2, when the tension has reached its minimum, the ‘positive’
unity-throughput wave will start to travel during the same time tL. It clearly appears
from figure 6 that the only constant-flow-rate wave that travels over the entire domain
is the one corresponding to q = 1. It also shows that the flow rate averaged over the
domain will be as deficient as in excess, compared to the unity base-state flow rate,
within one period of draw resonance. In fact, perturbation equation (3.4b) integrated
along the sheet leads to

F =

∫ 1

0
(Q + Γ )/ηs dx∫ 1

0
(1/ηs) dx

, (6.3)

where Q =U + H is the perturbation of the flow rate, Γ = − μΘ/θ is the
perturbation of the viscosity and ηs = η̂(θs). This relation demonstrates that in
isothermal conditions, i.e. Γ = 0 and ηs = 1, the flow-rate perturbation averaged over

the domain evolves exactly in phase with variations of the tension, i.e. F =
∫ 1

0
Q dx.

In contrast, in non-isothermal conditions, the weighted mean of (Q + Γ )/ηs is in
phase with the tension f . This result thus means that an increasing viscosity along
the sheet will induce a phase shift between the tension perturbation and the response
of the averaged flow rate. This feature turns out to be crucial in understanding the
(de)stabilization of draw resonance due to cooling.

6.2. Non-isothermal conditions: St �= 0

Like the tension, averaged quantities do not depend on x coordinate, but only depend
on time. They can thus be directly compared to f (t), especially in terms of the phase
shift, based on the idea that the tension dictates the mechanism of draw resonance.

Consequently, we define 〈X〉 (t) =
∫ 1

0
X(x, t) dx as the average of quantity X at a

given time t . Also, we write ϕ〈X〉 for the phase shift of this averaged quantity relative
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Figure 7. Phase shifts of different averaged quantities relative to the tension and normalized
by the period P . The results correspond to the case μ= 3 in figure 2. ‘S’ refers to the stabilized
regime.

to oscillations of f taken as a reference, i.e. ϕf = 0, and normalized with the period
P of oscillations.

Figure 7 shows, as predicted by (6.3), that the averaged flow rate 〈q〉 is in phase with
the tension in the region of St � 1, and is delayed for increasing Stanton numbers.

In the ‘stabilized regime’ for St =O(1), i.e. at the transition S in figure 2, the averaged
temperature 〈θ〉 is nearly in phase with 〈q〉. The explanation for the stabilizing effect
of cooling in this region of the parameter space is thus as follows: a perturbative
increase of the tension creates, after a small delay ϕ〈q〉, an increase of the average
flow rate, which implies that on average, the liquid spends a little less time in the
system and hence has a little less time to cool down. The averaged temperature 〈θ〉
thus increases in response to an increase of the averaged flow rate. At the same time,
ϕ〈η〉 and ϕ〈θ〉 being nearly in phase in the stabilized regime, the averaged viscosity
ϕ〈η〉 decreases accordingly, which in turn ‘relaxes’ the initial positive perturbation of
the tension. This stabilization mechanism due to cooling is illustrated as follows for
a positive perturbation of the tension:

Perturbation ⇒ f ↗ ⇒ 〈q〉 ↗ ⇒ 〈θ〉 ↗ ⇒ 〈η〉 ↘ ⇒ f ↘ ⇒ Damping.

(6.4)

The same reasoning can be given for a negative perturbation, which is thus followed
by an increase of the averaged viscosity, hence again a counter-action to the initial
perturbation. This mechanism shows how the cooling process is stabilizing, or in other
words why the critical draw ratio for draw resonance is much larger in the region of
St =O(1), as compared to isothermal conditions.

It is now easy to see that the above mechanism is most efficient in the region
where the energy advected by the flow is comparable to the heat transferred to the
surroundings, i.e. at the transition ‘S’ as labelled in figure 7. Indeed, in both limits of
St → 0 and St → ∞, the temperature perturbation vanishes and the system behaves
as if it was isothermal (see discussion in § 2.2). The fact that the amplitude of the
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Figure 8. Characteristic times of the system normalized with the period P of draw resonance:
τL the residence time, tL the unity-throughput time, t the tension/thickness phase shift and
δ the viscous delay. The results correspond to the case μ= 3 in figure 2.

temperature perturbation vanishes in those two limits can be seen from (3.4c) where

if

{
St → 0

St → ∞
⇒ Θ → 0 since

{
Θ(0) = 0

θs → Ta

. (6.5)

Note finally that for ‘advection-dominated’ cooling (St � 1), the averaged viscosity
and temperature are exactly in phase, as for isothermal conditions. On the contrary
for ‘transfer-dominated’ cooling (St � 1), the averaged viscosity is delayed relative
to the averaged temperature and the phase shift with the tension is approaching a
quarter of a period, which makes the stabilizing response of the averaged viscosity
with tension perturbations ineffective.

7. Stability criterion in non-isothermal conditions
7.1. Modification of Hyun’s criterion

In this section, we want to illustrate how Hyun’s criterion is modified in non-isothermal
conditions. To this aim, we have reported in figure 8 the different characteristic times
of the system defined in the previous section (see also the Appendices). We observe
that criterion (6.2) established for isothermal conditions is modified in non-isothermal
conditions as follows:

2tL + t < τL + δ, (7.1)

where δ accounts for the delay induced by viscosity variations along the sheet. Note
that δ is negligible in the ‘advection-dominated’ regime so that Hyun’s criterion still
applies in this region. On the contrary, δ becomes large (of the order of tL) in the
‘transfer-dominated’ regime, indicating a dramatic effect of the viscosity variations
on the stability properties. We also note by comparing figures 7 and 8 that δ and
ϕ〈q〉 are closely correlated, in fact δ ≈ 4ϕ〈q〉. In order to illustrate this correlation,
we show in figure 9 the time evolution of the flow rate for two different Stanton
numbers corresponding to the most stable regime, St = O(1), and to the ‘prescribed-
temperature’ regime, St → ∞. We notice that the flow rate in the first third of the
domain in figure 9(a) behaves similarly to the isothermal case in the entire domain (see
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Figure 9. Time evolution of the flow rate q at criticality, for two different Stanton numbers St
and for Bi/6 = b = 1 and μ= 3. Same legend as for figure 6 with (a) Drc = 32 372, tL = 0.026,
P = 0.092 and (b) Drc =15.5, tL =0.1, P = 0.198.

figure 6) – in the other two thirds, the flow rate is spatially constant and varies only
with time. The critical draw ratio is extremely high in this case and the velocity in the
constant-flow-rate region is so high that the residence time is negligible as compared
to the time spent by the fluid in the first third of the domain. Consequently, the
‘effective stretching’ length is shortened by a factor 3, which is in favour of stability,
and the ‘effective draw ratio’ is reduced to about Dr2/3. We also observe that the
unity-throughput wave accelerates strongly along x in figure 9(a) for the reason given
above, while it decelerates in the limit St → ∞ (figure 9b) due to the increase of the
viscosity along the stretching direction. This effect is precisely measured by the time
shift δ, however this parameter cannot be predicted from the linear theory. We shall
therefore use instead the refined criterion of Kim et al. (1996) as shown below.

7.2. Universality of Kim’s criterion

We gave in § 1 the refined criterion (1.1) obtained by Kim et al. (1996) using travelling
times of both unity-throughput waves tL and extremum-thickness waves ϑL. In fact,
Jung et al. (1999) have shown from time-dependent simulations the equivalence
ϑL = P/2 + t such that (1.1) can be rewritten as

tL � P
4

+ T for Dr � Drc, (7.2)

where all quantities involved have already been determined in the previous section
(see also the Appendices). While the equality at threshold can easily be verified by
looking at figure 8, we have also verified (not shown) that the inequality in (7.2)
applies well for the entire range of Stanton numbers. Consequently, the universality
of criterion (7.2) is confirmed since it not only applies to viscoelastic film casting but
also here to non-isothermal film casting.

8. Concluding remarks
We have investigated the stability of a stretching viscous sheet for the entire range

of Stanton numbers and have identified two regimes: one dominated by advection
of energy as is commonly found in the literature for fibre spinning and film casting
whose process parameters typically correspond to St � 1, and one dominated by heat
transfer to the environment as encountered for instance in the glass sheet industry
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whose process parameters typically correspond to St � 1. While heat transfer has a
stabilizing effect in the first regime, it has a destabilizing effect in the second one
where the liquid sheet approaches the imposed temperature of the surrounding as St

increases. To some extent, this regime can be associated with a cooling dominated
by radiative heat transfer rather than by convective heat transfer, as is the case for
manufacturing glass sheets. This conclusion is supported by the work by Willien et al.
(1988) who found in fibre spinning that radiative heat transfer can be destabilizing,
which is opposite to the response for the case where convective heat transfer is
dominant.

We also propose a mechanism that qualitatively explains the stabilizing effect due
to cooling, which is most efficient in the region where the energy advected by the
flow and the energy transferred to the ambient are comparable, i.e. for St = O(1).
In this region, the average viscosity is shown to act quasi-instantaneously against
a perturbation of the tension, as a consequence of an in-phase variation of the
axial-averaged flow rate and axial-averaged temperature.

In the limit of St → ∞, the temperature of the sheet is shown to be prescribed by
the temperature of the ambient environment, which leads to a useful simplification
where the viscosity is a prescribed function of the coordinates. Nevertheless, we have
to remember that at finite St , the temperature field always stabilizes the system
compared to the infinite St limit. This limit represents then the ‘worst case’, where the
critical draw ratio can be below its value for isothermal conditions when increasing
the temperature sensitivity of the viscosity, at least in the case of symmetrical thermal
boundary conditions. In the case of non-symmetrical thermal boundary conditions, the
present model would also account for viscosity variation in the transverse direction.
This subject is one for future study.

We thank Saint-Gobain Recherche for support of this investigation. We thank
Armand Ajdari and Stéphane Roux for helpful conversations.

Appendix A. Unity-throughput time
Continuity equation (2.11) can be written in the form of a kinematic wave for a

fluid element h

∂th + u∂xh = −h∂xu, (A 1)

where u is the phase speed and the right-hand side represents the global attenuation
due to the effective tension (since h∂xu = f/η̂ from (2.15)). Likewise and as in Kim
et al. (1996), we can write the kinematic equation for a wave of conserved flow rate
q = uh as follows:

∂tq + c ∂xq = 0, (A 2)

where c = c(x) is the phase speed of such a wave. Linearizing (A 2) with q = 1 + Q eλt

leads to

Q′ = −λ

c
Q, (A 3)

which can be identified with (3.4a), provided Q =H + U , to yield

c =
Q

hs H
. (A 4)

Now the only constant-flow-rate wave that travels the entire system is the one
corresponding to q =1, referred to as the unity-throughput wave (Kim et al. 1996).
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The time this wave will travel the system is therefore the unity-throughput time,
obtained as

tL =

∫ 1

0

Re

(
1

c

)
dx =

∫ 1

0

hs

(HRQR + HIQI )(
Q2

R + Q2
I

) dx, (A 5)

where the subscripts R and I denote, respectively, the real and the imaginary parts.

Appendix B. Phase shifts
In draw resonance, because of the boundary conditions, the tension and the

thickness variations are in phase inversion right after the inlet, as shown by (6.1),
while they are close but not in phase at the take-up. Indeed, unless ∂xu|1 is in phase
with h(1, t), and based on (2.15), there is no reason for h(1, t) to be exactly in phase
with f . On the basis that f leads h, the phase shift between the two can be calculated
by applying a trigonometric factorization as follows:

HR cos(λI t) − HI sin(λI t) = HR

cos(λI t − φ)

cos(φ)
with tan φ = − HI

HR

, (B 1)

such that the phase shift t at the take-up between h(1, t) (also ∝ q(1, t)) and f has
the form

t = − 1

λI

arctan

(
HI (1)

HR(1)

)
. (B 2)

Likewise, the phase shift of any averaged quantity 〈X〉 is given as

ϕ〈X〉 = − 1

λI

arctan

(
〈XsXI 〉
〈XsXR〉

)
. (B 3)
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