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Abstract

We extend the existing small-time asymptotics for implied volatilities under the Heston
stochastic volatility model to the multifactor volatility Heston model, which is also
known as the Wishart multidimensional stochastic volatility model (WMSV). More
explicitly, we show that the approaches taken in Forde and Jacquier (2009) and Forde,
Jacqiuer and Lee (2012) are applicable to the WMSV model under mild conditions, and
obtain explicit small-time expansions of implied volatilities.
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1. Introduction

The multifactor volatility Heston model or Wishart multidimensional stochastic volatility
(WMSV) model has received much attention in the quantitative finance community. Since [10],
the general theory of affine processes has developed rapidly, and it provides powerful analytical
tools in asset pricing via transform analysis. In the relevant literature, multiple volatility factors
have played key roles. Stochastic volatility based on the Wishart process was initially suggested
in [19], while maintaining computational convenience. Such a modeling approach appears to
be useful and effective as its increased flexibility helps explain stylized facts observed in the
markets. Many studies [4, 21] support the strength of multiple stochastic volatility modeling
empirically. The model proposed in [8] is a successful modeling specification in this direction
in that it captures the essential ingredients of multivariate volatility factors and provides an
explicit and tractable analytical framework.

In this paper we study the small-time asymptotics of implied volatilities for the model of
[8]. Asymptotic expansions of implied volatilities have been studied for more than a decade
due to their practical use for model calibration. This procedure of matching model parameters
to observed market data is performed on a regular basis, and reliable and fast operations are
needed for successful model implementation in practice. For this reason, if there is a closed
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Small-time smile for the multifactor volatility Heston model 1071

form of the implied volatilities then it could facilitate the calibration procedure and provide
beneficial insights about model behaviors. There is indeed extensive literature on implied
volatility expansions for a wide range of models, including [24], one of the early works in
this area. Particularly for the Heston model and its variants, small- and large-maturity smiles
are extensively studied in [11, 12, 13], etc. For a more complete historical account of volatility
expansion we refer the reader to the previously mentioned references.

On the other hand, when it comes to the multidimensional version of the Heston model,
resources are somewhat limited. Benabid et al. [1] embarked on the study of small-time volatil-
ity asymptotics inspired by [15, 16]; [7] reported the form of limiting implied volatility in terms
of the so-called vol-of-vol scale factor α as well as asymptotics for the bi-Heston model and
the Wishart affine stochastic correlation model. Compared to these approaches based on a per-
turbation method, we take a different route which helps us avoid the use of the extra parameter
α. Additionally, we derive a correction term which accounts for a small but nonzero maturity.
Essentially, ours are based on the development of asymptotic expansions taken in [11, 13].

Our main contributions can be summarized as follows. First, the large deviations approach,
which has been quite popular for asymptotic expansions, is proved applicable to the WMSV
model. For this, the explicit form of the limiting cumulant-generating function of the log
stock price is derived, for which a similar idea can be found in [17]. One could utilize the
results of [18] on the explicit moment-generating function under the WMSV model, which
works for any time t, but our approach imposes a weaker condition. Second, Laplace-type
expansion is shown to be applicable to the WMSV model, as done for the Heston model [13].
With a slightly more stringent condition on the model parameters, we obtain an explicit and
higher-order expansion of the cumulant-generating function, and this helps a better fit to the
true implied volatility curve.

The structure of this paper is as follows. In Section 2 we first introduce the WMSV model,
and derive the limiting cumulant-generating function based on which the large deviation princi-
ple is stated. In the last subsection the expansion of the limiting implied volatility is computed.
Section 3 then reports a more elaborate form of the cumulant-generating function under a small
timescale so that we can derive the explicit form of small-time smiles. The performance of the
resulting formulae is examined in Section 4. Section 5 concludes.

2. Limiting implied volatilities

2.1. Wishart multifactor stochastic volatility process

Da Fonseca et al. [8] suggested that in an arbitrage-free frictionless financial market, the
WMSV can represent the dynamics of a return of a risky asset price St,

Yt = −1

2
Tr [�t] dt + Tr

[√
�t

(
dWtR

� + dBt

√
I− RR�

)]
,

d�t = (
��� + M�t + �tM

�)dt +√
�tdWtQ + Q� (dWt)

� √�t, (1)

where Yt = ln St, I is the n-dimensional identity matrix, �, R, M, Q ∈Mn (the set of square
matrices), and Wt, Bt ∈Mn are composed of n2 independent Brownian motions under the risk-
neutral measure. Here, the risk-free rate r is assumed to be zero without loss of generality. As
noted in [8], (1) represents the matrix analogue of the square-root diffusion of the Heston
model [22]. The random shocks to the stock return and the volatility process are correlated by
the matrix R.

There are additional assumptions on the model parameters. The matrix M is negative
semi-definite, which is related to the mean-reverting feature in typical volatility modeling
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practice. It is also assumed that Q is nonsingular and ��� = βQ�Q with real parameter
β > n − 1. These standard conditions ensure that the resulting symmetric matrix �t is posi-
tive semi-definite. For the rest of this paper, such conditions are treated as part of the WMSV
model.

The usefulness of the WMSV model lies in the transform techniques widely studied in the
literature, including [10], still being applicable. The transform formula is well documented in
[6]. We record here a version that fits our purpose: for a scalar p,

ln E
[
epYt

]= pY0 + Tr
[
A(p, t)�0

]+ b(p, t). (2)

Here, A(p, t) is a solution to the matrix Riccati differential equation given as

dA

dt
= A

(
M + pQ�R�)+

(
M� + pRQ

)
A + 2AQ�QA + p(p − 1)

2
I (3)

with the initial condition A(p, 0) = 0. Lastly, b(p, t) = β
∫ t

0 Tr
[
Q�QA(p, s)

]
ds. There are

many results in the literature regarding solutions to the above differential equation. For
completeness, we provide a statement that is used in the next section.

Proposition 1. Consider a matrix differential equation for a fixed p:

d

ds

(
G F

)= (
G F

) (M + pQ�R� −2Q�Q
p(p−1)

2 I − (
M� + pRQ

)
)

,

with G(p, 0) = 0 and F(p, 0) = I. As long as F(p, t) is invertible, (3) has a solution A(p, s) =
F(p, s)−1G(p, s) on [0, t]. Conversely, if (3) has a solution A(p,s) on [0, t], then F(p,s) is
invertible on [0, t] so that A(p, s) = F(p, s)−1G(p, s). In such a case, b(p, t) is simplified to

b(p, t) = −β

2
Tr
[
ln F(p, t) + t

(
M + pQ�R�)] .

The first statement is already noted in [8, 5], where the full details are referred to [20].
The second statement is a slight modification of a result reported in [3, 26]. Hence, we have
the equivalence between the existence of A and the non-singularity of F(p, t). In addition, the
validity of the affine transform formula (2) for general affine processes is proved in [23]; that
is, the region for p in which exponential moments of Yt exist coincides with the region for p
such that the solution to (3) exists at a given time t. Consequently, we see that the blow-up
condition of exponential moments at time t is specified as det F(p, t) = 0.

2.2. Large deviations principle

A large deviations principle for the Heston stochastic volatility model is nicely derived in
[11]. The authors compute the limiting cumulant-generating function (CGF)

�(p) = lim
t↓0

t ln E
[
ep(Yt−Y0)/t]

on some open interval (p−, p+) including 0. Subsequently, its Fenchel–Legendre trans-
form �∗(x) = supp∈(p−,p+){px − �(p)} is shown to determine the small-time limit of implied
volatilities under the Heston model.

Lemma 1. Suppose that RQ is symmetric in the WMSV model. We further assume that I− R�R
is invertible. Then, the limiting cumulant-generating function �(p) is given by

�(p) = Tr

[(
cos (p�) − �−1 sin (p�)RQ

)−1 (p

2
�−1 sin (p�)

)
�0

]
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on some open interval (p−, p+) which includes 0. Here, � is a square root of Q�(I− R�R)Q.
The scalars p± are the largest negative and smallest positive numbers such that

det
(
cos (p�) − �−1 sin (p�)RQ

)= 0.

Proof. By definition, the target function is given as follows:

�(p) = lim
t→0

t ln E
[
ep(Yt−Y0)/t]

= lim
t→0

{
Tr
[
tA
(p

t
, t
)
�0

]
+ tb

(p

t
, t
) }

= Tr
[

lim
t→0

tA
(p

t
, t
)
�0

]
+ lim

t→0
tb
(p

t
, t
)
,

provided the limits exist. We compute those limits by looking at the solution to the
matrix differential equation in Proposition 1. It is easy to see that the solution is given as(
G
( p

t , t
)

F
( p

t , t
))= (

0 I
)

etM+Nt , with

M =
(

M 0
0 −M�

)
, Nt =

(
pA tB

c(t)I −pA

)
,

where A = Q�R� = RQ, B = −2Q�Q, and c(t) = p(p−t)
2t . For notational simplicity, we simply

write c if there is no risk of confusion.
We will later show that M does not affect the limit as t decreases to zero. Provided this is

valid, it is enough to compute limt→0 eNt . Straightforward computations yield that

N2k
t =

(
Zk

t �k

0 Zk
t

)
, N2k+1

t =
( ∗ ∗

cZk
t −pZk

t A

)
,

where Zt = p2A2 + ctB and �k is given by c�k = p
(
AZk

t − Zk
t A
)
, with �1 = pt(AB − BA).

Since limt Zt = p2A2 + p2

2 B =: Z0, the matrix norm |Zt| is bounded by some constant for all
small t. Consequently, by looking at the lower block matrices of eNt , we obtain

G
(p

t
, t
)

= c
∞∑

k=0

1

(2k + 1)!Z
k
t ,

F
(p

t
, t
)

=
∞∑

k=0

1

(2k)!Z
k
t − p

∞∑
k=0

1

(2k + 1)!Z
k
t A.

Since the convergence of infinite sums is uniform on a finite interval, we get the following
limits:

G∗(p) := lim
t→0

tG
(p

t
, t
)

= p2

2

∞∑
k=0

1

(2k + 1)!Z
k
0,

F∗(p) := lim
t→0

F
(p

t
, t
)

=
∞∑

k=0

1

(2k)!Z
k
0 − p

∞∑
k=0

1

(2k + 1)!Z
k
0A.
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On the other hand, we notice that Z0 = −p2Q� (
I− R�R

)
Q. Hence, it is represented by

−p2�2. The final expression is easily obtained by the definitions of matrix sine and cosine.
Let us turn our attention to etM+Nt . We note that

etM+Nt − eNt

=
∞∑

l=0

1

(2l)!
{
(tM + Nt)

2l − N2l
t

}
+

∞∑
l=0

1

(2l + 1)!
{
(tM + Nt)

2l+1 − N2l+1
t

}

=
∞∑

l=0

1

(2l)!
{
(tM + Nt)

2l − N2l
t

}
+

∞∑
l=0

1

(2l + 1)! (tM + Nt)
2l tM

+
∞∑

l=0

1

(2l + 1)!
{
(tM + Nt)

2l − N2l
t

}
Nt.

It is easy to verify that the matrix norm |(tM + Nt)2| is bounded by a constant for all small
t values. This implies that the second term converges to zero as t decreases to zero. Indeed,
(tM + Nt)2 = t2M2 + M(tNt) + tNtM + N2

t , and each term is at most O(1) in t.
Regarding the first and third terms on the right-hand side, we are concerned with their lower

left, say (i), and lower right, (ii), block matrices of size n × n as they are relevant to matrices
G and F. Simple calculations show that

(tM + Nt)2 =

⎛
⎝ O(t) + Zt O(t)

O(1) O(t) + Zt

⎞
⎠ , N2

t =

⎛
⎝ Zt O(t)

0 Zt

⎞
⎠ .

As a result, it can be verified that (i) and (ii) are of O(1) and O(t), respectively. Therefore,
as t decreases to zero, (i) multiplied by t does not affect the limit G∗(p). Likewise, F∗(p) is
independent of (ii). Similar arguments can be made for the third summation. Hence, the limit
in the statement is valid for any M.

Now we notice that F∗(0) = I, and thus there is a maximal open interval (p−, p+) including
zero such that det F∗(p) �= 0. The equivalence of this and the finiteness of �(p) comes from the
limit

�(p) = Tr
[
F∗(p)−1G∗(p)�0

]
= 1

det F∗(p)
× some non-blow-up function of p,

and det F∗(p) = limt det F
( p

t , t
)
, in addition to that the matrix A exists if and only if det F is

nonzero. Hence, for �(p) to be finite, each det F
( p

t , t
)

must be nonzero for all small t values
with a nonzero limit. Alternatively, one may apply arguments similar to [11, Lemma B.1]. The
last statement then follows.

So far we have not discussed the limit limt→0 tb
( p

t , t
)
. However, from Proposition 1, we

notice that

lim
t→0

b
(p

t
, t
)

= −β

2
lim

t
Tr
[
ln F

(p

t
, t
)

+ tM + pQ�R�]
= −β

2
Tr
[
ln F∗(p) + pQ�R�]

as long as p ∈ (p−, p+). As a result, this term does not appear in �(p). �
Remark 1. The above lemma imposes the assumption that RQ is symmetric. This condition is
arguably mild. In [8] it was shown that the stochastic correlation ρt between the stock noise
and the volatility noise depends on the product RQ according to
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ρt = Tr[RQ�t]√
Tr[�t]Tr

[
Q�Q�t

] .

Symmetric RQ does not affect the flexibility of this model to reflect the stochastic skew
effect. The same condition appears in other related works. For instance, in [18] or [5], the
authors derive the explicit Laplace transform for the WMSV model under technical conditions
including symmetric RQ.

The CGF ln E
[
ep(Yt−Y0)/t

]
is convex in p for each t, by Hölder’s inequality. Therefore, its

limit �(p) is convex as well. On the other hand, its derivative �′(p) can be computed as

�′(p) = Tr
[
F∗(p)−1

(
−F∗′(p)F∗(p)−1G∗(p) + G∗′(p)

)
�0

]
= f (p)

det F∗(p)2
(4)

for some non-blow-up function f . Here, the derivative of a matrix with respect to a scalar p is
computed by componentwise differentiation. Recall that G∗ and F∗ are the limits of tG

( p
t , t

)
and F

( p
t , t

)
defined in Lemma 1. Consequently, |�′(p)| → ∞ at the boundary of (p−, p+) as

long as f (p) does not vanish at the boundary points. Based on this essential smoothness of �

and its convexity, we obtain the next result.

Proposition 2. Assume that all of the conditions in Lemma 1 hold, and that f(p) of (4) does not
vanish at p±. Then, (Yt − Y0) satisfies the large deviation principle as t approaches zero, with
the rate function �∗(x) = supp∈(p−,p+){px − �(p)} for all x ∈R. As a result, if Tr[�0] > 0,
then

�∗(k) =

⎧⎪⎨
⎪⎩
− lim

t→0
t ln P

(
Yt − Y0 > k

)
, if k ≥ 0,

− lim
t→0

t ln P

(
Yt − Y0 < k

)
, if k ≤ 0.

Proof. The large deviations principle follows from the well-known Gärtner–Ellis theorem
[9]. The Fenchel–Legendre transform �∗ is a good rate function. A version in our context for
{Yt − Y0} is

− inf
x>k

�∗(x) ≤ lim inf
t→0

t ln P(Yt − Y0 > k) ≤ lim sup
t→0

t ln P(Yt − Y0 > k) ≤ − inf
x≥k

�∗(x)

for k ≥ 0. This version is similar to the one summarized in [14]. We refer the reader to an
extended version available at the authors’ websites. Since � is convex, �∗ is also convex.
Furthermore, the essential smoothness of � implies it is a closed proper convex function whose
convex dual �∗ is closed and convex with �∗∗ = �. Theorem 26.3 of [27] then tells us that
�∗ is strictly convex.

Straightforward computations yield F∗(0) = I, G∗(0) = G∗′(0) = 0, and G∗′′(0) = I, and this
results in �(0) = �′(0) = 0 and �′′(0) = Tr[�0]. Therefore, if Tr[�0] > 0 there is a small
interval around 0, say I = [ − ε, ε], on which �′(p) is monotonically increasing and �′′(p)
is strictly positive. Outside of I, the convexity of � implies �′ is nondecreasing. Now let us
consider x ∈ [�′( − ε), �′(ε)]. Note that this last interval includes 0 in its interior. For such
x, �∗(x) = p∗x − �(p∗), where p∗ = p∗(x) is a unique solution to the equation �′(p) = x. It is
clear that p∗(0) = 0.

The nondegeneracy of �′′ around 0 then implies the differentiability of p∗(x) thanks to the
implicit function theorem. Finally, we observe that

�∗′(x) = p∗′(x)x + p∗(x) − �′(p∗)p∗′(x) = p∗(x), �∗(0) = �∗′(0) = 0.
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From the strict convexity of �∗, we can conclude that �∗′ is positive on the positive real axis
and negative on the negative real axis. In turn, we see that �∗ is nondecreasing on the positive
real axis and nonincreasing on the negative real axis. As a consequence, − infx≥k �∗(x) =
− infx>k �∗(x) = −�∗(k) for k ≥ 0. We can draw a similar conclusion for k ≤ 0. The desired
statement is immediate. �

In the above proposition, the assumption that f (p) does not vanish at the boundary points is
a mild one as it is expected that the two nonlinear functions f and det F∗ do not share zeros
in common settings. We note that the large deviations results above are the extension of [11,
Theorem 2.1] to the WMSV model. Since their subsequent analyses are general in nature,
we adopt those results in order to connect Proposition 2 to implied volatilities in the next
subsection.

2.3. First-order expansion

For the reader’s convenience, we record some relevant results.

Proposition 3. (Forde and Jacquier [11].) Assume that all of the assumptions in Proposition 2
hold. Then, we have the following small-time behaviors of vanilla option prices and implied
volatilities:

• for an out-of-the-money call option with the log-moneyness x = ln K
S0

≥ 0,

�∗(x) = − lim
t→0

t ln C(S0, K, t);

• for an out-of-the-money put option with the log-moneyness x ≤ 0,

�∗(x) = − lim
t→0

t ln P(S0, K, t);

• for the option implied volatility σt(x) with the log-moneyness x �= 0,

I(x) = lim
t→0

σt(x) = |x|√
2�∗(x)

.

Here, C(S0, K, t) and P(S0, K, t) are the respective prices of call and put options with initial
price S0, strike K, and maturity t.

Theorem 1. Assume that all of the conditions in Proposition 2 hold. Then, in some neighbor-
hood of zero for the log-moneyness x = ln K

S0
, the following expansion is valid: with y = x

Tr[�0] ,

I(x) =√
Tr[�0]

[
1 + 1

2

Tr[RQ�0]

Tr[�0]
y +

(
1

6

Tr[Q�Q�0]

Tr[�0]

+ 1

3

Tr
[
(RQ)2�0

]
Tr[�0]

− 3

4

Tr[RQ�0]2

Tr[�0]2

)
y2 +O(y3)

]
.

Proof. The formula above is derived by tedious but straightforward computations of
Taylor expansions. In the proof of Proposition 2, we already argued that �′ is smooth and
strictly monotone in a neighborhood of p = 0. Its convex dual �∗ is then given by �∗(x) =
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p∗(x)x − �(p∗(x)), where p∗ is a smooth solution to �′(p) = x in a small neighborhood of
x = 0. Then, Taylor expansions yield

�(p) = 1

2
Tr[�0]p2 + 1

2
Tr[RQ�0]p3 + 1

6
Tr
[(

Q�Q + 2(RQ)2
)

�0

]
p4 +O(p5),

p∗(x) = 1

Tr[�0]
x − 3

2

Tr[RQ�0]

Tr[�0]3
x2 +O(x3).

For notational convenience we denote �(p) = p2 ∑2
i=0 aipi +O(p5) and p∗(x) = x

∑2
i=0 bixi +

O(x4). It can be shown that

b2 = 9

2

Tr [RQ�0]2

Tr [�0]5
− 2

3

Tr
[(

Q�Q + 2(RQ)2
)
�0
]

Tr [�0]4
.

Recall that in Proposition 3, for all sufficiently small nonzero log-moneyness x, we have

I(x)2 = x2

2�∗(x) . On the other hand, the above expansions give us

2�∗(x)

x2
= 2

x2

(
p∗(x)x − �

(
p∗(x)

))= c0 + c1x + c2x2 +O(x3),

for some constants ci. Those values are readily obtained by collecting relevant terms carefully
as functions of the ai and bi. To be explicit, they are given by

c0 = 1

Tr[�0]
, c1 = −Tr[RQ�0]

Tr[�0]3
, c2 = 9

4

Tr[RQ�0]2

Tr[�0]5
− 1

3

Tr
[(

Q�Q + 2(RQ)2
)
�0
]

Tr[�0]4
.

The reciprocal of the above expansion is not difficult to get:

I(x)2 = 1

c0
− c1

c2
0

x +
(

c2
1

c3
0

− c2

c2
0

)
x2 +O(x3),

I(x) = 1√
c0

− c1

2c1.5
0

x + 3c2
1 − 4c0c2

8c2.5
0

x2 +O(x3).

The formula in the statement then easily follows. �
The expansion in Theorem 1 reduces to that of the Heston model in [11, Theorem 3.2]. We

also note that the above result, in particular I(x)2, is analogous to one of the main results in [7,
Proposition 3.6] for the WMSV model. Their method is based on the direct expansion of the
call option price in terms of the vol-of-vol scale factor α. In fact, the two formulae are the same
if α = 1 and RQ is symmetric. Nevertheless, we find the large deviations approach is useful
because, first, the validity of the expansion is obtained without introducing an extra control
parameter α, and second, information about the tail probability behaviors of Yt is provided via
the convex dual of the limiting CGF �(p).

3. Small-time smiles

The program in [13] applies to the WMSV model as well. This extension is the main focus
of the current section.

Lemma 2. Assume that all of the conditions in Proposition 2 hold. We further assume that the
matrix M is symmetric. Then, for each p ∈ (p−, p+)\{0}, we have

E[e
p
t (Yt−Y0)] = U(p)e

�(p)
t (1 +O(t))
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as t decreases to zero, where �(p) is the limiting CGF and U(p) is given by

ln U(p)

= Tr
[
F∗−1

[
− 1

2
sin p� · �−1 + 1

2
(pD1 − D2)

]
�0

]
+ Tr

[
F∗−1

[
sin p� · ϒ ′

0 + 1

p
sin p� · �−1M +

(
D1 − 1

p
D2

)
RQ

]
F∗−1G∗�0

]

− β

2
Tr
[
ln F∗ + pRQ

]
.

Here, F∗(p), G∗(p), and � are as in Lemma 1. The new symbols D1, D2, and ϒ ′
0 satisfy

D1 = cos p� · ϒ ′
0�

−1,

D2 = sin p� · �−1ϒ ′
0�

−1,

vec ϒ ′
0 = −(� ⊕ �)−1vec(MRQ + RQM + Q�Q),

where vec is the vectorization operator and ⊕ means the Kronecker sum.

Proof. In the proof of Lemma 1, we showed that the matrix M does not affect the limiting
CGF. However, for small-time smiles, we need to calculate the behaviors of the CGF for small
t values, which turn out to depend on M. Let us repeat the arguments of the lemma as follows.
Recall that the solution A

( p
t , t

)
is F−1G, where

(
G
( p

t , t
)

F
( p

t , t
))= (

0 I
)

eLt , Lt =
(

tM + pA tB
cI −(tM + pA)

)
,

where A = RQ, B = −2Q�Q, and c = p2

2t − p
2 . For notational convenience, we denote (tM +

pA)2 + ctB by Zt. Then, thanks to the symmetry of M, it can be readily shown that

L2k
t =

(
Zk

t �k

0 Zk
t

)

for some matrix �k. More explicitly, it is given by c�k = (tM + pA)Zk
t − Zk

t (tM + pA). We
can rewrite

Zt = Z0 + tC + t2M2, Z0 = p2A2 + p2

2
B, C = p

(
MA + AM − 1

2
B
)

.

From these calculations, we can find the matrices G and F as

G
(p

t
, t
)

= c
∞∑

k=0

1

(2k + 1)!Z
k
t ,

F
(p

t
, t
)

=
∞∑

k=0

1

(2k)!Z
k
t −

∞∑
k=0

1

(2k + 1)!Z
k
t (tM + pA).

Under the assumed conditions, −Zt converges to a nonsingular −Z0 = (p�)2 as t approaches
zero. Here, � is as given in Lemma 1. Since Zt is symmetric, we can find a nonsingular ϒt

such that Zt = −ϒ2
t for some symmetric and nonsingular ϒt, and for all sufficiently small t.

Clearly, limt→0 ϒt = p�. Consequently, more compact representations are possible:
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G
(p

t
, t
)

= c sin ϒt · ϒ−1
t ,

F
(p

t
, t
)

= cos ϒt − sin ϒt · ϒ−1
t (tM + pA).

Let us now make the next observations: direct differentiations yield

G
(p

t
, t
)

= c sin ϒ0 · ϒ−1
0 + cDt + cO(t2)

= 1

t
G∗(p) − p

2
sin ϒ0 · ϒ−1

0 + p2

2
D +O(t),

F
(p

t
, t
)

= F∗(p) − sin ϒ0 · ϒ ′
0t − Dt(tM + pA) − sin ϒ0 · ϒ−1

0 Mt +O(t2)

= F∗(p) −
[
sin ϒ0 · ϒ ′

0 + sin ϒ0 · ϒ−1
0 M + pDA

]
t +O(t2).

Here, D is defined as d
dt sin ϒt · ϒ−1

t

∣∣∣
t=0

and computed as

D = cos ϒ0 · ϒ ′
0ϒ

−1
0 − sin ϒ0 · ϒ−1

0 ϒ ′
0ϒ

−1
0 .

We note that ϒ ′
0 satisfies the special case of Sylvester’s equation, ϒ ′

0ϒ0 + ϒ0ϒ
′
0 = −C, by dif-

ferentiating the defining equation of ϒ2
t . Thanks to the symmetry and the positive definiteness

of ϒt for small t, it is known that there exists a unique solution ϒ ′
0, and the solution is obtained

by vec ϒ ′
0 = − (ϒ0 ⊗ I+ I⊗ ϒ0)

−1 vec C, where ⊗ is the Kronecker product operator and
vec is the vectorization operator.

Using the definition of Kronecker sum, we get ϒ0 ⊕ ϒ0 = ϒ0 ⊗ I+ I⊗ ϒ0. It is then imme-
diate to see that vec ϒ ′

0 = −(� ⊕ �)−1vec(MA + AM − 1
2 B). We also write, for notational

simplicity,

D = 1

p
D1 − 1

p2
D2,

{
D1 = cos (p�)ϒ ′

0�
−1,

D2 = sin (p�)�−1ϒ ′
0�

−1.

Finally, it only takes several simple algebraic manipulations until we arrive at

A
(p

t
, t
)

= 1

t
F∗−1G∗ + F∗−1

[
− 1

2
sin p� · �−1 + 1

2
(pD1 − D2)

]
+ F∗−1

[
sin p� · ϒ ′

0 + 1

p
sin p� · �−1M +

(
D1 − 1

p
D2

)
A
]
F∗−1G∗

+ O(t).

This first-order expansion of A combined with the known formula b
( p

t , t
)

in the proof of
Lemma 1 helps us get

ln E

[
e

p
t (Yt−Y0)

]
= 1

t
�(p) + Tr

[
F∗−1

[
− 1

2
sin p� · �−1 + 1

2
(pD1 − D2)

]
�0

]
+ Tr

[
F∗−1

[
sin p� · ϒ ′

0 + 1

p
sin p� · �−1M +

(
D1 − 1

p
D2

)
A
]

F∗−1G∗�0

]

− β

2
Tr
[
ln F∗ + pA

]+O(t). �
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It is possible to obtain an asymptotic expansion of ln U(p) which becomes handy for approx-
imating small-time smiles. Since the derivation is tedious and long, we briefly sketch some
relevant computations.

Corollary 1. Assume that all of the conditions in Lemma 2 hold. Then, in a small neighborhood
of zero for p, the following asymptotic expansion is valid:

ln U(p) = −1

2
Tr[�0]p +

{
−1

2
Tr[RQ�0] + 1

2
Tr [M�0] + β

4
Tr
[
Q�Q

]}
p2

+
{

Tr

[(
−1

6
�2 − 1

6
�2ϒ ′

0�
−1 − 1

2
(RQ)2

)
�0

]

+ 1

2
Tr
[(

�ϒ ′
0 + MRQ + RQM

)
�0
]+ β

6
Tr
[
Q�QRQ

]}
p3 +O(p4),

where � and ϒ ′
0 are as in Lemma 2.

Proof. Useful expansions are given as follows:

F∗−1 = I+ Ap +
(

A2 + 1

2
�2
)

p2 +O(p3),

G∗ = p2

2
I− 1

12
�2p4 +O(p6),

sin p� = �p − 1

6
�3p3 +O(p5),

cos p� = I− 1

2
�2p2 + 1

24
�4p4 +O(p6).

Then, expansions for D1 and D2 can be calculated accordingly. Regarding the last term in
ln U(p) of Lemma 2, we do the formal expansion of ln F∗ = α0 + α1p + · · · and find matching
coefficients via

eln F∗ = F∗ = I− Ap − 1

2
�2p2 + 1

6
�2Ap3 +O(p4).

This leads to α0 = 0, α1 = −A, α2 = − 1
2�2 − 1

2 A2, and α3 = − 1
12�2A − 1

4 A�2 − 1
3 A3. Then,

we eventually find that

−β

2
Tr
[
ln F∗ + Ap

]= −β

2
Tr
[
α2p2 + α3p3

]
+O(p4)

= β

4
Tr
[
Q�Q

]
p2 + β

6
Tr
[
Q�QA

]
p3 +O(p4).

Carefully collecting relevant terms, we obtain the desired result. �
Lemma 3. Assume that all of the conditions in Lemma 1 hold. Let us define h(q) =
Re
(
�(p∗(x) + iq)

)
, q ∈R, where p∗(x) is a solution to the equation �′(p) = x for x in a small

neighborhood of zero. If Tr[�0] > 0, then h(q) attains a unique maximum at q = 0.

Proof. Under the given assumptions, it is argued in the proof of Proposition 2 that there is
a small interval x ∈ [�′( − ε), �′(ε)] for a small ε > 0 with the following properties. First, this
interval includes 0 in its interior. Second, �′′ is strictly positive on [ − ε, ε]. Third, for such x,
there is a unique solution p∗(x) to �′(p) = x thanks to the strict monotonicity of �′.
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Let us denote z = p∗ + iq. The CGF of (Yt − Y0) is defined as �t
( z

t

)= ln E[e
z
t (Yt−Y0)].

Then, observe that∣∣∣E [e
z
t (Yt−Y0)

]∣∣∣= ∣∣∣exp
(

Re �t

( z

t

)
+ i Im �t

( z

t

))∣∣∣= exp
(

Re �t

( z

t

))
.

On the other hand, the left-hand side of the above equation is clearly less than or equal to

E

[∣∣∣e z
t (Yt−Y0)

∣∣∣]=E

[
e

p∗
t (Yt−Y0)

]
= exp

(
�t

(p∗

t

))
.

Since this holds for all t, we obtain the limiting result after multiplying t, Re �(p∗ + iq) ≤
�(p∗), making q = 0 a maximum.

In order to see that q = 0 is a unique maximum, we note that

h′′(0) = Re
(
�′′(p∗ + iq)i2

)∣∣∣
q=0

= −�′′(p∗).

The strict convexity of � on [ − ε, ε] implies that −�′′(p∗) < 0, so that the function h becomes
strictly concave at q = 0. This proves the uniqueness of the maximum. �

Based on the two lemmas above, the procedure of [13] can be applied. For the reader’s
convenience, we summarize its outline. Assume that the log-moneyness x = ln K

S0
is in the

small neighborhood of Lemma 3. Then, for sufficiently small t, we have

1

S0
E

[(
eYt − S0ex)+]= (1 − ex)1{x<0} − ext

2π
Re

(∫
P

eixu/tφt

(
−u

t

) ( 1

u2
+O(t)

)
du

)
,

where φt(z) =E
[
eiz(Yt−Y0)

]
for a complex number z with −Im(z) ∈ (p−, p+). The integration

path P is from −∞ + ip∗(x) to ∞ + ip∗(x). Then, Lemma 2 implies that∫
P

eixu/tφt

(
−u

t

) ( 1

u2
+O(t)

)
du

=
∫
P

eixu/tU( − iu)e�(−iu)/t(1 +O(t))

(
1

u2
+O(t)

)
du

=
∫
P

e−H(u)/t U( − iu)

u2
du(1 +O(t)),

where H(u) = −ixu − �( − iu). With nonzero x, Lemma 3 is then utilized to apply the Laplace
expansion of [25, Theorem 7.1, Chapter 4]. More specifically, Re(H(u) − H(u0)) is positive on
P for u0 = ip∗(x). The first-order expansion of the resulting formula is

2
√

π te−H(u0)/t U( − iu0)

u2
0

√
2F′′(u0)

(1 +O(t)) = −2
√

π te−(xp∗−�(p∗))/t U(p∗)

p∗2
√

2�′′(p∗)
(1 +O(t)).

By definition of the convex dual of �, we see that xp∗ − �(p∗) = �∗(x). The next result is
simply the WMSV version of [13, Theorem 3.1].

Proposition 4. Assume that all of the conditions in Lemma 2 hold. Then, for a nonzero log-
moneyness x = ln K

S0
in a small neighborhood of zero, the asymptotic behavior for European

call options is given by
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1

S0
E

[(
eYt − S0ex)+]= (1 − ex)1{x<0} + e−�∗(x)/t

(
A(x)√

2π
t1.5 +O(t2.5)

)
,

where A(x) = exU(p∗(x))

p∗(x)2
√

�
′′(p∗(x))

as t decreases to zero.

Comparison of the above expansion with the call price expansion under the Black–Scholes
model leads us to the asymptotic expansion of the small-time smile as in [13, Theorem 4.2]:
for nonzero and small x,

σ 2
t (x) ≈ I(x)2 + 2I(x)4

x2

[
ln

A(x)x2

I(x)3
− x

2

]
t.

Here, I(x) is as in Proposition 3. Since this step is straightforward, we refer the reader to
the main reference. This expression still depends on the implicitly defined function p∗(x).
Nevertheless, we can utilize the asymptotic results obtained so far. Specifically, recall that we
derived expansions for �(p), p∗(x), and I(x) previously. By plugging in estimates for �′′ and
U using Lemma 1 and Corollary 1, we get an approximation to A(x). And Theorem 1 provides
us with an approximation to I(x). Alternatively, an asymptotic expression can be produced by
expanding the necessary quantities to suitable degrees.

Theorem 2. Assume that all of the conditions in Lemma 2 hold. Then, for a nonzero log-
moneyness x = ln K

S0
in a small neighborhood of zero, the small-time smile is approximated by

σ 2
t ≈ I(x)2 + 2I(x)4(d0 + d1x)t (5)

for some constants d0 and d1. In particular, d0 is equal to

1

4

Tr [RQ�0]

Tr [�0]2
+ 1

2

Tr [M�0]

Tr [�0]2
+ β

4

Tr
[
Q�Q

]
Tr [�0]2

+ 3

8

Tr [RQ�0]2

Tr [�0]4
− 1

6

Tr
[(

Q�Q + 2(RQ)2
)
�0
]

Tr [�0]3
.

Proof. For notational convenience we write ln U(p) = u0p + u1p2 + u2p3 +O(p4). We
also retrieve the expressions �(p) =∑3

i=0 aipi+2 +O(p6) and p∗(x) =∑3
i=0 bixi+1 +O(x5) =

xp̃(x). Lastly, I(x)−2 = 2�∗(x)
x2 =∑3

i=0 cixi +O(x4). Then, we have

[
ln

A(x)x2

I(x)3
− x

2

]

= x

2
+ ln U(p∗) + 2 ln x − 2 ln p∗ − 1

2
ln �′′(p∗) − 3 ln I(x)

= x

2
+ ln U(p∗) − 2 ln p̃(x) + 1

2
ln p∗′(x) + 3

2
ln I(x)−2

= x

2
+ u0(b0x + b1x2 + b2x3) + u1(b2

0x2 + 2b0b1x3) + u2b3
0x3 +O(x4)

− 2 ln
[
b0 + b1x + b2x2 + b3x3 +O(x4)

]
+ 1

2
ln
[
b0 + 2b1x + 3b2x2 + 4b3x3 +O(x4)

]
+ 3

2
ln
[
c0 + c1x + c2x2 + c3x3 +O(x4)

]
.
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Here we utilized the relation �′(p∗) = x so that �′′(p∗)p∗′(x) = 1 by differentiating with respect
to x. Our previous computations show us that a0 = 1

2 Tr[�0] and b0 = c0 = 1
Tr[�0] . We also have

u0 = − 1
2 Tr[�0]. This simplifies the formula a bit and leads us to

[
ln

A(x)x2

I(x)3
− x

2

]
= u0(b1x2 + b2x3) + u1(b2

0x2 + 2b0b1x3) + u2b3
0x3

− 2 ln

[
1 + b1

b0
x + b2

b0
x2 + b3

b0
x3 +O(x4)

]

+ 1

2
ln

[
1 + 2

b1

b0
x + 3

b2

b0
x2 + 4

b3

b0
x3 +O(x4)

]

+ 3

2
ln

[
1 + c1

b0
x + c2

b0
x2 + c3

b0
x3 +O(x4)

]
.

It is easy to check that c1 = 2
3 b1. Hence, the Taylor expansions of the log functions cancel out

x terms because −2b1 + b1 + 3
2 c1 = 0. Finally, 1

x2

[
ln A(x)x2

I(x)3 − x
2

]
boils down to d0 + d1x +

O(x2) for some suitable constants d0 and d1.
Carefully collecting relevant terms and utilizing the relationships b1 = 3

2 c1 and b2 = 2c2,

we can see that d0 = u0b1 + u1b2
0 + b2

4b0
− b2

1
3b2

0
, from which we obtain the expression in the

statement. �
In the previous theorem it is possible to compute d1 explicitly, in which case b3 and c3

are required. Depending on the timescale for which the user applies implied volatility expan-
sions, however, the expansion I(x)2 + 2I(x)4d0t might suffice. In our numerical tests in the next
section we use d0 only with the quadratic expansion in Theorem 1 for I(x).

4. Numerical results

In this section we conduct several numerical comparisons to test the effectiveness of the
derived formulae in Theorems 1 and 2. We consider a book of European call prices provided
by Wharton Research Data Services on the S&P 500 Index (SPX) quoted on June 7, 2019.
The time to maturity ranges from two weeks to four weeks. We only use option quotes with
log-moneyness between −0.05 and 0.05, since near-the-money options tend to be more liquid,
especially for short-maturity options. Finally, this gives us a sample of 174 option prices.

Let us denote the limiting implied volatility I(x) by σ0, the implied volatility under the
WMSV model by σmodel

t , the market implied volatility by σmarket
t , and the small-time smile

approximation in Theorem 2 by σ
approx
t . One contribution of Theorem 2 lies in a simple cal-

ibration of the WMSV model parameters by minimizing the mean square error (MSE) of
σ

approx
t , i.e.

min
1

N

m∑
j=1

nj∑
i=1

(
σmarket

tj (S0, Ki) − σ
approx
tj (S0, Ki)

)2
, (6)

where N = n1 + n2 + · · · + nm, m is the number of maturities, and nj is the number of options
with maturity tj. The calibration results based on this method are as follows:

�0 =
[

0.0107 −4.9502 × 10−4

−4.9502 × 10−4 0.0107

]
, M =

[
−14.6632 −0.0295
−0.0295−14.6625

]
,
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FIGURE 1: Comparison of the WMSV model prices and market prices of the SPX call options with three
different maturities quoted on June 7, 2019.

Q =
[

0.1559 0.2118
0.2094 0.1548

]
, R =

[
−1.5915 −0.0977
−0.1205 −1.5919

]
, β = 5.9386.

Based on those calibrated parameters, we find that the MSE in implied volatility is 3.1692 ×
10−5, and the MSE in price (normalized by S0) is 9.2544 × 10−8. We further illustrate the
difference between model prices for the above parameters and market prices in Figure 1, and
compare model implied volatilities σmodel

t and market implied volatilities σmarket
t in Figure 2.

To obtain the implied volatility σmodel
t , we first numerically calculate option prices, denoted

by Cmodel, via the widely used Fourier transform method for the WMSV model, and then
find σmodel

t with which the Black–Scholes price is identical to the price Cmodel. For Fourier
methods, we refer the interested reader to any of the many available references, e.g. [8, 2, 10].
Nevertheless, for the reader’s convenience, we document the details of our MATLAB R© imple-
mentation, which can be found on the corresponding author’s personal web page or can be
requested via email.

Since the original paper [8] presents detailed sensitivity analyses of parameters on option
prices, we focus on the numerical performance of our implied volatility expansions. Figure 3
compares the small-time smile approximations with the implied volatility σmodel

t with respect
to the log-moneyness x ∈ [ − 0.05, 0.05] based on the calibrated parameters listed above. To
take a close look at the differences near the money we provide Figure 4, which focuses on the
range x ∈ [ − 0.01, 0.01]. Also, using the same range for x, Figure 5 presents the relative errors
of σ0, the relative errors of σt, and the relative errors of the Black–Scholes prices based on
σ

approx
t with respect to the model price Cmodel. These figures clearly confirm our mathematical

results in Theorems 1 and 2. Firstly, it turns out that in most cases σ
approx
t outperforms σ0

in terms of approximating σmodel
t . Secondly, as time to maturity decreases, both σ

approx
t and

σ0 tend to be closer to the model implied volatility. Lastly, our approximation works well for
near-the-money options.
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FIGURE 2: Comparison of implied volatilities derived from the WMSV model prices and market prices
of the SPX call options quoted on June 7, 2019.
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FIGURE 4: Comparison of model implied volatility σmodel
t , limiting implied volatility σ0, and small-time

smile approximation σ
approx
t for the three shortest maturities where log-moneyness x ∈ [ − 0.01, 0.01].
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FIGURE 5: Relative differences |model_val - approx_val|/model_val for (i) limiting
implied volatility σ0, (ii) small-time smile σ

approx
t , and (iii) Black–Scholes prices from σ

approx
t for the

three shortest maturities where log-moneyness x ∈ [ − 0.01, 0.01].

One may consider calibrating model parameters using the existing approaches in the lit-
erature. The most widely adopted method is to minimize the weighted mean square error of
numerically calculated prices Cmodel, i.e.

min
1

N

m∑
j=1

nj∑
i=1

ν−2
ij

(
Cmarket(S0, Ki, tj) − Cmodel(S0, Ki, tj)

)2
, (7)

where νij is the vega of the corresponding option, and Cmarket stands for the option’s market
price. As mentioned in [7], using ν−2

ij for the weight is the market practice and improves the
calibration by putting more weight on short-maturity options. However, the calibration errors
based on (7) show that our approximation (5) contributes to better calibration of the WMSV
model parameters. In particular, compared to our method (6), the Fourier-based calibration
(7) turns out to increase both the MSE in implied volatility and MSE in price by 9.06% and
43.56%, respectively. Also, it is worth noting that the optimization problem (6) requires sub-
stantially less computational cost than the problem (7). Therefore, at least for near-the-money
options with short maturities, our method could be a good alternative in calibrating WMSV
model parameters.

Before we end this section, it is worth mentioning the parametric restrictions imposed by
the assumptions in Theorems 1 and 2. Even though they are certainly limitations, the flexibility
of the multidimensional model makes them less harmful. Indeed, when we use the calibrated
parameters using our modeling assumptions as a warm start, the resulting calibration results
without any parametric constraints in our theorems deviate only a little.

5. Conclusion

This paper has shown that it is possible to extend the large deviations approach and the
Laplace expansion approach for the small-time asymptotics for implied volatilities under the
Heston stochastic volatility model to its multidimensional version. For this, all the arguments
underlying the existing approaches were re-examined and some proofs were simplified. It
should also be acknowledged that all the analyses were possible due to the recent develop-
ments of the theory of affine processes in general. The tractability of the resulting formulae
depends on the specific assumptions on model parameters, that is, RQ and M are symmetric.
Such assumptions do not restrict the flexibility of the Wishart process based model. However,
the full consequences of those assumptions are beyond the scope of this paper.
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