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The capabilities of the triple-deck theory of receptivity for subsonic compressible
boundary layers have been thoroughly investigated through comparisons with
numerical simulations of the compressible Navier—Stokes equations. The analysis
focused on the two Tollmien—Schlichting wave linear receptivity problems arising
due to the interaction between a low-amplitude acoustic wave and a small isolated
roughness element, and the low-amplitude time-periodic vibrations of a ribbon placed
on the wall of a flat plate. A parametric study was carried out to look at the
effects of roughness element and vibrating ribbon longitudinal dimensions, Reynolds
number, Mach number and Tollmien—Schlichting wave frequency. The flat plate
is considered isothermal, with a temperature equal to the laminar adiabatic-wall
temperature. Numerical simulations of the full and the linearised compressible
Navier—Stokes equations have been carried out using high-order finite differences to
obtain, respectively, the steady basic flows and the unsteady disturbance fields for the
different flow configurations analysed. The results show that the asymptotic theory and
the Navier—Stokes simulations are in good agreement. The initial Tollmien—Schlichting
wave amplitudes and, in particular, the trends indicated by the theory across the whole
parameter space are in excellent agreement with the numerical results. An important
finding of the present study is that the behaviour of the theoretical solutions obtained
for Re — oo holds at finite Reynolds numbers and the only conditions needed for the
theoretical predictions to be accurate are that the receptivity process be linear and
the free-stream Mach number be subsonic.

Key words: boundary layer receptivity, compressible flows, transition to turbulence

1. Introduction

In ‘quiet’ disturbance environments, which are typical of flight conditions, the
initial stages of laminar—turbulent transition are dominated by the evolution of
instability modes (primary instabilities, possibly followed by secondary instabilities),
which grow exponentially due to linear processes. The nature of these instabilities
depends greatly on the state of the laminar boundary layer. In boundary layers
developing over swept wings with large sweep angles, the transition process is
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dominated by the cross-flow instability. The Tollmien—Schlichting (TS) waves drive
the boundary-layer instability in the case of small sweep angles, while Taylor—Gortler
vortices are the dominant primary instability for boundary layers developing over
concave walls. Since the first pioneering experiments of Reynolds (1883), the
complexity and great variety of possible mechanisms involved in the laminar—turbulent
transition have inspired a great deal of work on this subject, despite which transition
prediction still remains a formidable task. The main problem associated with current
transition prediction methodologies is that they are largely based on the concept
of disturbance amplification, rather than on the disturbance amplitude, and hence
completely disregard the receptivity process, the importance of which was highlighted
by numerous experiments (see Reshotko 1976; Kachanov 1994; Saric, Reed &
Kerschen 2002, and references therein). Receptivity theory studies the process of
interaction between the boundary layer and ‘external perturbations’, such as acoustic
waves, free-stream turbulence and body surface vibrations. The objective of the
receptivity analysis is, first, to identify how the external perturbations can be converted
into instability modes of the boundary layer, the TS waves, cross-flow vortices or
Taylor—Gortler vortices, and, second, to determine the initial amplitude of these modes.

The progress achieved in this field has been, to a large degree, thanks to the studies
based on the asymptotic analysis of the Navier—Stokes equations at large values of
the Reynolds number. When dealing with the process of generation of TS waves in
boundary layers, this approach relies on the triple-deck theory, which is known to
describe the TS waves in subsonic flows near the lower branch of the neutral stability
curve (see Lin 1946; Smith 1979a,b). The first paper where the triple-deck theory
was used to study the receptivity of the boundary layer was published by Terent’ev
(1981). He considered an incompressible flow past a flat plate with the basic steady
flow given by the Blasius solution. He assumed that a short section of the plate
surface performs periodic vibrations in the direction perpendicular to the wall. This
formulation represents a simplified mathematical model of the classical experiments
performed by Schubauer & Skramstad (1948) where the TS waves were generated
by a vibrating ribbon installed a small distance above the plate surface. Terent’ev’s
theory shows that, in the vicinity of the vibrating part of the wall, the perturbation
field is rather complex. However, further downstream, only one perturbation mode
survives, the TS wave. The amplitude of this wave depends on the shape of the
vibrating part of the wall.

It is known from numerous observations that the boundary layers are susceptible
to acoustic noise. Asymptotic theory of the generation of TS waves by acoustic noise
was developed by Ruban (1984) and Goldstein (1985). In these studies the importance
of the notion of ‘double resonance’ was highlighted as a fundamental principle of
the receptivity theory. In fluid flows, effective transformation of external disturbances
into instability modes of the boundary layer is only possible if, in addition to the
frequency, the wavenumber of the external perturbations is in tune with the natural
internal oscillations of the boundary layer. These conditions could be easily satisfied
in the problem considered by Terent’ev (1981), where the frequency and the length
of the vibrating part of the wall can be chosen independently of one another. When
an acoustic wave impinges upon the boundary layer, the pressure perturbations in
the acoustic wave penetrate into the boundary layer, leading to the creation of a
near-wall Stokes layer inside the boundary layer. If the acoustic field has a wide
enough spectrum, then the receptivity process will ‘extract’ from it a harmonic whose
frequency is in tune with the frequency of the corresponding TS wave. Of course,
under this condition the wavelength of the ‘chosen’ acoustic wave appears to be much
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longer than that of the TS wave, meaning that the second resonance condition, the
tuning of the wavenumbers, is not satisfied. However, in practical applications, such as
in the flow past an aircraft wing, the body surface in never absolutely smooth. Hence,
in addition to unsteady perturbations in the Stokes layer, one has to consider steady
perturbations produced by the wall roughnesses, which normally have a short length
scale. Ruban (1984) and Goldstein (1985) demonstrated that the interaction between
the two perturbation modes leads to the formation of TS waves behind the roughness.
Along with acoustic waves, free-stream turbulence is also known to have a significant
influence on the laminar—turbulent transition in the boundary layer. The asymptotic
theory of the receptivity of the boundary layer to the free-stream turbulence was
developed by Duck, Ruban & Zhikharev (1996). They found that, unlike the acoustic
waves, the vorticity waves do not carry pressure perturbations, and therefore are
unable to penetrate into the boundary layer. However, the steady flow perturbations
produced by a wall roughness are not confined to the boundary layer but extend
to the flow outside the boundary layer, where they come into interaction with the
vorticity wave. Duck et al. (1996) showed that this interaction results in a TS wave
forming downstream of the roughness.

Recently, the generation of TS waves in the boundary layer due to elastic vibrations
of the wing surface was analysed by Ruban, Bernots & Pryce (2013). Their results
show that the wing surface vibrations can cause pressure perturbations in the flow
outside the boundary layer, which, in turn, induce a Stokes layer near the wing
surface. Two physical mechanisms were found to be able to induce an oscillatory
motion of the Stokes layer. The first one is the classical mechanism where the
pressure gradient, being a periodic function of time, forces the fluid to oscillate in
the direction along the wing surface. This process is similar to the one described by
Ruban (1984) and Goldstein (1985) in their study of the boundary-layer receptivity
to acoustic waves. In the second mechanism, the pressure itself, not the pressure
gradient, makes up the Stokes layer. In both cases, TS waves are generated when the
Stokes layer encounters a wall roughness. These and other examples (Denier, Hall
& Seddougui 1991; Wu 2001; Kerimbekov & Ruban 2005; Wu, Zhao & Luo 2011)
show that the asymptotic approach has proven to be invaluable in uncovering the
possible mechanism of boundary-layer receptivity. However, the accuracy with which
the asymptotic theory predicts the initial amplitude of the instability modes forming
in the boundary layer has been under question.

Boundary-layer receptivity problems have also been extensively analysed experi-
mentally (see e.g. Kachanov, Kozlov & Levchenko 1979; Saric & White 1998;
Dietz 1999; Borodulin et al. 2013) and numerically (see e.g. Fucciarelli, Reed
& Lyttle 2000; Wanderley & Corke 2001; Jones, Sandberg & Sandham 2010;
Tempelmann et al. 2012). The main challenge of the experimental investigations
is the measurement of the receptivity coefficients, since the initial amplitudes
of the boundary-layer instabilities may be orders of magnitude smaller than the
amplitude of the surrounding disturbance environment. On the other hand, the
main difficulty associated with numerical simulations is to accurately represent
the free-stream disturbance environment, whereby care needs to be taken to correctly
formulate the boundary conditions needed to capture the effects of the different
types of perturbations (acoustic waves, entropy waves and vorticity waves) on the
boundary-layer receptivity. Despite the numerous efforts, comparisons between the
predictions of the asymptotic theory of receptivity and the numerical and experimental
results are very limited. Comparisons with experiments can be found, for example, in
Goldstein & Hultgren (1987), Kozlov & Ryzhov (1990) and Wu (2001), while detailed
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comparisons with the predictions of the finite-Reynolds-number Orr—Sommerfeld
theory (Zhigulev & Fedorov 1987; Choudhari & Street 1992; Crouch 1992) are
reported in Choudhari & Street (1992). However, the range of parameters over which
the asymptotic theory has been compared with high-fidelity Navier—Stokes numerical
simulations and/or experiments is very limited, hence a detailed evaluation of the
capabilities of the theory is currently missing. In this paper we address this issue
by comparing the asymptotic theory with numerical simulations of the compressible
Navier—Stokes equations, focusing on two important receptivity problems: the TS
wave generation by a vibrating ribbon placed on the wall of a flat plate and that due
to the interaction between a small isolated roughness element and an acoustic wave
travelling in the flow direction. The investigation is carried out through a parametric
study on the effects of roughness element/vibrator longitudinal dimension, Reynolds
number, Mach number and TS wave frequency. In this work, special care has been
taken in the formulation of the boundary conditions used to obtain the relevant
disturbance fields (particularly for the numerical analysis of the receptivity due to
sound), which are critical for the accurate determination of the receptivity coefficients.
The numerical techniques used to obtain the disturbance fields are described in §4.2.

The paper is organised as follows. In §2 the receptivity problems are introduced
along with the theoretical preliminaries of the triple-deck study. The main steps of the
triple-deck analysis are given in § 3. All the details of the numerical study are given in
§4. In §5 we provide comparisons between the numerical and the theoretical results,
along with a discussion of the main findings. The paper ends in § 6, where the main
conclusions of the study are drawn.

2. Problem formulation and triple-deck scalings

Consider the two-dimensional laminar boundary layer that forms on the surface of
a flat plate in a subsonic free stream. We shall analyse the two receptivity problems
arising from the interaction between an acoustic wave and an isolated two-dimensional
roughness element and from the time-periodic vibrations of a ribbon placed on the
flat plate wall, as schematically depicted in figure 1 (note that, for brevity, in the
remainder of this paper the roughness element and the vibrating ribbon will be
referred to as ‘the wall disturbance’ whenever the subject of the discussion applies to
both). The mechanisms responsible for the generation of TS waves in the above two
scenarios are fully described by the compressible Navier—Stokes equations, which, for
a two-dimensional flow, may be written as

ap 8pu 8,0v

- =0, 2.1
ot 8x (.1a)
D 3
. n (2.1b)
Dt ax Re 8y
Dv ap 19
— 2.1
P Dr  dy Re 8y (M ) + 2.1¢)
Dh D 1 9
ot P L kel el (2.1d)
Dt Dt RePr 8y Re
-1
= h= 2.1
P > p > Ma2 (2.1e)
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\L . i Boundary layer edge

y*
x* — Flat plate

Roughness element/vibrating ribbon Tollmien—Schlichting wave

FIGURE 1. (Colour online) Schematic representation of the receptivity problem.

Note that, for brevity, only the principal viscous terms are shown in the momentum
and energy equations. The equations are written in terms of the following non-
dimensional variables:

* k

X = x5 v u v 0
X = . ) y=7*v u= v V= ¥« p= %
L L Ux, Uz, 0% 55

Here the reference length L* is the distance between the leading edge of the flat
plate and the centre of the wall disturbance, which is positioned at x* = x;. The x*
coordinate measures the distance along the flat plate wall starting from its leading
edge, and the y* coordinate indicates the distance to the wall of the plate. The
streamwise and wall-normal velocities are denoted respectively as #* and v*, the fluid
density as p*, the pressure as p*, the dynamic viscosity as u* and the enthalpy as
h*. Asterisks indicate dimensional quantities. The dimensionless parameters for this
problem are the Reynolds number Re, the Mach number Ma and the Prandtl number
Pr, which we consider to be constant and equal to Pr=0.72.

In the absence of any external perturbations, the laminar basic flow over a smooth
flat plate is governed by the classical compressible boundary-layer equations, which,
using Illingworth’s transformation (see e.g. White 2005), may be written as

(CF"Y + FF" =0, (2.3a)
(CYY +PrFY =—(y —1)CPrMa*F'?, (2.3b)

where .%'(n) = Uy is the basic flow streamwise velocity, & (i) = hp is the basic flow
enthalpy and C(¥) = ugpp is the Chapman—Rubesin parameter. Equations (2.3) are
obtained after introducing the similarity coordinates

(1 +x)71/2 Y
V2 0
where Y = Re'/?y is the usual boundary-layer wall-normal coordinate. In this work we

assume that the flat plate wall is adiabatic, so that the wall temperature is constant
and equal to

&€ =ps P UL L"(1+x) and n= pdY, (2.4a,b)

—1
T,=1+ Prl/zyTMaz. (2.5)
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Under this condition, (2.3) admit smooth self-similar solutions, which may be
expanded in Taylor series around x=0 (i.e. around the centre of the wall disturbance)
as
Up(x,Y) = Upo(Y) + O(x),
p(x, Y) = ppo(¥Y) + O(x), .
hp(x. Y) = hgo(Y) + O(). as x— 0 and Y =0(1). (2.6)
ps(x, Y) = wup(¥Y) + O(x)
In addition, the near-wall behaviour of the boundary-layer flow near x =0 can also

be recovered by noting that the leading-order terms in (2.6) may in turn be Taylor-
expanded near the wall. Hence one can write

Ug =AY +-- -,
P = Pwt-,
hy = ho+ - asx—0and Y — 0, 2.7)
M = Myt
where dU 70
e///
1= B0 — () (28)

dv |, V2,
and .#”(0) is obtained by solving (2.3) numerically. The values of .%#”(0) associated
with the numerical simulations carried out in this work are given in §4.2 (table 1).

As anticipated in the introduction, the asymptotic theory of receptivity is based
on the triple-deck theory, which describes the TS waves in subsonic flows near the
lower branch of the neutral stability curve (see Lin 1946; Smith 1979a,b). Therefore,
following the triple-deck formalism, the flow near the wall disturbance is divided into
three regions in the wall-normal direction, as depicted in figure 2. Strictly speaking,
the wall disturbance should be contained within the lower deck (region 1) in order for
the triple-deck theory to be valid. In addition, the frequency of the vibrating ribbon
and the free-stream acoustic wave has to match the lower-branch TS wave frequency,
which is an O(Re'/*) quantity (Lin 1946). Therefore, the frequency of the imposed
oscillations, the streamwise length of the wall disturbance and the wall-normal size (h)
of the wall disturbance (taken here as the amplitude of the vibrations of the ribbon
or the height of the roughness element) are taken to be of O(Re'/*), O(Re™*/®) and
O(Re™8), respectively.

Based on the above considerations, the shape of the roughness element and the
vibrating ribbon may be expressed respectively as

X X t
y, = hF (W) and y, = hF (Re_w) G (Re—l/“) , (2.9a,b)

8

where h = eRe™>/® with € = O(1). In order to obtain an analytical description of the
receptivity of TS waves by the interaction between an acoustic wave and a roughness
element, the disturbances induced inside the boundary layer by the acoustic wave also
need to be analysed using asymptotic analysis. It can be shown that the acoustic wave
leads to the generation of a thin oscillating layer near the wall, the Stokes layer, the
thickness of which is of the same order of magnitude as that of the lower deck, as
schematically depicted in figure 2.

The asymptotic theory of the generation of TS waves by sound is due to Ruban
(1984) and Goldstein (1985), while the receptivity problem of a vibrating ribbon was
first solved in the context of the triple-deck theory by Terent’ev (1981). The aim
of this paper is to provide a detailed assessment of the applicability of the above
theories by comparing their predictions with high-fidelity Navier—Stokes simulation
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O(Re™3/%)

3

O(Re™3/3)
Boundary layer edge
__________ - - >
Stokes layer ORe™%)

N / O(Re™/?)

e I/ 1

FIGURE 2. Triple-deck formalism.

results. Therefore, only the relevant portions of the theoretical analyses are provided
in the following for completeness.

3. Triple-deck theory

The flow in the vicinity of a wall disturbance given by one of equations (2.9) may
be described by the triple-deck theory. In the lower deck, after introducing the usual
scaled coordinates

2 4 pl/2 oA pls2
Z_ pl/4 w = _ p3/8_Mw Pw = _p,5/8 Hw " Pw _
t=Re /1_3/213_1/21‘, X=Re /1_5/413_3/4x and y=Re /1_3/413_]/4y (3.1a—c)
and substituting the following asymptotic expansions
1/4 ,—1/2 3/4 ,—1/2
_p 18 Py _p3s P P
u=ke —1/4 1/4U+ , V=Re -3/4 71/4V+ ’
AP AP 32
,LLI/Z ( . )
— Sl Tw po L
P =D+ Re /171/2/31/2P+ s

into the Navier—Stokes equations (2.1), the governing equations can be written as
U N A

x 3y

oU  -9U 38U  dP  0°U

0, (3.3a)

_ e R — 3.3b
8t+ 3)_C+ ay 85c+8)72 (3-35)

with the boundary conditions given by
uv=0,, V=V, aty=y, (3.4a)
U=y+--- as x— —00, (3.4b)
U=5+AE %)+ --- asy— oo. (3.4¢)
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Here g =+/1—Ma?, A is the usual unknown displacement function and U, and V,
represent the motion of the flat plate wall (U, = V,, = 0 in the case of a steady
roughness element). It is important to note that, since the local Mach number is
small near the wall, we have assumed that the flow is incompressible and hence have
neglected density, viscosity and enthalpy disturbances. Given the scaling introduced
for the time ¢ and the x coordinate, it is convenient to explicitly introduce the
scaled frequency @ = Re™"/*1u-1227328712¢ and the scaled streamwise wavenumber
a=Re 3B 14p-12)75/48=3/%q for future reference.

3.1. Receptivity of TS waves by sound

In the lower-deck coordinates (3.1), the shape of the roughness element may be
written as y, = €F(x), where we have used F = u!/*p-12273/48=1/4F and, since here
we are interested in the linear case, we put € < 1. Let us now assume that there is a
plane acoustic wave travelling in the free stream in the flow direction. The acoustic
wave amplitude is chosen so that the streamwise pressure gradient induced by the
wave is of the same order of magnitude as that induced by the roughness element.
It turns out that this condition is fulfilled if the acoustic wave amplitude is an order
O(Re™ /%) quantity; here we put a = §Re'/%, with § <« 1. Such a wave induces a
Stokes layer near the wall; the interaction between the Stokes layer disturbances and
the roughness element gives rise to a TS wave.

The disturbances introduced into the boundary layer in the vicinity of the roughness
element are due to: the roughness element itself, denoted as say u;; the oscillations
of the Stokes layer, say u;; and the interactions between the previous two, say u,.
Therefore, after applying Prandtl’s transformations

1,

[ —
e |l

X=X y=y+¢€F,
U V=

+€eUF, P=P, (3.5
F=F,

<t =1

’

which are used to simplify the wall boundary conditions, we look for lower-deck
solutions in the following form:

U=9+68u,{ x,,5) +euy(X,3) + €dur (£, %, 9) + - - -, (3.6a)
V=Re Bsu,(7, x,, §) + €vi (7, §) + €827, X, 5) + - - -, (3.6b)
P=Re"38p,(1, x,) + ep1(X) + €8pr (1, ) + - - - . (3.60)

Here x,=Re'/*x and the Stokes layer terms (subscript s) are introduced to ensure that
the solution matches the Stokes layer solution for X — —oo. By substituting the above
into (3.3) and (3.4), we obtain a steady problem describing the roughness-induced
disturbances u; (by collecting terms with €) and an unsteady problem describing the
disturbances arising from the interaction between the Stokes layer and the roughness
element (by collecting terms with €§).

In Fourier space, i, = (2m)~"/? [*° w;e” ¥ dx, the steady problem has the solution

iy = @)F@) and b, = O(¢; @)F (@), where ¢ = (i@)'*j and

CEN 3(ia)'|al £
re¢,a)= _3Ai’(0) ~G1Ga) 1R /0 Ai(s) ds, (3.7a)

4
O¢; @) =—(@(a)*? / I (s; @) ds. (3.7b)

0
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The unsteady problem admits time-harmonic solutions u, = %1}2 exp(i@f) + c.c. and,
by taking the Fourier transform i, = (21t)~"/2 [ ii,e7** dX, can be expressed as

ity du,

g = F@eG: @), (3.80)
=0 for z=2z, (3.8D)
dzi\lZ s=\1/3A
12 =@ P for 2=z, (3.8¢)
=" for z= o0, (3.84)
||

where z=2zo + (ia)'?y, with zo = (i®)/(i@)*?, and

ey d duy
Py;a)=(0a)" — |l¢U, T +O—— |, (3.9a)
dy dy

L jo.
1 —exp (—(1 +1)\/:y)] . (3.9b)

Note that (3.90) represents the Stokes layer disturbance u, evaluated at the centre of
the roughness element. From (3.8) one can easily show that

. 1M;1/4p;1/2 Ma

CT2 AVABTVA 14 Ma

mMmmm/n@&
Pow = o , (3.10)
Ai'(zp) — (i&)‘/3|&|/ Ai(z) dz

where 7(z) is the solution of the boundary-value problem n” — zn = @, with
n'(zo) = 0 and n(oco) =0, and Ai and Ai’ are, respectively, the Airy function and
its first derivative.

Finally, the wall-pressure disturbance induced by the interaction between the
acoustic wave and the roughness element can be obtained after taking the inverse
Fourier transform, leading to

Dow = —N2EF (@)™ for X — oo, (3.11)
where -
aAi'(z9) / n(z)dz
@ = - a (3.12)
4 c=\1/3 . 2 . 20 - =\4/3
= (i) Ai(z) dz — ZAi(z0) —[z0 + 1(i)™"]
3 2 3 o &

is the receptivity coefficient. Here o, and @, are, respectively, the wavenumber and
frequency of a lower-branch TS wave. The inverse Fourier transform was calculated
for w — w; =2.29797, in which case all the poles of (3.10) are complex with positive
imaginary parts, except for the first one, &; = —1.0005, which is real. Therefore, as
X — oo the contribution of the complex poles to the wall pressure becomes negligible
and the inverse Fourier transform may be easily calculated using the residue of (3.10)
at «,. It is important to note that the expression in the denominator of (3.10) gives
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the well-known large-Reynolds-number version of the Orr—Sommerfeld equation for a
Blasius boundary layer, i.e.

Ai'(z0) — (i&)1/3|&|/ Ai(z) dz=0, (3.13)
20
whose first root describes the TS wave.

3.2. The vibrating ribbon problem

The shape of the vibrating ribbon may be written using lower-deck coordinates as
v, = €F(xX)G(?). In this case, we look for solutions to (3.3) and (3.4) in the following
form:
U=y+eu+---, V=ev+---, P=ep+---. (3.14a—c)
In order to model the presence of a vibrating ribbon, we use slip velocities at y =0.
These are obtained by expanding the near-wall flow in Taylor series and retaining the
dominant terms; we obtain u; = —F(x)G() and v, = F(Xx)G'(7) at y=0.

Since the vibrating ribbon introduces time-harmonic oscillations into the system, the
problem admits time-harmonic solutions u; = %itl exp(ir) + c.c. It can then be shown
that, in Fourier space, (3.3) and (3.4) reduce to

i, diy 0 (3.15q)
—z— =0, . a
dz3 ¢ dz
o, =—F@) forz=z, (3.15b)
dzI}/\tl s=\1/32
= (ia) "p1, for z =z, (3.15¢)
dz2
fh:ll’i‘l“ for z = o0. (3.15d)
o

From the above equations, one can easily find that

B |@| A (z0) F (&)
Ai'(z9) — (i@)'|a| / Ai(z) dz

DPiw = (3.16)

The wall-pressure disturbance introduced by the vibrating ribbon is finally obtained by
taking the inverse Fourier transform, leading to

Piw = V21E,F(@)e™* for x— 0o, (3.17)
where
AT
%, = _ @Al (z0) (3.18)
4 s=\1/3 . 2 . 20 i =\4/3
—(i@) Ai(z) dz — = Ai(z9) = [z0 +i(i@)™"]
3 ZO 3 o &

is the receptivity coefficient.

4. Details of the numerical study
4.1. The governing equations and their numerical treatment

The receptivity problems discussed theoretically in the previous sections may also be
analysed numerically by directly solving the compressible Navier—Stokes equations.
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In this work, a generic flow variable i is decomposed into a steady part ¢ and
an unsteady part ¥’. The steady part of the flow is calculated using the SBLI code,
developed at the University of Southampton, which solves the full compressible
Navier—Stokes equations written in dimensionless form as

ap  dpi;
op o0 _ (4.1a)
Bt ij
pu;  dpii  0p _ 8%,,-’ (4.1b)
at 0x; ox;  Ox;
IpE  d(PE + p)it; 9q; | ;T
PE | (PE+pu; _ 9q 4 it (4.1c)

ot dx, A Ax

These are advanced in time until convergence starting from a suitable initial condition.
The components 7;; of the viscous stress tensor are defined as

_ wo (0w Ou; 2 du
= — — =38, 4.2
K Re <8xi + ox; 3 0x; / (4.2)

where §;; is the usual Kronecker delta function. The total energy per unit mass is
defined as _

E d + i (4.3)

=— 4+ —uil; .
y(y — D)Ma*> 2

and the dynamic viscosity is calculated from the temperature field using Sutherland’s
law o =T%*(1+S8*/T%)/(T +S*/T%), where S*=110.4 K is the Sutherland constant
for air and T =273.15 K. The pressure p and the heat fluxes g; are calculated from
the equation of state and Fourier’s law of heat conduction, given respectively by

oT ) i oT
—— and ¢, =-— —.
y Ma? (y — 1)Ma>Pr Re 9x;

p= (4.4a,b)

Having calculated the basic flow, the same equations may in principle be solved
to obtain the unsteady part of the flow. However, since in this work the unsteady
perturbations are considered to be small, it was convenient to linearise the equations
about the steady flow and adapt the SBLI code to solve the linearised compressible
Navier—Stokes equations, written in the form

ap"  dpu; Ap'u

=0, (4.5q)
ot 8)6,' ax,'
ou, o _ du; _9du, 19p 107
Tt ) ot = 4.5b
at+<,5”’+”f> ox " Yox T hom  pox (4.56)

oT’ aT’ ' oT ou, il; aq,
tii—+ (L) =+ B (ot 4 p o ) =2l L By (450
at 0x; 0 0Xx; 0x; 0Xx; 0x;

where B = y(y — 1)Ma?/p. The unsteady pressure p’ and the linearised heat fluxes
q; are given by the linearised versions of (4.4) and may be written respectively as

(pT' +p'T) and ¢, =

. 1 _9T 0T
p:

- — — |, (4.6a,b
yMa? (y — DMa>Pr Re Maxi tu 8xi> (4.6a.5)
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while the components 7; of the linear viscous stress tensor appearing in (4.5b) and
the linear viscous dissipation term &’ appearing in (4.5¢) are given respectively by

LN N U L VA S U U LT wn
T.. = — —_ = i — ——0;; .
iTRe M \oy T 3an 7)) T Ny T 3ax "

811,- , 8”: _
= T+ o, T (4.8)
Note that, since here we are interested in the two-dimensional problem, the summation
indices i, j and k take values 1 and 2 and we put (x1, x,) = (x, y) and (uy, u,) = (&, v).

Both the full and the linearised compressible Navier—Stokes equations are solved
numerically for generalised curvilinear coordinates using high-order finite differences.
The spatial discretisation is treated using a standard fourth-order central difference
scheme to calculate derivatives at internal points, while close to boundaries a stable
boundary treatment by Carpenter, Nordstrom & Gottlieb (1999) is applied, giving
overall fourth-order accuracy. Time integration is based on a third-order compact
Runge—Kutta method (Wray 1990). The full nonlinear code employs an entropy
splitting approach developed by Sandham, Li & Yee (2002), whereby the inviscid
flux derivatives are split into conservative and non-conservative parts. The entropy
splitting scheme, together with a Laplacian formulation of the heat transfer and
viscous dissipation terms in the momentum (4.15) and energy (4.1c) equations (which
prevents the odd—even decoupling typical of central differences (see Sandham et al
2002)), helps improve the stability of the low dissipative spatial discretisation scheme
used. The linearised code retains the Laplacian formulation for the heat transfer term
in the momentum (4.50) and energy (4.5¢) equations and for the viscous dissipation
term in the momentum equation. The SBLI code has multi-block capabilities and is
made parallel (both intra- and inter-block) using the Message Passing Interface (MPI)
library. The code has been extensively validated (see e.g. De Tullio & Sandham 2010;
De Tullio 2013; De Tullio et al. 2013).

and

9/

4.2. Flow configurations, computational domains and boundary conditions

A schematic representation of the numerical technique used for the receptivity studies
is given in figure 3. The numerical simulations are performed on a computational
domain with the inflow boundary starting downstream of the flat plate leading
edge. In the case of the nonlinear Navier—Stokes simulations, the domain inflow is
initialised with a compressible laminar similarity solution obtained after numerically
solving (2.3) and a pressure extrapolation boundary condition is then applied,
whereby the inflow conservative variables are calculated by linearly extrapolating
the pressure from within the domain. Wave reflections from the domain external
boundaries are controlled through the use of characteristic boundary conditions
(originally derived by Thomson (1987, 1990)) at the top and outflow boundaries.
In addition, a sponge region is introduced near the outflow boundary, where
at the end of each time step the conservative variables vector ¢ is updated as
Grew = Goa — 0 (A1/2)[1 + cos(n§ /L) G i — 4,r}, Where At is the simulation time
step, 0 = 0.05 is a damping factor, £ is the streamwise coordinate measured from
the start of the sponge, Ly, is the streamwise extent of the sponge and ¢, is given
by the similarity solution vector used for the flow initialisation. The characteristic
conditions and the sponge region are used in the nonlinear Navier—Stokes simulations
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Useful part of the computational domain

. N Acoustic wave, - AN
S —\ , - - > Sponge region
Buffer zone N P L~
x o Boundary layer edge

Flat plate

Roughness element/vibratingribbon ~ Tollmien—Schlichting wave

FIGURE 3. (Colour online) Schematic representation of the numerical treatment, showing
the buffer zone and the sponge region in grey, which are placed, respectively, upstream
and downstream of the useful part of the computational domain.

to minimise transients to steady state. No-slip and isothermal boundary conditions are
applied at the wall, where the wall temperature is given by (2.5).

The linearised Navier—Stokes equations are solved using characteristic boundary
conditions for the top and outflow boundaries in all cases and also for the inflow
boundary for the cases involving a vibrating ribbon. The walls are considered
no-slip and isothermal. For the study of the receptivity due to sound, an accurate
formulation of the inflow boundary conditions is of critical importance. In this
case, a prescribed time-varying inflow boundary condition is used, whereby the
acoustic waves are introduced using the complex vector ¥ of eigenfunctions of the
downstream-travelling acoustic modes, which is obtained from parallel compressible
linear stability computations (see Balakumar & Malik 1992). The boundary condition
reads g, =¥ exp(i2mft) + c.c., where f is a dimensionless frequency. It is important to
note that, since the inflow condition used for the nonlinear Navier—Stokes simulations
is not a solution of the full Navier—Stokes equations, a small region is present near
the domain inflow where the basic flow undergoes a slight adjustment. The coupling
between the unsteady acoustic disturbances imposed at the inflow and the adjustment
of the basic flow leads to the excitation of a small TS wave immediately downstream
of the inflow boundary, which in turn affects the acoustic receptivity process at
the roughness location. Therefore, in order to obtain a clean disturbance field, this
small region is removed from the basic flow used in the linearised Navier—Stokes
simulations and a buffer region is introduced near the inflow boundary where any
residual numerical oscillations induced due to the introduction of the acoustic mode
eigenfunctions are eliminated by a combination of filtering and grid stretching. As
will be shown in §5.1, this technique leads to a disturbance field given only by an
acoustic wave travelling in the flow direction and the induced Stokes layer.

The vibrating ribbon receptivity study is carried out using the laminar boundary
layer over the smooth flat plate as the basic flow and the vibrating ribbon is modelled
in the linearised Navier—Stokes simulations by appropriate slip velocities at the flat
plate wall. Similarly to the approach used for the derivation of the theoretical result,
the slip velocities, which are needed in order to satisfy the no-slip condition at the
surface of the vibrating ribbon, are calculated by Taylor-expanding the boundary-layer
flow around y = 0. After retaining only the principal terms in the Taylor expansion,


https://doi.org/10.1017/jfm.2015.196

https://doi.org/10.1017/jfm.2015.196 Published online by Cambridge University Press

Evaluation of the theory of receptivity for subsonic boundary layers 533

we obtain
dG()

dr ’

where G(f) = cos(2mft). The linearised Navier—Stokes simulations employ a sponge
region (with g, =0) near the outflow boundary to absorb the downstream-travelling
waves (acoustic and TS waves). The buffer region is used in all cases, as it also damps
the upstream-travelling acoustic waves, which may be scattered by the roughness or
the vibrating ribbon. Of course, the results obtained in the buffer and sponge regions
are discarded and only the results obtained in the remaining useful part of the
computational domain will be considered in the analysis.

The roughness element and the vibrating ribbon are assumed to have the same
Gaussian shape given by

U = —ziF(x)G(t), v, =F(x) (4.9a,b)

2
F(x) =exp [—2(2/6)2} : (4.10)

where A is used as a dimensionless measure of the width of the Gaussian; it gives
approximately the full Gaussian width at 1% of its maximum. The flow over the
roughness element was calculated by solving the nonlinear Navier—Stokes equations
using a body-fitted computational grid. A roughness height of A*/§; = 107° was
considered in all cases, where §; is the displacement thickness evaluated at the start
of the useful part of the computational domain. Note that, since the unsteady flows
are calculated by solving the linearised Navier—Stokes equations, the amplitudes of
the vibrations of the ribbon and the acoustic waves are not relevant for the analysis.

The main part of the numerical study focuses on the assessment of the asymptotic
theories for the prediction of the linear receptivity of lower-branch TS waves. To
this end, a parametric study is carried out, where the modifications introduced by
the variations of the roughness element or vibrating ribbon longitudinal dimension
A, the Reynolds number and the Mach number are analysed and compared with
the theoretical predictions. Details of the numerical simulations carried out are given
in table 1. It should be noted that each of the cases shown in the table refers to
both the acoustic wave and vibrating ribbon receptivity studies. For the acoustic
wave receptivity study, two nonlinear Navier—Stokes and two linearised Navier—Stokes
simulations are performed for each case to obtain, respectively, the basic flows and
the unsteady fields for the cases with and without roughness element. On the other
hand, for the vibrating ribbon receptivity study, only one nonlinear and one linearised
Navier—Stokes simulations are required per case. The frequency of the unsteady
perturbations introduced in each case corresponds to the frequency of a TS wave
on the lower branch of the neutral stability curve at x =0 and are given in table 1.
Additional numerical simulations have been performed to investigate the effects of
TS wave frequency and roughness height, the details of which are reported in §5.3.

When normalised by &, the size of the computational domains used is the same in
all cases. The streamwise and wall-normal extents of the useful computational domain
portion are L7/8; x Lj/8; =550 x 160 and the number of grid points in the x and
y directions are N, x N, =501 x 415. Note that normalisation by L* may be easily
recovered by making use of the Reynolds numbers Re (based on L*) and Res: (based
on §;) given in table 1. The numerical grid employed to obtain the results presented in
the following has constant grid spacing in the streamwise direction and is stretched
in the wall-normal direction according to y = L, sinh(b,n)/b,, where 0 <7 <1 and
b,=5.342 is the stretching factor. It was chosen after a grid convergence study, which
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Case  Ma TH/TY F/(0) Re Rege  A/8%, Afdrs  [=f*uk/piUk
MO.2A1 02 1.007 0.4700 35.1 x 10° 10000 100.0 1.0 1.860 x 1077
MO.2A2 02 1.007 0.4700 35.1x 10° 10000 50.0  0.50 1.860 x 1077
MO0.2A3 02 1.007 0.4700 35.1 x 10° 10000 750  0.75 1.860 x 1077
MO0.2A4 02 1.007 0.4700 35.1 x 10° 10000 125.0  1.25 1.860 x 1077
MO.2A5 0.2 1.007 0.4700 35.1 x 10° 10000 150.0  1.50 1.860 x 1077
MO.2B 02 1.007 04700 84x10° 4750 800 1.0 5.747 x 1077
M02C 02 1.007 04700 4.8x10° 3500 7325 1.0 9.143 x 1077
M0O2D 02 1.007 04700 2.6x10° 2500 66.71 1.0 1.512 x 10°°
MO2E 02 1007 04700 1.0x10° 1500 5827 1.0 3.065 x 107°
MO.2F 02 1.007 04700 0.5x10° 965 5597 1.0 5.637 x 107°
M0.2G 02 1.007 04700 0.1 x10° 325 4085 1.0 2.991 x 1073
MO.4A 04 1.027 04713 35.1x10° 10280 1033 1.0 5.536 x 1077
MO.4B 04 1.027 04713 84x10° 4877 8271 1.0 1.780 x 1077
MO.6A 0.6 1.061 0.4735 35.1x10° 10740 1102 1.0 5.149 x 1077
MO.6B 0.6 1.061 04735 84x10° 5088 8795 1.0 1.653 x 1077
MO.8A 0.8 1.108 0.4766 35.1x10° 11370 1220 1.0 4.649 x 1077
MO.8B 0.8 1.108 0.4766 8.4 x10° 5377 9652 1.0 1.482 x 1077

TABLE 1. Details of the numerical simulations performed. Each case shows the numerical
simulation parameters used for both the acoustic wave and vibrating ribbon receptivity
studies. Note that here A* is the dimensional version of A and Azg is the dimensionless
TS wave wavelength and f* is dimensional frequency measured in cycles per second.

showed negligible variations of the receptivity and subsequent linear growth of the TS
waves when using a grid with double the number of points in each direction.

5. Numerical results and comparisons with theory
5.1. Lower-branch TS wave receptivity by sound

The TS wave receptivity by sound is analysed numerically by subjecting the laminar
basic flow over the roughness element to the inflow disturbances described in §4.2.
Here, for consistency with the terminology used for the derivation of the theoretical
result, the solution obtained for any flow variable, say the u velocity, is decomposed
as

u="Up~+ u,+u; +u,, 5.1)

where Up represents the boundary-layer flow over a smooth flat plate, u, is the
unsteady disturbance introduced by the acoustic wave, u; is the steady disturbance
introduced by the roughness element and u, is the disturbance generated by the
interaction between u,; and u;. The last term includes the evolution of the TS waves
and is obtained as the difference between the linearised Navier—Stokes results obtained
for the cases with and without roughness element.

An example of the pressure disturbance p, induced in the boundary layer by the
interaction between the acoustic wave and the roughness element at Ma = 0.2 is
shown in figure 4. It can be seen that the interaction provides the frequency and
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FIGURE 4. (Colour online) Boundary-layer response due to the interaction of an acoustic
wave with an isolated roughness element for case M0.2A1. The plot shows contours of
instantaneous pressure disturbance p,.

wavenumber resonance conditions required for the excitation of a TS wave in the
boundary layer downstream of the roughness element. The acoustic wave-roughness
element interaction also leads to the scattering of an additional acoustic wave. At
Ma =0.2 the amplitude of this wave is small, hence is not visible in figure 4, but it
grows as the Mach number increases.

Before attempting a comparison between the numerical and theoretical results,
a verification of the numerical solutions obtained is in order. In particular, it is
important to verify that the disturbances imposed at the inflow boundary introduce
‘clean’ acoustic waves (and the induced Stokes layer) in the useful part of the
computational domain (i.e. any residual numerical disturbances triggered at the inflow
of the computational domain are successfully dissipated within the buffer region) and
that the disturbances generated by the acoustic wave-roughness element interaction
are well captured by the numerical scheme. Figure 5(a) shows the u; disturbance
amplitude profile (normalised with the amplitude of the pressure perturbations in the
free stream) obtained at x=0 in the case of a smooth flat plate for the different Mach
numbers considered. The Navier—Stokes solutions are in excellent agreement with the
acoustic mode eigenfunctions obtained from linear stability theory (LST), indicating
that the disturbances introduced in the numerical simulations are a close representation
of the disturbances induced by a plane acoustic wave travelling in the flow direction.
Figure 5(b) gives a comparison between the u, disturbance amplitude profile obtained
for case M0.2A1 at x =340 and the corresponding TS wave eigenfunction obtained
from LST at the same x position. The excellent agreement indicates that the interaction
between the acoustic waves and the roughness element leads to the excitation of a
TS wave (in addition to other stable waves), which is well captured in the numerical
solution.

The comparisons between the asymptotic theory and the Navier—Stokes simulations
are performed here for the wall-pressure disturbance p,, induced by the interaction
between the acoustic wave and the roughness element. The amplitude distribution of
P2y along the streamwise direction is extracted by projecting the numerical results
into Fourier space at each x position using the following discrete Fourier transform
formula:

2 | 2m(j—1
An )= D7 pulx. ) exp <—i%> , (5.2)
j=1
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FIGURE 5. Comparison of the linearised Navier—Stokes results with linear stability
calculations. (a) Disturbances induced in the boundary layer by the acoustic wave in the
absence of a roughness element for cases M0.2A1, M0.4A, M0.6A and MO.8A. (b) The
u velocity amplitude function at x = 340 of the TS wave generated by the interaction
between the acoustic wave and the roughness element for case M0.2Al.

where i is the complex unity and N is the total number of samples taken over one
period of the disturbance signal. Notice that only one frequency is excited in each
of the cases analysed, hence there is only one non-zero Fourier coefficient. The
normalisation factor 2/N is necessary to recover the disturbance amplitude in the
physical space; it gives unit Fourier coefficients for a disturbance signal given by
sinusoidal waves. The results are shown in figure 6(a,b) (black lines) for the different
Reynolds numbers and Mach numbers considered, respectively. The figure also shows
the TS wave growth predicted using local spatial LST by calculating the growth rate
—a; at different x positions and integrating in the streamwise direction. It can be seen
that, after an initial beating, the wall-pressure disturbance signal grows monotonically
in the downstream direction following the predicted TS wave behaviour. Note that
the numerical simulations were designed to excite a TS wave on the lower branch of
the neutral stability curve at the centre of the roughness element. In fact, based on
LST, the growth rate is zero at x =0 and increases further downstream as the wave
enters the unstable region of the boundary layer.

In this work we are interested in the initial amplitude of the TS wave generated
by the interaction. In the vicinity of the roughness, the perturbation field is rather
complicated. However, downstream of the roughness, only one perturbation mode
survives, the TS wave. Our task is to find the initial amplitude of this wave, which
is recovered by making use of the LST result; the amplitude growth predicted by
LST is scaled to match the Navier—Stokes solution downstream of the initial beating,
in a region where the disturbance signal is dominated by the TS wave, say x = x,.
The amplitude A, of the wave at the centre of the roughness element is then simply
given by the scaled LST result at x=0, shown by the grey-filled circles (red online)
in figure 6. It is calculated as

Ao = Ap, (%p) (5.3)

exp {/Xﬂ —a;(x) dx}
0
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FIGURE 6. (Colour online) Streamwise variation of the amplitude of the wall-pressure
perturbation obtained in the presence of a roughness element: (a) cases M0.2A1, M0.2B,
MO0.2C, M0.2D and MO.2E; (b) cases M0.2A1, M0.4A, MO0.6A and MO.8A.

The initial TS wave amplitudes extracted from the Navier—Stokes solutions for the
different flow conditions considered are compared with the theoretical predictions in
figure 7. Since the problem is linear, the TS wave amplitude A, is normalised by
the acoustic wave amplitude a and the roughness height 4. In order to compare the
numerical results with theory, we first note that the theoretical results presented in
§3.1 imply that

VLS tec (5.4)
P = ﬂ71/2ﬂ1/2 2p2w R ) .
Pow = —N21E,F (@))e ™, (5.4b)

where the receptivity coefficient %, is given by (3.12) and, based on (4.10), we may

write
A 14512 2 A 72 /AN
F(o) = —0 " exp < ) , (5.5)

AR 6@y s | 18 \drs

where Arg is the dimensionless TS wave wavelength. Finally, the initial TS wave
amplitude predicted by the asymptotic theory is given by

@ — ReY/8 Rel/8 Reil/“ilv | (5.6)
ah S~ 12172 Pawl- :

e/h  Sla

Figure 7(a) shows the initial TS wave amplitude as a function of roughness
longitudinal dimension (A) to TS wavelength (Azg) ratio for Re = 35.1 x 10° and
Ma = 0.2. The numerical results are in excellent agreement with the theory, which
in turn shows that, for fixed Re, Ma and T,, the TS wave receptivity is only a
function of the roughness element Fourier coefficient corresponding to the TS wave
wavenumber, rather than being directly affected by the shape of the roughness
element. It is easily shown that, theoretically, the maximum receptivity is obtained
for A/Ars=3/m, which is in good agreement with the numerical results. Figure 7(b)
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FIGURE 7. (Colour online) Comparisons between the asymptotic theory and the
Navier—Stokes simulations for the acoustic wave receptivity study, showing the variation
of initial TS wave amplitude as a function of: (a) A/Azs for Re=35.1 x 10° and Ma=0.2
(numerical cases M0.2A1, M0.2A2, M0.2A3, M0.2A4 and M0.2A5); (b) Re for Ma=0.2
and A/Arg=1 (numerical cases M0.2B, M0.2C, M0.2D, M0.2E, M0.2F and M0.2G); and
(¢) Ma for A/Azg=1 and Re=35.1 x 10° and Re =8.4 x 10° (numerical cases M0.2Al,
MO0.2B, M0.4A, M0.4B, M0.6A, M0.6B, M0.8A and MO0.8B).

gives the variation of initial TS wave amplitude as a function of Reynolds number,
for Ma = 0.2 and A/Ars = 1. Both the theory (see (5.6)) and the Navier—Stokes
simulations show that Ay/(ah) oc Re'/?. It is interesting to note that the behaviour
predicted by the asymptotic theory for large values of the Reynolds number seems to
be maintained also at low Reynolds numbers. In fact, the relative error between theory
and Navier—Stokes simulations remains approximately constant and roughly equal to
7% of the theoretical result across the whole Reynolds-number range considered.
Figure 7(c) shows that the agreement remains good as the Mach number is increased,
albeit the relative error increases slightly with Mach number to reach a maximum
of approximately 13.5 % at Ma =0.8. The asymptotic theory indicates that, when Re
and A/Aps are fixed, Ag/(ah) «x (Ma/(1 + Ma))A(Ma), which is in good qualitative
agreement with the Navier-Stokes results for both Re = 8.4 x 10% and Re =35.1 x 10°.
Note that the factor Ma/(1 + Ma) comes from (3.9b); therefore, since in our case
A decreases with increasing Mach number, the enhanced receptivity observed in
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figure 7(c) for increasing Ma is due to the fact that the amplitude of the near-wall u
velocity disturbances induced by the acoustic wave increases with Mach number.

It is important to note that, in all the results presented here, there is a substantial
discrepancy between the theoretically predicted lower-branch TS wavelength Arg =
Re3ByMAp—12)=5/48=3/42 1 /q; and that obtained from LST. As an example,
consider the cases shown in figure 7(a). In this case the asymptotic theory gives
Ars = 0.0378 while from LST Ay = 0.0285, and hence there is a relative error of
approximately 24.6 %, which increases with decreasing Reynolds number. Plotting
the data in figure 7(a) against A, instead of A /Ayg, would result in a disagreement,
between the theory and the numerical results, regarding the position (in A) of the
maximum TS wave amplitude. This discrepancy, and the associated error in TS
wave amplitude, are eliminated by interpreting the theoretical results in terms of the
parameter A/Ars. One can then obtain Ars using LST and recover the A/Ars needed
to calculate the Fourier transform of the roughness shape, which in our case is given
by (5.5).

5.2. Lower-branch TS wave receptivity due to a vibrating ribbon

The numerical analysis of the vibrating ribbon receptivity problem is carried out
by subjecting the laminar boundary-layer flow to wall disturbances given by (4.9).
Again, in order to be consistent with the nomenclature used for the derivation of the
theoretical results, the flow is decomposed as

u=Ug+u, 5.7

where, as usual, Up is the laminar boundary-layer flow and u; denotes the disturbance
field. An example of the disturbances introduced in the flow due to the vibrations
of the ribbon placed at the wall is given in figure 8 through instantaneous contours
of p;, showing that the vibrating ribbon leads to the excitation of a TS wave
propagating in the flow direction. The TS wave amplitude function, extracted from
the Navier—Stokes results at x =340, is compared in figure 9(a) with the corresponding
TS wave eigenfunction obtained by LST, showing a virtually perfect match. As for
the acoustic wave receptivity study, the amplitude of the wall-pressure disturbances
is calculated by making use of the discrete Fourier transform formula (5.2) and the
initial TS wave amplitude A, is obtained by combining the Navier—Stokes result with
the TS wave growth predicted by LST. Figure 9(b) shows the results obtained for
cases M0.2A1, M0.2B and MO.2E. The first thing to note is that, in addition to the
TS wave, the vibrating ribbon also excites an acoustic wave, as can be inferred from
the non-zero wall-pressure amplitude upstream of the vibrating ribbon. In addition,
the superposition of the acoustic wave with the TS wave leads to a periodic beating
of the wall-pressure amplitude downstream of the vibrating ribbon. As a consequence,
in order to extract the TS wave amplitude A, from the Navier—Stokes results, the

*

amplitude growth predicted by LST is scaled to match, at x*/§; = 200, the curve
obtained by averaging between the maximum and minimum amplitude envelopes.
The amplitudes extracted using this procedure are denoted by grey-filled circles (red

online) in figure 9(b). Now, recall that the asymptotic theory gives

=€R ‘1/4L“/2 1 e +c.c (5.8a)
plw = e 1_1/2181/2 2p1W .C. . .0a
Prw = —21E,F(@)e”, (5.8b)
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FIGURE 8. (Colour online) Boundary-layer response due to the vibrations of a ribbon
positioned at the flat plate wall for case M0.2A1. The plot show contours of instantaneous
pressure disturbance p;.
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FIGURE 9. (Colour online) Comparison of the linearised Navier—Stokes results with LST.
(a) The u velocity amplitude function at x =340 of the TS wave generated by the vibrating
ribbon for case M0.2A1. (b) Streamwise variation of the amplitude of the wall-pressure
perturbation induced by the vibrating ribbon for cases M0.2A1, M0.2B and MO.2E.

where %, and F (or;) are given by (3.18) and (5.5), respectively. Therefore we may
write "
®=R€5/8R€_1/4 My

h —— /1—1/2’31/2
€/h

[Piwl- (5.9)

Comparisons between the theoretical and numerical results are shown in figure 10.
Figure 10(a) gives the TS wave amplitude variation as a function of A /Ay for
fixed Reynolds number, Mach number and wall temperature. It can be seen that,
again, the TS wave receptivity is only a function of the roughness shape Fourier
coefficient corresponding to the wavenumber of the TS wave and the maximum
receptivity is obtained for A/Ays = 3/m. The relative error between the theory and
the Navier—Stokes simulations is approximately 23 % of the theoretical result in
all cases. Figure 10(b) shows the TS wave amplitude variation as a function of
Reynolds number. The asymptotic theory indicates that the initial TS wave amplitude
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is proportional to Re¥® (see (5.9)). The agreement between theory and numerical
simulations is good, with the 23 % relative error being nearly constant over the whole
Reynolds-number range considered. The TS wave amplitude variation as a function
of Mach number is shown in figure 10(c). It is important to note that, for fixed Re
and A/Arg, the theory shows that

Ay w/*(Ma)p,/*(Ma)

— X —= = , (5.10)

h — A73*(Ma)B'*(Ma)
where the Mach-number dependence for p, and w, appears because we take the
wall temperature to be specified according to (2.5). Therefore, the theoretical result
presents a singularity at Ma =1 (i.e. § =0), and hence numerical simulations and
theory quickly depart from each other as Ma — 1. Interestingly, however, the results
also show that the different TS wave amplitudes obtained numerically for different
Mach numbers follow closely the behaviour predicted by (5.10) after neglecting the
contribution from B to the wall-pressure disturbance associated with the TS wave, as
shown by the dashed line in figure 10(c).

5.3. Effects of disturbance frequency and roughness height

In the previous two sections, we have shown that the predictions of the asymptotic
theories developed by Ruban (1984), Goldstein (1985) and Terent’ev (1981)
compare well with Navier—Stokes results for cases regarding the linear receptivity of
lower-branch TS waves. The analysis was restricted to these cases because, strictly
speaking, triple-deck theory only describes TS waves near the lower branch of the
neutral stability curve (Smith 19794,b). In this section, the analysis will be extended
by looking at how the theoretical predictions compare with Navier—Stokes results
as the frequency is increased within the unstable TS wave range. In addition, we
will estimate the critical roughness height for which the TS wave receptivity by
sound-roughness interaction first becomes nonlinear, and hence can no longer be
predicted by a linear theory.

Figure 11(a,b) show a comparison of the TS wave amplitude variation as a function
of frequency, at Ma = 0.2 and Re = 1 x 10°, for the acoustic and vibrating ribbon
receptivity cases, respectively. The figure reports two sets of results: the dashed lines
and the open circles (both blue online) are for wall disturbances with width A equal
to the wavelength of the excited TS wave; the continuous lines and the filled circles
(both red online) are for wall disturbances with A equal to the lower-branch TS
wavelength. It can be seen that, in all cases, the variation of TS amplitude as a
function of frequency is captured accurately by the asymptotic theory. Interestingly,
the agreement between the theoretical predictions and the Navier—Stokes results
remains good for frequencies well above the lower-branch frequency. This is especially
true for the acoustic wave/roughness cases, while the agreement deteriorates slightly as
the frequency increases for the vibrating ribbon receptivity cases. Note that, according
to LST, the upper branch of the neutral curve is located at w/w;p~ 3.1, where w;p is
the lower-branch frequency, for the flow parameters considered. The calculation of the
unstable TS wave amplitudes predicted by the asymptotic theories is carried out by
solving (3.13) for a chosen real frequency @ to obtain the associated complex & and
z, which are then used in (3.11) and (3.17) to obtain the TS wave amplitudes. Note
that the results in figure 11 are plotted against w/w;p in order to minimise errors
originating from the calculation of the lower-branch frequency. In fact, similarly
to what was found for A;g in §5.1, there is a substantial discrepancy between the
theoretically predicted w;z = Re'/*1}/?2%28'2%; and that obtained from LST.
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FIGURE 10. (Colour online) Comparisons between the asymptotic theory and the
Navier—Stokes simulations for the acoustic wave receptivity study, showing the variation
of initial TS wave amplitude as a function of: (a) A/Azs for Re=35.1 x 10° and Ma=0.2
(numerical cases M0.2A1, M0.2A2, M0.2A3, M0.2A4 and MO0.2A5); (b) Re for Ma=0.2
and A/Arg=1 (numerical cases M0.2B, M0.2C, M0.2D, M0.2E, M0.2F and M0.2G); and
(¢) Ma for A/Azs=1 and Re=35.1 x 10° (numerical cases M0.2A1, M0.4A, M0.6A and
MO.8A).

Finally, the variation of TS wave amplitude as a function of roughness height %
for cases MO0.2E and MO0.2A1 is compared with the linear asymptotic theory result
in figure 12. The plot shows numerical results for two different Reynolds numbers,
namely Re = 1.0 x 10° (case M0.2E) and Re = 35.1 x 10° (case MO0.2A1). Note
that, having normalised A, using Re'/?, the theoretical result becomes independent
of Reynolds number. The figure clearly shows that for h/dq9 < 0.06, where g9 is
the boundary-layer thickness at the centre of the roughness element, the numerical
results follow closely the linear behaviour predicted by the asymptotic theory. On
the other hand, the discrepancy between theoretical and numerical results increases
rather quickly starting from #//de9 ~ 0.06, indicating that nonlinear effects start
becoming important for i & 0.068¢9 (or h ~ 0.17§*). This result is in very good
agreement with that reported by Choudhari & Street (1992) and Crouch (1992) when
comparing their finite-Reynolds-number Orr—Sommerfeld receptivity theory results
with the experiments of Saric, Hoos & Radeztsky (1991), which were carried out
for a Reynolds number of Re = 3.39 x 10°. Interestingly, these results suggest that


https://doi.org/10.1017/jfm.2015.196

https://doi.org/10.1017/jfm.2015.196 Published online by Cambridge University Press

Evaluation of the theory of receptivity for subsonic boundary layers 543
(a) 35 " " " " (b) 45 " " — J "
T T T T T~ -
304 DA o R \\\\\\> 40 1 /// F
7
35 e b
254 H
=
N =
= 20 F :o
<
151 H
® A= (Azs5)s (N-S)
10 A = (Az5)1s (Theory) -
0 A=z (N-S)
— —- A= 275 (Theory)
5 T T T T T 5 T T T T T
10 15 20 25 30 10 15 20 25 30
o/wLp w/wLp

FIGURE 11. (Colour online) Comparisons between the asymptotic theory and the Navier—
Stokes simulations, showing the variation of initial TS wave amplitude as a function of
frequency: (a) acoustic wave receptivity, (b) vibrating ribbon receptivity. The grey areas
delimit the range of unstable frequencies as predicted by LST.
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FIGURE 12. (Colour online) Comparison between the asymptotic theory and the Navier—
Stokes simulations for the acoustic wave receptivity study, showing the variation of initial
TS wave amplitude as a function of roughness height.

the critical value of //8y9, needed for nonlinear receptivity, is little affected by the
Reynolds number.

6. Conclusions

The receptivity of Tollmien—Schlichting waves in subsonic boundary layers has been
investigated using triple-deck theory and numerical simulations of the compressible
Navier—Stokes equations. The investigation focused on the two receptivity problems
arising due to the interaction between an acoustic wave and a small isolated roughness
element placed on the wall of a flat plate, and due to the time-periodic vibrations
of a ribbon placed on the wall of an otherwise smooth flat plate. A parametric
study looking at the effects of roughness element and vibrating ribbon longitudinal
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dimensions, Reynolds number and Mach number was performed in order to thoroughly
investigate the accuracy of the asymptotic theory for the prediction of lower-branch
TS wave receptivity in subsonic boundary layers.

The results show that the theoretical predictions are in good agreement with the
Navier—Stokes results. For both the receptivity problems analysed, the amplitude Ao
of the excited TS wave was found to be dependent on the Fourier transform of the
wall disturbance (i.e. the roughness element or the vibrating ribbon) rather than being
directly affected by its shape. In particular, only the Fourier coefficient corresponding
to the TS wave wavenumber is responsible for the receptivity process. In the case
of the TS wave receptivity due to sound, both the theoretical and numerical results
indicate that the TS wave amplitude increases with Reynolds number proportionally
to Re'/?. In this case the agreement between theory and Navier-Stokes simulations
is excellent. Despite the theoretical results being derived for large values of the
Reynolds number, the numerical simulations show that the theory performs well for
Reynolds numbers down to at least Re = 1.0 x 10°; the relative error between theory
and numerical simulations was found to be approximately 7 % of the theoretical result
for Reynolds numbers between 1.0 x 10> and 35.1 x 10° at Ma =0.2. As the Mach
number increases, the TS wave receptivity is enhanced mainly due to the higher
near-wall u velocity disturbances induced by the acoustic wave at higher free-stream
Mach numbers. The asymptotic theory suggests that the TS wave amplitude increases
according to Ag/(ah) «x (Ma/(1 + Ma))A(Ma), which agrees qualitatively with the
numerical results obtained for both Re = 8.4 x 10° and Re =35.1 x 10°. However, the
relative error increases slightly for increasing Mach number, reaching a maximum of
approximately 13.5% at Ma =0.8.

The results obtained for the vibrating ribbon receptivity problem indicate that the
amplitude of the excited TS wave is proportional to Re*8. In this case the relative
error between theory and Navier—Stokes simulations is approximately 23 % of the
theoretical result and remains nearly constant for Reynolds numbers between 1.0 x 10°
and 35.1 x 10° at Ma = 0.2. The agreement between theory and Navier—Stokes
simulations remains good also in this case, especially considering that the theoretical
results were derived by keeping only the leading-order terms in the asymptotic
expansions. When looking at how the receptivity varies with Mach number, it
was found that, while the numerical simulations show that the TS wave amplitude
decreases as the Mach number increases, the theoretically predicted wall pressure
presents a singularity for Ma = 1 and, as a consequence, numerical and theoretical
results quickly depart from each other as Ma— 1. The singularity appears in the form
of the factor B~'/* and originates in the upper deck. Despite this singularity, it was
found that the amplitude variation with Mach number extracted from the numerical
results follows closely that obtained from the theoretical result after neglecting the
contribution from B to the pressure disturbance at the wall, so that the TS wave
amplitude varies as Ag/h o pul/*(Ma)pl/*(Ma)2>/*(Ma).

Additional numerical simulations indicate that the asymptotic theory can also be
used to predict the receptivity of unstable TS waves with good accuracy. In addition,
in agreement with the findings of Choudhari & Street (1992) and Crouch (1992), we
show that the receptivity process due to the acoustic wave-roughness interaction is
linear provided the height of the roughness element is smaller than approximately 6 %
of the local boundary-layer thickness.

The theoretical triple-deck results are obtained under several assumptions regarding
the order of magnitude of the size, amplitude and frequency of the external
disturbances. These assumptions are needed in order to arrive at the asymptotic
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solutions for large values of the Reynolds number. However, the numerical results
presented in this work show that the behaviour of the solutions obtained for Re — oo
holds also for finite Reynolds numbers and, in practice, the only conditions to be
met in order for the theory to give reliable predictions are that the amplitude of
the disturbances considered (acoustic wave, roughness element and vibrating ribbon
for the cases analysed here) be small enough for the receptivity process to be
linear and that the free-stream Mach number be subsonic. As such, it appears clear
that the asymptotic theory of receptivity represents a good candidate for providing
the amplitude information missing in current laminar—turbulent transition prediction
methods.
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