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Abstract

Compared with algebraic varieties the local monodromy of Drinfeld modules appears
to be hopelessly complex: the image of the wild inertia subgroup under Tate mod-
ule representations is infinite save for the case of potential good reduction. Nonetheless,
we show that Tate modules of Drinfeld modules are ramified in a limited way: the image
of a sufficiently deep ramification subgroup is trivial. This leads to a new invariant, the
local conductor of a Drinfeld module. We establish an upper bound on the conductor
in terms of the volume of the period lattice. As an intermediate step we develop a
theory of normed lattices in function field arithmetic including the notion of volume.
We relate normed lattices to vector bundles on projective curves. With the aid of Castel-
nuovo–Mumford regularity this implies a volume bound on norms of lattice generators,
and the conductor inequality follows. Last but not least we describe the image of iner-
tia for Drinfeld modules with period lattices of rank 1. Just as in the theory of local
�-adic Galois representations this image is commensurable with a commutative unipo-
tent algebraic subgroup. However, in the case of Drinfeld modules such a subgroup can
be a product of several copies of Ga.

Introduction

Let K be a local field of positive characteristic and let E be a Drinfeld module of finite residual
characteristic over SpecK (cf. § 2.3 and see § 2.4 for the terminology). Pick a separable closure
Ks/K. We investigate the action of the inertia subgroup IK ⊂ Gal(Ks/K) on the Tate modules
TpE. This parallels the study of local monodromy in the �-adic cohomology theory.

In the �-adic theory one assumes that the prime � is different from the residual characteristic
of the base field. By way of analogy we suppose that the prime p is different from the residual
characteristic p of the Drinfeld module E. The case p = p belongs to a function field analogue of
Fontaine’s theory, and is the subject of a separate study.

Even under the assumption p �= p the local monodromy of Drinfeld modules is much more
complicated than that of algebraic varieties. The good reduction criterion of Takahashi implies
that the image of the wild inertia in GL(TpE) is infinite unless E has potential good reduction.

However, there is a limit on the ramification. Recall that the inertia subgroup IK carries
a descending filtration by closed normal subgroups IuK , u ∈ Q�0, the ramification filtration in
upper numbering.
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Local monodromy of Drinfeld modules

Theorem 1. Let E be a Drinfeld module of finite residual characteristic p over SpecK. Then
there is a rational number u � 0 such that for every prime p �= p the ramification subgroup IuK
acts trivially on the Tate module TpE.

The author first deduced this result from a z-adic analogue of Grothendieck’s �-adic
monodromy theorem. The z-adic monodromy theorem applies in the generality of arbitrary
A-motives, and will be published in a forthcoming article. A direct and less technically involved
proof of Theorem 1 was found by Richard Pink after some discussions with the current author.
In this paper, the author would like to present a revision of Pink’s argument (Theorem 3.2.4(1))
together with related results.

Replacing K by a finite separable extension we are free to assume that the Drinfeld module
E has stable reduction. This means that E is an analytic quotient of a Drinfeld module D of
good reduction by a period lattice Λ ⊂ D(Ks), cf. § 4.1. Let us further assume that the lattice
Λ is defined over K, which is to say, Λ ⊂ D(K). Then the action of the inertia group IK on
TpE factors through the maximal abelian quotient Iab

K . By the Hasse–Arf theorem the induced
ramification filtration of Iab

K is integrally indexed, so we can make the following definition.

Definition. The local conductor f(E/K) is the least integer m � 0 such that the ramification
subgroup Iab,m+1

K acts trivially on TpE for all p �= p.

The conductor is zero if and only if Λ = 0, i.e. if the Drinfeld module E has good reduction.
Otherwise, the conductor is a positive integer that is prime to p. An important property of the
conductor is its invariance under isogenies.

The conductor is hard to compute, and we can do it only for special period lattices
(Theorem 4.1.13). In general, we can bound the conductor from above by a more amenable
invariant.

In the following, let us denote by A the chosen coefficient ring of our Drinfeld modules,
cf. § 2.3. This ring is a Dedekind domain over Fq with finite group of units. The period lattice
Λ carries a natural structure of a finitely generated projective A-module.

Poonen [Poo95] introduced the notion of canonical local height. This provides the period
lattice Λ with a natural norm. Building on the work of Taguchi [Tag93, § 4] we develop a theory
of normed A-lattices in function field arithmetic (§ 1) and, in particular, define the volume of
such lattices.

Theorem 2. Let E be a Drinfeld A-module of stable reduction over SpecK with the local
period lattice Λ defined over K. Let r be the rank of E. Then we have an inequality

f(E/K) � vol(Λ)s · Cs(r−s),
where vol(Λ) is the volume of the period lattice, s = r − rankA(Λ) and C is an effective constant
that depends only on A.

To prove this bound we set up a correspondence between normed A-lattices and systems of
vector bundles on the compactification of the curve SpecA. For such bundles one has a classical
criterion of global generation via Castelnuovo–Mumford regularity. Translated to the setting of
lattices this gives a volume bound on norms of generators, and the conductor inequality follows.

The bound of Theorem 2 is effective in the following sense: there is an algorithm which calcu-
lates vol(Λ) from the τ -polynomials defining the Drinfeld module E. This will be demonstrated
in a forthcoming article.

Asayama and Huang [AH24, Hua24] introduced the notion of a conductor for Drinfeld mod-
ules of rank 2 and proved a version of Szpiro’s conjecture under additional assumptions. It would
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be interesting to know the precise relation between the conductor of Asayama and Huang and
the conductor of this paper.

Last but not least, we study the image of inertia in GL(TpE). The following result can be
seen as a local open image theorem for Drinfeld modules with period lattices of rank 1.

Theorem 3. Let E be a Drinfeld module of finite residual characteristic p and rank r over
SpecK. Suppose that the local period lattice of E has rank 1. Then for each prime p �= p the
image of inertia in GL(TpE) is commensurable with a closed algebraic subgroup U ∼= (Ga)×(r−1).

Let V be a local �-adic Galois representation. The �-adic monodromy theorem of
Grothendieck implies that the image of inertia in GL(V ) is commensurable with a closed alge-
braic subgroup U ∼= (Ga)×d, but the dimension d can only be 0 or 1. Theorem 3 shows that in
the case of Drinfeld modules the dimension d can be as large as dim(V )− 1.

The situation with Drinfeld modules that have period lattices of rank at least 2 is made
complicated by the presence of nontrivial endomorphisms. Still one expects that a suitable local
open image theorem holds in all cases. This is a subject of current research.

Finally, let us discuss the proofs of Theorems 1, 2 and 3. Replacing K with a finite separable
extension we are free to assume that the Drinfeld module E is an analytic quotient of a Drinfeld
module D of good reduction by a period lattice Λ ⊂ D(K). For each prime p �= p we then have
a short exact sequence of GK-modules

with Ap the p-adic completion of A. The inertia group IK acts trivially on the first and the last
module. Consequently, the action of IK on TpE differs from the identity by a homomorphism
IK → HomA(Λ, TpD). This homomorphism can be equally seen as a pairing

Λ× IK → TpD.

In the exact same way as in the theory of abelian varieties, this pairing turns out to be the
restriction to Λ of a certain universal pairing

[ , ) : D(K)× IK → TpD,

the p-adic Kummer pairing of D.
The Kummer pairing from the theory of abelian varieties factors through the tame quotient of

the inertia group IK . This quotient group is procyclic of order prime to the residual characteristic
p of K. By contrast, the Kummer pairing of the Drinfeld module D factors through the maximal
quotient JK = Iab

K /(Iab
K )×p that is abelian of exponent p. Unlike the tame quotient, the induced

ramification filtration on JK is nontrivial and, in fact, has a break at every positive integer that
is prime to p.

We study how the Kummer pairing of D interacts with the ramification filtration on
JK . We prove that for each element λ ∈ D(K) the homomorphism [λ, ) : JK → TpD vanishes
on a sufficiently deep ramification subgroup JuK with u bounded from above by the Poonen
height of λ, see Theorem 3.2.4. This property of the Kummer pairing implies Theorems 1
and 2.

We also prove that the homomorphism [λ, ) : JK → TpD has open image provided that λ
is not contained in the subset of integral elements D(OK), see Theorem 3.3.2. This property
implies Theorem 3.
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Local monodromy of Drinfeld modules

The Stacks Project
We will use The Stacks Project [Sta] as a source for algebraic geometry. References to The
Stacks Project have the form [St: wxyz] where ‘wxyz’ is a combination of letters and numbers.
The corresponding item is located at https://stacks.math.columbia.edu/tag/wxyz.

1. Normed lattices

Recall that a lattice in the sense of geometry of numbers is a finitely generated free Z-module L
equipped with a positive-definite quadratic form q : L→ R�0. The induced norm ‖ · ‖ =

√
q(·)

is homogeneous with respect to the archimedean absolute value: we have ‖av‖ = |a| · ‖v‖ for all
integers a ∈ Z and vectors v ∈ L.

We shall transfer the notion of a normed lattice to the setting of function fields. To this end
we draw upon an informal analogy between the pair (Q,∞) consisting of the field of rational
numbers Q and its unique archimedean place, and the pair (F,∞) consisting of a global function
field F and an arbitrarily chosen place ∞.

The ring Z is the set of elements x ∈ Q which are regular away from ∞ and the field R is
the completion of Q at ∞. In the same way, the pair (F,∞) determines a Dedekind domain A
and a locally compact field F∞. One can consider the pair of rings A ⊂ F∞ as a function field
equivalent of the pair Z ⊂ R.

Inspired by this observation we define an A-lattice as a finitely generated projective
A-module Λ equipped with a norm ‖ · ‖ : Λ→ R�0 which is homogeneous with respect to a
fixed∞-adic absolute value on F∞ and induces the discrete topology on Λ. The study of normed
lattices in function field arithmetic was initiated by Taguchi [Tag93, § 4]. We develop the theory
further by relating normed lattices to vector bundles on the smooth projective curve X which
has F as the field of rational functions.

As is the case for Z-lattices the norm of an A-lattice Λ extends uniquely to a norm on
the ‘real’ vector space V∞ = F∞ ⊗A Λ but this result is rather subtle. One then defines the
volume of the lattice Λ as a normalized volume of its fundamental domain in the locally compact
vector space V∞. The relation between lattices and vector bundles leads to a bound on norms of
generators in terms of the volume (Theorem 1.6.4).

In [Tag93, § 4] Taguchi defined the discriminant of a lattice. At the moment it is not clear
what is the precise relation between the volume as defined in this paper and the discriminant of
Taguchi.

1.1 Normed vector spaces
As a preparation for the theory of lattices let us review some properties of normed vector spaces
following [BGR84, Ch. 2]. We fix a field F and an absolute value | · | : F → R�0 that arises from
a nontrivial discrete valuation. Let R = {x ∈ F, |x| � 1} be the corresponding ring of integers.
We denote its maximal ideal by p.

Let V be a finite-dimensional F -vector space. Recall that a p-adic norm on V is a map
‖ · ‖ : V → R�0 with the following properties:

(V1) ‖v‖ = 0 if and only if v = 0;
(V2) ‖v + v′‖ � max{‖v‖, ‖v′‖};
(V3) ‖xv‖ = |x| · ‖v‖ for all x ∈ F .

We have ‖−v‖ = ‖v‖ by the homogeneity property (V3), so the ultrametric inequality (V2)
becomes an equality when ‖v‖ �= ‖v′‖.

Let π ∈ F be a uniformizer and set ε := |π|. Observe that ε ∈ (0, 1).
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Lemma 1.1.1. The image of the norm function ‖ · ‖ : V → R�0 has the form

r1ε
Z ∪ · · · ∪ rmεZ ∪ {0},

where r1, r2, . . . , rm ∈ (ε, 1] is a sequence of real numbers, m � dimV .

Proof. The set of values |F×| = εZ is a subgroup of R×, so the claim follows by [BGR84,
Prop. 2.1.4/2]. �

The ultrametric inequality (V2) and the homogeneity property (V3) imply that the balls

B(V, r) = {v ∈ V, ‖v‖ � r}, r ∈ R>0,

are R-submodules of V such that:

(B1) xB(V, r) = B(V, |x| r) for every scalar x ∈ F×;
(B2) F ⊗R B(V, r) = V .

Lemma 1.1.2. For each pair of real numbers r′ > r > 0 the quotient R-module B(V, r′)/B(V, r)
has finite length.

Proof. It suffices to prove the claim for r = r′εn with any integer n > 0. The R-module B(V, r′)
is torsion-free by construction and has finite rank by property (B2). We also have B(V, r) =
pnB(V, r′) by property (B1). Invoking Lemma 3 of [Poo95, § 5] we conclude that the R/pn-module
B(V, r′)/B(V, r) is finitely generated and, thus, has finite length. �

Each norm endows the vector space V with a topology by means of the fundamental system
{B(V, r)}r>0. Lemma 1.1.1 implies that this system is the same as the system of open balls
{v ∈ V, ‖v‖ < r}.

It is important to note that, in general, the norm topology on V can be coarser than the
canonical p-adic topology. An explicit construction of such norms is given in Example 1.1.7.
From Lemma 1.1.2 we directly have the following result.

Corollary 1.1.3. A norm on V induces the canonical p-adic topology if and only if for each
real number r > 0 the R-module B(V, r) is finitely generated.

To increase flexibility we will need the notion of a seminorm which is a map ‖ · ‖ : V → R�0

satisfying the conditions (V2) and (V3). The following claim is easy to check.

Lemma 1.1.4. For each seminorm ‖ · ‖ : V → R�0 the following hold.

(1) The kernel H = {v ∈ V, ‖v‖ = 0} is an F -vector subspace of V .
(2) The map ‖ · ‖ factors through the quotient homomorphism V � V/H and induces a norm

on V/H.

Next we give a criterion for the norm on V to induce the canonical p-adic topology. Let Fp

be the p-adic completion of the field F .

Theorem 1.1.5. Each norm on the vector space V extends uniquely to a seminorm on the
p-adic completion Vp = Fp⊗F V , and such an extension is a norm if and only if the original
norm induces the p-adic topology on V .

Proof. It follows from Proposition 1 of [Bou81, II, § 1, n◦1] that every seminorm is continuous
with respect to the p-adic topology on Vp and the analytic topology on R�0. Since the vector
space V is p-adically dense in Vp we conclude that the sought extension is unique.

Let Vρ be the completion of the normed vector space V as in [BGR84, § 2.1.3]. This is a
normed Fp-vector space by construction. The proof of [BGR84, Prop. 2.3.3/6] shows that the
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natural morphism Vp � Vρ is surjective. Taking the composition of the norm on Vρ with the
surjection Vp � Vρ we obtain the desired seminorm on the vector space Vp.

The seminorm on Vp is a norm if and only if the surjection Vp � Vρ is an isomorphism.
According to [BGR84, Prop. 2.3.3/6] the latter happens if and only if the norm topology on V
is the canonical p-adic topology, as claimed. �

Corollary 1.1.6. Suppose that the field F is p-adically complete. Then the norm topology on
V is the canonical p-adic topology.

The behaviour of p-adic norms in Theorem 1.1.5 resembles the behaviour of real-valued
quadratic forms on a finite-dimensional Q-vector space V . Every such form q extends uniquely
to the real vector space V∞ = R⊗Q V . If the form q takes strictly positive values on V � {0} then
it is positive-semidefinite, and the map v �→ q(v)1/2 is an archimedean seminorm on V∞. This
seminorm is a norm if and only if the form q is positive-definite. Comparing with Theorem 1.1.5,
we conclude that the property of inducing the p-adic topology can be understood as a form of
positive-definiteness for p-adic norms.

As an offshoot of Theorem 1.1.5 we get a description of all norms that fail to induce the
p-adic topology on V .

Example 1.1.7. Suppose that dimV � 2, and that the field F is not p-adically complete. Pick
a nonzero subspace H ⊂ Vp which is totally irrational in the sense that H ∩ V = {0}. Pick a
norm on the quotient Vp/H. The natural morphism V ↪→ Vp/H is injective by construction, so
we obtain a norm on V by composition with the chosen norm on Vp/H.

Theorem 1.1.5 implies that the norm topology on V is not p-adic as otherwise the subspace H
will be zero. It follows by Corollary 1.1.3 that the balls B(V, r) are not finitely generated as
R-modules. Theorem 1.1.5 also implies that varying the choices of H and of the norm on Vp/H
one obtains every norm on V that does not induce the p-adic topology.

1.2 The setting
From now on we fix a global function field F and a place ∞ of F . We will use the following
notation:

– κ ⊂ F is the ring of elements which are regular at all places;
– A ⊂ F is the ring of elements which are regular outside ∞;
– OF,∞ ⊂ F is the ring of elements which are regular at ∞;
– F∞ is the ∞-adic completion of F ;
– κ∞ is the residue field of F∞ (and of OF,∞);
– c = |κ∞| is the cardinality of this residue field.

Fix an∞-adic absolute value | · |∞ : F∞ → R�0 such that |π|−1∞ = c for a uniformizer π ∈ F∞.
Although our theory works with any normalization, this particular choice leads to better-looking
formulas.

The ring κ is a finite field, called the field of constants of F . The ring A is a Dedekind
domain of finite type over κ. We will refer to A as the coefficient ring and it will serve us as
an analogue of the ring of integers Z. The local field F∞ will play the role of the field of real
numbers R.

1.3 Lattices
Let Λ be a finitely generated projective A-module. An∞-adic norm on Λ is a map ‖ · ‖ : Λ→ R�0

such that:
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(Λ1) ‖λ‖ = 0 if and only if λ = 0;
(Λ2) ‖λ+ λ′‖ � max{‖λ‖, ‖λ′‖};
(Λ3) ‖aλ‖ = |a|∞‖λ‖ for all a ∈ A.

Following the construction in [BGR84, § 2.1.3] every such norm extends uniquely to an∞-adic
norm on the rational vector space

V = F ⊗A Λ.
We will apply the considerations of § 1.1 to the normed vector space V . By analogy with § 1.1
we define the following subsets of Λ:

B(Λ, r) = {λ ∈ Λ, ‖λ‖ � r}, r ∈ R>0.

This time B(Λ, r) is merely a κ-vector space.

Lemma 1.3.1. For each pair of real numbers r′ > r > 0 the subspace B(Λ, r) has finite index
in B(Λ, r′).

Proof. By construction, B(Λ, s) = Λ ∩B(V, s) for all s > 0. We thus have an inclusion of
κ-vector spaces

B(Λ, r′)
B(Λ, r)

↪→ B(V, r′)
B(V, r)

,

and the claim follows from Lemma 1.1.2. �
We are ready for the main definition of this section.

Definition 1.3.2. An A-lattice is a finitely generated projective A-module Λ supplied with an
∞-adic norm ‖ · ‖ that induces the discrete topology on Λ.

In other words there is a real number ε > 0 such that every nonzero lattice vector λ satisfies
‖λ‖ � ε. By Lemma 1.3.1 this holds if and only if the subsets {λ ∈ Λ, ‖λ‖ � r} are finite for
every r > 0.

A norm can induce a non-discrete topology on Λ. All such norms are described in
Example 1.1.7 above.

The discreteness condition of Definition 1.3.2 can be seen as a function field analogue
of positive-definiteness. Let q be a real-valued quadratic form on a finitely generated free
Z-module L. Suppose that the form q takes strictly positive values on L� {0}. Then q is
positive-semidefinite as a quadratic form on the real vector space R⊗Z L, and is positive-definite
if and only if for each real number r > 0 the set {v ∈ L, q(v) � r} is finite, cf. Lemma 9.5 of
[Sil09, VIII.9].

Theorem 1.3.3. Let Λ be a lattice. Then the norm on Λ extends to a unique ∞-adic norm on
the vector space V∞ = F∞ ⊗A Λ.

Proof. We have observed previously that the norm on Λ extends uniquely to an ∞-adic norm
on the rational vector space V = F ⊗A Λ. By Theorem 1.1.5 the norm on V extends to a unique
seminorm on V∞. Let H be the kernel of this seminorm and consider the quotient vector space
W = V∞/H. The seminorm on V∞ is the composite of the surjection V∞ � W and a norm on W .

The lattice Λ injects into the quotient vector space W . By assumption, the sets B(Λ, r)
are finite for all r > 0 so Λ is discrete in W with respect to the norm topology. As the field
F∞ is ∞-adically complete it follows by Corollary 1.1.6 that the norm topology on W is the
canonical ∞-adic topology. The fact that Λ is discrete in W thus implies that rankΛ � dimW .
As rankΛ = dimV∞ we deduce that H = 0. �
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Corollary 1.3.4. Let Λ be a lattice, and consider the rational vector space V = F ⊗A Λ with
the induced norm. Then for each real number r > 0 the ball B(V, r) is finitely generated as a
module over the ring OF,∞.

Proof. The norm on V extends to a norm on V∞ by Theorem 1.3.3, so invoking Theorem 1.1.5
we derive that the norm topology on V is the canonical∞-adic topology. The claim then follows
by Corollary 1.1.3. �

1.4 Lattices and vector bundles
We shall relate lattices to vector bundles on the smooth projective curve X over Specκ which
compactifies the affine curve Y = SpecA. By construction we have X � Y = {∞}. Let us denote
by OX(−∞) the ideal sheaf of the reduced closed subscheme {∞} ⊂ X.

Pick a lattice Λ, set V = F ⊗A Λ, and let EΛ be the locally free sheaf on the curve Y induced
by the A-module Λ. Let r > 0 be a real number.

Definition 1.4.1. The quasi-coherent sheaf EΛ,r on the curve X is constructed by gluing the
locally free sheaf EΛ to the OF,∞-module B(V, r) via the canonical isomorphism

F ⊗A Λ ∼−→ V ∼−→ F ⊗OF,∞ B(V, r).

Theorem 1.4.2. The sheaf EΛ,r has the following properties.

(1) The sheaf EΛ,r is locally free of finite rank.
(2) H0(X, EΛ,r) = {λ ∈ Λ, ‖λ‖ � r}.
(3) For every i ∈ Z we have EΛ,r(i∞) = EΛ,rci .
Proof. Property (1) follows from Corollary 1.3.4 and property (2) is immediate. To show
property (3) note that the locally free sheaf EΛ,r(i∞) is obtained by gluing the sheaves induced
by the modules Λ and π−iB(V, r) with π a uniformizer of OF,∞. The claim follows since
π−iB(V, r) = B(V, rci). �

Combining Theorem 1.4.2 with Lemma 1.1.1 we obtain a correspondence between lattices
and systems of vector bundles.

Corollary 1.4.3. There is a one-to-one correspondence between A-lattices and pairs which
consist of (i) a strictly increasing chain of locally free sheaves

E1 ⊂ · · · ⊂ Em ⊂ E1(∞)

on the complete curve X such that Ei|Y = Ei+1|Y for all i ∈ {1, . . . ,m− 1}, and (ii) a sequence
of real numbers

{r1 < · · · < rm} ⊂ (c−1, 1].

The A-module Λ = H0(Y, Ei) is finitely generated projective and is independent of the choice
of i. It carries a filtration by κ-vector spaces H0(X, Ei(j∞)) with i ∈ {1, . . . ,m} and j ∈ Z.
For each element λ ∈ Λ we set

‖λ‖ = inf{ricj | λ ∈ H0(X, Ei(j∞))}.
It is easy to check that the function ‖ · ‖ is a norm on Λ. The normed module Λ is a lattice since
the vector spaces H0(X, Ei(j∞)) are finite-dimensional.

1.5 The volume
Let Λ be a lattice, and consider the vector space V∞ = F∞ ⊗A Λ with the induced norm.
By Corollary 1.1.6 the norm topology on V∞ is the canonical ∞-adic topology. For each real
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number r > 0 the ball B(V∞, r) is thus compact and open, and we can make the following
definition.

Definition 1.5.1. The r-normalized volume of Λ is defined by the formula

vol(Λ, r) = μ(V∞/Λ),

where μ is the unique translation-invariant Haar measure on V∞ satisfying μ(B(V∞, r)) = 1.
In the case r = 1 we will use the simplified notation:

vol(Λ) = vol(Λ, 1).

Denoting by n the rank of the lattice Λ we have an equality for every integer i:

vol(Λ, rci) = c−ni vol(Λ, r).

This results from the fact that μ(B(V∞, rci)) = cni μ(B(V∞, r)) for every translation-invariant
Haar measure μ.

In the following we denote by χ the Euler characteristic of coherent sheaves on the curve X →
Specκ.

Lemma 1.5.2. We have vol(Λ, r) = |κ|−χ(EΛ,r).

Proof. The cohomology of the locally free sheaf EΛ,r is computed by a Čech complex

concentrated in degrees 0 and 1. We rewrite this complex as follows:

Thus, for every translation-invariant Haar measure μ on V∞ we have an equality:

μ(V∞/Λ)
μ(B(V∞, r))

=
|H1(X, EΛ,r)|
|H0(X, EΛ,r)| .

The claim follows. �
As in the case of Z-lattices we can compute the volume of an A-lattice via the absolute value

of a determinant. In the following formula, we treat the respective wedge products as elements
of one-dimensional F∞-vector space det(V∞). Their quotient is a well-defined element of F×∞.

Lemma 1.5.3. Pick a basis v1, . . . , vn of the free module B(V∞, r) and pick vectors λ1, . . . , λn
generating a submodule of finite index e in Λ. Then

vol(Λ, r) =
|κ|(g−1)n

e

∣∣∣∣λ1 ∧ · · · ∧ λn
v1 ∧ · · · ∧ vn

∣∣∣∣
∞
,

where g is the genus of the coefficient field F .

Proof. The product s = λ1 ∧ · · · ∧ λn is a rational section of the invertible sheaf det(EΛ,r). Its
order at the point ∞ equals

[κ∞ : κ]v∞
(
λ1 ∧ · · · ∧ λn
v1 ∧ · · · ∧ vn

)
,

where v∞ : F×∞ � Z is the normalized ∞-adic valuation. Hence,

|κ|− deg(s) =
1
e
·
∣∣∣∣λ1 ∧ · · · ∧ λn
v1 ∧ · · · ∧ vn

∣∣∣∣
∞
.

The claim then follows from Lemma 1.5.2 and Riemann–Roch formula. �

2664

https://doi.org/10.1112/S0010437X24007450 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007450


Local monodromy of Drinfeld modules

Theorem 1.5.4. Let Λ be a lattice of rank n and let r > 0 be a real number. Then for all
integers i� 0 we have an equality:

|{λ ∈ Λ, ‖λ‖ � rci}| = cni

vol(Λ, r)
.

Moreover, for all integers i we have a lower bound:

|{λ ∈ Λ, ‖λ‖ � rci}| � cni

vol(Λ, r)
.

Proof. Let i be a non-negative integer. Consider a natural short exact sequence of sheaves on
the curve X:

The coherent sheaf F is concentrated at the point ∞ and has length ni as an OX,∞-module.
We thus have an equality

|H0(X, EΛ,r(i∞))|
|H1(X, EΛ,r(i∞))| = cni

|H0(X, EΛ,r)|
|H1(X, EΛ,r)| .

By construction we have H0(X, EΛ,r(i∞)) = {λ ∈ Λ, ‖λ‖ � rci}. Hence, Lemma 1.5.2 implies
that

|{λ ∈ Λ, ‖λ‖ � rci}|
|H1(X, EΛ,r(i∞))| =

cni

vol(Λ, r)
.

The cohomology group H1(X, EΛ,r(i∞)) vanishes for i� 0 as the invertible sheaf OX(∞)
is ample. The first claim of the theorem follows. To prove the second claim note that
cni vol(Λ, r)−1 = vol(Λ, rci)−1 for each integer i. It is thus enough to treat the case i = 0 which
follows from the displayed formula above. �

Corollary 1.5.5. Every lattice Λ of rank n contains a nonzero vector of norm at most c ·
vol(Λ)1/n.

1.6 A bound on norms of generators
We would like to find a real number r > 0 such that the subset {λ ∈ Λ, ‖λ‖ � r} generates the
lattice Λ. To this end, we will employ the correspondence between lattices and vector bundles.
We will use supplementary notation:

– g is the genus of the smooth projective curve X → Specκ;
– f = [κ∞ : κ].

The invertible sheaf OX(∞) has degree f . Let us also pick an auxiliary integer h such that
the twist OX(h∞) is very ample. We will utilize a classical criterion for global generation of
coherent sheaves on curves.

Lemma 1.6.1. Let E be a coherent sheaf on the curve X. If H1(X, E) = 0, then the sheaf E(h∞)
is globally generated.

Proof. Let ι : X ↪→ PN be the closed embedding defined by global sections of OX(h∞). The
coherent sheaf ι∗(E) is 1-regular in the sense of Castelnuovo–Mumford [St: 08A3]. Hence, the
sheaf ι∗(E)(1) = ι∗(E(h∞)) is globally generated [St: 08A8]. �
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Lemma 1.6.2. Let E be a locally free sheaf of rank n on the curve X. Set

i =
⌈−deg E + (2g − 2)n+ 1

f

⌉
+ h.

Suppose that the sheaf E is an iterated extension of invertible sheaves of degree at most 2g − 2.
Then the sheaf E(i∞) is globally generated.

Proof. Write the degrees of invertible sheaves in the form (2g − 2)− ej with ej � 0. We have
deg E = (2g − 2)n−∑

ej so that

−ej − deg E + (2g − 2)n � 0.

Hence, the sheaf E ′ = E((i− h)∞) is an iterated extension of invertible sheaves of degree at least
2g − 1. Induction on the number of invertible sheaves implies that H1(X, E ′) = 0 so the sheaf
E ′(h∞) is globally generated by Lemma 1.6.1. �

Lemma 1.6.3. Let E be a locally free sheaf of rank n on the curve X. Set

i =
⌈−deg E + (2g − 2)n+ 1

f

⌉
+ hn.

Suppose that H0(X, E) = 0. Then the sheaf E(i∞) is globally generated.

Proof. Let Ω be the canonical sheaf of the curve X → Specκ and set F = E∗ ⊗ Ω. Serre duality
shows that H1(X, F) = 0 so the sheaf F(h∞) is globally generated by Lemma 1.6.1. Dualizing
and twisting we get an embedding E(−h∞) ↪→ Ω⊕m, m� 0. Hence the sheaf E ′ = E(−h∞) is
an iterated extension of invertible subsheaves L ⊂ Ω. Every such subsheaf has degree at most
2g − 2. Lemma 1.6.2 implies that the sheaf E ′((i+ h)∞) = E(i∞) is globally generated with

i =
⌈−deg E ′ + (2g − 2)n+ 1

f

⌉
.

The claim follows since deg E ′ = deg E − fhn. �

Theorem 1.6.4. Let Λ be a lattice of rank n. Suppose that every nonzero vector of Λ has norm
at least 1. Then the A-module Λ is generated by the subset

{λ ∈ Λ, ‖λ‖ � vol(Λ) · Cn}
with C = |κ|3g+2f−1.

Proof. Consider the locally free sheaf E = EΛ,1. We have

H0(X, E(−∞)) = {λ ∈ Λ, ‖λ‖ � c−1}.
Thus H0(X, E(−∞)) = 0 by our assumption on the length of nonzero lattice vectors. Invoking
the Riemann–Roch formula, we deduce that

−deg(E(−∞)) = −χ(E) + (−g + 1 + f)n.

Hence, by Lemma 1.6.3 the sheaf E((i− 1)∞) is globally generated when

i =
⌈−χ(E) + (g − 1 + f + fh)n+ 1

f

⌉
.

To ensure that the invertible sheaf OX(h∞) is very ample it is enough to take any integer h
such that fh � 2g + 1. We thus have an estimate fh � 2g + f , and the sheaf E(j∞) is globally
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generated for an integer j such that

j �
⌈−χ(E) + (3g + 2f − 1)n+ 1

f

⌉
− 1.

In particular, the A-module Λ = H0(Y, E(j∞)) is generated by the subset

{λ ∈ Λ, ‖λ‖ � cj} = H0(X, E(j∞)).

Since c = |κ|f , we obtain an estimate

cj � |κ|−χ(E) · |κ|(3g+2f−1)n.

The result follows as |κ|−χ(E) = vol(Λ) by Lemma 1.5.2. �

In the case A = κ[t] the estimate of Theorem 1.6.4 is sharp in all ranks. The lattice A⊕n with
the supremum norm has volume |κ|−n, is generated by vectors of norm 1 and has no nonzero
vectors of norm strictly less than 1.

2. Preliminaries concerning Drinfeld modules

Fix a field Fq of cardinality q <∞. Let K be a field over Fq. In the following, we will refer to
K as the base field. Pick a separable closure Ks/K and let GK be the corresponding absolute
Galois group.

2.1 Twisted polynomials
Let K[τ ] be the twisted polynomial ring. This is the ring of polynomials in a formal variable
τ with coefficients in K and with the multiplication subject to the rule τ α = αq τ for all α ∈ K.
The elements of K[τ ] will be referred to as τ -polynomials.

The ring K[τ ] is the endomorphism ring of the Fq-module scheme Ga over SpecK with
the element τ corresponding to the q-Frobenius. This interpretation allows us to evaluate
τ -polynomials at points of Ga.

Lemma 2.1.1. Let V be a finite-dimensional Galois-stable Fq-vector subspace of Ks and
let f : V → Ks be a Galois-equivariant Fq-linear map. Set n = dimV and suppose that n > 0.
Then the following hold.

(1) There is a unique τ -polynomial of the form

ϕ = a0 + a1τ + · · ·+ an−1τ
n−1, ai ∈ K,

which satisfies ϕ(v) = f(v) for all v ∈ V .
(2) The coefficients ai are determined by the equation⎛

⎜⎜⎜⎝
v1 vq1 · · · vq

n−1

1

v2 vq2 · · · vq
n−1

2

· · ·
vn vqn · · · vq

n−1

n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a0

a1
...

an−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
f(v1)
f(v2)

...
f(vn)

⎞
⎟⎟⎟⎠ ,

where v1, . . . , vn is a basis of V .

Proof. The determinant of the square matrix in part (2) is the Moore determinant M(v1, . . . , vn),
see [Pap23, Definition 3.1.17]. This determinant is nonzero because the elements v1, . . . , vn are
Fq-linearly independent. Hence, the solution vector is uniquely determined.
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Consider the polynomial ϕ = a0 + a1τ + · · ·+ an−1τ
n−1. By construction, we have ϕ(vi) =

f(vi) for all i ∈ {1, . . . , n} which implies by linearity that ϕ(v) = f(v) for all v ∈ V . It remains
to show that the coefficients of ϕ are Galois-invariant and, thus, belong to the subfield K ⊂ Ks.

Apply an automorphism g ∈ GK to both sides of the matrix equation in part (2). Since the
map f is Galois-equivariant, it follows that the polynomial

gϕ = g(a0) + g(a1) τ + · · ·+ g(an−1) τn−1

satisfies (gϕ)(gvi) = f(gvi) for all i. The set gv1, . . . , gvn is yet another basis of V so the linearity
implies that (gϕ)(v) = f(v) for all v ∈ V . In particular, (gϕ)(vi) = f(vi) for all i. Since the matrix
equation in part (2) has a unique solution, we deduce that gϕ = ϕ, and the claim follows. �

2.2 Artin–Schreier theory
Let E be an Fq-module scheme over SpecK which is isomorphic to Ga. Consider a separable
isogeny ϕ : E → E, i.e. an Fq-linear morphism that induces an isomorphism of the tangent spaces
at zero. Let V be the kernel of ϕ viewed as a morphism of sheaves on the small étale site of SpecK.
The sheaf V corresponds to the Fq-vector space of roots

{y ∈ E(Ks), ϕ(y) = 0}
equipped with the natural Galois action. The short exact sequence of sheaves

induces a long exact sequence of cohomology that terminates in a surjective boundary
homomorphism

The boundary homomorphism ∂ϕ sends x ∈ E(K) to the class of the cocycle g �→ gy − y with
y ∈ E(Ks) any element satisfying ϕ(y) = x.

We will refer to ∂ϕ as the Artin–Schreier homomorphism of the isogeny ϕ. We will use the
shorthand ∂q to denote the Artin–Schreier homomorphism of the isogeny τ − 1: Ga → Ga with
kernel the constant sheaf Fq.

Suppose that the sheaf V is constant or, equivalently, that the Fq-vector space V is contained
in E(K). Then the cohomology group H1(K, V ) coincides with the Fq-vector space of contin-
uous homomorphisms GK → V . In this case, we will often write the Artin–Schreier boundary
homomorphism ∂ϕ in the form of a pairing

[ , )ϕ : E(K)×GK → V, [x, )ϕ = ∂ϕ(x).

We will use the shorthand [ , )q for the pairing of the isogeny τ − 1.

Lemma 2.2.1. Let ϕ : Ga → Ga be a separable isogeny with kernel V . Then for every Galois-
equivariant epimorphism f : V � Fq, there is a scaling factor u ∈ K which makes the following
square commutative.

The factor u is computed via Moore determinants:

u = α−1

(
M(w1, . . . , wn)
M(w1, . . . , wn, v)

)q

.
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The terms in this formula have the following meaning:

– α is the top coefficient of the τ -polynomial ϕ;
– v ∈ V is an element such that f(v) = 1;
– w1, . . . , wn ∈ V is a basis of the hyperplane ker(f) ⊂ V .

The value of u is independent of choices of v and w1, . . . , wn.

The factor u of Lemma 2.2.1 is unique provided that H1(K, Fp) �= 0.

Proof of Lemma 2.2.1. As a first step we shall prolong the morphism f : V → Fq to the following
morphism of short exact sequences of sheaves.

By Lemma 2.1.1(1) there is a unique polynomial ψ0 ∈ K[τ ] of degree strictly less than dimV =
n+ 1 which makes the left square commutative. The composite (τ − 1)ψ0 vanishes on the
Fq-vector subspace V ⊂ Ks, and is thus divisible by the polynomial ϕ on the right [Pap23,
Corollary 3.1.16]. We get the existence of the polynomial ψ1. By construction, degψ0 � n and
degϕ = n+ 1 so the relation

ψ1ϕ = (τ − 1)ψ0

implies that the polynomial ψ1 = u is constant, and that

uα = βq,

where the element β is the top coefficient of the polynomial ψ0. This coefficient is computed by
Lemma 2.1.1(2) which yields the Moore determinant formula for u. �

2.3 Drinfeld modules
Fix a global function field F over Fq and a place∞ of F . As in § 1.2 this determines a coefficient
ring A, i.e. the subring of F consisting of elements which are regular outside ∞. We will freely
use the notation and the terminology of § 1.2 with respect to coefficient rings and related objects.

For us a Drinfeld A-module over SpecK is an A-module scheme E such that the underlying
Fq-module scheme is isomorphic to Ga, and the multiplication morphism a : E → E is an isogeny
of degree strictly greater than 1 for at least one element a ∈ A.

Subject to a choice of an Fq-linear isomorphism E ∼−→ Ga the data of an A-module structure
on E amounts to a morphism of Fq-algebras ϕ : A→ K[τ ], and one recovers the more common
definition of a Drinfeld module.

Let LieE be the tangent space of E at zero. This is a vector space of dimension 1 over the
base field K. The action of A on LieE determines a morphism ιE : A→ K, the characteristic
homomorphism of the Drinfeld module E. The characteristic of E is the ideal ker(ιE) ⊂ A.

Let n ⊂ A be a proper ideal which is not divisible by the characteristic of E. The n-torsion
of E is most naturally represented by the A/n-module

E[n] = HomA(A/n, E(Ks)).

We will use a modified definition which makes it easier to form inverse systems.

Definition 2.3.1. We have E[n〉 = HomA(n−1/A,E(Ks)).
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The A/n-module E[n〉 inherits an action of the absolute Galois group GK from E(Ks). As
the A/n-module n−1/A is free of rank 1 a choice of its generator gives rise to a GK-equivariant
isomorphism of A/n-modules:

E[n〉 ∼−→ E[n].

An inclusion of ideals n′ ⊂ n induces a surjection E[n′〉� E[n〉, and the resulting morphism
A/n⊗A/n′ E[n′〉 ∼−→ E[n〉 is an isomorphism.

Lemma 2.3.2. We have a Galois-equivariant short exact sequence of A-modules which is natural
in the ideal n and the Drinfeld module E:

The first arrow is given by the composition with the quotient map n−1 � n−1/A and the second
arrow is the evaluation at 1 ∈ n−1.

Proof. We only need to prove the exactness on the right. Suppose that n = (a) for some a ∈ A.
The isogeny a : E → E is separable since the ideal n is not divisible by the characteristic of E.
Hence, the morphism a : E(Ks) � E(Ks) is surjective, and we get the claim.

In the general case the ideal ni is principal for all sufficiently divisible integers i > 0 since
the Picard group of the scheme SpecA is finite. The claim results from the naturality of our
sequence with respect to the ideal n. �

Definition 2.3.3. The Kummer boundary homomorphism

∂n : E(K)→ H1(K, E[n〉)
is the boundary homomorphism arising from the sequence of Lemma 2.3.2. When the n-torsion
of E is rational we will write it in the form of a pairing:

[ , )n : E(K)×GK → E[n〉.
The map ∂n can be also called the Artin–Schreier homomorphism but this name is less common
in the literature.

Lemma 2.3.4. The homomorphism ∂n has the following description:

(1) For each x ∈ E(K) there is an A-module homomorphism f : n−1 → E(Ks) such that f(1) =
x.

(2) The cohomology class ∂n(x) is represented by a cocycle given by the formula g �→ g ◦ f − f
where the right-hand side is seen as a morphism from the quotient n−1/A.

Proof. This follows from Lemma 2.3.2 by elementary properties of group cohomology. �

Lemma 2.3.5. For each proper principal ideal (a) = a of the ring A which is not divisible by
the characteristic of E we have a commutative diagram

where ∂a is the Artin–Schreier boundary homomorphism of the separable isogeny a : E → E,
and eva : E[a〉 ∼−→ E[a] is an isomorphism defined by the formula x �→ x(a−1).
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Proof. We have the following commutative diagram.

The claim follows by naturality of boundary homomorphisms. �

2.4 Drinfeld modules over local fields
In this section our base field K is assumed to be local. We denote by OK the ring of integers
of K and by pK the maximal ideal of OK .

Pick a coefficient ring A over Fq. Let E be a Drinfeld A-module over SpecK and let ιE : A→
K be its characteristic homomorphism.

Definition 2.4.1. The Drinfeld module E has finite residual characteristic when ιE(A) ⊂ OK .
The residual characteristic p of E is the ideal

p := ι−1
E (pK).

This ideal is maximal because the residue field OK/pK is finite.

The analogous situation for abelian varieties is when the base field K is a non-archimedean
local field. The residual characteristic of an abelian variety is just the residual characteristic of
the field K.

From now on we suppose that the Drinfeld module E has finite residual characteristic.
It will be convenient for us to assemble the p-adic Tate modules TpE, p �= p, into a single object.

Definition 2.4.2. The ring of restricted integral adeles is defined by the formula

Aad,p = lim←−n
A/n,

where n ⊂ A runs over proper ideals that are prime to p.

We have a natural isomorphism Aad,p =
∏

p�=p Ap where Ap is the p-adic completion of A.
Compared with the ring of integral adeles of the function field F , the ring Aad,p does not include
the factors at the places p and ∞.

Definition 2.4.3. The restricted adelic Tate module Tad,pE is defined by the formula

Tad,pE = lim←−n
E[n〉,

where n ⊂ A runs over proper ideals that are prime to p and the transition maps are induced by
inclusions of the ideals.

The Tate module Tad,pE is a free module over the ring Aad,p and its rank coincides with the
rank of the Drinfeld module E. The Galois action on Tad,pE is Aad,p-linear. We have a natural
Aad,p-linear Galois-equivariant isomorphism:

Tad,pE ∼−→
∏

p�=p
TpE.

Lemma 2.4.4. Consider the inclusion-ordered family F of proper principal ideals a ⊂ A that
are prime to the residual characteristic p. Then the natural homomorphism

Tad,pE ∼−→ lim←−a∈F E[a〉
is an isomorphism.
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Proof. For each proper ideal n �⊂ p there is a non-constant element a ∈ n � p. Then (a) ∈ F , and
as (a) ⊂ n we conclude that the family F is initial in the family of all proper ideals not contained
in p. The claim follows. �

3. The local Kummer pairing

Fix a finite field Fq of cardinality q and characteristic p. In this section our base field K/Fq is
assumed to be local. We denote by OK ⊂ K the ring of integers and by pK ⊂ OK the maximal
ideal. As usual we fix a separable closure Ks/K and denote by GK the corresponding absolute
Galois group.

3.1 Ramification subgroups
Let IK be the inertia subgroup of the absolute Galois group GK , and let PK be the wild inertia
subgroup.

Definition 3.1.1. We denote by JK the maximal quotient of IK that is abelian of exponent p:

JK := Iab
K /(Iab

K )×p.

The quotient group IK/PK is procyclic of order prime to p, so the fact that PK is a pro-p
group implies that the surjection IK � IK/PK is split. As the group JK is abelian p-torsion we
conclude that the canonical morphism PK � JK is surjective.

The inertia subgroup IK carries a decreasing separated exhaustive filtration by closed normal
subgroups IuK , u ∈ Q�0, the ramification filtration in upper numbering [Ser68, Chapitre IV, § 3,
Remarque 1, p. 83]. The wild inertia subgroup PK is the closure of the subgroup

⋃
u>0 I

u
K .

The ramification filtration of IK induces a filtration of JK . As the group JK is abelian the
Hasse–Arf theorem implies that the induced filtration is integrally indexed: for each u � 0 the
subgroup JuK coincides with JmK , m = �u�.
Lemma 3.1.2. For every integer m � 0 such that m ≡ 0 (mod p) we have

JmK = Jm+1
K .

Proof. Let L ⊂ Ks be a finite Galois extension of K with Galois group G and upper index
ramification filtration {Gu}u�0. Suppose that the inertia group G0 is abelian p-torsion. We need
to show that Gpi = Gpi+1 for each i � 0.

We are free to assume that G0 = G. The group G is abelian, so we have the reciprocity
morphism ω : K× � G of local class field theory. This morphism transforms the n-unit filtration
{U (n)

K }n�0 to the ramification filtration. For each i � 0 the pth power map induces a morphism

U
(i)
K � U

(pi)
K /U

(pi+1)
K .

This is surjective since the residue field of K is perfect. Our claim follows. �

3.2 Local pairing
Fix a Drinfeld A-module D over SpecOK . By this we mean not only that D can be defined by a
homomorphism ϕ : A→ OK [τ ] but also that the reduction of ϕ modulo pK is a Drinfeld module
of the same rank as over K.

The Drinfeld moduleD has finite residual characteristic, denoted by p as usual. LetKur ⊂ Ks

be the maximal unramified extension and let n ⊂ A be a proper ideal not divisible by p. Since
D is a Drinfeld module over SpecOK the n-torsion of D is contained in D(Kur). Hence, by § 2.3
we have the Kummer pairing [ , )n : D(Kur)× IK → D[n〉.
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Definition 3.2.1. The local restricted adelic Kummer pairing

[ , )ad : D(Kur)× IK → Tad,pD

is the limit of the Kummer pairings [ , )n over the inclusion-ordered system of proper ideals n

not divisible by the residual characteristic p.

Since the Tate module Tad,pD is p-torsion the pairing [ , )ad factors through the maximal
quotient JK = Iab

K /(Iab
K )×p that is abelian of exponent p.

Let v : K � Z ∪ {∞} be the normalized valuation of the base field K. Every isomorphism of
Fq-module schemes D ∼−→ Ga over SpecOK induces a valuation function on D(K) by transport
of structure from Ga(K) = K. The result is independent of choices because the choices differ by
multiplication by an integral unit on the side of Ga. We denote the resulting valuation function
by v as well.

Definition 3.2.2. For every λ ∈ D(K) we set

‖λ‖ = max{0, −v(λ)}.
Poonen [Poo95] introduced the notion of canonical local height on the A-module D(K). Since

the Drinfeld module D has good reduction, Proposition 4(4) of [Poo95, § 3] implies that the
map ‖ · ‖ : D(K)→ Z�0 is exactly the canonical local height. This map satisfies the ultrametric
inequality:

‖λ+ λ′‖ � max{‖λ‖, ‖λ′‖}.
However, ‖λ‖ = 0 for every λ ∈ D(OK) so the height ‖ · ‖ is only a seminorm on D(K). This
seminorm is ∞-adic in the following sense.

Lemma 3.2.3. For each λ ∈ D(K) and each a ∈ A we have an equality

‖aλ‖ = |a|s∞ ‖λ‖,
where s is the rank of the Drinfeld module D.

The map x �→ |x|s∞ is an∞-adic absolute value on the local field F∞ albeit its normalization
differs from the one of § 1.2 when s > 1.

Proof of Lemma 3.2.3. This follows from Proposition 2 and Proposition 4(4) of [Poo95]. For the
reader’s convenience let us give a direct argument. The claim is clear when a = 0 and holds when
‖λ‖ = 0 since D(OK) is an A-submodule of D(K). We are thus free to assume that a �= 0 and
‖λ‖ > 0.

We identify the Fq-module scheme D with Ga over SpecOK . The induced A-module scheme
structure is described by a homomorphism ϕ : A→ OK [τ ]. Write ϕ(a) = α0 + α1τ + · · ·+ αnτ

n

with αn �= 0. The top coefficient αn is a unit since D is a Drinfeld module over SpecOK .
Hence, v(αnλq

n
) = qnv(λ). Combining this with the estimates v(αiλq

i
) � qiv(λ), i < n, and the

assumption v(λ) < 0 we deduce an equality

v(a λ) = qn v(λ).

The degree n of the polynomial ϕ(a) is expressed by a formula

n = −s [κ∞ : Fq] v∞(a),

where v∞ is the normalized valuation of the local field F∞. The absolute value of § 1.2 is given
by the formula

|a|∞ = |κ∞|−v∞(a).

As |κ∞| = q[κ∞:Fq ] we deduce that qn = |a|s∞ and the claim follows. �
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Theorem 3.2.4. Let λ ∈ D(K) be an element, and consider the homomorphism

[λ, )ad : JK → Tad,pD.

Then the following hold.

(1) This homomorphism vanishes on the ramification subgroup J
‖λ‖+1
K . In particular, it vanishes

altogether when ‖λ‖ = 0.
(2) If the height ‖λ‖ is prime to p, then the homomorphism [λ, )ad maps the ramification

subgroup J
‖λ‖
K surjectively onto Tad,pD.

Proof. By Lemmas 2.4.4 and 2.3.5 it is enough to prove the claims for every homomorphism
[λ, )a : JK → D[a] where a ∈ A runs over non-constant elements that are prime to the residual
characteristic p of D.

The height ‖λ‖, the group JK and the homomorphism [λ, )a remain unchanged when we
replace the base fieldK by an unramified extension. As the Drinfeld moduleD has good reduction
and the element a is prime to p we are free to assume that the torsion module D[a] is contained
in D(K), and consequently in D(OK).

An Fp-vector subspace V ⊂ D[a] is zero if and only if f(V ) = 0 for each nonzero linear form
f : D[a] � Fp. Likewise V = D[a] if and only if f(V ) = Fp for every such form f . It is thus enough
to prove our claims after composing the homomorphism [λ, )a with every f .

From now on we identify the Fq-module scheme D with Ga over SpecOK . The resulting
A-module scheme structure on Ga is given by a homomorphism ϕ : A→ OK [τ ].

Let f : D[a] � Fp be a nonzero linear form. According to Lemma 2.2.1 there is an element
u ∈ Ga(K) such that

f ◦ [λ, )ϕ(a) = [uλ, )p.

This element is given by a formula with Moore determinants M(−):

u = α−1

(
M(w1, . . . , wn)
M(w1, . . . , wn, v)

)p

.

Here α is the top coefficient of the polynomial ϕ(a) and w1, . . . , wn, v is a suitable Fp-basis of
D[a].

By our assumption D is a Drinfeld module over SpecOK . This implies that the top coefficient
α is an integral unit. Since a is prime to the residual characteristic the torsion module D[a] ⊂
D(OK) maps injectively to D(k) where k is the residue field of OK . In particular, the image
of the basis w1, . . . , wn, v in D(k) remains Fp-linearly independent. Hence, the corresponding
Moore determinants are nonzero. We conclude that the element u is an integral unit. It follows
that v(uλ) = v(λ).

Consider the Artin–Schreier polynomial Xp −X = uλ. The Galois group G of its split-
ting field is the image of the absolute Galois group under the homomorphism [uλ, )p.
The upper index ramification filtration of G is given by images of absolute ramification
subgroups:

Gi = [uλ, IiK)p.

This filtration was calculated by Hasse (see Thomas [Tho05], Proposition 2.1 and the follow-
ing paragraph). Set b = max{0, −v(uλ)}. Then the subgroups Gi vanish for i > b, and if the
integer b is prime to p, then Gb = G = Fp. Our theorem follows since v(uλ) = v(λ) as shown
previously. �
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3.3 Open image theorem
The following arguments involve passage from the base field K to a finite separable extension L.
On account of this we have to fix a few conventions. First, it will be more convenient for us to
view the homomorphism [λ, )ad as a morphism from the inertia subgroup IK rather than its
quotient JK .

Second, we need to be careful with the canonical local height on the A-module D(L). This
involves the normalized valuation of L and so differs from the height on the submodule D(K) by
an integer factor, the ramification index of L/K. We will denote the height on D(L) by ‖ · ‖L.

Lemma 3.3.1. Let λ ∈ D(K) �D(OK) be an element, and suppose that the homomorphism
[λ, )ad : IK → Tad,pD is not surjective. Then there are:

– a non-constant element a ∈ A prime to the residual characteristic p of D;
– a finite separable extension L/K; and
– an element λ′ ∈ D(L) �D(OL);

such that

aλ′ = λ, vp(‖λ′‖L) < vp(‖λ‖K).

Here vp : Q � Z ∪ {∞} denotes the normalized p-adic valuation.

Proof. Lemmas 2.4.4 and 2.3.5 imply that there is a non-constant element a �∈ p such that the
homomorphism [λ, )a : IK → D[a] is not surjective.

The height ‖λ‖, the inertia group IK and the homomorphism [λ, )a remain unchanged when
we replace the base field K by an unramified extension. We are thus free to assume that the
torsion scheme D[a] is constant or, in other words, that all the Ks-points of D[a] are defined
over the field K. Under this assumption the homomorphism [λ, )a is defined on the absolute
Galois group GK , see § 2.2. Its kernel determines a finite abelian p-torsion extension L/K.

Let I ⊂ D[a] be the image of the inertia subgroup IK . The ramification index e of the
extension L/K equals the cardinality of I. By our choice of the absolute value | · |∞ in § 1.2 we
have an equality |A/(a)| = |a|∞. Thus, the torsion module D[a] has cardinality |a|s∞, and the
assumption I �= D[a] implies that e < |a|s∞.

By construction there is an element λ′ ∈ D(L) such that aλ′ = λ. We have ‖λ‖L = e ‖λ‖K
so Lemma 3.2.3 shows that

|a|s∞ ‖λ′‖L = e ‖λ‖K .

The integers e and |a|∞ are powers of p so the strict inequality e < |a|s∞ implies a strict inequality
of p-adic valuations vp(‖λ′‖L) < vp(‖λ‖K) as claimed. �

Theorem 3.3.2. For each element λ ∈ D(K) �D(OK) the homomorphism [λ, )ad : IK →
Tad,pD has open image.

Proof. Suppose that the homomorphism is not surjective. Invoking Lemma 3.3.1 we obtain a
non-constant element a ∈ A� p, a finite separable extension L/K and an element λ′ ∈ D(L)
such that aλ′ = λ. As the pairing [ , )ad is A-linear in the first argument we deduce that

a[λ′, IL)ad = [λ, IL)ad.

The right-hand side has finite index in [λ, IK)ad. Hence, it is enough to prove the theorem with
λ replaced by λ′ and K replaced by L.
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Lemma 3.3.1 also shows that we have a strict inequality of p-adic valuations:

vp(‖λ′‖L) < vp(‖λ‖K).

The height ‖ · ‖L takes only integer values, so the valuation vp(‖λ′‖L) is bounded below by zero.
Hence, after repeating our argument finitely many times we arrive at a situation where the
homomorphism [λ′, )ad is onto. �

4. Applications

We retain the notation and the conventions of § 3. In particular, our base field K is a local field
over a finite field Fq of cardinality q and characteristic p. We fix a separable closure Ks/K,
denote by GK the corresponding absolute Galois group, by IK the inertia subgroup and by JK
the maximal quotient of IK that is abelian of exponent p; see § 3.1

4.1 The conductor of a Drinfeld module
Let A be a coefficient ring over Fq and let E be a Drinfeld A-module of stable reduction over
SpecK. Drinfeld’s theory of Tate uniformization [Dri74, § 7] represents E as an analytic quo-
tient of a Drinfeld module D over SpecOK by a Galois-invariant lattice Λ ⊂ D(Ks), a finitely
generated projective A-submodule which is discrete with respect to the adic topology. We thus
have an analytic morphism eΛ : D → E extending to a short exact sequence:

.

This sequence is determined functorially by the Drinfeld module E. We will refer to Λ as
the period lattice of E and to eΛ as the exponential map of Λ. A detailed exposition of Tate
uniformization theory can be found in a recent book by Papikian [Pap23, § 6.2].

Throughout this section we make an additional assumption: the lattice Λ is defined over K,
which is to say, Λ ⊂ D(K). We will study the action of inertia on the Tate modules of E.

Lemma 4.1.1. The Drinfeld modules D and E have the same characteristic homomorphism.

Proof. The proof follows since the exponential eΛ induces an isomorphism of tangent spaces
LieD ∼−→ LieE . �

Lemma 4.1.2. For each proper ideal n ⊂ A that is not divisible by the characteristic of E we
have a Galois-equivariant short exact sequence of A/n-modules:

The homomorphism δn has the following description.

(1) For each x ∈ E[n〉 there is an A-module morphism x̃ : n−1 → D(Ks) which lifts x in the
sense that eΛ ◦ x̃ equals the composite of x and the quotient morphism n−1 � n−1/A.

(2) The residue class δn(x) is represented by the element x̃(1) ∈ Λ where x̃ is a lift of x.
(3) Given a representative λ of the residue class δn(x) one can pick a lift x̃ such that x̃(1) = λ.

Proof. Consider a commutative diagram
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with the vertical arrows given by A-module multiplication. The bottom row of this diagram is
exact by construction and the top row is exact since the A-module n is flat.

Consider the natural isomorphism n⊗AM ∼−→ HomA(n−1, M). Under this isomorphism the
multiplication map n⊗AM →M is transformed to the evaluation map f �→ f(1). Hence, the
middle vertical arrow in the diagram above is surjective by Lemma 2.3.2, and our claims follow
from the snake lemma. �

Lemma 4.1.1 implies that Drinfeld modules D and E have the same residual characteristic.
As usual, we denote this characteristic by p. Consider the restricted adelic Tate module Tad,pE
and let GL(Tad,pE) be the group of its automorphisms as an Aad,p-module. The action of the
inertia subgroup IK gives rise to the (local) restricted adelic monodromy representation

ρ : IK → GL(Tad,pE).

Similarly, for each prime p �= p we have the p-adic monodromy representation ρp : IK → GL(TpE).
The representation ρp is the composite of ρ and the projection GL(Tad,pE)→ GL(TpE).

Taking the limit of sequences of Lemma 4.1.2 we obtain a short exact sequence of Galois
representations:

As the Drinfeld module D has good reduction we have at our disposal the local adelic Kummer
pairing

[ , )ad : D(K)× IK → Tad,pD.

Lemma 4.1.3. The monodromy representation ρ factors as a composition

where the second arrow is given by the formula f �→ 1 + Tad,p(eΛ) ◦ f ◦ δad.
Proof. Let n ⊂ A be a proper ideal not divisible by p and let x ∈ E[n〉 be an element. Pick a
representative λ of the residue class δn(x). We need to show that for each automorphism g ∈ IK
one has

g ◦ x = x+ eΛ ◦ [λ, g)n.

Let x̃ : n−1 → D(Ks) be a lift of x. By Lemma 4.1.2(3) we are free to assume that x̃(1) = λ.
Lemma 2.3.4 shows that

[λ, g)n = g ◦ x̃− x̃.
Hence, eΛ ◦ [λ, g)n = g ◦ x− x, and we are done. �
Corollary 4.1.4. The monodromy representation ρ factors through the maximal quotient
JK = Iab

K /(Iab
K )×p that is abelian of exponent p.

Remark 4.1.5. Similar reasoning applies to abelian varieties over a non-archimedean local fieldK.
Raynaud proved that:

– every abelian variety over K has potentially semistable reduction [GR72, § 3];
– an abelian variety E of semistable reduction is a rigid analytic quotient of a semiabelian

variety D of good reduction by a lattice Λ (see [GR72, § 14]).

The Galois action on the lattice Λ is always unramified [GR72, § 3, Cor. 3.8]. Consequently,
for each prime � different from the residual characteristic the �-adic monodromy representation
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ρ� : IK → GL(T�E) is expressed in terms of the Kummer pairing of D in the same way as in our
Lemma 4.1.3. One deduces that ρ� is unipotent of level at most 2, and that ρ�(PK) = {1}.

Let us return to the setting of Drinfeld modules. Following § 3.2 we consider Poonen’s canon-
ical local height ‖ · ‖ on the A-module D(K). We have seen that with a suitable normalization
of the absolute value this height is an ∞-adic seminorm. Remarkably, this restricts to a proper
norm on every period lattice Λ.

Lemma 4.1.6. The induced height ‖ · ‖ : Λ→ Z�0 has the following properties:

(1) ‖λ‖ = 0 if and only if λ = 0;
(2) ‖λ+ λ′‖ � max{‖λ‖, ‖λ′‖};
(3) ‖aλ‖ = |a|s∞ ‖λ‖ for all a ∈ A;
(4) the subset {λ ∈ Λ, ‖λ‖ � b} is finite for every b > 0.

The exponent s in property (3) is the rank of the Drinfeld module D.

Proof. Properties (2) and (3) hold for the ambient seminorm and property (4) follows since
the lattice Λ is discrete in D(K). We only need to check the first property. Note that ‖λ‖ = 0 if
and only if λ ∈ D(OK). The A-module Λ′ = Λ ∩D(OK) is finite since Λ is discrete in D(K).
Hence, Λ′ is torsion, and thus zero as the enclosing module Λ is torsion-free. �

This fits to our definition of a normed lattice (Definition 1.3.2) with a caveat: the homogeneity
property (3) holds for a differently normalized ∞-adic absolute value. When necessary we will
correct for this discrepancy by considering the norm ‖ · ‖1/s.
Theorem 4.1.7. Let E be a Drinfeld module of stable reduction over SpecK with period lattice
Λ defined over K. Then there is an integer m � 0 such that the monodromy representation
ρ : JK → GL(Tad,pE) maps the ramification subgroup JmK to 1. Explicitly, if the period lattice Λ
is generated by elements λ1, . . . , λn, then one can take

m = max ‖λi‖+ 1.

Proof. By Theorem 3.2.4(1) each homomorphism [λi, )ad vanishes on the subgroup JmK . Since
the Kummer pairing is A-linear in the first argument it follows that the homomorphism [λ, )ad
vanishes on JmK for all λ ∈ Λ. Lemma 4.1.3 implies the result. �

In view of Theorem 4.1.7 the following definition makes sense.

Definition 4.1.8. The conductor f(E/K) is the least integer m � 0 such that ρ(Jm+1
K ) = 1.

Lemma 4.1.9. We have f(E/K) = 0 if and only if the Drinfeld module E has good reduction.

Proof. We have J0
K = J1

K by Lemma 3.1.2 so f(E/K) = 0 if and only if the inertia group IK acts
trivially on TpE for all p �= p. The claim thus follows from Takahashi’s good reduction criterion
[Tak82]. �

The invariant f(E/K) relates to conductors of torsion point extensions in the following way.
For each proper ideal n that is prime to p consider the extension Kn ⊂ Ks generated by the
n-torsion points of E, which is to say, the group Gal(Ks/Kn) is the kernel of the torsion points
representation GK → GL(E[n]). Let Kn

◦ ⊂ Kn be the maximal unramified subextension.

Lemma 4.1.10. The extensions Kn/Kn
◦ are abelian and their conductors are related to f(E/K)

as follows. If f(E/K) �= 0, then we have an equality

f(E/K) + 1 = max
n

f(Kn/Kn
◦).

If f(E/K) = 0, then f(Kn/Kn
◦) = 0 for all n.
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Proof. The Galois representation E[n] and E[n〉 are non-canonically isomorphic, cf. § 2.3. Thus,
the Galois group of the extension Kn/Kn

◦ is the image of the absolute inertia subgroup IK under
the torsion points representation GK → GL(E[n〉). The latter is obtained from the adelic Tate
module representation by reduction modulo the ideal nAad,p . Hence, the extension Kn/Kn

◦ is
abelian by Corollary 4.1.4. When this extension is nontrivial its conductor and its highest break
in upper numbering b(Kn/Kn

◦) are related in the following way:

f(Kn/Kn
◦) = b(Kn/Kn

◦) + 1;

see [Ser67, § 4.2, Proposition 1]. In view of this formula our claim is immediate. �
The normalization of the conductor f(E/K) thus differs by 1 from the one of local class field

theory. In our case this choice leads to better-looking formulas.

Lemma 4.1.11. The conductor f(E/K) is either zero or a positive integer that is prime to p.

Proof. If m � 0 is an integer that is divisible by p, then we have JmK = Jm+1
K by Lemma 3.1.2. �

Lemma 4.1.12. The conductor is an isogeny invariant.

Proof. We have to be careful as we do not fix the characteristic homomorphism of our Drinfeld
modules. In addition, in this proof it will be more convenient to represent Drinfeld modules by
homomorphisms A→ K[τ ].

Let ϕ,ψ : A→ K[τ ] be Drinfeld modules and let f : ϕ→ ψ be an isogeny, i.e. a nonzero
element of K[τ ] satisfying fϕ(a) = ψ(a)f for all a ∈ A. Write f = g τn with g ∈ K[τ ] having
nonzero constant coefficient. We have a well-defined homomorphism

ϕ′ : A→ K[τ ], a �→ τnϕ(a)τ−n.

One checks easily that ϕ′ is a Drinfeld module. The identity f ϕ(a) = ψ(a)f implies that gϕ′(a) =
ψ(a)g so g is an isogeny from ϕ′ to ψ. Likewise τn is an isogeny from ϕ to ϕ′.

As the constant coefficient of g is nonzero it follows that the characteristic homomorphisms
of ϕ′ and ψ are the same. The characteristic homomorphisms χϕ and χϕ′ are related by the
formula

χϕ′ = σn ◦ χϕ,
where σ : K → K is the qth power map. In particular, if ϕ has finite residual characteristic, then
so do ϕ′ and ψ, and the residual characteristics of ϕ, ϕ′ and ψ coincide. We will denote these
residual characteristics by p as usual.

Next, suppose that ϕ has stable reduction. It then follows by Lemma 6.1.5(1) of [Pap23] that
ϕ′ also has stable reduction. Suppose further that ψ also has stable reduction. By Theorem 6.2.12
of [Pap23] the isogeny g induces a Galois-equivariant injective morphism of period lattices
g : Λϕ′ ↪→ Λψ. Assuming that Λψ ⊂ K we thus conclude that Λϕ′ ⊂ K.

It therefore suffices to prove our lemma in two cases: (1) f = τn and (2) the constant coeffi-
cient of f is nonzero. In the case f = τn the map σn defines a Galois-equivariant isomorphism of
torsion modules ϕ[a] ∼−→ ψ[a] for all a ∈ A. Invoking Lemma 2.4.4 we obtain a Galois-equivariant
isomorphism Tad,p(ϕ) ∼−→ Tad,p(ψ), and the claim follows.

Finally, we consider the case when the constant coefficient of f is not zero. We observed
above that in this case the characteristic homomorphisms of ϕ and ψ coincide. As a consequence
there is an isogeny f ′ : ψ → ϕ which is dual to f in the sense that f ′f = ϕ(a) for some nonzero
a ∈ A. Since the multiplication by a is injective on Tad,p(ϕ) the isogeny f induces a Galois-
equivariant injective morphism Tad,p(ϕ) ↪→ Tad,p(ψ). By definition of the conductor this implies
that f(ϕ/K) � f(ψ/K).
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The identity ff ′f = fϕ(a) = ψ(a)f implies that ff ′ = ψ(a) because the ring K[τ ] is a
domain. Repeating the argument above we deduce an inequality f(ψ/K) � f(ϕ/K), and the
lemma follows. �

The ramification filtration of the group JK changes in a nontrivial way when one passes
to a finite separable extension L/K. It is not generally true that JmL maps into JmK , cf. the
proof of Theorem 4.2.1 for a precise statement. The conductor thus depends on the choice of
the field K which we reflect in the notation f(E/K). Note that we only consider conductors
of Drinfeld modules of stable reduction under the extra assumption that the period lattice is
defined over K.

Calculating the conductor is a hard problem in general. However, we have a full answer for
a class of period lattices Λ.

Theorem 4.1.13. Let E be a Drinfeld module of stable reduction over SpecK with period
lattice Λ defined over K. Suppose that elements λ1, . . . , λn generate an A-submodule of finite
index in Λ. We then have an inequality

f(E/K) � max‖λi‖.
If, in addition, the maximum b = max‖λi‖ is prime to p then the following hold.

(1) The adelic monodromy representation ρ : JK → GL(Tad,pE) maps the ramification subgroup
JbK to an infinite subgroup. In particular,

f(E/K) = max‖λi‖.
(2) For every prime p different from the residual characteristic p the p-adic monodromy

representation ρp : JK → GL(TpE) maps the subgroup JbK to an infinite subgroup.

Proof. Since the conductor is invariant under isogenies we are free to assume that the period
lattice Λ is generated by the vectors λ1, . . . , λn. The inequality f(E/K) � max‖λi‖ then follows
from Theorem 4.1.7.

Next assume that the maximum b = max‖λi‖ is prime to p and let λi be a vector on which the
maximum is achieved. Theorem 3.2.4(2) shows that the homomorphism [λi, )ad maps the rami-
fication subgroup JbK surjectively onto Tad,pD. Claim (1) is then a consequence of Lemma 4.1.3
and claim (2) follows since the natural projection Tad,pD � TpD is surjective. �

One important consequence of this theorem is that all the values of the conductor not
forbidden by Lemma 4.1.11 do actually occur.

Corollary 4.1.14. For every integer m � 1, p � m, there exists a Drinfeld module over SpecK
of rank 2 and conductor m. In particular, the conductor of a Drinfeld module can be arbitrarily
large.

By analogy with the classical theory of lattices one defines the ith successive minimum μi(Λ)
as the minimal real number b � 0 such that the set of vectors {λ ∈ Λ, ‖λ‖ � b} generates an
A-submodule of rank at least i. Theorem 4.1.13 implies that

f(E/K) � μn(Λ),

where μn(Λ) is the last successive minimum, n = rankΛ.
Finally, let us bring the lattice theory of § 1 to bear on the problem of estimating the

conductor.
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Theorem 4.1.15. Let E be a Drinfeld module of stable reduction over SpecK with period
lattice Λ defined over K. Let r be the rank of E and set s := r − rankΛ. Then we have an
inequality,

f(E/K) � vol(Λ)sCs(r−s),
where:

– vol(Λ) is the volume of the normed lattice (Λ, ‖ · ‖1/s);
– C = |κ|3g+2f−1;
– κ is the field of constants of the coefficient field F ;
– g is the genus of the coefficient field F ;
– f is the degree of the place ∞ over κ.

Proof. Every nonzero period λ ∈ Λ satisfies the inequality ‖λ‖1/s � 1. Hence, Theorem 1.6.4
implies that the A-module Λ is generated by the subset

{λ ∈ Λ, ‖λ‖1/s � vol(Λ)Cr−s}.
In view of this fact, the bound on the conductor follows from Theorem 4.1.7. �

Whenever vol(Λ) · Cr−s �= 1 one can tighten the bound in Theorem 4.1.15 by 1 by appealing
to Lemma 4.1.11.

4.2 General results
Theorem 4.2.1. Let E be a Drinfeld module of finite residual characteristic p over SpecK and
let ρ : GK → GL(Tad,pE) be its restricted adelic Tate module representation. Then there is a
rational number u � 0 such that ρ(IuK) = 1.

Proof. Let L ⊂ Ks be a finite Galois extension of K such that E has stable reduction over SpecL
and the local period lattice of E is defined over L. Theorem 4.1.7 shows that ρ(IuL) = 1 for all
rational numbers u� 0. We have a short exact sequence of groups

where ϕ is the lower-to-upper reindexing function of the extension L/K (see [Ser68, Chapitre IV,
§ 3]). Taking a sufficiently large rational number u we ensure that Gal(L/K)ϕ(u) = 1, and the
claim follows. �
Theorem 4.2.2. Let E be a Drinfeld module of finite residual characteristic p and rank r
over SpecK. Suppose that the local period lattice of E has rank 1. Then the group scheme
GL(Tad,pE) contains a closed subgroup scheme U ∼= (Ga)×(r−1) such that the image of inertia is
commensurable with U(Aad,p).

Proof. Since we are free to replace the field K by a finite separable extension we assume that E
has stable reduction and that its local period lattice Λ is defined over K. As in § 4.1 we have a
short exact sequence of Galois representations in finitely generated free Aad,p-modules:

This defines an Aad,p-module flag on the middle term. Let U be the corresponding unipo-
tent subgroup scheme of GL(Tad,pE). By our assumption the period lattice Λ is an invertible
A-module. Hence, the group scheme U is isomorphic to (Ga)×d where

d = rank(Tad,pD) = r − 1.

The image of inertia Γ is contained in the subgroup U(Aad,p) since the representations Tad,pD
and Λ are unramified.
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Pick a nonzero period λ ∈ Λ. As the period lattice Λ has rank 1 the evaluation at λ defines
an open embedding:

HomA(Λ, Tad,pD) ↪→ Tad,pD.

By Theorem 3.3.2 the homomorphism [λ, )ad has open image. Lemma 4.1.3 implies that the
subgroup Γ is open in U(Aad,p) ∼−→ HomA(Λ, Tad,pD). Consequently, the index of Γ in U(Aad,p)
is finite. �
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