
The Journal of Symbolic Logic

Volume 87, Number 1, March 2022

THE TREE OF TUPLES OF A STRUCTURE

MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

Abstract. Our main result is that there exist structures which cannot be computably recovered from
their tree of tuples. This implies that there are structures with no computable copies which nevertheless
cannot code any information in a natural/functorial way.

§1. Introduction. Our main result is that there exist structures which cannot be
computably recovered from their tree of tuples. As we will see below, the tree of tuples
of a structure is the most natural labeled tree one can associate to a structure: it
determines the structure up to isomorphism, it captures its back-and-forth structure,
it codes all the information the structure codes in terms of families of families of ... of
sets of numbers in a functorial way, and it is the top replicated labeled tree that can be
effectively interpreted in the structure (on top in terms of effective interpretability).
Despite all of this, our result shows that some information is lost when considering
this tree of tuples, even though this information is coded in a very subtle way that is
hard to recover.

1.1. The information content of a structure. A common question in computable
structure theory is, given a structure, what is it information content? The question
can be interpreted in various ways, depending on how we represent information and
how we retrieve content. The first approach is to represent information by subsets
of � and retrieve it by enumerating it computably:

Definition 1.1. A set X ⊆ � is c.e.-coded in a structure A if X is computably
enumerable in the atomic diagram D(A) of any presentation of A.

The class of sets that are c.e.-coded in a structure is characterized by Knight’s
theorem [9]: A set X is c.e.-coded in a structure A if and only if X is enumeration
reducible to the ∃-type of some tuple from A, where the ∃-type of a tuple ā in A is
given by

∃-tpA(ā) = {�ϕ� : ϕ(x̄) is an ∃-formula such that A |= ϕ(ā)}.
If we ask about sets that are uniformly c.e.-coded, i.e., sets X for which there is a
c.e.-operator W for which X =WD(Â) for all copies Â of A, we get that there is
a greatest enumeration degree that is uniformly c.e.-coded in a structure A is given
by the ∃-theory of A. This is all well-known and well-understood. Of course, there

Received March 13, 2019.
2020 Mathematics Subject Classification. 03D45, 03C57.
Keywords and phrases. computable structure theory, back-and-forth, coding.

© The Author(s), 2020. Published by Cambridge University Press on behalf of The Association for Symbolic Logic
0022-4812/22/8701-0002
DOI:10.1017/jsl.2019.92

21

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

www.doi.org/10.1017/jsl.2019.92
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2019.92&domain=pdf
https://doi.org/10.1017/jsl.2019.92

22 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

is more information in a structure than the sets its c.e.-codes; the next step up is to
consider families of sets.

1.2. Families of sets. Families of subsets of � are much richer objects than just
sets. A large number of examples built in computable structure theory are structures
that are defined out of families of sets.

Definition 1.2. An enumeration of a countable family F ⊆ P(�) is a setW ⊆
�2 such that F = {W [i] : i ∈ �}, where W [i] is the ith column of W. The order
of the columns in W and their multiplicity is not relevant. To avoid issues with
multiplicity, we may always assume that in an enumeration of a family each column
is replicated infinitely many times.

A family F is computably enumerable in a set X if there is an X -c.e. enumeration
of F . A family F is c.e.-coded in a structure A if it is computably enumerable in the
atomic diagrams of all copies of A. Or, equivalently, if the set of X over which F
is computably enumerable is Muchnik reducible to the degree spectrum of A. F is
uniformly c.e.-coded in a structure A if there is a c.e.-operator W such thatWD(Â)

is an enumeration of F for all copies Â of A. Or, equivalently, if the set of X over
which F is computably enumerable is Medvedev reducible to the degree spectrum
of A.

We would like to get a result like the one by Knight mentioned above for the case of
families of sets. The second author [13] proved the following unsatisfactory version:
Let {Θe : e ∈ �} be the standard computable enumeration of all enumeration
operators. If a family F is uniformly c.e.-coded in a structure A, then there exist a
uniformly computable list of Σc

3 formulas ϕ�(ȳ) such that

F = {Θ�(∃-tpA(b̄)) : � ∈ �, b̄ ∈ A<�, A |= ϕ�(b̄)}. (�)

This is not an if-and-only-if condition, and the use of Σc
3 formulas is clearly

undesirable. However, if we strengthen the way the family is coded by the structure,
then we can actually require the formulas be Σc

1:

Definition 1.3. A family F is functorially c.e.-coded if also there is a computable
operator that, given two copies Â and Ã of A and an isomorphism f between them,
produces a permutation of � matching the columns of WD(Â) and WD(Ã) in a
functorial way, meaning that this operator maps the identity to the identity and
preserves composition of isomorphisms. See Definition 2.1.

Results from [5] (see Section 2 below) show that a family is functorially c.e.-coded
if and only if it is effectively interpreted in A, and in and only if it is Σ-definable in
A without parameters. In particular, we get the following characterization.

Proposition 1.4. A family F is functorially c.e.-coded in a structure A if and only
if there exists a uniformly computable list of Σc

1 formulas ϕ�(x̄, ȳ) such that (�) holds.

We prove this as Proposition 3.1 below.
It follows that Montalbán’s necessary condition (�) for families that are uniformly

c.e.-coded in a structure is not true if we require that the formulas ϕ� are Σc
1: In

that case we would have that F is effectively interpretable in A (see Section 2),
and Kalimullin and Puzarenko [6, 8, 7] showed that there exists a family F and

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

THE TREE OF TUPLES OF A STRUCTURE 23

a structure A such that F is uniformly c.e.-coded in A (they called this strongly
reducible) but not effectively interpretable in A even with parameters (they called
this Σ-definable).

We say that a family F is uniformly c.e.-coded in another family S if there is a c.e.-
operator W such that, given an enumeration V of S, produces an enumerationWV

ofF . We say thatF is functorially reducible toS if there is also a computable operator
that, given two enumerations V̂ and Ṽ of S and a matching permutation between
them, outputs a matching permutation betweenWV̂ andWṼ in a functorial way.

Functorially c.e.-coding seems to be a structurally better notion than uniformly
c.e.- coding. It follows from Proposition 1.4 that, among all the families that are
functorially c.e.-coded in a structure A, there is a best one—one to which all the
others can all be functorially reduced—namely the family of ∃-types of all the tuples
in A. It will follow from our main result, Theorem 1.10, that there is a structure
A with no computable copies, for which the family of ∃-types has a computable
enumeration (using the observation that the family of ∃-types of a structure is
functorially reducible to the tree of tuples of that structure). We then get the following
corollary.

Corollary 1.5. There is a structure A which has no computable presentations, but
so that all families that are functorially c.e.-coded in A are computable.

1.3. Families of families of sets. We could take an extra step and consider
countable families of families of subsets of �. Furthermore, we can consider n-
families, where an (n + 1)-family is a family of n-families, and 0-family is a number.
We get the same story: The second author [13] got a formula like the one in (�)
satisfied by all n-families c.e.-coded in a structure, now using Σc

2n–1 formulas. We
already know from the case n = 2 that this formula does not give an if-and-only-if
condition. We will prove that if we extend the notion of functorially c.e.-coded, then
we do get a nice characterization of the n-families that are functorially c.e.-coded on
a structure, and that there is a top one.

Why stop at finite levels? The same works for α-families for any computable
ordinal α. An α-family is a family that contains �-families for � < α. They can be
represented by labeled trees, where each node is tagged by the an ordinal expressing
which type of family it is representing, and each leaf—representing a 0-family—is
labeled with a natural number. To avoid multiplicity issues, we will require that each
branch is replicated infinitely often. We call these trees replicated labeled α-trees. A
replicated labeled α-tree is Medvedev reducible (the analog of uniformly c.e.-coded)
in a structure A if there is a c.e.-operator such that W Â is a presentation for the
tree for each copy Â of A. A replicated labeled α-tree is functorially reducible to a
structure A if also there is a computable operator that, given two copies Â and Ã of
A and an isomorphism f between them, produces an isomorphism of the treesW Â

andW Ã in a functorial way. See Section 2.
For each structure A, there is a replicated labeled α-tree Tα(A) that is naturally

associated with it. It consist of the finite sequences of the form

〈(ā0, �0, n0), (ā1, �1, n1), ... , (āk, �k, nk)〉,

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

24 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

where ā0, ā1, ... , āk are tuples from A, the �i ’s are ordinals satisfying α > �0 >
�1 > ··· > �k , and the ni ’s are numbers used just to replicate each branch infinitely
often. Such node is tagged by �k . The leaves of the trees are labeled by a number
coding the finite atomic diagram of the tuple ā0ā1 ... āk in A. Recall that the finite
atomic diagram of a tuple ā, denoted DA(ā) is a finite binary string recording
the truth values of the atomic formulas about ā in A that use the first |ā| relation
symbols in the vocabulary, viewing all symbols of the vocabulary as relations. See [15,
Chapter I].

Theorem 1.6. Given a structure A, Tα(A) is functorially reducible to A and
any other replicated labeled α-tree that is functorially reducible to A is functorially
reducible to Tα(A).

See Theorem 3.3.

1.4. Replicated labeled trees. One can take yet another step further and consider
families of families of families of ...going on forever—in a sense �∗-families. These
are represented by trees, but now we do not require well-foundedness and we omit
the ordinal tags on the nodes. Since we might have no leaves, we put natural number
labels on all nodes of the tree. Again, to avoid issues with multiplicity, we require
each branch to be repeated infinitely often.

Definition 1.7. A replicated labeled tree consist of a tree T, which has a parent
function, together with a labeling function � : T → �, and satisfies that for every
� ∈ T with parent �, there exist infinitely many children �̃ of � such that T�̃ is
isomorphic to T� . We use RLT to denote the class of replicated labeled trees.

It is not hard to see how a family of replicated labeled trees can be naturally
represented by a single replicated labeled tree. Thus, replicated labeled trees
encapsulate all the objects we have seen so far: sets, families of sets, and even
α-families of sets. To each structure A, there is a replicated labeled tree that is
naturally associated with it:

Definition 1.8. The tree of tuples of a structure A, T (A), consist of all the tuples
from A ordered by inclusion where each tuple ā is labeled by a number coding its
finite atomic diagram DA(ā). To make it a replicated labeled tree, we define T∞(A)
by replicating each branch infinitely often.

The tree T (A) appeared in Friedman–Stanely’s [3] proof that trees are Borel
complete; the Borel reduction was A �→ T (A). The tree T∞(A) appeared in their
proof that linear orderings are Borel complete; this proof can be split into two
steps, first mapping A to T∞(A) and then coding T∞(A) into a linear order (see
Section 7). That is, as opposed to the case of α-trees, we now have that the structure
A can be uniquely determined from T (A): Given two structures A and B,

A ∼= B ⇐⇒ T (A) ∼= T (B) ⇐⇒ T∞(A) ∼= T∞(B).

The proof of this is that the tree T (A) contains all of the back-and-forth information
from A; so knowing that T (A) ∼= T (B) is enough to construct an isomorphism
between A and B using the standard back-and-forth argument.

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

THE TREE OF TUPLES OF A STRUCTURE 25

To show that T∞(A) is the canonical replicated labeled tree associated with A we
will show the following:

Theorem 1.9. Given a structure A, T∞(A) is functorially reducible to A and every
other replicated labeled tree that is functorially reducible to A is functorially reducible
to T∞(A).

See Theorem 3.4.
When we said that A is determined from T∞(A), all we meant is that A is the

only structure whose tree of tuples is isomorphic to T∞(A). But, how difficult is it
to recover A from T∞(A)? A path through T∞(A) corresponds to a sequence of
tuples ā0 ⊆ ā1 ⊆ ··· , or equivalently, to map f : � → A. If this map is onto, then
the labels throughout this path code

⋃
n DA(ān), which is the atomic diagram of

the congruence presentation f–1(A) given by the pull-back of A through f. (It is
a congruence presentation because elements of A may be repeated, and hence the
equality relation is interpreted by an equivalence relation.) Thus, if we could find
an onto path, we could produce a copy of A. The set of onto paths is co-meager,
thus, in the sense of category, almost all paths code A. Thus, every copy S of T∞(A)
can compute a copy of A with the help of a generic enough oracle. However, lots of
genericity might be needed.

Our main theorem is that, for some structures, T (A) cannot compute A back.

Theorem 1.10. There is a structure A with no computable copies but for which
T (A) has a computable copy.

We will prove this theorem in Section 5. In Section 6 we strengthen this.

Corollary 1.11. For each computable ordinal α, there is a structure A with no
Δ0
α-computable copies but for which T (A) has a computable copy.

Knight, Soskova, and Vatev have informed the authors that they have indepen-
dently shown that there are no L�1� formulas that uniformly (in the choice of
signature) interpret a structure A in the tree T (A); see [10]. This follows from the
relativization of Corollary 1.11 as if A is interpreted in T (A) using ΣXα formulas,
then any copy of T (A) Δ0,X

α -computes a copy of A.

1.5. Degree spectra of trees. Informally, we say that a class C of structures is
universal if for any structure of any signature, there is a structure is C that has the
same computability-theoretic properties such as the same degree spectrum, the same
computable dimension, etc. More formally, we can ask that the two structures be
effectively bi-interpretable, which implies that they have the same computability-
theoretic properties. Many classes of structures—graphs, groups, rings, and fields—
have been shown to be universal. Other classes of structures—linear orders, Boolean
algebras, torsion-free abelian groups, real closed fields—are known not to be
universal. Usually in these cases, there is some specific computability-theoretic
property that cannot be realized in the class. For example, if a Boolean algebra
has a low copy, then it has a computable copy, and so there is no Boolean algebra
with Slaman–Wehner degree spectrum.

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

26 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

The case of trees is different however. Trees are not universal in the sense that
there are structures which are not bi-interpretable with any tree; for example, two
structures which are bi-interpretable have the same automorphism group, but no
tree has automorphism group Z. But we do not know of any purely computability-
theoretic property that can be realized in some structure, but not in a tree. This is
because as discussed previously trees can code sets, families, families of families,
and so on, and so any example that is constructed in such a way can be replicated
by a tree. So for example there is a tree with each possible computable dimension,
there is a tree with Slaman–Wehner degree spectrum, and there is a tree which is
computably categorical but not relatively computably categorical.

This is an undesirable situation, because what we really care about is the informal
notion of universality: is it true that for every structure of any signature, there is a
tree with the same computability-theoretic properties? The formal notion involving
bi-interpretability is just an attempt to capture this informal notion. So when we
show that a class of structures is not universal, we really want to exhibit some
particular computability-theoretic property that cannot be realized in that class.

For trees, the best approach seems to be by looking at degree spectra.

Question 1.12. Is every degree spectrum the degree spectrum of a tree?

What we are looking for is a way of transforming a structure into a tree, and
the tree of tuples is the obvious thing to try. (Technically, the tree of tuples also
has unary label relations; but one can construct a tree in which these labels are
coded directly into the tree.) If A and T (A) had the same degree spectrum, then this
question would have a positive answer.

But of course Theorem 1.10 says exactly the opposite, and so this attempt to
answer the question fails. And as the tree of tuples seems like the best transformation
of a structure into a tree that one could hope for, we conjecture that the answer is
negative: there is a degree spectrum which is not the degree spectrum of a tree.
Answering this question would tell us something new and very interesting about
degree spectra.

§2. Effective interpretability and functorial reductions. A commonly used
reducibility between structures is Medvedev reducibility: A structure A is Medvedev
reducible to a structure B if there is a Turing operator Φ such that, when given the
atomic diagram D(B̂) of a copy of B as oracle, it produces the atomic diagram of
a copy of A. However, we know of no structural characterization for Medvedev
reducibility. Recently, Harrison-Trainor, Melnikov, Miller, and Montalbán [5]
showed that a strengthening of the notion of Medvedev reducibility called functorial
reducibility [11], can be characterized syntactically using the notion of effective
interpretability.

Let us first define functorial reducibility:

Definition 2.1. [11, Definition 3.1] Given structures A and B, a computable
functor F from A to B consists of two computable operators Φ and Φ∗ such that

1. for every copy Â of A, ΦD(Â) is the atomic diagram of a structure F (A)
isomorphic to B;

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

THE TREE OF TUPLES OF A STRUCTURE 27

2. for every isomorphism f : Â → Ã between structures isomorphic to A,
ΦD(Â)⊕f⊕D(Ã)

∗ is an isomorphism F (f) : F (Â) → F (Ã);
3. F is functorial, i.e.,

(a) F (idÂ) = idF (Â) (where idÂ and idF (Â) are the identities on Â and F (Â)
respectively), and

(b) F (f ◦ g) = F (f) ◦ F (g) for all isomorphismsf : Â → Ã and g : Ã → Ǎ.

Notice that Φ itself is simply a Medvedev reduction from A to B.
On the syntactic side we have effective interpretations, which were first introduced

by Montalbán [12] (see also [5]), though they are equivalent to the parameterless
version of the well-studied notion of Σ-definability (see Ershov [2]). Effective
interpretations are like interpretations in model theory with a few differences:
The elementary first-order definitions of a model-theoretic interpretation are now
replaced by effective Δc

1 definitions, and the interpretation is allowed to use tuples
of arbitrary sizes. Recall that a relation on a structure is Δc

1-definable if and only if
it is uniformly relatively intrinsically computable.

Definition 2.2. An effective interpretation of A = (A,PA
0 , P

A
1 , ...) in B consists

of:

• a Δc
1-definable subset DomB

A ⊆ B<� ,
• a Δc

1-definable equivalence relation ∼ on DomB
A,

• a sequence of uniformly Δc
1-definable sets Ri ⊆ (DomB

A)k , where k is the arity
of Pi , which respect ∼,

• a surjective map fB
A : DomB

A → A which induces an isomorphism

fB
A : (DomB

A/∼;R0/∼, R1/∼, ...) → A.

It is not hard to see that effective interpretations produce computable functors.
Harrison-Trainor, Melnikov, Miller, and Montalbán [5] showed one can go the other
way, and produce an effective interpretation out of a computable functor.

Two structures are said to be Σ-equivalent if they are Σ-definable in each other.
(Recall that Σ-definability is the same as effective interpretability but allowing the
use of a finite tuple of parameters.) These notions have been widely studied by the
Russian school of computable structure theory. It will follow from our results that
there is a structure that is not Σ-equivalent to any labeled tree.

A stronger notion of equivalence called effectively bi-interpretable was introduced
by the second author in [14], where the structure not only need to be effectively
interpretable in each other, but also the composition of the isomorphisms fB

A ◦ fA
B

and fA
B ◦ fB

A have to be Δc
1-definable in the respective structures. Showing that

there is a structure that is not effectively bi-interpretable to any labeled tree does
not require using our main theorem: The linear order (Z;<) is not effectively bi-
interpretable with any labeled tree because bi-interpretation preserve automorphism
groups, and the automorphism group of any tree must contain an element of order
two, unless it is rigid, because it must then have two branches that are isomorphic.
On the other hand, the automorphism group of (Z;<) is (Z; +), which does not
contain any element of order two.

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

28 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

§3. The family of types. To each set, family of sets, family of families, etc. we can
associate a structure that captures its information content so that we can apply the
tools we already have to compare structures, as for instance the notions of functorial
reducibility and effective interpretability. In this paper we represent families of sets
by labeled trees as that allows us to easily generalize to α-families and �∗-families.
There are various other equivalent ways to represent families: bouquet graphs are
standard in the west, while other structures are also common in Russia (see, for
instance, [9]).

We associate to a set S ⊆ � a labeled tree TS of height one which contains a leaf
labeled n if and only if n ∈ S. We associate to a family of sets F a labeled tree TF
of height two as follows: For each set S ∈ F we add infinitely many branches of the
form TS . It is not hard to see that F is functorially c.e.-coded in a structure A if and
only if TF is functorially reducible to A.

Proposition 3.1. A family of sets F is functorially c.e.-coded in a structure A if
and only if there is a Σc

1 formula ϕ and a computable sequence of Σc
1 formulas 	n,

n ∈ �, such that 1

F = {{n ∈ � : A |= 	n(ā)} : ā ∈ A<�,A |= ϕ(ā)}.

Proof. The right-to-left direction is straightforward, as we have direct way of
producing an enumeration of F out of A in a functorial way.

For the left-to-right direction, consider an effective interpretation of TF within A.
Let 	(x̄) be the Σc

1 formula that says that x̄ is in the domain of the interpretation of
TF within A, and that it represents a node of height one. Let ϕn(x̄) be the formula
that says that, in the interpretation of TF within A, x̄ has a child labeled n.

Corollary 3.2. If a family F is functorially c.e.-coded in a structure A, it is
functorially reducible to its family of ∃-types

{{�φ� : φ(x̄) is an ∃-formula and A |= φ(ā)} : ā ∈ A<�}.

The same idea works for α-families.

Theorem 3.3. Let α be a computable ordinal. Suppose that an α-family F is
functorially reducible to a structure A. Then F is functorially reducible to Tα(A).

Proof. Consider an effective interpretation of TF in A with domain T A
F ⊆

A<� . We define an effective interpretation of TF in Tα(A) whose domain will
be a subset of Tα(A). Put a tuple � = 〈(ā0, �0, n0), (ā1, �1, n1), ... , (āk, �k, nk)〉 ∈
Tα(A) in the domain of the new interpretation if each of (ni , āi) is in the
domain of the interpretation with tag �i and parent (ni , āi–1). Of course, let
〈(ā0, �0, n0), (ā1, �1, n1), ... , (āk–1, �k–1, nk–1)〉be the parent of� in the interpretation,
tag � with bk , and if āk is a leaf in T A

F ⊆ A<� , label it as a leaf here too with the
same label. Let us remark that these relations in Tα(A) can be defined using only

1We will often refer to a single Σc
1 formula ϕ(x̄) where the number of variables is flexible, when we

actually mean a computable sequence {ϕn(x1, ... , xn) : n ∈ �} and interpret ϕ(ā) as ϕ|ā|(ā).

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

THE TREE OF TUPLES OF A STRUCTURE 29

the labeled-tree structure of Tα(A) since all Σc
1 formulas about a tuple in A can be

read off Tα(A).
There is no need to consider the congruence relation as each branch is being

repeated infinitely often.

Theorem 3.4. Suppose that a replicated labeled tree S is functorially reducible to
a structure A. Then S is functorially reducible to T∞(A).

Proof. Consider an effective interpretation of S in A with domain SA. We define
an effective interpretation of S in T∞(A) whose domain is a subset of T∞(A). Put
〈(ā0, n0), (ā1, n1), ... , (āk, nk)〉 in the domain of the interpretation if each of (ni , āi)
is in the domain of the interpretation with parent (ni , āi–1), and label it with the
same label it has in the interpretation. Again, we must remark that these relations
in T∞(A) can be defined using only the labeled-tree structure of T∞(A) since all Σc

1
formulas about a tuple in A can be read off T∞(A).

§4. Two tools. In this section we describe two tools that we will use in our main
construction.

4.1. C.e. labels. It is often useful in computable structure theory to use c.e. labels.
See for instance [1]. These labels are part of the language as for any regular structure.
What changes is that for a presentation of the structure to be called computable we
only require these labels to be c.e. These structures can be interpreted by standard
structures by adding a repository of elements that we call labels identified by a unary
relations that identify which type of labels they are, and adding relations that attach
a tuple to a label-element when we want to label the tuple. All label-elements must
be used, and they can be used for a unique tuple.

To use c.e. labels on the tree of tuples we need to modify the way we label the
tuples a little bit. Before, we wanted to label each tuple in the tree of tuples by
its finite atomic diagram. The problem is that the finite atomic diagram does not
distinguish between positive and negative information about the tuple. We will make
an alternative definition of the tree of tuples which keeps the same relations from the
original structure, so that if the relations on the original structure are c.e. relations, it
makes sense to have the corresponding relations on the tree of tuples be c.e. relations.
The alternative definition of the tree of tuples is the following: Consider the tree of
tuples with the parent relation the same way as before. But instead of labeling each
node with the finite atomic diagram of the tuple we do the following: We keep the
same vocabulary we had for the structure; if we had an n-ary relation symbol R, we
let it hold of a tuple 〈�1, ... , �n〉 in the tree if the �i all belong to the same path (i.e.,
no two of them are incomparable), and the relation holds of 〈a1, ... , an〉, where ai
is the last element of the tuple �i . It is not hard to prove that this new tree of tuples
is effectively bi-interpretable with the original one—they are essentially the same
structure. The difference is that now, we can view some of these labels as c.e. labels.
The tree of labels of a structure with c.e. labels is now a tree with c.e. labels.

A straightforward argument shows that if we first take the tree of tuples and then
add label-elements we get a structure that is effectively bi-interpretable to what we

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

30 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

would get if we first replace the c.e. labels by label-elements and then take the tree
of tuples.

4.2. Joining trees. Later we will use the fact that if we have a disjoint union of
structures, we can compute the back-and-forth tree of the disjoint union from the
back-and-forth trees of each component.

Lemma 4.1. LetA be the disjoint union ofAi . Suppose that T (Ai) has a computable
copy uniformly in i. Then T (A) has a computable copy.

Proof. To build T (A) out of {T (Ai) : i ∈ �}, consider the tree of tuples of
elements from

⋃
i T (Ai), where the elements from the same tree must belong to the

same path. That is, a path through T (A) is a merging of paths through each of the
T (Ai). A path through T (A) inherits its relations from its component parts from
the T (Ai).

§5. Main result. In this section, we will prove the main result of this paper.

Theorem 1.10. There is a structure A with no computable copy such that T (A)
has a computable copy.

The proof is quite involved and will extend over the rest of this section. We build
A as the disjoint union of structures An, with An satisfying a unary relation Rn. We
will make sure that An is not isomorphic to the structure with domainRn within the
nth computable structure. Thus A will have no computable copy. T (An) will have a
computable copy which is computable uniformly in n, and so by Lemma 4.1, T (A)
will have a computable copy.

Fix n for which we will define A = An which is not isomorphic to B, the structure
with domain Rn in the nth (possibly partial) computable structure. The language
of A will consist of infinitely many unary relations called labels and infinitely many
n-ary relations for each n. The relations R will be relations on unordered tuples. We
will consider these relations to all be c.e. relative to a presentation of A. Similarly,
we will consider the trees to have c.e. labels.

We will build A as a Δ0
2-limit of a computable sequence of finite structures on

increasing domains. The construction will proceed by stages, each divided into steps.
At stage s, step t, we will define As,t . At each stage s and step t, after defining As,t ,
we wait for an i such that Bi is isomorphic to As,t . If there is no such stage, then
we just put A = As,t and win; in this case, there are only finitely many stages of
the construction. If the construction lasts for infinitely many stages, then there will
be a sequence s0 ≺ s1 ≺ s2 ≺ ··· of true stages, and we will have A =

⋃
si
Asi ,0 as a

nested union. When describing the construction we will generally assume that for
each stage s and step t a value i as above exists, and write Bs,t for Bi ; note that the
Bs,t are nested, with B being their union. It is this asymmetry—that the opponent
must produce nested structures while we do not—that we will exploit to make A not
isomorphic to B; however, we will still have to show that a copy of T (A) is uniformly
computable, whether there are finitely or infinitely many stages of the construction.

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

THE TREE OF TUPLES OF A STRUCTURE 31

To each stage s we associate a number n(s). The true stages are those stages s for
which, for every t ≥ s , n(t) ≥ n(s). If s ≤ t, we say that t believes s is a true stage, or
for short t believes s, and write s � t, if for all s < s ′ < t, n(s ′) ≥ n(s). If t is a true
stage and s ≤ t, then t believes s if and only if s is a true stage. Along the construction,
it will always be the case that either n(s + 1) = n(s) + 1 or n(s + 1) < n(s); the
value of n can never stay the same from one stage to the next, or increase by more
than one.

To show that T (A) is computable, we will build a computable sequence of labeled
trees Ts,t , each isomorphic to the corresponding T (As,t), and such that

T0,0 ⊆ T0,1 ⊆ T0,2 ⊆ ··· ⊆ T1,0 ⊆ T1,1 ⊆ ··· ⊆ T2,0 ⊆ ··· .

Since the As,t are not nested, it is not true that

T (A0,0) ⊆ T (A0,1) ⊆ T (A0,2) ⊆ ··· ⊆ T (A1,0) ⊆ T (A1,1) ⊆ ··· ⊆ T (A2,0) ⊆ ···

under the natural inclusion of their domains; so the structure A will have to be
constructed carefully to ensure that the Ts,t can be nested. The tree T which is the
union of the Ts,t would then be computable, but we must argue that it is actually
isomorphic to T (A). To see this, we will also keep track of maps gs,t : Ts,t → As,t .
These maps will respect the relationship between the labels on the tree and the atomic
types in the structure; we call such a map a pseudoisomorphism. To ensure that
g = lim gs,0 is a pseudoisomorphism T → A, during the construction we will make
sure that if s � s ′ then gs′,0 does not change too much from gs,0; more precisely:

• if s � s ′ and n(s) = n(s ′) then gs,0 ⊆ gs ′,0; and
• if s � s ′ and n = n(s) < n(s ′) then gs,0 and gs ′,0 agree on all nodes of Ts,0 of

height ≤ n.

Then there are three cases to consider:

1. There are only finitely many stages. If s and t are the last stage and step, then
A = As,t and T = Ts,t ∼= T (As,t) so we are done.

2. There is n such that for some s0, for all true stages s ≥ s0, n(s) = n. In this
case, g =

⋃
true s≥s0 gs,0 is a nested union.

3. There is no bound on n(s) for s a true stage. Then the gs,0 come to a limit g
defined as follows. For � ∈ T , g(�) = gs,0(�) where s is any true stage which is
sufficiently large that � ∈ Ts,0 and n(s) > |�|. This g is a pseudoisomorphism
T → A.

See Lemma 5.8 for the details.
At each stage s and step t, every element of As,t will have a label � that holds of

that element and no other. We call this � the (s, t)-distinguishing label of a (or the
s-distinguishing label if t = 0); as the notation implies, the distinguishing label of
a particular element of A will change over time. At each stage s and step t, we will
also have certain elements which are designated as killed. What this means is that
these elements will never again be given a new label, and they will keep the same
distinguishing label. Once an element is killed it will remain killed from then on,
even if it became killed at a nontrue stage.

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

32 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

At stage s, let n = n(s) and let s0 ≺ s1 ≺ s2 ≺ ··· ≺ sn = s be the previous stages
believed by s such that si is the least stage with n(si) = i . The elements of As,0 will
consist of:

• c,
• a1, ... , an,
• for each 1 ≤ i < n, a′1,si , ... , a

′
i,si

for each i, and
• killed elements.

These elements are all distinct. Over the course of stage s, we will introduce elements
c′s and a′1,s , ... , a

′
n,s . If n(s + 1) = n + 1 we will have an+1 = c′s , while if n(s + 1) < n

we will kill a bunch of elements.
These names that we give the elements of As,0 are dependent on the stage. If s � t,

then t agrees with all of the values defined at stage s; thus all true stages agree on the
values of these elements. But a stage s with n = n(s) which is not a true stage may
define a value for an which is later killed once we find out that s is not true, and then
a later stage t with n = n(t) may redefine an as a new element.

Suppose that the construction has infinitely many stages; we must argue that A is
not isomorphic toB. The key is the element c ∈ A: we will ensure thatB does not have
an element isomorphic to it. Because Bs,t is isomorphic to As,t , and each element of
As,t has a distinguishing label, there is a unique isomorphism fs,t between As,t and
Bs,t . We may assume that the domain of Bs,t is an initial segment of �. During the
construction we will make sure that at every stage s, fs,0(a1), ... , fs,0(an) < fs,0(c)
in the standard order on�; it is the opponent that decides how to build B, so we will
have to construct A in such a way that the opponent is forced to maintain this. Thus
if, along the true stages, lims n(s) → ∞, then lims fs,0(c) → ∞, which will allow us
to ensure that B will have no element isomorphic to c ∈ A. (To make this true, we
also guarantee that if s is a true stage, c will never be given the s-distinguishing label
of any other element of As,0.) The other possibility is that for sufficiently large true
stages s, the value of n(s) stays the same, say n(s) = n. Whenever we have s � s ′
and n(s) = n(s ′), we will have fs,0(c) < fs′,0(c); this will be because a new element
shows up in B below the image of c, and then that new element is then killed. So in
this case as well, we will have that B does not contain an element isomorphic to c.

5.1. First few stages of the construction. In an informal way we will go through
the first few steps of the construction. In Figures 1 and 2 we show the first two
stages of the construction, ending in stage 2 step 0. The two figures show the two
possibilities, depending on how B responds. We always have n(0) = 0 and n(1) = 1
since we cannot have n(1) < n(0) = 0. But then we could either have n(2) = 2 in
which case 0, 1, and 2 are all true stages (at least so far), or n(2) = 0, in which case
0 and 2 are true stages so far, but 1 is not. The figures show As,t for each stage, the
response Bs,t by our opponent, and the tree Ts,t . The nodes of the tree are labeled
with the preimages of the pseudoisomorphism gs,t : Ts,t → As,t . Elements of the
structures and the tree are represented by black dots; two dots which are in the same
position from one diagram to the next represent the same elements of the domain.
So, for example, the node on the first level of the tree at 0, 1 which is labeled c is the
same as the node at 0, 2 labeled c′; what has happened is that the image of this node
under the pseudoisomorphism has changed. In the structures A and B, the numbers

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

THE TREE OF TUPLES OF A STRUCTURE 33

s, i s,i s,i Ts,i

0,0 c
1

f (c)
1

c

0,1 c
1

f (c)
1

c

0,2 c
1, 2
c0
1, 3

f (c0)
1, 3

f (c)
1, 2

c0 c
c c0

1,0 c
1, 2
a1
1, 3

f (a1)
1, 3

f (c)
1, 2

a1 c
c a1

1,1 c
1, 2
a1
1, 3

f (a1)
1, 3

f (c)
1, 2

a1 c
c a1

1,2 c
1, 2, 4

a1
1, 3, 5

c1
1, 2, 6

a1,1
1, 3, 7

f (a1)
1, 3, 5

f (c1)
1, 2, 6

f (c)
1, 2, 4

f (a1,1)
1, 3, 7

a1 ca1,1 c1
c a1c1 a1,1.

2,0 c
1, 2, 4

a1
1, 3, 5

a2
1, 2, 6

a1,1
1, 3, 7

f (a1)
1, 3, 5

f (a2)
1, 2, 6

f (c)
1, 2, 4

f (a1,1)
1, 3, 7

a1 ca1,1 a2
c a1a2 a1,1.

Figure 1. The case n(2) = 2.

below an element represent the labels given to that element. The elements of B are
labeled with their preimages under fs,t though we drop the subscript to save space.

Begin at stage 0 (and step 0) with A0 consisting of a single element c with the label
‘ 1’. At step 1, we introduce a new relationR0 and have it hold of c; this is represented
in the diagrams by the line attached to the element. At step 2, we introduce a new
element c′0 and change the structure to have R0 hold of c′0 instead of c. Both c and
c′0 have the same label ‘ 1’ that c had at step 1, but they each get a new label that the
other does not have: ‘ 2’ for c and ‘ 3’ for c′0. Note that A0,1 � A0,2. Now B must
copy A, except that as it has already put R0 on the first element of its domain, this
element must copy c′0 rather than c. We must also expand the tree, and adjust the
pseudoisomorphism; the node that previously mapped to c now maps to c′0. Finally,
at stage 1 step 0, we put R0 on all of the elements of A and promise to put it on any
new elements that show up from now on. This essentially means that we can forget
about R0 from now on, and we no longer draw it. We also set n(1) = 1 and a1 = c′0.
Note that f(a1) < f(c), so that we have made one step towards forcing B to omit
an image of the element c ∈ A.

The objective of stage 1 is to get one of the following two outcomes: One is to
create an element a2 and end stage 1 with f(a1), f(a2) < f(c) and n(2) = 2; The
other possibility is to end the stage with n(2) = 0 in which case we need T2,0 to
extend T0,0 preserving the pseudo-isomorphism, meaning that we would need to
move c back—recall we had switch it with c′ (later renamed a1) in step 0, 2. For this

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

34 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

s, i s,i s,i Ts,i

0,0 c
1

f (c)
1

c

0,1 c
1

f (c)
1

c

0,2 c
1, 2
c0
1, 3

f (c0)
1, 3

f (c)
1, 2

c c
c c0

1,0 c
1, 2
a1
1, 3

f (a1)
1, 3

f (c)
1, 2

a1 c
c a1

1,1 c
1, 2
a1
1, 3

f (a1)
1, 3

f (c)
1, 2

a1 c
c a1

1,2 c
1, 2, 4

a1
1, 3, 5

c1
1, 2, 6

a1,1
1, 3, 7

f (a1,1)
1, 3, 7

f (c)
1, 2, 4

f (c1)
1, 2, 6

f (a1)
1, 3, 5

a1 ca1,1 c1
c a1c1 a1,1.

2,0 c
1,2,3,
4,5,8

1,2,3,
4,5,9

1, 2, 6 1, 3, 7 1, 3, 7
f (c)
1,2,3,
4,5,8

1, 2, 6 1,2,3,
4,5,9

c
c.

Figure 2. The case n(2) = 0.

we would need to give c and a1 the same labels, risking that B can now switch the
images of c and a1. So, the only instance in which we would do this is if we have
f(c) < f(a1) so that we do not mind if B switches them.

At stage 1 step 1, we put a new binary relationR1 on c and a1; this relation will be
on unordered tuples. B1,1 must copy this. At step 2, we introduce new elements c′1
and a′1,1 which have the same labels that c and a1 had respectively in A1,1. Each of the
four elements gets a new label so that they are still distinguished. In A1,2, we put R1

on the pairs c, a′1,1 and c′1, a1 but not on c, a1; so A1,1 � A1,2. Before discussing
our opponent’s possible responses, let us talk about the tree T1,2. Once again
the pseudoisomorphism T1,1 → A1,1 cannot be extended to a pseudoisomorphism
T1,2 → A1,2. However, we can keep the pseudoisomorphism the same on the first
level of the tree, because the tuple c, a1 satisfies the same atomic formulas in A1,1

as the tuples c′1, a1 and c, a′1,1; what is going on here is that any existential formula
true in A1,1 with one(= n(1)) parameter is still true of the same parameter in A1,2.
Looking ahead: If at a later stage t we have 1 ≺ t and n(1) = 1 = n(t), we will
need gt,0 be a full extension of the pseudoisomorphism T1,0 and not just of the first
level. For that we will need to be able to switch the images of c and c′1 (soon to be
renamed a2).

Our opponent must copy A1,2, and they have two choices; they can either turn
what used to be the image of c into the image of c′1, or they can turn what used
to be the image of a1 into the image of a′1,1. In Figure 1 we show the former,
and in Figure 2 we show the latter. We will begin by discussing the former. Since

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

THE TREE OF TUPLES OF A STRUCTURE 35

f(c′1) < f(c), at stage 2 step 0 we can set a2 = c′1, n(2) = 2, and put the relation
R1 on every pair of elements of A (so that we stop drawing it). Note that we have
f2,0(a1), f2,0(a2) < f2,0(c) as desired. We have also preserved, from stage 1 to stage
2, the pseudoisomorphism on the first level of the tree.

Let us now consider the other possibility for the opponent’s response B1,1, as
shown in Figure 2. The key is that the opponent has put the image of a1 after
the image of c. In A2,0, we will do the following. First, we put R1 on every pair of
elements, and stop drawing it. Second, we take all of the labels on c′0 = a1 inA1,2 and
give them to c, and vice versa. Both of these elements receive a new distinguishing
label. Finally, we set n(2) = 0 and kill all of the elements that were introduced since
stage 0, i.e., all of the elements other than c. In the diagrams, we use a circle to
represent an element that has been killed.

Note that in the tree T2,0, we are able to switch back the swap of c and c′0 that we
made at stage 0 step 2. This is because each of these elements satisfies inA0,2 all of the
same existential formulas the other satisfied in A1,2. Thus the pseudoisomorphism
T2,0 → A2,0 extends the pseudoisomorphismT0,0 → A0,0 at the previous 2-true stage.
The unlabeled elements of the tree are mapped to a killed element, and so will never
have to change from now on.

The opponent is also allowed to switch, from B1,2 to B2,0, the images of c and
c′0 = a1. However, because the opponent made the image of c′0 = a1 larger than the
image of c, this will not allow them to decrease the image of c. So essentially we
have returned to where we were at stage 0, except that we have some new elements
which are all killed (and hence will not interfere with the construction) and that the
image of c in B2,0 has increased compared to what it was in B0,0, so that we have
made some progress towards having A � B.

An additional consideration. At stage s where n(s) > 2, it is possible that we will
require more steps. We illustrate this in Figure 3. Due to space constraints, we will
no longer keep track of the trees Ts,t . We begin at stage 2 step 0 where we left
off in the case n(2) = 2 as in Figure 1. We begin by introducing a ternary relation
R2 in step 1, followed by elements c′2, a′1,2, and a′2,2 in step 2. Suppose that the
opponent responds with B2,2 as shown. To take advantage of the fact that they have
put the image of a2 above that of c—and so the image of the new element a′2,2
is below c—in A2,3 we give c every label that a2 had in A2,2, and vice versa. We
also give a1 every label that a′1,1 had in A2,2. This allows us to undo the injury to
the pseudoisomorphism Ts,t → As,t that was done at stage 1 step 2 (on the second
level of the tree, see Figure 1). Now the opponent, in building B2,3, can swap the
images of c and a2 = c′1, and of a1 and a′1,1. One way that they might do so is
shown in Figure 3. The issue here is that we have allowed our opponent to make
f(c) < f(a1), and so we cannot go on to the next stage. But what we can do is a
similar move again: give c all of the labels that a1 had in A2,3 and vice versa. This
allows us to undo the injury done to the pseudo-isomorphism in stage 0 step 2, and
we have n(3) = 0.

5.2. Formal construction ofA. The formal construction will look slightly different
than the informal picture just given. At a stage s, we may not know how many steps
there will be until B allows us to move on to the next stage. Because of this, if t is
the last step at stage s, we will have As+1,0 = As,t .

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

36 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

2,0 c
1, 2, 4

a1
1, 3, 5

a2
1, 2, 6

a1,1
1, 3, 7

2,0 f (a1)
1, 3, 5

f (a2)
1, 2, 6

f (c)
1, 2, 4

f (a1,1)
1, 3, 7

2,1 c
1, 2, 4

a1
1, 3, 5

a2
1, 2, 6

a1,1
1, 3, 7

2,1 f (a1)
1, 3, 7

f (a2)
1, 2, 4

f (c)
1, 2, 6

f (a1,1)
1, 3, 5

2,2 c
1, 2, 4, 8

a1
1, 3, 5, 9

a2
1, 2, 6, 10

a1,1
1, 3, 7

c2
1, 2, 4, 11

a1,2
1, 3, 5, 12

a2,2
1, 2, 6, 13

2,2 f (a1)
1, 3, 5, 9

f (a2,2)
1, 2, 6, 13

f (c)
1, 2, 4, 8

f (a1,1)
1, 3, 7

f (c2)
1, 2, 4, 11

f (a1,2)
1, 3, 5, 12

f (a2)
1, 2, 6, 10

2,3 c
1,2,4,6,
8,10,14

a1
1,3,5,
7,9,15

1,2,4,6,
8,10,16

1,3,5,
7,9,17

1, 2, 4, 11 1, 3, 5, 12 1, 2, 6, 13

2,3

1,3,5,
7,9,17

1, 2, 6, 13
f (c)
1,2,4,6,
8,10,14

1,3,5,
7,9,15

1, 2, 4, 11
f (a1)

1, 3, 5, 12 1,2,4,6,
8,10,16

3,0 c
1,2,3,4,
5,6,7,8,
9,10,14,15,
18

1,2,3,4,
5,6,7,8,
9,10,14,15,
19

1,2,4,6,
8,10,16

1,3,5,
7,9,17

1, 2, 4, 11 1, 3, 5, 12 1, 2, 6, 13

3,0

1,3,5,
7,9,17

1, 2, 6, 13
f (c)
1,2,3,4,
5,6,7,8,
9,10,14,15,
18

1,2,3,4,
5,6,7,8,
9,10,14,15,
19

1, 2, 4, 11 1, 3, 5, 12 1,2,4,6,
8,10,16

Figure 3. One possibility for stage 2.

We will also keep track, through the steps t at stage s, of a value ms,t . This value
will be the current guess at n(s + 1). If t is the last stage of step s, then we will have
n(s + 1) = ms,t .

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

THE TREE OF TUPLES OF A STRUCTURE 37

Construction.

• Stage s = 0, step 0. Begin with A0 consisting of a single element c labeled with
a single label.

• Stage s + 1, step 0. Let t be the last step at stage s. Let As+1,0 = As,t . Let
n(s + 1) = ms,t . If n(s + 1) > n(s), let an(s+1) = c′s . Otherwise, kill (meaning
leave as is and ignore from this point on) everything but the values:

– c,
– a1, ... , an(s+1),
– a′1,si , ... , a

′
i,s ′i

for each 1 ≤ i < n(s + 1) where si is the last stage with si ≺
s + 1 and n(si) = i .

• Stage s, step 1. Let n = n(s). Choose a new n + 1-ary relation Rs . As,1 will be
As,0 except that we have

Rs (c, a1, ... , an).

Recall that Rs is a relation on unordered tuples.
• Stage s, step 2. Since we did not add any new elements or labels in As,1, we have

that fs,1 = fs,0. So we have Bs,1 |= Rs(fs,0(c), fs,0(a1), ... , fs,0(an)).
The structure As,2 will extend As,0 by adding new elements, labels, and

relations. Introduce, in As,2, new elements c′s , a
′
1,s , ... , a

′
n,s . These elements

have the same labels that the corresponding elements c, a1, ... , an had in As,0,
but we give each element a new unique label. So, for example, c and c′s have all
the same labels that c had in As,0, but each of them has one more label that the
other does not. We have relations

Rs (c′s , a1, ... , an) and, for each i, Rs(c, a1, ... , a
′
i,s , ... , an).

We do not have Rs(c, a1, ... , an) anymore. In general, Rs holds of any such
tuple where there is exactly one ′.

• Stage s, step 3. Whether we proceed onto stage s + 1, or add another step to
stage s, depends on how B responds.

Recall that fs,1 = fs,0 was the isomorphism As,1 → Bs,1, and so it gives
a map As,2 → Bs,2, but this map will not be an isomorphism since As,1 is
not a substructure of As,2 while Bs,1 is a substructure of Bs,2. There are two
possibilities for fs,2(c); either it is equal to fs,0(c), or it is one of the new
elements in Bs,2 \ Bs,1. This is because all of the other elements of Bs,1 have a
label which c does not. Similarly, for each ai , either fs,2(ai) is fs,0(ai) or it is
one of the new elements in Bs,2 \ Bs,1.

Since Bs,1 is a substructure of Bs,2, we must have that

Bs,2 |= Rs (fs,0(c), fs,0(a1), ... , fs,0(an))

since this was true of Bs,1. However, As,2 �|= Rs (c, a1, ... , an). So the
isomorphism fs,2 : As,2 → Bs,2 cannot extend fs,0. There are n + 1
different n + 1-tuples which satisfy Rs in As,2, and it must be one of
these that maps to fs,0(c), fs,0(a1), ... , fs,0(an) in Bs,2. These tuples are
c′s , a1, ... , an and, for each i, c, a1, ... , a

′
i,s , ... , an; moreover, these must map to

fs,0(c), fs,0(a1), ... , fs,0(an) in order. So we have n + 1 possibilities divided
into two cases:

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

38 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

Case 1: fs,2(c) ∈ Bs,2 \ Bs,1. For each 1 ≤ i ≤ n, fs,2(ai) = fs,0(ai) ∈ Bs,1.

Case 2: There is j such that fs,2(aj) ∈ Bs,2 \ Bs,1. For each 1 ≤ i ≤ n, i �= j,
fs,2(ai) = fs,0(ai) ∈ Bs,1; and fs,2(c) = fs,0(c) ∈ Bs,1.

In Case 1: This is the last step of stage s. We define As,3 ⊇ As,2. PutRs on every
n + 1-tuple of elements, and on every n + 1-tuple of elements which is added
to A at any later stage of the construction. Set ms,3 = n(s) + 1.

Note that, since fs,2(c′s) = fs,0(c), we have fs,2(a1) < fs,2(a2) < ··· <
fs,2(an) < fs,2(c′s) < fs,2(c), and hence we are in position to define an+1 = c′s
in the next stage.

In Case 2: We do not yet move onto stage s + 1. We define As,3 ⊇ As,2. Put Rs
on every n + 1-tuple of elements, and on every n + 1-tuple of elements which
is added to A at any later stage of the construction.

Let s ′ < s be the previous stage with n(s ′) = j – 1. Give c all of the labels
aj = c′

s ′ had in As,2, and give aj = c′
s ′ all of the labels c had in As,2. Similarly,

for 1 ≤ i < j, give ai all of the labels a′
i,s ′ had in As,2, and give a′

i,s ′ all of the
labels ai had in As,2. Each of these elements gets a new (s, 3)-distinguishing
label.

What this does is allow us to define the pseudoisomorphism Ts,3 → As,3
extending the pseudoisomorphism we had at stage s ′ by allowing us to swap
back the change we made in step 2 of stage s ′. The risk is that B might now
swap c and c′

s ′ (which was renamed to aj), but that is not a worry since
fs,2(c) < fs,2(aj).

Set ms,3 = j – 1. Continue the stage s with step 4 of stage s.
• Stage s, step t + 1 > 3. Let m = ms,t . We have two cases.

Case (t.1): fs,t(a1), ... , fs,t(am) < fs,t(c).

Case (t.2): For some j, fs,t(aj) > fs,t(c).

In Case (t.1): Step t + 1 will be the last step of stage s. We define As,t+1 = As,t .
Set ms,t+1 = ms,t .

In Case (t.2): Let j be least such that fs,t(aj) > fs,t(c). Let s ′ < s be the
previous stage with n(s ′) = j – 1. Give c all of the labels aj = c′

s ′ had in As,t ,
and give c′

s ′ all of the labels c had in As,t . Similarly, for i < j, give ai all of the
labels a′

i,s ′ had in As,t , and give a′
i,s ′ all of the labels ai had in As,t . Each of

these elements gets a new (s, t + 1)-distinguishing label.

Set mt+1 = j – 1. Continue the construction with step t + 2 of stage s.

End of construction.

5.3. Verification. We will begin by proving various lemmas about the construc-
tion. First, we show that elements that are introduced at nontrue stages are killed
when we find out that the stage was not true.

Lemma 5.2. Suppose that s � s + 1, and let s ′ ≤ s be the previous s + 1-true stage.
Then each element of As \ As′ is killed by stage s + 1.

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

THE TREE OF TUPLES OF A STRUCTURE 39

Proof. At stage s + 1 step 0, we kill all of the elements other than:

• c,
• a1, ... , an(s+1),
• a′1,si , ... , a

′
i,s ′i

for each 1 ≤ i < n(s + 1) where si is the last stage with si ≺ s + 1

and n(si) = i .

These elements were all introduced at stage s ′ or earlier.

Lemma 5.3. Suppose that s ≤ t andx ∈ A is killed at stage s. Thenfs(x) = ft(x).

Proof. Looking at the construction, we see that no new labels are added to
a killed element, and so the s-distinguishing label of x is still its t-distinguishing
label.

Lemma 5.4. Suppose that s ≺ s + 1 ≺ t. Then, for each 1 ≤ i ≤ n(s):

ft(a′i,s) = fs+1(a′i,s) > fs(c).

Proof. Since s ≺ s + 1, we must be in Case 1 at stage s step 3. For each i,
1 ≤ i ≤ n(s), there are only two elements of As,2 satisfying the s-distinguishing
label of ai , namely ai and a′i,s , and of these only ai was in As,0. So there is only one
element of Bs,0 satisfying this label, and this element is fs,0(ai). Since we are in Case
1, fs,2(ai) = fs,0(ai) and so fs,2(a′i,s) ∈ Bs,2 \ Bs,0; thus fs,2(a′i,s) > fs,0(c) since
the latter is in Bs,0. We also have fs+1(a′i,s) = fs,2(a′i,s) since we make no further
changes to A at stage s. So we have shown that fs+1(a′i,s) > fs(c).

Now we claim that a′i,s has no more labels at stage t than it had at stage s + 1.
There are only two times when we give an element a new label at a stage u:

1. When we introduce the elements c′u and a′1,u , ... , a
′
n(u),u , we give a new label to

c and a1, ... , an(u).
2. In Cases 2 and (t.2) when we give c and aj = c′w each other’s labels, and ai and
a′i,w each other’s labels, for some w < u with n(w) = j – 1.

No new labels are given to a′i,s for the sake of (1). At each stage u, s + 1 ≤ u < t,
since s is a u-true stage, (2) can only happen for j > n(s). Thus a new label
cannot be added to a′i,s for the sake of (2) before stage t. So a′i,s is still the
only element at stage t satisfying its s + 1-distinguishing label. This means that
ft(a′i,s) = fs+1(a′i,s).

Lemma 5.5. For all s ≤ t, fs(c) ≤ fs(t), and if s ≺ t, fs(c) < fs(t).

Proof. We argue inductively. It suffices to show that if s ≺ s + 1, then fs(c) <
fs+1(c), and that if t ⊀ s + 1, then fs(c) ≤ fs+1(c).

First, suppose that s ≺ s + 1. Then we must be in Case 1 at stage s step 3,
as in Case 2 we end up with n(s + 1) < n(s). Then fs+1(c) ∈ Bs,2 \ Bs,1 and so
fs+1(c) > fs(c) as fs(c) ∈ Bs,1 and this is an initial segment of Bs,2.

Second, suppose that s ⊀ s + 1. We must be in Case 2 at stage s step 3. Note that
we then have fs,2(c) = fs,0(c) = fs(c). We also have fs,2(c′s) ∈ Bs,2 \ Bs,1 and so
fs,2(c′s) > fs,2(c). Looking at what we did in the construction in Case 2, we see that

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

40 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

either fs,3(c) = fs,2(c) or fs,3(c) = fs,2(c′s) > fs,2(c) as there is a label that at this
point has been given only to c and c′ in A, and fs,2(c) and fs,2(c′) in B. In either
case, fs,3(c) ≥ fs,2(c) = fs(c).

The construction now proceeds to step 4. If, at step 4, we are in Case (t.1), then
we make no further changes to A, and so fs+1(c) = fs,3(c) ≥ fs(c) as desired. On
the other hand, suppose that at step 4 we are in Case (s.2). We will argue inductively
on steps r ≥ 3 thatfs,r(c) ≥ fs(c), and then if r is the last step of stage s,fs+1(c) =
fs,r(c) ≥ fs(c). We already have the base case r = 3. Suppose that we know that
fs,r(c) ≥ fs(c). At step r + 1, if we are in Case (t.1), then r + 1 is the last step of
stage s and we do nothing to A, so that fs+1(c) = fs,r+1(c) = fs,r(c) ≥ fs(c). So
suppose that we are in Case (t.2). Let j be as in Case (t.2), withmr+1 = j – 1. We have
fs,r(aj) > fs,r(c). Looking at the construction, we have either fs,r+1(c) = fs,r(c)
or fs,r+1(c) = fs,r(aj) > fs,r(c), as these are the only elements of As,r+1 with the
(s, r)-distinguishing label of c. In either case, fs,r+1(c) ≥ fs,r(c) as desired.

Lemma 5.6. Suppose that s is a true stage, x, y ∈ As,0 with x �= y. Then no element
of A has both the s-distinguishing label of x and the s-distinguishing label of y.

Proof. The elements of As,0 are:

• c,
• a1, ... , an,
• for each 1 ≤ i < n, a′1,si , ... , a

′
i,si

for each i, and
• killed elements,

where n = n(s) and s0 ≺ s1 ≺ s2 ≺ ··· ≺ sn = s are the previous stages believed by
s such that si is the least stage with n(si) = i .

Killed elements keep the same distinguishing labels forever, so we may assume
that x and y are not killed. There are two times when we give a label already applied
to one element to another element at a stage t:

1. When we introduce the elements c′t and a′1,t , ... , a
′
n(t),t which have the

distinguishing labels of c and a1, ... , an respectively.
2. In Cases 2 and (t.2) when we give c and aj = c′

s′ each other’s labels, and ai
and a′

i,s′ each other’s labels, for some s ′ < t with n(s ′) = j – 1.

After stage s, since s is a true stage, (2) can only happen for j > n(s) and s ′ ≥ s .
Thus the elements a′1,si , ... , a

′
i,si

for 1 ≤ i < n keep the same distinguishing labels
from stage s on.

We claim that the only elements which can receive the s-distinguishing label of ai ,
1 ≤ i ≤ n(s), are elements of the form a′

i,s′ for s ′ ≥ s . Indeed we see that in both
(1) and (2), whenever one of these elements (ai or a′

i,s′ for s ′ ≥ s) receives a label
which had already been given to another element, that other element is also one of
these elements. Thus no element can ever be given the s-distinguishing labels of both
ai and aj , i �= j, or of ai and c. This proves the lemma.

Lemma 5.7. A is not isomorphic to B.

Proof. Let s0 ≺ s1 ≺ s2 ≺ s3 ≺ ··· be the true stages. Given x ∈ B, we claim
that x is not the isomorphic image of c. Using Lemma 5.5, let i be such that

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

THE TREE OF TUPLES OF A STRUCTURE 41

x ∈ Bsi ,0 and fsi (c) > x. Then x = fsi (y) for some y ∈ Asi ,0, y �= c. So in Bsi ,0, x
has the si -distinguishing label of y. By Lemma 5.6, no element of A has both the
si -distinguishing label of y and the si -distinguishing label of c. So x cannot be the
isomorphic image of c. Thus B is not isomorphic to A.

Lemma 5.8. T (A) has a computable copy.

Proof. For each stage s, let is be the last step of stage s. We will computably
build

T0,0 ⊆ T0,1 ⊆ ··· ⊆ T0,i0 = T1,0 ⊆ ··· ⊆ T1,i1 = T2,0 ⊆ ···

such that Ts,i is isomorphic to T (As,i). Moreover, for each stage s, we have a
pseudo-isomorphism gs : Ts,0 → As,0. We will argue that T =

⋃
Ts,i is isomorphic

to T (A).
Note that we define Ts,i at every stage s and step i, whereas gs is only defined for

every stage s. It is of course possible that there are only finitely many stages, because
B stops copying A. Then, if s and i are the last stage and step, we have T = Ts,i
is isomorphic to T (As,i) = T (A). So T is isomorphic to T (A) even though we did
not necessarily build an isomorphism between the two.

If there are infinitely many stages of the construction, then T =
⋃
Ts,0 will be an

infinite union, so we must give an argument that T is isomorphic to T (A). We will
have that g = lim gs is a pseudo-isomorphism from T → A. This limit will be a Δ0

2
limit along the true stages.

We make a new convention: At stage s, we call the elements c, a1, ... , an(s) the
active elements of As . The other elements are all inactive. We write g(�) for the
tuple g(��1), ... , g(��|�|).

Given stages s � t, the maps gs and gt will satisfy the following agreement
condition:

(∗) If n(s) = n(t) then gs ⊆ gt . If n(t) > k = n(s) then whenever � ∈ Ts,0 is
such that gs (�) contains at most k active elements (but possibly other inactive
or killed elements), then gs (�) = gt(�).

Using (∗) we can argue that f = lims gs is a pseudo-isomorphism T → A. Let
s0 ≺ s1 ≺ s2 ≺ ··· be the sequence of true stages. If there are n and I such that for all
i ≥ I we have n = n(si), thenf =

⋃
i≥I gsi and these are nested. So we may assume

that limi→∞ n(si) = ∞.

• Given � ∈ T , we must argue that gs (�) comes to a limit. Let s be a true stage
with � ∈ Ts,0 and n(s) = k > |�|. Since ḡ(�) contains at most k elements, using
(∗), we can argue inductively that gs (�) = gt(�) for all true stages t ≥ s . So
g(�) comes to a limit on the true stages.

• Given ā ∈ A<� , we must argue that there is � ∈ T such that g(�) = ā. Let si
be a true stage such that n(si) > |ā|. Then ā can have at most |ā| < n(si) active
elements. There is � such that gsi (�) = ā, and by (∗), g(�) = ā.

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

42 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

We must now give the construction of T and f and then verify that they satisfy (∗).
We will also build intermediate maps gs,t : Ts,t → As,t , with gs = gs,0.

Construction. Begin with T0,0 = T (A0,0) and g0 the natural pseudo-isomorphism
T0,0 → A0,0. Suppose that we have defined

T0,0 ⊆ T0,1 ⊆ ··· ⊆ T0,i0 = T1,0 ⊆ ··· ⊆ T1,i1 = T2,0 ⊆ ··· ⊆ Ts,0

and g0, ... , gs . We must define Ts,1, Ts,2, ... , Ts,is , Ts+1,0 and gs+1. In the process, we
will also define the gs,t .

Step 1: As,1 ⊇ As,0, and they have the same domains, so we can defineTs,1 ⊇ Ts,0
with gs,1 = gs,0 = gs still a pseudo-isomorphism Ts,1 → As,1.

Step 2: Recall that As,2 did not extend As,1: At step 1 we had As,1 |=
Rs (c, a1, ... , an), while at step 2 we remove this relation and instead have
As,2 |= Rs(c′, a1, ... , an) and As,2 |= Rs(c, a1, ... , a

′
i , ... , an). So we will not be

able to define gs,2 extending gs,1, and we will have to settle for preserving only
the strings with n = n(s) active elements. The idea is that if a string � ∈ Ts,1
maps to the tuple that contains all active elements c, a1, ... , an, then we swap
the active element in the tuple for its primed version. Here is the formal
definition:

For each � ∈ Ts,1, define gs,2(�) as follows. If gs(�) is inactive or killed,
then gs,2(�) = gs (�). If, among gs(�), for � ≺ �, there are less than n active
elements, then also set gs,2(�) = gs(�). Finally, if there are n active elements
among gs(�), for � ≺ �, then set gs,2(�) as follows: if gs (�) = c, then gs,2(�) =
c′s ; if gs (�) = ai , then gs,2(�) = a′i,s .

We can see from the construction of As,2 that this is a pseudoembedding. Now
extend Ts,1 to Ts,2 and extend gs,2 to a pseudoisomorphism Ts,2 → As,2.

Step 3: If s � s + 1, then this is the last step of stage 3 and As,3 = As,2. So
set gs,3 = gs,2.If s � s + 1, then we have n(s + 1) < n(s) and we need gs+1
to extend the pseudoisomorphism build at the previous true stage. We do
not know yet what the value of n(s + 1) is going to be, but our best current
approximation is ms,3 which is < n(s). Let t be maximal with n(t) = ms,3.
Then we have ms,3 = n(t) < n(t + 1) ≤ n(s) and t � s . We want to build gs,3
extending gt : Tt,0 → At,0.

We claim that gt : Tt,0 ⊆ Ts,2 → As,3 is still a pseudoembedding. Consider
� ∈ Tt,0. ḡt(�) has at most n(t) + 1 active members, as those are how many
there are in At,0. By the time we reach gt+1, we might have swapped some
elements but we did not add any active element to ḡt+1(�). (We may swap
c an c′t which then is renamed as an(t)+1, but we could not have both in
ḡt+1(�).) Therefore, ḡt+1(�) has at most n(t + 1) active members and hence,
by (∗), it never changes again before stage s + 1. So gt+1 is a pseudoembedding
Tt,0 → As,3.

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

THE TREE OF TUPLES OF A STRUCTURE 43

We want to argue that also gt is a pseudoembedding Tt,0 → As,3. Given � ∈
Tt,0, since t � t + 1 the only change we made from gt to gt+1 is that sometimes
when gt(�) = c we set gt+1(�) = c′t = an(t+1), and sometimes when gt(�) = ai
we set gt(�) = a′i,t . But in Case 2 of step 3 at stage s + 1, we give c all of
the labels c′t had and vice versa, and similarly for ai and a′i,t . So gt is a
pseudoembedding Tt,0 → As,3.

Define Ts,3 and gs,3 : Ts,3 → As,3 such that gs,3 ⊇ gt is a pseudoisomorphism.
Step t: This is similar to step 3.

Verification. We must now check that (∗) holds. For (∗), if s � s + 1 = t, then this
is clear from the construction—step 2 above is the only place where gs+1 is made to
differ from gs . Otherwise, if t < s is maximal such that n(t) = n(s), then in step 3 /
step t we define gs+1 by having it extend gt . The other cases of (∗) follow from these
two cases.

5.4. Conclusion of the proof. We have built An (which, by abuse of notation, we
were calling A). By Lemma 5.7 is not isomorphic to B, the structure with domain
Rn in the nth (possible partial) computable structure. Moreover, by Lemma 5.8,
T (An) has a computable copy uniformly in n.

Then let A be the structure which is the disjoint union of the An, each of which
satisfies the unary relationRn. Then A has no computable presentation. By Lemma
4.1, T (A) has a computable copy.

§6. Jump inversions. We can use α-jump inversions to obtain the following
corollary from Theorem 1.10.

Corollary 1.5. For any computable ordinal α, there is a structure A such that
T (A) has a computable copy but A itself has no Δ0

α copy.

We use the α-jump inversions as described in [4]. Let α > � be a computable
successor ordinal. (We ask that α ≥ � for simplicity just so that Δ0

α and 0(α)-
computable coincide.) Fix computable structures B0 and B1 in the same relational
language such that:

1. the pair {B0,B1} is α-friendly,
2. B0 and B1 satisfy the same Σ� sentences for � < α,
3. each of B0 and B1 satisfies a computable Σα sentence that the other does not.

We may assume the vocabulary of B0 and B1 contains only one binary relation, and
we may assume it is reflexive. What makes these structures useful is the following
result: for every Δ0

α set S ⊆ �, there is a computable sequence of computable
structures {Ci : i ∈ �} such that Ci ∼= B0 if i �∈ S and Ci ∼= B1 if i ∈ S.

Given a structure A, define the αth jump inversion A(–α) of A as follows. Let
{Ri : i ∈ I } be the vocabulary of A, with Ri of arity ai . The domain of A(–α) now
has one sort A for the elements of A and the complement of A contains infinitely
many auxiliary elements. For each i ∈ I , there is also an ai + 2-ary relation Qi
assigning to each ai -tuple ū an infinite set Ui,ū = {x : Qi(ū, x, x)}, and a 2-ary

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

44 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

relation R̄i,ū = {(x, y) : Qi(ū, x, y)} on Ui,ū . The sets Ui,ū are infinite and partition
the complement of A. For each i and ū ∈ Aai , (Ui,ū ; R̄i,ū) is a structure Ui,ū which is
isomorphic to either B0 or B1 depending on whether A |= Ri(ū) or not.

Using Ash and Knight’s theorem mentioned above, one can then prove the
following lemma:

Lemma 6.2 (See Lemma 5.5 of [4]). Let α be a computable successor ordinal and
let A be a structure. Then A has a Δ0

α copy if and only if A(–α) has a computable copy.

We can also prove a similar fact about the back-and-forth trees of a structure.

Lemma 6.3. Let A be a structure and suppose that T (A) has a Δ0
α copy. Then

T (A(–α)) has a computable copy.

Proof. This is essentially the same proof as the lemma above. Construct a
computable sequence of structures C�̄,i , with �̄ a tuple of nodes from the same
path in T (A) of length ai , such that C�̄,i ∼= B0 if �̄ = 〈�1, ... , �ai 〉 satisfiesRi in T (A)
and C�̄,i ∼= B1 otherwise.

The underlying tree of T (A(–α)) will be the tree of tuples 〈b1, ... , bn〉 where

1. each bj is either a node � in T (A) or is of form 〈�1
j , ... , �

ai
j , i, n〉 for some i and

n ∈ C,
2. all of the � come from the same path in T (A),
3. after deleting from 〈b1, ... , bn〉 all of the entries of the form 〈�1

j , ... , �
ai
j , i, n〉,

the remaining entries (which are nodes � ∈ T (A)) form an initial segment of
a path in T (A).

Now, given a tuple 〈�1, ... , �k〉 of nodes within the same path in T (A(–α)), let Qi
hold of it if 〈last(�1), ... , last(�k)〉 is of the form 〈�̄, b1, b2〉, where �̄ ∈ T (A), b1 and
b2 are of the form (�̄, i, n1) and (�̄, i, n2), and (n1, n2) satisfies the binary relation
in C�̄,i .

Proof of Corollary 1.11 We may assume that α is a successor ordinal.
Relativize Theorem 1.10 to 0(α) to obtain a structure A be such that T (A) has
a 0(α)-computable copy but A has no 0(α)-computable copy. Let B be A(–α). Then
by Lemma 6.3 T (B) has a computable copy, but by Lemma 6.2 B has no 0(α)-
computable copy.

§7. Linear orders. Friedman and Stanley [3] proved that linear orders are Borel
complete. Recall that this means that for each fixed language, there is a Borel operator
Φ that takes a structure A to a linear order Φ(A) such that

A ∼= B ⇐⇒ Φ(A) ∼= Φ(B).

Their operator Φ is in fact computable and can be defined as the composition of the
tree-of-tuples operator T and the following operator L.

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.92

THE TREE OF TUPLES OF A STRUCTURE 45

Definition 7.1. Let T be a labeled tree. Define L(T) recursively as follows: L(T)
is the shuffle sum of Q + �(�) + 2 + Q + L(T�) for all children � of the root node,
where T� is the subtree of T below � and �(�) is the (integer code for) the label
of �.

So the Friedman-Stanley operator is Φ = L ◦ T .

Corollary 7.2. For each computable ordinal α, there is a structure A such that
Φ(A) is computable but A has no Δ0

α copy.

Proof. Note that one can recover the label tree T from the triple jump of L(T),
and then apply Theorem 1.11 to α + 3.

Acknowledgments. Matthew Harrison-Trainor was partially supported by a
Banting fellowship. Antonio Montalbán was partially supported by NSF grant
DMS-1363310 and by the Simons fellowship.

REFERENCES

[1] R. G. Downey, A. M. Kach, S. Lempp, A. E. M. Lewis-Pye, A. Montalbán, and D. D. Turetsky,
The complexity of computable categoricity. Advances in Mathematics, vol. 268 (2015), pp. 423–466.

[2] Y. L. Ershov, Definability and computability, Siberian School of Algebra and Logic, Consultants
Bureau, New York, 1996.

[3] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures.
this Journal, vol. 54 (1989), no. 3, pp. 894–914.

[4] S. Goncharov, V. Harizanov, J. Knight, C. McCoy, R. Miller, and R. Solomon, Enumerations
in computable structure theory. Annals of Pure and Applied Logic, vol. 136 (2005), no. 3, pp. 219–246.

[5] M. Harrison-Trainor, A. Melnikov, R. Miller, and A. Montalbán, Computable functors and
effective interpretability. this Journal, vol. 82 (2017), no. 1, pp. 77–97.

[6] I. Kalimullin, Enumeration degrees and enumerability of families. Journal of Logic and
Computation, vol. 19 (2009), no. 1, pp. 151–158.

[7] ———, Algorithmic reducibilities of algebraic structures. Journal of Logic and Computation, vol.
22 (2012), no. 4, pp. 831–843.

[8] I. S. Kalimullin and V. G. Puzarenko, Reducibility on families. Algebra Logika, vol. 48 (2009),
no. 1, pp. 31–53, 150, 152.

[9] J. F. Knight, Degrees coded in jumps of orderings, this Journal, vol. 51 (1986), no. 4, pp. 1034–
1042,

[10] J. Knight, A. Soskova, and S. Vatev, Coding in graphs and linear orderings. Preprint.
https://doi.org/10.1017/jsl.2019.91

[11] R. Miller, B. Poonen, H. Schoutens, and A. Shlapentokh, A computable functor from graphs
to fields, this Journal, vol. 83 (2018), no. 1, pp. 326–348.

[12] A. Montalbán, A fixed point for the jump operator on structures, this Journal, vol. 78 (2013),
no. 2, pp. 425–438.

[13] ———, A fixed point for the jump operator on structures, this Journal, vol. 78 (2013), no. 2, pp.
425–438.

[14] ———, Computability theoretic classifications for classes of structures, Proceedings of the
International Congress of Mathematicians (Seoul 2014), vol. II (S. Y. Jang, Y. R. Kim, D.-W. Lee, and
I. Yie, editors), Kyung Moon Sa Co., Seoul, 2014, pp. 79–101.

[15] ———, Computable structure theory: Within the arithmetic. In preparation, P1.

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.91
https://doi.org/10.1017/jsl.2019.92

46 MATTHEW HARRISON-TRAINOR AND ANTONIO MONTALBÁN

SCHOOL OF MATHEMATICS AND STATISTICS
VICTORIA UNIVERSITY OF WELLINGTON, NEW ZEALAND

and
THE INSTITUTE OF NATURAL AND MATHEMATICAL SCIENCES

MASSEY UNIVERSITY, NEW ZEALAND
E-mail: matthew.harrisontrainor@vuw.ac.nz
URL: http://homepages.ecs.vuw.ac.nz/∼harrism1/

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, BERKELEY, CA, USA

E-mail: Aantonio@math.berkeley.edu
URL: http://www.math.berkeley.edu/∼antonio/index.html

https://doi.org/10.1017/jsl.2019.92 Published online by Cambridge University Press

mailto:matthew.harrisontrainor@vuw.ac.nz
http://homepages.ecs.vuw.ac.nz/$\sim $harrism1/
mailto:Aantonio@math.berkeley.edu
http://www.math.berkeley.edu/$\sim $antonio/index.html
https://doi.org/10.1017/jsl.2019.92

	1 Introduction
	1.1 The information content of a structure
	1.2 Families of sets
	1.3 Families of families of sets
	1.4 Replicated labeled trees
	1.5 Degree spectra of trees

	2 Effective interpretability and functorial reductions
	3 The family of types
	4 Two tools
	4.1 C.e. labels
	4.2 Joining trees

	5 Main result
	5.1 First few stages of the construction
	5.2 Formal construction of A
	5.3 Verification
	5.4 Conclusion of the proof

	6 Jump inversions
	7 Linear orders

