
Math. Struct. in Comp. Science (2013), vol. 23, pp. 1032–1081. c© Cambridge University Press 2013

doi:10.1017/S0960129512000850 First published online 17 May 2013

A certified lightweight non-interference Java

bytecode verifier†

GILLES BARTHE‡, DAVID PICHARDIE§ and TAMARA REZK¶

‡IMDEA Software Institute, Campus Montegancedo,

28660-Boadilla del Monte, Madrid, Spain

Email: gilles.barthe@imdea.org
§INRIA Rennes – Bretagne Atlantique, Campus de Beaulieu,

35042 Rennes Cedex France.

Email: David.Pichardie@inria.fr
¶INRIA Sophia Antipolis – Méditerranée,

2004 Route des Lucioles, BP 93,

06902 Sophia Antipolis Cedex France

Email: Tamara.Rezk@inria.fr

Received 20 December 2010; revised 27 September 2011

Non-interference guarantees the absence of illicit information flow throughout program

execution. It can be enforced by appropriate information flow type systems. Much of the

previous work on type systems for non-interference has focused on calculi or high-level

programming languages, and existing type systems for low-level languages typically omit

objects, exceptions and method calls. We define an information flow type system for a

sequential JVM-like language that includes all these programming features, and we prove, in

the Coq proof assistant, that it guarantees non-interference. An additional benefit of the

formalisation is that we have extracted from our proof a certified lightweight bytecode

verifier for information flow. Our work provides, to the best of our knowledge, the first sound

and certified information flow type system for such an expressive fragment of the JVM.

1. Introduction

The Java security architecture combines static and dynamic mechanisms to ensure that

applications are not harmful to other applications or to the runtime environment. In

particular, a bytecode verifier statically guarantees that a program is safe, that is, it

does not perform arithmetic on references, overflows the stack or jumps to protected

memory locations. A stack inspection mechanism dynamically performs access control

verifications. However, the Java security architecture lacks appropriate mechanisms to

guarantee stronger confidentiality properties: for example, it has been suggested that the

Java security model is not sufficient in security-sensitive applications such as smart cards

(Girard 1999; Montgomery and Krishna 1999). One weakness of the model is that it only

† This work was partially funded by European Projects FP7-231620 HATS and FP7-256980 NESSoS, Spanish

project TIN2009-14599 DESAFIOS 10, Madrid Regional project S2009TIC-1465 PROMETIDOS and French

Brittany region project CertLogS.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1033

concentrates on who accesses sensitive information, but not on how sensitive information

flows through programs.

The goal of language-based security (Sabelfeld and Myers 2003) is to provide en-

forcement mechanisms for end-to-end security policies that go beyond the basic isolation

properties ensured by security models for mobile code. In contrast to security models

based on access control, language-based security focuses on information-flow policies that

track how sensitive information is propagated during execution.

Starting from the seminal work Volpano and Smith (1997), type systems have become

prominent in approaches to the practical enforcement of information flow policies, and

type-based enforcement mechanisms have been developed for advanced programming

features such as exceptions, objects (Banerjee and Naumann 2005), interactions (O’Neill

et al. 2006), concurrency (Volpano and Smith 1998) and distribution (Mantel and

Sabelfeld 2003). In parallel with these fundamental studies, there have been efforts to

design and implement information flow type systems for fully fledged programming

languages such as Java (Myers 1999) and Caml (Pottier and Simonet 2003). One leading

effort towards the development of information-flow aware programming language is Jif

(Myers 1999), which builds on the decentralised label model and offers a flexible and

expressive framework for defining information flow policies for Java programs.

The central contribution of this paper is the definition and proof of soundness of

an information flow type system for a significant subset of (sequential) Java bytecode

programs including objects, arrays, methods and exceptions, but excluding, for example,

initialisation, multi-threading and garbage collection. The type system builds on work in

Barthe et al. (2004) and Barthe and Rezk (2005) by the authors of the current paper, which

proposes a sound information flow type system for a simple assembly language that closely

resembles the JVMI fragment of the current paper, and an object-oriented language that

resembles the JVMO fragment of the current paper extended with a simplified treatment

of exceptions. The current paper adopts many of the ideas and techniques of Barthe and

Rezk (2005), but is also a substantial improvent on it in terms of:

— language coverage: we provide a treatment of exceptions that is close to Java, and

include methods and arrays;

— precision of the analysis: we rely on a refined notion of a control dependence region

that provides a fine-grained treatment of exceptions, and make the analysis able

to communicate with preliminary analyses to reduce the control flow graph of

applications,

— policy expressiveness: we adopt arbitrary lattices of security levels instead of two-

element lattices.

While these issues have been addressed previously in isolation, their combination yields

significant complexity in soundness proofs, requiring us to machine-check proofs rather

than use pen-and-paper arguments. A second contribution of our work is a formalisation

in the Coq proof assistant of a lightweight information flow verifier that checks whether

a program is typable according to our type system. The verifier is compatible with the

Java architecture and operates through lightweight bytecode verification, that is, it takes a

JVM program with security annotations (and some additional information on the control

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1034

dependence regions of programs), and checks that the program respects the security policy

indicated by the annotations.

1.1. Contents of the paper

We begin with an overview of related work in Section 2, and in the following sections

analyse increasingly complex fragments of the JVM:

— In Section 3, we study the JVMI, which includes basic operations to manipulate

operand stacks as well as conditional and unconditional jumps, and is expressive

enough for compiling programs written in a simple imperative language. In this

section, we also define and discuss operand stack indistinguishability. The definitions

and type system for the JVMI are adapted from our earlier work Barthe et al. (2004).

— In Section 4, we study the JVMO, which is an object-oriented extension of the JVMI,

which includes features such as dynamic object creation, instance field accesses and

updates, and arrays, and is expressive enough for compiling the intra-procedural

statements of Banerjee and Naumann (2005). In this section, we also define and

discuss heap indistinguishability. The main difficulty is defining a sufficiently fine type

system that allows public arrays to handle secret information.

— In Section 5, we study the JVMC, which is a procedural extension of the JVMO
with method calls, and is expressive enough to compile the language of Banerjee

and Naumann (2005). The main difficulty is handling information leakages caused by

dynamic method dispatch.

— In Section 6, we study the JVME, which extends the JVMC by adding exceptions. The

main difficulty is handling information leakages caused by exceptions, especially when

they escape the scope of the method in which they are raised.

For each fragment, we: define the syntax and semantics of programs; formulate the

security policy and the typing rules; and, finally, prove the soundness of the type system.

Section 7 provides additional details of the formal proof developed in Coq.

This paper supersedes Barthe et al. (2007). The main differences are the incremental

presentation of different language fragments, the longer account of the machine-checked

formalisation, and the addition of several examples.

1.2. Notation and conventions

For every function f ∈ A → B, x ∈ A and v ∈ B, we write f ⊕{x �→ v} to denote the

unique function f′ such that f′(y) = f(y) if y �= x and f′(x) = v. We also write A� to

denote the set of A-stacks for every set A. We use hd, tl, :: and ++, respectively, to denote

the head, tail, cons and concatenation operations on stacks.

For simplicity, the examples throughout the paper will take as the partial order of

security levels S = {L,H} with L � H , where H is the high level used for confidential

data and L is the low level used for observable data.

Finally, we will also assume that all methods return a result – this is a harmless

departure from Java that allows us to avoid duplicating many definitions. However, this

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1035

assumption is only made here for the sake of presentation, and the formal proofs do in

fact consider both the cases of methods returning a result and methods returning no result.

2. Related work

2.1. Prior work

In order to realise our goal of defining a sound information flow type system for

(sequential) Java bytecode, we draw on the work in several earlier papers that address

its features in isolation. For example, our approach to dealing with unstructured code is

inspired by Kobayashi and Shirane (2002), which defined the first information flow type

system for a low-level language for a subset of the JVM similar to the JVMI machine

defined in Section 3. We adopt from their type system the use of:

(i) control dependence regions;

(ii) security environments.

Similar concepts are used in Agat (2000), which studied the possibility of eliminating

timing leaks through program transformations. For example, Agat uses control dependence

regions (which he calls contexts) to detect the instructions whose timing behaviour may

leak information.

Many ideas of the type system originate from Jif (Myers 1999), which is an information-

flow aware extension of Java that builds on the decentralised label model. Our type system

adopts from this work:

(i) the form of method signatures;

(ii) the use of pre-analyses to reduce the control flow graph;

(iii) the ability of public arrays to handle secret information.

Jif supports a rich set of mechanisms for specifying and enforcing expressive and flexible

security policies. However, the richness of the Jif type system also makes it difficult to

prove soundness – and there is no fully formal description of the type system.

Banerjee and Naumann (2005) developed a provably sound information flow type

system for a fragment of Java with objects and methods. Our type system adopts from

Banerjee and Naumann (2005):

(i) a focus on a simpler type system that does not support declassification policies nor

label polymorphism;

(ii) the definition of heap equivalence;

(iii) the typing rules for method invocations.

Their type system is simpler than ours since they omit a number of language features

such as exceptions and arrays.

2.2. Companion papers

A companion paper, Barthe et al. (2006), establishes a formal correspondence between

the source type systems of Banerjee and Naumann (2005) and the one we use here in the

form of a type-preservation result showing that the compiler maps typable Java programs

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1036

to typable bytecode programs. As a result, our certified verifier can be used to deploy in

a Foundational Proof Carrying Code architecture any program that type checks in an

extension of the type system of Banerjee and Naumann (2005) to exceptions. Section 8

also briefly discusses work we have done in extending our type system to include multi-

threading (Barthe et al. 2010; Barthe and Rivas 2011) and declassification (Barthe et al.

2008).

2.3. Other related work

This section provides a short summary of other related work. A more detailed account

appears in the third author’s thesis Rezk (2006).

2.3.1. Java. A hypothesis underlying Myers (1999), Banerjee and Naumann (2005) and

the current paper is a semantics in which references are opaque, that is, the only

observations that can be made about a reference are those about the object to which

it points. Hedin and Sands (2006) observed that implementations of the Java Virtual

Machine commonly violate this assumption and allow references to be cast to an integer.

Hedin and Sands also exhibited a typable Jif program that does not use declassification

but leaks information by invoking API methods. Their attack relies on the assumption

that the function that allocates new objects on the heap is deterministic. However, this

assumption is perfectly reasonable, and is indeed satisfied by many implementations of the

JVM. In addition to demonstrating the attack, Hedin and Sands showed how a refined

information flow type system can thwart such attacks for a language that allows one

to cast references as integers. Intuitively, their type system tracks the security level of

references as well as the security levels of the fields of the object it points to.

Information flow has close connections with slicing and dependence analyses (Abadi

et al. 1999), and it is possible to adapt methods from this field to analyse the security

of programs. For example, Hammer, Krinke and Snelting (Hammer et al. 2006) have

developed an automatic and flow-sensitive information flow analysis for Java based on

control dependence regions: they use path conditions to achieve precision in their analysis,

and to exhibit security leaks if the program is insecure.

2.3.2. JVM. Bieber et al. (2002) provided an early study of information flow in the JVM.

Their method consists of specifying in the SMV model checker an abstract transition

semantics of the JVM that manipulates security levels, and that can be used to verify

that an invariant that captures the absence of illicit flows is maintained throughout the

(abstract) program execution. Their method is directed towards smart card applications,

and thus only covers a sequential fragment of the JVM. While their method has been

used successfully to detect information leaks in a case study involving multi-application

smartcards, it is not supported by any soundness result. In a series of papers starting with

Bernardeschi and Francesco (2002), Bernardeschi and co-workers have also suggested the

use of abstract interpretation and model-checking techniques to verify secure information.

There are some alternative approaches to verifying the information flow properties of

bytecode programs. For example, Genaim and Spoto (2005) showed how to represent

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1037

information flow for Java bytecode through boolean functions. This representation then

allows checking through binary decision diagrams. The analysis is fully automatic and

does not require that methods be annotated with security signatures.

2.3.3. Typed assembly languages. The idea of typing low-level programs and ensuring

that compilation preserves typing is not original to information flow, and has been

investigated in connection with type-directed compilation. Morrisett, Walker, Crary and

Glew developed a typed assembly language (TAL) based on a conventional RISC assembly

language and showed that typable programs of System F can be compiled into typable

TAL programs (Morrisett et al. 1999).

The study of non-interference for typed assembly languages was initiated by Bonelli,

Compagnoni and Medel, who developed a sound information flow type system for a

simple assembly language called SIFTAL (Bonelli et al. 2005). A novelty of SIFTAL is

the introduction of pseudo-instructions, which are used to enforce structured control flow

using a stack of continuations. More concretely, the pseudo-instructions are used to push

or retrieve linear continuations from the continuation stack. Unlike the stack of call frames

used in the JVM to handle method calls, the stack of continuations is used for flow control

within the body of a method. The use of pseudo-instructions allows the formulation of

global constraints in the type system, and thus a guarantee of non-interference. A more

recent paper by the same authors (Medel et al. 2005) and Yu and Islam (2006) both avoid

the use of pseudo-instructions. Yu and Islam also consider a richer assembly language

and prove type-preserving compilation for an imperative language with procedures.

2.3.4. Flow-sensitive type systems and relational logics. The type system presented in this

paper is flow insensitive in the sense that the security level of a variable is fixed throughout

the program execution. While it simplifies the description of the type system and its

soundness proof, flow insensitivity restricts the generality of the type system and leads to

secure programs being rejected. In contrast, flow-sensitive verification methods allow the

security level of variables to evolve throughout execution, and makes it possible to type

more programs. Examples of flow-sensitive methods include the logic of Banerjee and

co-workers (Amtoft et al. 2006), which allows the verification of non-interference for an

object-oriented language by using independence assertions inspired from separation logic,

the type system of Hunt and Sands (2006) and the aforementioned analysis in Hammer

et al. (2006).

While flow sensitivity adds useful expressiveness to a source language, its role is less

prominent in the case of type systems, like ours, that aim to verify bytecode (or executable

code) since there are SSA-like transformations that transform programs that are accepted

by flow-sensitive type systems into programs that are accepted by a flow-insensitive one

(Hunt and Sands 2006).

3. The JVMI submachine

In this section we define an information flow type system for a fragment of the JVM with

conditional and unconditional jumps and operations to manipulate the stack.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1038

instr ::= binop op binary operation on stack

| push c push value on top of stack

| pop pop value from top of stack

| swap swap the top two operand stack values

| load x load value of x on stack

| store x store top of stack in variable x

| ifeq j conditional jump

| goto j unconditional jump

| return return the top value of the stack

where op ∈ {+,−,×, /}, c ∈ Z, x ∈ X , and j ∈ PP.

Fig. 1. Instruction set for the JVMI.

3.1. Programs, memory model and operational semantics

3.1.1. Programs. A JVMI program P is given by a list of instructions taken from the

instruction set of Figure 1. We let the set X be the set of local variables and V be the

set of values, that is, V = �. Each program has a set of program points PP, which is

defined as {1 . . . n}, where n is the length of the list of instructions of P .

3.1.2. States. The set StateI of JVMI states is defined as the set of triples 〈i, ρ, os〉,
where i ∈ PP is the program counter, which points to the next instruction to be executed;

ρ ∈ X ⇀ V is a partial function from local variables to values; and os ∈ V� is an

operand stack.

3.1.3. Operational semantics. The small-step operational semantics of the JVMI is given

in Figure 2 as a relation � ⊆ StateI × (StateI + V), and is implicitly parametrised by a

program P .

In Figure 2, op denotes the standard interpretation of operation op in the domain of

values V. The semantics of each instruction is standard:

— push c pushes a constant c onto the top of the operand stack.

— binop op pops the two top operands of the stack and pushes the result of the binary

operation op using these operands.

— pop just pops the top of the operand stack.

— swap swaps the two top operand stack values.

— return ends the execution with the top value of the operand stack.

— load x pushes the value currently found in local variable x onto the top of the operand

stack.

— store x pops the top of the stack and stores it in local variable x.

— ifeq j pops the top of the stack and, depending on whether it is a null value or not, it

jumps to the program point j or continues to the next program point.

— goto j unconditionally jumps to program point j.

The transitive closure of � is denoted by �+.

3.1.4. Successor relation. It is often convenient to view programs as graphs. The graph

representation of programs is given by specifying its entry point (by convention it is

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1039

P [i] = push n

i, ρ, os i + 1, ρ, n :: os

P [i] = binop op n2 op n1 = n

i, ρ, n1 :: n2 :: os i + 1, ρ, n :: os

P [i] = pop

i, ρ, v :: os i + 1, ρ, os

P [i] = swap

i, ρ, v1 :: v2 :: os i + 1, ρ, v2 :: v1 :: os

P [i] = return

i, ρ, v :: os v

P [i] = load x x ∈ dom(ρ)

i, ρ, os i + 1, ρ, ρ(x) :: os

P [i] = store x x ∈ dom(ρ)

i, ρ, v :: os i + 1, ρ⊕{x v}, os
P [i] = ifeq j

i, ρ, 0 :: os j, ρ, os

P [i] = ifeq j n = 0

i, ρ, n :: os i + 1, ρ, os

P [i] = goto j

i, ρ, os j, ρ, os

Fig. 2. Operational semantics for the JVMI.

always 1), its exit points and the successor relation between program points. Intuitively, j

is a successor of i if performing a one-step execution from a state whose program point is

i may lead to a state whose program point is j. Also, j is a return point if it corresponds

to a return instruction. Formally, the successor relation �→ ⊆ PP × PP of a program P

is defined by the clauses:

— if P [i] = goto j, then i �→ j;

— if P [i] = ifeq j, then i �→ i + 1 and i �→ j;

— if P [i] = return, then i has no successors, and we write i �→;

— otherwise, i �→ i + 1.

We also define for each program P its set PPr of return points, that is, program points

with no successor, or, equivalently, program points that are mapped to a return instruction.

By abuse of notation, we write i �→ if i ∈ PPr .

3.2. Non-interference

The security policy is given by a lattice (S,�) of security levels and the policy of the

program. In the JVMI fragment, the policy of a program P is given by a statement of

the form �kv −→ kr , where �kv assigns a security level to the each local variables and kr sets

a security level of its output. In the rest of the paper, we will often view �kv as a partial

mapping from variables to security levels. The notion of a non-interferent program is

also defined relative to a security level kobs corresponding to the attacker: essentially, the

attacker can observe return values and variables whose level is less than or equal to kobs.

The policy of the program and the security level of the attacker induce a notion of

indistinguishability between local variable maps.

Definition 3.1 (local variables indistinguishability). For ρ, ρ′ : X ⇀ V, we have ρ ∼�kv,kobs
ρ′

if ρ and ρ′ have the same domain and ρ(x) = ρ′(x) for all x ∈ dom(ρ) such that
�kv(x) � kobs.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1040

In the rest of the paper, we shall sometimes omit the subscripts �kv and kobs if there is no

risk of confusion. We next define the notion of a non-interferent program: we first define

a weak notion of non-interferent program for a fixed attacker level and then say that a

program is non-interferent if and only if it is non-interferent for all attacker levels.

Definition 3.2 (non-interferent JVMI program). A program P is non-interferent with

respect to policy �kv −→ kr and attacker level kobs if either kr �� kobs or v1 = v2 for every

ρ1, ρ2, v1, v2 such that 〈1, ρ1, ε〉 �+ v1 and 〈1, ρ2, ε〉 �+ v2 and ρ1 ∼�kv ,kobs
ρ2.

Moreover, a program P is non-interferent with respect to policy �kv −→ kr if and only if

for all attacker levels kobs, P is non-interferent with respect to �kv −→ kr and kobs.

Our definition of non-interference is termination-insensitive, that is, it does not take

into account non-terminating executions of programs. Stronger definitions, which reject

programs whose termination behaviour depends on high inputs, have been considered

in the literature, but the type systems enforcing such policies tend to impose strong

restrictions on loops.

3.3. Informal presentation of the type system

This section points out some problems arising when we try to enforce non-interference

for unstructured programs and provides an informal account of the solutions.

Like any other information flow type system, our type system must prevent leakages

that occur through assigning secret values to public variables (direct flows), or through

branching over expressions that depend on secrets and performing operations in the

branches that affect the visible part of the state (indirect flows). Our type system prevents

direct flows through stack types, and indirect flows through a combination of control

dependence regions and the security environment.

3.3.1. Direct flows. In a high-level language, direct flows are prevented by the typing rule

for assignments, which is usually of the form


 e : k k � �kv(x)


 x := e : �kv(x)

(Volpano and Smith 1997), where �kv(x) is the security given to variable x by the policy,

and k is an upper bound of the security level of the variables occurring in the expression

e. The constraint k � �kv(x) ensures that the value stored in x does not depend on any

variable whose security level is not strictly less than that of x, and thus that there is no

illicit flow to x.

In a low-level language where intermediate computations are performed using an

operand stack, direct information flows are prevented by assigning a security level to each

value in the operand stack through a so-called stack type, and by rejecting programs that

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1041

attempt to store a value in a low variable when the top of the stack type is high:

P [i] = load x

i 
 st ⇒ �kv(x) :: st

P [i] = store x k � �kv(x)

i 
 k :: st ⇒ st

where st represents a stack type (a stack of security levels) and ⇒ represents a relation

between the stack type before execution and the stack type after the execution of load.

For instance, xL := yH is rejected by any sound information flow type system for a

while language because the constraint H � L generated by the typing rule for assignment

is violated. Likewise, the low-level counterpart

load yH
store xL

cannot be typed as the typing rule for load forces the top of the stack type to be high after

executing the instruction, and the typing rule for store generates the constraint H � L.

3.3.2. Indirect flows. In a high-level language with structured control flow, typing judge-

ments are of the form 
 c : k. Informally, if a command c is typable, then it is

non-interfering, and, moreover, if 
 c : H , then c does not modify any low variable. In

such systems, indirect flows are prevented by the typing rules branching statements, which

for if-then-else statements is usually of the form


 e : k 
 c1 : k1 
 c2 : k2 k � k1, k2


 if e then c1 else c2 : k

(Volpano and Smith 1997), which ensures that the write effects of c1 and c2 are not less

than or equal to the guard of the branching statement.

To prevent illicit flows in a low-level language, the typing rules for branching instructions

cannot just enforce local constraints, that is, they cannot refer only to the current program

point and its successors. Instead, the typing rules must also enforce global constraints that

prevent low assignments and updates occurring under high guards. Therefore, the typing

rules rely on a graph representation of the program, and an approximation of the scope

of branching statements using control dependence regions.

3.3.3. Control dependence regions. Our type system assumes that programs are bundled

with additional information about their control dependence regions. This assumption is

in line with the intended use of our type checker as a lightweight bytecode verifier and

streamlines the presentation by allowing us to focus on the information flow analysis

itself. The information is given in the form of two functions region and jun. The intuition

behind regions and junction points is that region(i) includes all program points executing

under the guard at i and that jun(i), if it exists, is the sole exit from the region of i: in

particular, whenever jun(i) is defined, there should be no return instruction in region(i).

Figure 3 provides examples of regions of two compiled programs. Note that in the picture

on the right, which corresponds to an if-then-else statement, the branching point i does

not belong to its region, whereas in the picture on the left, which corresponds to a

while-do statement, the branching point i does belong to its region.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1042

region(i)

jun(i)

i

jun(i)

region(i)

i

Fig. 3. (Colour online) Example of CDR for a while and an if construct.

The soundness of the type system requires that the functions verify the following

properties: any successor of i either belongs to the region of i or is equal to jun(i) (if

defined), and jun(i) is the sole exit from the region of i: in particular, if jun(i) is defined,

there should be no return instruction in region(i).

Definition 3.3 (safe CDR structure). A control dependence region (CDR) structure

(region, jun) given by a total function region and a partial function jun is safe if the

following properties hold:

CDR1: For all program points i and all successors j, k of i (i �→ j and i �→ k) such that

j �= k (i is hence a branching point), we have k ∈ region(i) or k = jun(i).

CDR2: For all program points i, j, k, if j ∈ region(i) and j �→ k, then either k ∈ region(i)

or k = jun(i).

CDR3: For all program points i, j, if j ∈ region(i) and j �→, then jun(i) is undefined.

Section 3.6 provides additional information on computing and checking CDR structures.

For the purpose of the soundness of the type system, it is sufficient to know that the

program is packaged with a CDR structure that satisfies the above properties.

3.3.4. Security environments. The type system is further parametrised by a security

environment that attaches a security level to each program point. Informally, the security

level of a program point is an upper bound of all the guards under which the program

point executes.

The security environment is used in conjunction with the CDR information to prevent

implicit flows. This is done in two steps. On the one hand, the typing rule for branching

statements enforces the requirement that the security environment of a program point is

indeed an upper bound of the guard under which it executes: for instance, the rule for

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1043

ifeq bytecode is of the form

P [i] = ifeq j ∀j ′ ∈ region(i), k � se(j ′)

i 
 k :: st ⇒ · · ·
.

On the other hand, the typing rules for instructions with a write effect, for example, store,

must check that the security level of the variable or field to be written is at least as high

as the current security environment. For instance, the rule for store becomes

P [i] = store x k � se(i) � �kv(x)

i 
 k :: st ⇒ st
.

The combination of the two rules allows us to prevent indirect flows. For instance, the

standard example of indirect flow is

if (yH) {xL = 0; } else {xL = 1; },

and this is compiled in our low-level language as

load yH
ifeq l1
push 0

store xL
goto l2

l1 : push 1

store xL
l2 : . . .

By requiring that se(i) � �kv(x), where i is the program point of the store instruction, and

by requiring a global constraint on the security environment for the ifeq, the type system

ensures that the above program will be rejected: se(i) must be H if the store instruction

is under the influence of a high ifeq, so the transition for the store instruction cannot be

typed.

3.4. Typing rules

Our typing rules are of the form

P [i] = ins constraints

�kv −→ kr, region, se, i 
 st ⇒ st′

P [i] = ins constraints

�kv −→ kr, region, se, i 
 st ⇒

where �kv −→ kr is a policy, st, st′ ∈ S� are stacks of security levels and ins is an instruction

found at point i in program P . Our type rules do not record the types of variables: indeed,

our type system is flow-insensitive.

Typing rules are used to establish a notion of typability. Following the ideas of Freund

and Mitchell (2003), typability stipulates the existence of a function that maps program

points to stack types such that each transition is well typed.

Definition 3.4 (typable program). A program P is typable with respect to a given policy
�kv −→ kr , a CDR structure region : PP → ℘(PP) and a security environment se : PP →

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1044

P [i] = binop op

kv → kr, region, se, i k1 :: k2 :: st ⇒ (k1 k2 se(i)) :: st

P [i] = pop

kv → kr, region, se, i k :: st ⇒ st

P [i] = return se(i) k ≤ kr

kv → kr, region, se, i k :: st ⇒
P [i] = push n

kv → kr, region, se, i st ⇒ se(i) :: st

P [i] = swap

kv → kr, region, se, i k1 :: k2 :: st ⇒ k2 :: k1 :: st

P [i] = store x se(i) k ≤ kv(x)

kv → kr, region, se, i k :: st ⇒ st

P [i] = load x

kv → kr, region, se, i st ⇒ kv(x) se(i) :: st

P [i] = goto j

kv → kr, region, se, i st ⇒ st

P [i] = ifeq j ∀j ∈ region(i), k ≤ se(j )

kv → kr, region, se, i k :: st ⇒ liftk(st)

Fig. 4. The transfer rules for the instructions in the JVMI.

S if there exists a function S : PP → S�, called a global typing, such that S1 = ε (the

operand stack is empty at the initial program point 1), and for all i, j ∈ PP, we have:

(1) i �→ j implies that there exists st ∈ S� such that �kv −→ kr, region, se, i 
 Si ⇒ st and

st � Sj;

(2) i �→ implies that �kv −→ kr, region, se, i 
 Si ⇒;

where we write Si instead of S(i) and � denotes the point-wise partial order on the type

stack with respect to the partial order taken on security levels. Two type stacks are in

relation only if they have the same size.

It may be helpful to read the definition of a typable program from the view of abstract

interpretation. Informally, a program P has type S if and only if S is a post-fixpoint of

the system of data flow equations induced by the transfer rules.

Figure 4 presents the typing rules for the JVMI. We use � to denote the lub of two

security levels, and for every k ∈ S, we let liftk be the point-wise extension to stack types

of λl. k � l. All rules are parametrised by a CDR region, a security environment se and a

policy �ka −→ kr .

The following sections comment on some essential rules.

3.4.1. The push n rule. The transfer rule for a push n instruction prevents indirect flows

by requiring that the value pushed onto the top of the operand stack has a security

level greater than the security environment at the current program point. The following

example compiled from the source program

return yH ? 0 : 1;

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1045

illustrates the need for this constraint:

load yH
l1 : ifeq l2

push 0

goto l3
l2 : push 1

⎫⎬
⎭ region(l1)

l3 : return

The program is interferent with respect to the policy (yH : H) −→ L, and hence should

not be typable. The typing rule for the return instruction correctly rejects this program

because the top of the stack is typed as high when reaching point l3. Indeed, the instructions

push 0 and push 1 are in the region of the branching instruction ifeq l1 and the security

environment se is high at this point.

3.4.2. The ifeq rule. The typing rule for ifeq requires the stack type on the right-hand

side of ⇒ to be lifted by the level of the guard, that is, the top of the input stack type.

We need to perform this lifting operation to prevent illicit flows through operand stack

leakages. The following example illustrates why we need to lift the operand stack (this

is a contrived example because it does not correspond to any simple source code, but,

nevertheless, it is accepted by a standard bytecode verifier):

push 0

push 1

load yH
l1 : ifeq l2

swap

pop

goto l3
l2 : pop

⎫⎪⎪⎬
⎪⎪⎭

region(l1)

l3 : store xL

In this example, the final value of variable xL is equal to 0 or 1, and it reveals if the

value of yH is 0 or not. So the program is interferent. Our type system correctly rejects

this program. Indeed, the rule for ifeq at point l1 lifts the operand stack as high, and, in

particular, constrains the top of the stack at point l3 to be a high value. Then, since the

rule for store prevents the assignment from high to low, the program is rejected.

One may argue that lifting the entire stack is too restrictive since it leads the typing

system to reject safe programs. Indeed, it should be possible, at the cost of added

complexity, to refine the type system to avoid lifting the entire stack.

One may also argue that lifting the stack is unnecessary, because in most programs†

the stack at branching points only has one element, in which case a more restrictive rule

† And even if this condition does not hold, code transformation is able to obtain an equivalent program

respecting it (Leroy 2002).

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1046

of the form

P [i] = ifeq j ∀j ′ ∈ region(i).k � se(j ′)

i 
 k :: ε ⇒ ε

is sufficient.

3.4.3. The return rule. The transfer rule for return requires se(i) � kr , which prevents

return instructions under the guard of expressions with a security level greater than kr . In

addition, the rule requires that the value on the top of the operand stack has a security

level � kr since it will be observed by the attacker at level kr . The following example,

which corresponds to the source program

if (yH) {return 0; } else {return 1; },

illustrates why we need to prevent return instructions from appearing in high regions:

load yH
l1 : ifeq l2

push 0

return

l2 : push 1

return

⎫⎪⎪⎬
⎪⎪⎭

region(l1)

This program is interferent with respect to a policy �kv −→ L because there is a return

in a high ifeq and the result will be observed by the attacker. This program is correctly

rejected by the type system: the rule for the ifeq forces the operand stack to be high upon

reaching the return instruction, and the return rule prevents the program from returning

an observable value in a high-security environment.

3.5. Type system soundness

The type system is sound, in the sense that if a program is typable, then it is non-interferent.

Theorem 3.5. If P is a typable JVMI program with respect to a safe CDR (region, jun)

with a policy �ka −→ kr , then P is non-interferent with respect to the policy associated

with �ka −→ kr .

The proof of soundness is based on some assumptions concerning the CDR information,

two unwinding lemmas and two lemmas about preserving high contexts.

The unwinding lemmas show that the execution of typable programs does not reveal

secret information. They are stated relative to the small-step semantics � and to a notion

of state indistinguishability ∼. The main difficulty in defining state indistinguishability

resides in defining a good notion of operand stack indistinguishability. In order to

account for high branching instructions, and to allow us to prove the step-consistent

unwinding lemmas below, indistinguishability between states must encompass states that

have operand stacks of different length.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1047

Operand stack Legend

indistinguishability

High values

Low values

Fig. 5. Operand stack indistinguishability.

We require operand stacks to be indistinguishable point-wise on some common top

part, and then to be high in the bottom part, on which they may not coincide, as shown

in Figure 5. High operand stacks are defined relative to a stack type.

Definition 3.6 (high operand stack). Let os ∈ V� be an operand stack and st ∈ S� be a

stack type. We write high(os, st) if os and st have the same length n and st[i] �� kobs for

every 1 � i � n.

Definition 3.7 (operand stack indistinguishability). Let os, os′ ∈ V� and st, st′ ∈ S�. Then

os : st ∼ os′ : st′ is defined inductively as follows:

high(os, st) high(os′, st′)

os : st ∼ os′ : st′

os : st ∼ os′ : st′ v = v′ k � kobs

v :: os : k :: st ∼ v′ :: os′ : k :: st′

os : st ∼ os′ : st′ k �� kobs k′ �� kobs

v :: os : k :: st ∼ v′ :: os′ : k′ :: st′

Note that in the second rule the top of the two stack types are necessarily equal (and

low), while in the last rule they can be distinct (but not low). This distinction is necessary

because we want to handle an arbitrary lattice of security levels.

State indistinguishability can then be defined component-wise on state structure.

Definition 3.8 (state indistinguishability). Two states 〈i, ρ, os〉 and 〈i′, ρ′, os′〉 are indistin-

guishable with respect to st, st′ ∈ S�, denoted 〈i, ρ, os〉 : st ∼ 〈i′, ρ′, os′〉 : st′, if and only

if os : st ∼ os′ : st′ and ρ ∼ ρ′ hold.

We say that the security environment se is high in region region(i) if se(j) �� kobs for

all j ∈ region(i). A state 〈i, ρ, os〉 and a stack type st are high if high(os, st) holds.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1048

We now turn to the unwinding lemmas. The lemmas consider a program P that

comes equipped with its policy �kv −→ kr , its CDR structure (region, jun) and a security

environment se. All are left implicit in the rest of this section. The lemmas state:

— locally respects:

If s1 : st1 ∼ s2 : st2, and pc(s1) = pc(s2) = i, and s1 � s′
1, s2 � s′

2, i 
 st1 ⇒ st ′
1, and

i 
 st2 ⇒ st ′
2, then s′

1 : st ′
1 ∼ s′

2 : st ′
2.

— step-consistent:

If s1 : st1 ∼ s2 : st2 and s1 � s′
1 and pc(s1) 
 st1 ⇒ st ′

1, and se(pc(s1)) �� kobs, and

(st1, s1) is high, then s′
1 : st ′

1 ∼ s2 : st2.

Both lemmas are proved by a case analysis on the instruction to be executed.

In order to apply unwinding lemmas repeatedly, we need a family of results that deals

with the preservation of high contexts.

— high branching:

If s1 : st1 ∼ s2 : st2 with pc(s1) = pc(s2) = i and pc(s′
1) �= pc(s′

2), if s1 � s′
1, s2 � s′

2,

i 
 st1 ⇒ st ′
1 and i 
 st2 ⇒ st ′

2, then (s′
1, st

′
1) and (s′

2, st
′
2) are high and se is high in

region(i).

— high step:

If s � s′, and pc(s) 
 st ⇒ st ′, and se(pc(s)) �� kobs, and (s, st) is high, then (s′, st ′) is

high.

These lemmas are proved by case analysis on the instruction being executed, and rely on

the CDR properties.

The second family of results deals with the monotonicity of indistinguishability.

— high stack type sub-typing:

If (s, st) is high and st � st ′, then (s, st ′) is high.

— indistinguishability double monotonicity:

If s1 : st1 ∼ s2 : st2, st1 � st and st2 � st , then s1 : st ∼ s2 : st .

— indistinguishability single monotonicity:

If s1 : st1 ∼ s2 : st2, st1 � st ′
1 and (s1, st1) is high, then s1 : st ′

1 ∼ s2 : st2.

The proofs make use of the unwinding lemmas, the high context lemmas, the monotonicity

lemmas and the CDR properties, and proceeds by induction on execution traces. In the

induction step,† we have two executions s0 � · · · � sn and s′
0 � · · · � s′

m such that

pc(s0) = pc(s′
0) and s0 : Spc(s0) ∼ s′

0 : Spc(s′
0)
, and we want to establish that states sn and s′

m

are indistinguishable,

sn : Spc(sn) ∼ s′
m : Spc(s′

m),

or that both (sn, Spc(sn)) and (s′
m, Spc(s′

m)) are high.

We assume the property holds for any strictly shorter execution traces (the induction

hypothesis) and suppose n > 0 and m > 0. We write i0 = pc(s0) = pc(s′
0). We first note

† The base cases depend on technical properties about return points, which we omit here.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1049

that by the locally respects lemma and the typability hypothesis, s1 : st ∼ s′
1 : st ′ for some

stack types st and st ′ such that i0 
 Si0 ⇒ st , st � Spc(s1), i0 
 Si0 ⇒ st ′, st ′ � Spc(s′
1)
. Then:

— If pc(s1) = pc(s′
1), we can apply the indistinguishability double monotonicity lemma to

establish that s1 : Spc(s1) ∼ s′
1 : Spc(s′

1)
and conclude by the induction hypothesis.

— If pc(s1) �= pc(s′
1), we know by the high branching lemma that se is high in region

region(i0) and (s1, st) and (s′
1, st

′) are high. From the high stack type sub-typing lemma,

this implies that both (s1, Spc(s1)) and (s′
1, Spc(s′

1)
) are high. By CDR1, we know that

pc(s1) ∈ region(i0) or pc(s1) = jun(i0). It is now easy to show by induction on the

trace s1 � · · · � sn that either there exists k, 1 � k � n such that k = jun(i0) and

sk : Spc(sk) ∼ s′
0 : Si0 (the junction point is reached) or pc(sn) ∈ region(i0) and (sn, Spc(sn))

is high (the trace stays in the region of i0). This is proved using CDR2 and the high

step and indistinguishability single monotonicity lemmas. Note that in the second case,

where pc(sn) ∈ region(i0), we necessarily have jun(i0) undefined by CDR3. A similar

property holds for trace s′
1 � · · · � s′

m and we can group the different cases into two

main cases:

(1) jun(i0) is defined and there exists k, k′, 1 � k � n and 1 � k′ � m such that

k = k′ = jun(i0) and sk : Spc(sk) ∼ s′
0 : Si0 and s0 : Si0 ∼ s′

k′ : Spc(s′
k′ ). Since

s0 : Si0 ∼ s′
0 : Si0 , we have by the transitivity and symmetry of ∼, that

sk : Spc(sk) ∼ s′
k′ : Spc(s′

k′ )

with pc(sk) = pc(s′
k′ ), and we can conclude by the induction hypothesis.

(2) jun(i0) is undefined and both (sn, Spc(sn)) and (s′
m, Spc(s′

m)) are high.

3.6. Computing and verifying the CDR structure

The CDR information comes bundled with the code and hence is untrusted. Therefore, it

must be verified by a CDR checker. Specifically, the CDR checker must ensure that the

CDR information complies with the CDR properties – we have shown that these properties

are sufficient to guarantee the soundness of the type system. The CDR properties can be

checked naively in cubic time, and under specific hypotheses, more effective verification

methods can be designed.

A related issue is how to compute control dependence regions that satisfy the CDR

properties. In fact, CDRs are tightly connected to post-dominators, and it is reasonably

easy to prove that the CDR properties hold whenever the CDR information is computed

using post-dominators. Recall that a program point j post-dominates another program

point i if i �→+ j, that is, j is reachable from i in a non-zero number of steps, and for

every return point k, all paths from i to k go through j. We then say that j is the junction

point of i, written jun(i), if i is a branching point and j is equal to or is post-dominated by

all post-dominators of i. With such a definition, the junction point is a partial function:

for example, a branching point that contains a return statement in one of its branches

does not have a junction point. Finally, we define region(i) as the set of points that can

be reached from i and that are post-dominated by jun(i), that is, j ∈ region(i) if and

only if i �→+ j and jun(i) post-dominates j – in particular, jun(i) is defined; otherwise,

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1050

j ∈ region(i) if and only if i �→+ j. Note that, under this construction, i ∈ region(i) entails

i �→+ i.

3.7. Verifying typability

The typability of a program against a policy can be verified using a dataflow analysis

(Hankin et al. 2005). More specifically, the checker takes as input a program with its

CDR information and security annotations (in this case a security environment, a security

level for each variable and the result), and a type (that is, a map from program points to

stack type), and checks that the program is typable using a lightweight variant of Kildall’s

algorithm – see, for example, Rose (2003). Since programs are annotated, the checker does

not need to perform a fixpoint computation, and can verify the program in one pass.

The following are a few practical issues connected with the use of our lightweight

information flow checker in a Proof Carrying Code scenario:

(1) Our checker requires programs to carry a significant amount of annotation. However,

its role is merely to check that the program is secure, whereas the task of automatically

inferring annotations and reducing the programmer’s burden is typically done at

source level.

(2) The security environment, program type and control dependence regions can be

generated automatically by a certifying compiler, so the process of generating an

annotated JVM program that is processable by our checker from a typable Java

program can be automated.

(3) Finally, the information flow checker is ‘reasonably efficient’, in the sense that the

CDR information can be computed efficiently, the data flow analysis is performed in a

single pass and the constraints generated by the transfer rules only involve inequalities

on security levels.

4. JVMO: the object-oriented extension of JVMI

The object-oriented extension of the JVMI is called the JVMO and includes arrays,

instance fields, the creation of new instances and null pointers. However, it does not

include methods, which will be added in Section 5.

4.1. Programs, memory model and operational semantics

4.1.1. Programs. JVMO programs are extended JVMI programs equipped with a set C
of class names, a set F of identifiers representing field names and a set TJ of Java types

(a precise description of these types is not necessary here).

Programs use the extended set of instructions given in Figure 6.

4.1.2. States. The set of JVMO values is extended to V = � ∪ L ∪ {null}, where L is

an (infinite) set of locations and null denotes the null pointer. By distinguishing between

locations and integer values, we can enforce in the semantics of programs the requirement

that they do not perform pointer arithmetic in JVMO.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1051

instr ::= . . .

| new C create new object in the heap

| getfield f load value of field f on stack

| putfield f store top of stack in field f

| newarray t create new array of element of type t in the heap

| arraylength get the length of an array

| arrayload load value from an array

| arraystore store value in array

Fig. 6. Additional instruction set for the JVMO.

A JVMO state is now of the form 〈i, ρ, os, h〉, where i, ρ and os are defined as in

JVMI and h is a heap, which accommodates dynamically created objects and arrays.

Heaps are modelled as partial functions h : L ⇀ O + A, where the set O of objects

is modelled as C × (F ⇀ V) (that is, each object o ∈ O possesses a class, denoted

by class(o), and a partial function to access field values) and the set A of arrays is

modelled as � × (� ⇀ V) × PP (that is, each array a ∈ A possesses a length, denoted

by a.length, a partial function to access array values and a creation point). The creation

point information is not mandatory for specifying program behaviours, but will be useful

when defining array indistinguishability. We write o.f for the access to the value of field

f, and use o⊕{f �→ v} to denote the update of an object o at field f with a value v (we

use h⊕{l �→ o} in the same way for heap update) and Heap is the set of heaps.

4.1.3. Operational semantics. The operational semantics for the new instructions relies on

an allocator function fresh : Heap → L that given a heap returns the location for a fresh

object, and on a function default : C → O that returns for each class a default object of

that class. The function default is specified according to the standard Java convention†:

for all defined fields f ∈ F of a class C ∈ C,

default(C).f =

{
0 if f has a numeric type

null if f has a object type.

A similar operator

defaultArray : � × TJ → (� ⇀ V)

models array initialisation.

The semantics is given in Figure 7 as a relation

� ⊆ StateO × (StateO + (V × Heap)).

In words:

— new C pushes a fresh location on top of the operand stack associated with a new

initialised object. The heap is updated with this new object.

— getfield f pops a location l from the operand stack. The value of the field f in location

l is fetched and pushed onto the operand stack.

† We assume that each field f has a declared type.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1052

P [i] = new C l = fresh(h)

i, ρ, os, h i + 1, ρ, l :: os, h⊕{l default(C)

P [i] = getfield f l ∈ dom(h) f ∈ dom(h(l))

i, ρ, l :: os, h i + 1, ρ, h(l).f :: os, h

P [i] = putfield f l ∈ dom(h) f ∈ dom(h(l))

i, ρ, v :: l :: os, h i + 1, ρ, os, h⊕{l h(l)⊕{f v

P [i] = return

i, ρ, v :: os, h v, h

P [i] = newarray t l = fresh(h) n ≥ 0

i, ρ, n :: os, h i + 1, ρ, l :: os, h⊕{l (n, defaultArray(n, t), i)

P [i] = arraylength l ∈ dom(h)

i, ρ, l :: os, h i + 1, ρ, h(l).length :: os, h

P [i] = arrayload l ∈ dom(h) 0 ≤ j < h(l).length

i, ρ, j :: l :: os, h i + 1, ρ, h(l)[j] :: os, h

P [i] = arraystore l ∈ dom(h) 0 ≤ j < h(l).length

i, ρ, v :: j :: l :: os, h i + 1, ρ, os, h⊕{l h(l)⊕{j v

Fig. 7. Operational semantics for additional JVMO instructions.

— putfield f uses the top of the stack to update the object associated with the location

under the top of the operand stack.

— return now returns the top of the operand stack, and the current heap.

— newarray t pops a positive integer n from the operand stack to create a new initialised

array and pushes the corresponding fresh location on top of the operand stack. The

heap is updated with this new array including its length n and creation point i.

— arraylength pops a location l from the operand stack and pushes the length of the

corresponding array.

— arrayload pops an index j and a location l from the operand stack. The content of

the array in location l at index j is fetched and pushed onto the operand stack.

— arraystore stores the top of the stack into the jth element of an array a, where j and

a are determined by the second and third values, respectively, in the stack.

4.1.4. Successor relation. The successor relation is extended by adding the clause i �→ i+1

for all new instructions.

4.2. Non-interference

In order to extend the notion of indistinguishability to heaps we follow Banerjee and

Naumann (2005): we consider that heaps with different locations for ‘high’ objects (that

is, objects that have been created in a high security environment) cannot be distinguished

by an attacker, so indistinguishability is defined relative to a bijection β on (a partial set

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1053

of) locations in the heap. The bijection maps low objects (low objects are objects whose

references might be stored in low fields or low variables) allocated in the heap of the

first state to low objects allocated in the heap of the second state. The objects might be

indistinguishable, even if their locations are different during execution. Since values can

now also be locations, value indistinguishability is defined relative to the bijection β.

For array objects, we extend security levels by adding array levels of the form k[kc].

These levels represent the security level of an array, distinguishing the level kc of the

content of the array (which could itself be an array) and the level k of the length of the

array and of the reference itself. Hence, an array of type L[H] can only be updated in

a high context (its content is high) but can be allocated in any context (its length and

the value of its reference are low). We use Sext to denote the extension of security levels

S to include array security levels. The partial order on S is extended to �ext with the

following inductive definition:

k � k′ k, k′ ∈ S
k�extk′

k � k′ k, k′ ∈ S kc ∈ Sext

k[kc]�
extk′[kc]

.

An extended level k[kc] is considered to be low (written k[kc] � kobs) if k � kobs. More

generally, every time we compare an element k[kc] ∈ Sext with an element k0 ∈ S, we just

compare k and k0 with respect to the partial order on S only. Apart from kobs and the

elements of the security environments, all previous types (security types of variable and

stack types) are now elements of Sext. Indistinguishability for JVMO is defined relative to

a global mapping ft : F → Sext that maps fields to security levels (ft will be left implicit

in the rest of the paper).

Definition 4.1 (value indistinguishability). Given two values v1, v2 ∈ V and a partial

function β ∈ L ⇀ L, value indistinguishability v1 ∼β v2 is defined by the clauses:

null ∼β null
v ∈ N
v ∼β v

v1, v2 ∈ L β(v1) = v2

v1 ∼β v2
.

The definitions of both operand stack indistinguishability and local variables indistin-

guishability are now parametrised by β since values on the operand stack and in variables

can also be locations.

Indistinguishability for array objects is defined relative to a global mapping at : PP →
Sext that maps the creation points of arrays to security levels for their contents. The

mapping at will be left implicit in the rest of the paper. We will abusively use at(a) to

denote the level associated with the creation point of an array a. The definition of array

indistinguishability says that two arrays are indistinguishable if they have the same length

and their contents are indistinguishable when their level is low.

Definition 4.2 (array indistinguishability). Two arrays a1, a2 ∈ A are indistinguishable

with respect to an attacker level kobs and a function β ∈ L ⇀ L if and only if

a1.length = a2.length,

and, moreover, if at(a1) � kobs, then for any index i such that 0 � i < a1.length, we have

a1[i] ∼β a2[i].

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1054

The definition of object indistinguishability says that two objects are indistinguishable

if they have the same class and the values held in their low fields are indistinguishable.

Definition 4.3 (object indistinguishability). Two objects o1, o2 ∈ O are indistinguishable

with respect to an attacker level kobs and a function β ∈ L ⇀ L if and only if o1 and o2

are objects of the same class and for all fields f ∈ dom(o1) such that ft(f) � kobs, we have

o1.f ∼β o2.f.

Note that because o1 and o2 are objects of the same class, we have dom(o1) = dom(o2)

and o2(f) is well defined.

Heap indistinguishability requires β to be a bijection between the low domains (that

is, locations that might be reachable from low local variables/fields) of the heaps under

consideration.

Definition 4.4 (heap indistinguishability). Two heaps h1 and h2 are indistinguishable with

respect to an attacker level kobs and a partial function β ∈ L ⇀ L, written h1 ∼kobs ,β h2,

if and only if:

— β is a bijection between dom(β) and rng(β).

— dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2).

— For every l ∈ dom(β), h1(l) ∼kobs ,β h2(β(l)) and h1(l) and h2(β(l)) are either two objects

or two arrays.

As in JVMI, state indistinguishability can then be defined component-wise on the state

structure.

Finally, non-interference in JVMO is extended using the relations defined above.

Definition 4.5 (non-interferent JVMO program). A program P is non-interferent with

respect to its policy �kv −→ kr if for every attacker level kobs and every partial function

β ∈ L ⇀ L and every ρ1, ρ2 ∈ X ⇀ V, h1, h2, h
′
1, h

′
2 ∈ Heap, v1, v2 ∈ V such that

〈1, ρ1, ε, h1〉 �+ v1, h
′
1, 〈1, ρ2, ε, h2〉 �+ v2, h

′
2 and h1 ∼kobs ,β h2, ρ1 ∼�kv ,kobs ,β

ρ2, there exists a

partial function β′ ∈ L ⇀ L such that β ⊆ β′, h1 ∼kobs ,β′ h2 and, moreover, if kr � kobs,

then v1 ∼β′ v2.

Here β ⊆ β′ means that dom(β) ⊆ dom(β′) and for all locations l ∈ dom(β), we have

β(l) = β′(l). The definition of non-interference allows for β to be extended so that we can

handle objects that are dynamically created during the execution.

4.3. Typing rules

The abstract transition system of the JVMO extends that of the JVMI by adding the

typing transfer rules of Figure 8. The typing rules we propose for arrays follow Askarov

and Sabelfeld (2005), which argues that public arrays must be allowed to handle secret

information if they are going to be usable for realistic case studies such as the mental

poker they have programmed in Jif (Myers 1999).

The following sections comment on the rules.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1055

P [i] = new C

kv → kr, region, se, i st ⇒ se(i) :: st

P [i] = putfield f (se(i) k2) extk1 ≤ ft(f) k1 ∈ Sext k2 ∈ S
kv → kr, region, se, i k1 :: k2 :: st ⇒ st

P [i] = getfield f k ∈ S
kv → kr, region, se, i k :: st ⇒ (k se(i)) extft(f) :: st

P [i] = newarray t k ∈ S
kv → kr, region, se, i k :: st ⇒ k[at(i)] :: st

P [i] = arraylength k ∈ S kc ∈ Sext

kv → kr, region, se, i k[kc] :: st ⇒ k :: st

P [i] = arrayload k1, k2 ∈ S kc ∈ Sext

kv → kr, region, se, i k1 :: k2[kc] :: st ⇒ ((k1 k2) extkc) :: st

P [i] = arraystore ((k2 k3) extk1)≤extkc k2, k3 ∈ S k1, kc ∈ Sext

kv → kr, region, se, i k1 :: k2 :: k3[kc] :: st ⇒ st

Fig. 8. Additional typing transfer rules for the JVMO.

4.3.1. The new rule. The transfer rule for new adds to the stack type the security level

of the current program point, which imposes a constraint on the security level from

which the object can be accessed. For example, if new is executed in a high security

environment, the reference to the object cannot be accessed from a low variable. However,

if the object is created in a low security environment, it can be stored in either a high or

low variable/field.

4.3.2. The putfield rule. The transfer rule for putfield requires that k1 � ft(f) (where k1

is the security type of the field of the object) in order to prevent an explicit flow from

a high value to a low field. The constraint se(i) � ft(f) prevents an implicit flow caused

by an assignment to a low field in a high security environment. Finally, the constraint

k2 � ft(f) prevents the modification of low fields of high objects that may be aliases to

low objects.

To illustrate the last point, consider the source program

C xL = new C();

zH = yH ? new C() : xL;

zH.fL = 1;

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1056

We assume that C is a class that has a low field named fL. Let xL be a low variable and

yH, zH be high variables. The bytecode for this program is

new C

store xL
load yH

l1 : ifeq l2
new C

goto l3
l2 : load xL

⎫⎬
⎭ region(l1)

l3 : store zH
load zH
push 1

putfield fL

In this program, depending on the test on yH , variable xL and zH might be aliases to the

same object (of class C). Hence, the assignment to field fL might have a side effect on

the object in xL. This program is rejected because of the putfield rule, which prevents this

type of leak caused by aliasing (with the constraint k2 � ft(f) preventing assignments to

low fields from high target objects).

4.3.3. The getfield f rule. In the rule for getfield f the value pushed on the operand

stack has a security level equal to or greater than ft(f) and the level k of the location (to

prevent explicit flows) and equal to or greater than se(i) for implicit flows.

4.3.4. The newarray rule. The transfer rule for newarray creates a new security level for

the newly created array, combining the length level k and the content level at(i).

4.3.5. The arraylength rule. The transfer rule for arraylength only uses the length level

k of the extended level k[kc] found on top of the stack type to give a security level to the

length of an array.

4.3.6. The arrayload rule. The transfer rule for arrayload pushes a security level

(k1 � k2)�extkc

onto the top of the stack. The join operation

�ext ∈ S × Sext → Sext

is defined by

k′�extk = k′ � k

when k, k′ ∈ S and

k′�extk[kc] = (k′ � k)[kc]

when k, k′ ∈ S and kc ∈ Sext. Here k1 allows us to prevent implicit flows through a high

index and k2 through an alias.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1057

The following example, which corresponds to a source program like

int xL = aL[L][iH];

illustrates the first point:

load aL[L]

load iH
arrayload

store xL

where xL is a low variable, aL[L] is a low array variable (both for reference and content

levels) and iH is a high integer variable.

In this program, if the low array aL[L] contains distinct elements at different positions,

an attacker could learn the value of iH by looking at the result of aL[L][iH]. This program

is rejected by our type system because aL[L][iH] receives a type H in the arrayload rule,

and storing a high value in a low variable is impossible because of the store rule.

The second point corresponds to an access aH[L][iL], where aH[L] may either be aliased

to a low array a0L[L] containing only the 0 integer or aliased to a low array a1L[L] containing

only the integer 1. This means that observing the value of aH[L][iL] would allow an attacker

to know which of these arrays is aliased to aH[L].

4.3.7. The arraystore rule. The transfer rule for arraystore uses the partial order �ext

previously defined. It constrains k1 and kc to prevent an explicit flow from a high value to

an array declared with a low content. It also constrains k2 and kc to prevent an information

leak by updating a low array content with a high index. Without it, an assignment of

the form aL[L][iH] = 1 in a low array aL[L] only containing the integer 0 would reveal the

value of iH.

Finally, the constraint between k3 and kc prevents the modification of low array contents

if its reference is high. This is, for example, required if an array aH[L] may be aliased to

two distinct low array a0L[L] and a1L[L]. Observing which of these low arrays is modified as

a side effect of the assignment aH[L][iL] = vL would allow an attacker to learn which of

these arrays is effectively equal to aH[L].

4.4. Type system soundness

As in the JVMI case, the type system is sound in the sense that if a program is typable,

it is non-interferent.

Theorem 4.6. Let P be a typable JVMO program with respect to the safe CDR (region, jun)

and with a signature �kv −→ kr . Then P is non-interferent with respect to the policy

associated with �kv −→ kr .

5. JVMC: the method extension of JVMO

In this section we extend our analysis to include methods. The extension is compatible

with bytecode verification in the sense that the analysis is modular.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1058

Pm[i] = invokevirtual mID i, ρ, os, h JVMO i , ρ , os , h

i, ρ, os, h m i , ρ , os , h

Pm[i] = invokevirtual mID m = lookupP (mID, class(h(l)))

l ∈ dom(h)

1, {this os1} +
m

v, h

i, ρ, os1 :: l :: os2, h m i + 1, ρ, v :: os2, h

Fig. 9. Operational Semantics for the JVMC.

5.1. Programs, memory model and operational semantics

5.1.1. Programs. Each program comes equipped with a set M of method names together

with a set C of classes as in the JVMO. The set of classes is now organised as a hierarchy

to model the class inheritance relation. This hierarchy will be used to resolve virtual calls.

Each method m possesses a list of instructions Pm. For simplicity, we require that all

methods return a value. The set of instructions of the JVMO is extended by adding the

new instruction invokevirtual mID for calling a virtual method. Here, mID is a method

identifier, which may correspond to several methods in the class hierarchy according to the

overriding of methods. We assume there is a function lookupP attached to each program

P that takes a method identifier and a class name and returns the method to be executed.

5.1.2. States. While JVM states contain a frame stack to handle method invocations,

it is convenient for showing the correctness of static analyses to rely on an equivalent,

so-called mix-step semantics, where method invocation is performed in one big-step

transition. Thus, a JVMC state is defined in the same way as for the JVMO.

5.1.3. Operational semantics. The mix-step operational semantics for method calls fully

evaluates those calls from an initial state to a return value and uses it to continue the

current computation. The semantic rules are given in Figure 9. As can be seen in the

first rule, the semantics of instructions is like that for the JVMO, except for the new

instruction invokevirtual, whose semantics is given by the second rule. The location l is

used to resolve the virtual call. Given the class of l and the identifier mID, a method m′ is

found in the class hierarchy (through the lookup operator). The transitive closure of �m

is then used to obtain the result of the execution of m′. The execution of m′ is initialised

with location l for the reserved variable this , and the elements of the operand stack os1

for the other variables†.

5.1.4. Successor relation. We extend the successor relation of the JVMO by adding the

clause i �→ i + 1 for the new instruction invokevirtual. This illustrates our modular

verification technique: the CDR is computed method by method.

† We assume that all the other variables used for local computation in the method are initialised by a default

value according to their type.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1059

5.2. Non-interference

Non-interference for a JVMC program is given by local policies defined by security

signatures for every method, and the same global policy mappings ft and at as we

introduced for the JVMO.

Method signatures are standard (Myers 1999; Banerjee and Naumann 2005), and are

of the form �kv
kh−→ kr , where �kv provides the flow-insensitive security level of all method

variables (whether a parameter or not), and kr is the security level of the result of the

method. The heap-effect level kh is needed to make the analysis modular – it represents a

lower bound for the security levels of fields that are affected during the execution of the

method.

A method is only allowed to perform field updates on fields whose level is greater than

kh. We will now formally define this notion of a side-effect preorder.

Definition 5.1 (side-effect preorder). Two heaps h1, h2 ∈ Heap are side-effect preordered

with respect to a security level k ∈ S (written as h1 �k h2) if and only if dom(h1) ⊆ dom(h2)

and for all locations l ∈ dom(h1) and all fields f ∈ F such that k �� ft(f), we have

h1(l).f = h2(l).f.

This enables us to define the notion of a side-effect-safe method.

Definition 5.2. A method m is side-effect-safe with respect to a security level kh if for

all local variables in ρ ∈ X ⇀ V, all heaps h, h′ ∈ Heap and values v ∈ V, we have

〈1, ρ, ε, h〉 �+
m v, h′ implies h �kh h

′.

The notion of a non-interferent method can be stated using the same indistinguishability

relation as for the JVMO. A method m is said to be non-interferent for signature �kv−→kr
if for any attacker level kobs and any two (normally) terminating executions initiated

with indistinguishable arguments according to �kv and indistinguishable heaps according

to kobs and the global policy ft, the results are indistinguishable by kr and their heaps are

indistinguishable according to the global policy.

Definition 5.3 (non-interferent JVMC method). A method m is non-interferent with respect

to a policy �kv−→kr if for every attacker level kobs and every partial function β ∈ L ⇀ L
and every ρ1, ρ2 ∈ X ⇀ V, h1, h2, h

′
1, h

′
2 ∈ Heap, v1, v2 ∈ V such that 〈1, ρ1, ε, h1〉 �+

m v1, h
′
1,

〈1, ρ2, ε, h2〉 �∗
m v2, h

′
2 and h1 ∼kobs ,β h2, ρ1 ∼�kv ,kobs ,β

ρ2, there exists a partial function

β′ ∈ L ⇀ L such that β ⊆ β′, h′
1 ∼kobs ,β′ h′

2 and, moreover, if kr � kobs, then v1 ∼β′ v2.

A method is secure if it is side-effect safe and non-interferent.

Definition 5.4 (secure JVMC method). A method m is secure with respect to a policy

�kv
kh−→ kr if m is side-effect-safe with respect to kh and m is non-interferent with respect to

�kv−→kr .

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1060

Let Γ be a table of method signatures. This table associates with each method identifier†

mID and security level k ∈ S, a security signature Γm[k]. This signature gives the security

policy of the method m called on an object of level k (as in Banerjee and Naumann (2005)

for source programs). The set of security signatures of a method m is defined by

PoliciesΓ(m) = {Γm[k] | k ∈ S}. (1)

Note that for coherence, each Γm[k] should give type k to its local variable this. In the

rest of the paper, Γ will often be left implicit. However, we will use it to define the notion

of a secure program.

Definition 5.5 (secure JVMC program). A program is secure with respect to a table of

method signatures Γ if for all its methods m, we have m is safe with respect to all policies

in PoliciesΓ(m).

Example 5.6. Let P be a program that includes a method m and a class C with field f.

Let m have variables xH, yL and a unique security signature H,L
H−→ H . We assume that

ft(f) = H with respect to the global mapping ft.

If the code of m is defined by

new C

store yL
load xH
ifeq l1
load yL
push 1

putfield f

l1 : load yL
getfield f

return

then method m is non-interferent because: starting from equal values for yL (yL represents

the low part of the state as stated by the security signature), the low part of the memory

is not modified at all during the execution of m. There are no assignments to the low

fields: this respects the high write effect of the method required by the policy.

5.3. Typing rules

The information flow type system enforces a method-wise verification strategy, using

method signatures in the transfer rule for method invocation. All typing rules are the

same as the JVMO typing rules, except for putfield, which needs modification, and the

virtual call rule, which is new. These two rules are given in Figure 10.

† Associating signatures with method identifiers instead of methods allows us to enforce the requirement that

method overriding preserves the declared security signatures.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1061

Pm[i] = putfield f k1 se(i) k2 ≤ ft(f) kh ≤ ft(f)

region, se, ka
kh−→ kr, i k1 :: k2 :: st ⇒ st

Pm[i] = invokevirtual mID ΓmID [k] = ka

kh−→ kr

k kh se(i) ≤ kh length(st1) = nbArguments(mID)

k ≤ ka[0] ∀i ∈ [0, length(st1) − 1], st1[length(st1) − i] ≤ ka[i + 1]

region, se, ka
kh−→ kr, i st1 :: k :: st2 ⇒ (kr k se(i)) :: st2

Fig. 10. The new transfer rules for the instructions of the JVMC.

For putfield, only one constraint is added comapred with the previous JVMO rule. The

new constraint kh � ft(f) restricts the modification of fields to those fields whose security

level is greater than the heap effect of the current method.

The typing rule for virtual call contains several constraints. The heap-effect level of the

called method is constrained in several ways. The goal of the constraint k � k′
h is to avoid

invocation of methods with low effect on the heap with high target objects. Two different

target objects (in two executions) may mean that the body of the method to be executed is

different in each execution. If the effect of the method is low (kh � kobs), then low memory

is modified differently in each execution, leading to an information leak. The constraint

se(i) � k′
h prevents implicit flows (low assignment in high regions) during the execution

of the called method. The constraint kh � k′
h prevents the called method from updating

field with a level lower that kh. The security level of the return value is (k′
r � k � se(i)). The

security level k′
r in (k′

r � k � se(i)), which is obtained from the signature of mID, prevents

its result from flowing to variables or fields with a lower security level. The security level

k prevents flows due to the execution of two distinct methods.

The following example illustrates how object-oriented features can lead to interference

– see Banerjee and Naumann (2005) for further examples.

Example 5.7. Let class C be a super class of a class D. Let method foo be declared in

D and method m be declared in C and overridden in D, as illustrated by the following

source program†:

class C {
int m() {return 0; }

}
class D extends C {
int m() {return 1; }
int foo(boolean yH) {return (yH ? new C() : this).m(); }

}

† We omit the call of the initialiser.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1062

D.foo : C.m : D.m :

load yH push 0 push 1

ifeq l1 return return

new C

goto l2
l1 : load this

l2 : invokevirtual m

return

At run time, either code C.m or code D.m is executed, depending on the value of the high

variable yH . Information about yH may then be inferred by observing the return value of

method m.

Finally, we define the typability of programs.

Definition 5.8 (typable JVMC program). A JVMC program is typable with respect to safe

CDRs (regionm, junm) and with a table of signatures Γ if and only if all methods m in P

are typable with respect to (regionm, junm) and all signatures in PoliciesΓ(m).

5.4. Type system soundness

As in the JVMI and JVMO cases, the type system is sound in the sense that if a program

is typable, it is secure.

Theorem 5.9. Let P be a typable JVMC program with respect to the safe CDRs

(regionm, junm) and with table of signatures Γ. Then P is secure with respect to Γ.

6. JVME: the exception-handling extension of JVMC

In this section we show how the JVMC can be extended with an exception handling

mechanism. Exceptions introduce several potential sources of information leakage: in par-

ticular, attackers may infer sensitive information from the termination mode of programs.

This possibility must be reflected both in the notions of both state indistinguishability

and method signatures, which become significantly more complex (Myers 1999).

Exceptions have an enormous impact on the control flow graph of programs since

many instructions become branching instructions. Thus, exceptions change the control

flow graph from being an unlabelled directed graph to being a labelled directed graph,

where the labels are either Norm (labels that do not correspond to any exception branch)

or C (for an exception class C). The CDR analysis is then redefined to include the labels,

that is, we need to use region(i, C) and jun(i, C).

Curbing this explosion in the control flow graph is essential for maintaining a minimum

of precision in the information flow analysis, so our analysis is parametrised by a pre-

analysis (PA) that detects branches that will never be taken. The PA analyser may

perform analyses of null pointers (to predict unthrowable null pointer exceptions), classes

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1063

(to predict the targets of throw instructions), array accesses (to predict unthrowable out-of-

bounds exceptions) and exceptions (to over-approximate the set of throwable exceptions

for each method).

The extension of the type system to include multiple exceptions is achieved by a fine-

grained definition of control dependence regions that is parametrised by a class analysis

and an exception analysis (which is part of the PA analyser). For the soundness of the

information flow type system, we assume that both the class and exception analyses are in

the Trusted Computing Base. Thus, the type system exploits the information of the class

analysis and signature of methods (which coincides with the exception-analysis results) to

add constraints on the security environment according to adequate regions for the type

of escaping exceptions.

6.1. Programs, memory model and operational semantics

6.1.1. Programs. The instruction set of the JVMC is extended by adding the bytecode

throw. We assume that programs come equipped with a partial function Handlerm :

PP × C ⇀ PP, which for each method m selects the appropriate handler for a given

program point. If an exception of class C ∈ C is thrown at program point i ∈ PP, then, if

Handlerm(i, C) = t, the control will be transferred to program point t, and if Handlerm(i, C)

is undefined (written Handlerm(i, C) ↑), the exception is uncaught in method m. In the first

case, the operand stack is reset to a singleton with the exception object on its top.

6.1.2. States. JVME states include the JVMC states and new final states. We model final

states as (V + L) × Heap: a final state is either of the form (v, h) ∈ V × Heap for normal

termination or (〈l〉, h) ∈ L × Heap for abrupt termination by an uncaught exception

pointed to by a location l in the heap h.

6.1.3. Operational semantics. Figure 11 shows the semantics of some exception throwing

instructions in the JVME (for brevity, we have not included the exception rules for getfield,

putfield, arraylength, arrayload and arraystore). There are three exception rules for the

virtual call instruction. The first and second model the cases when execution of the called

method terminates through an uncaught exception. In the first rule, the thrown exception

is caught in method m, while in the second rule it is uncaught and m then terminates

abnormally. In both cases, we impose the requirement that the thrown exception has been

statically predicted by the excAnalysis(mID) result of the exception

analysis†. The third rule corresponds to a null pointer exception thrown because the

virtual call occurred on a null reference. We use np as the class associated with the

null pointer exception. When a native exception np is thrown, the catching mechanism

is modelled by the function RuntimeExcHandling. Each instruction performing an access

on a reference (getfield f, putfield f and throw, arraylength, arrayload, arraystore)

† This hypothesis is put directly as a precondition of the semantics rules, in the same way that only well-typed

states are considered when assuming a program is bytecode verified. It is straightforward to show that our

instrumented semantics coincides with the standard semantics if the exception analysis is semantically safe.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1064

i, ρ, os, h m i , ρ , os , h in JVMC semantics

i, ρ, os, h m,Norm i , ρ , os , h

Pm[i] = invokevirtual mID m = lookupP (mID, class(h(l)))

l ∈ dom(h) 1, {this os1} +
m

l , h

e = class(h (l )) Handlerm(i, e) = t e ∈ excAnalysis(mID)

i, ρ, os1 :: l :: os2, h m,e t, ρ, l ::

Pm[i] = invokevirtual mID m = lookupP (mID, class(h(l)))

l ∈ dom(h) 1, {this os1} +
m

l , h

e = class(h (l )) Handlerm(i, e) ↑ e ∈ excAnalysis(mID)

i, ρ, os1 :: l :: os2, h m,e l , h

Pm[i] = invokevirtual mID l = fresh(h)

i, ρ, os1 :: null :: os2, h m,np RuntimeExcHandling(h, l ,np, i, ρ)

Pm[i] = throw l = fresh(h)

i, ρ,null :: s, h m,np RuntimeExcHandling(h, l ,np, i, ρ)

Pm[i] = throw l ∈ dom(h) e = class(h(l))

Handlerm(i, e) = t e ∈ classAnalysis(m, i)

i, ρ, l :: os, h m,e t, ρ, l ::

Pm[i] = throw l ∈ dom(h) e = class(h(l))

Handlerm(i, e) ↑ e ∈ classAnalysis(m, i)

i, ρ, l :: os, h m,e l , h

with RuntimeExcHandling : Heap × L× C × PP × (X V) → State + (L × Heap) defined by

RuntimeExcHandling(h, l , C, i, ρ) =
t, ρ, l :: ⊕{l default(C) if Handlerm(i, C) = t

l , h⊕{l default(C)} if Handlerm(i, C) ↑

Fig. 11. New operational semantics rules for the JVME.

has a similar semantics. The last two rules deal with the new instruction throw, which

throws the exception pointed to by the reference on top of the stack. Transitions are

now parametrised by a tag τ ∈ {Norm} + C to describe the nature of the transition (see

the successor relation below). We will sometimes omit the tag τ in the notation �m,τ for

clarity.

6.1.4. Successor relation. The successor relation is now decorated by an element (called a

tag) in {Norm} + C in order to reflect the nature of the underlying semantics step: Norm

for a normal step (as in the JVMC) and c ∈ C for a step where an exception of class C

has been thrown. The definition of this new relation is given in Figure 12. This relation

can be statically computed thanks to the handler function of each method. Successors of

a throw instruction are approximated by the class-analysis result, and successors of an

invokevirtual are approximated by the exception-analysis result of the called method.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1065

i JVMC j

i Norm j

i JVMC

i Norm

Handler(i,np) = t
Pm[i] ∈ {getfield f, putfield f, throw, invokevirtual, arraylength, arrayload, arraystore}

i np t

Handler(i,np) ↑
Pm[i] ∈ {getfield f, putfield f, throw, invokevirtual, arraylength, arrayload, arraystore}

i np

Pm[i] = throw C ∈ classAnalysis(m, i) Handler(i, C) = t

i C t

Pm[i] = throw C ∈ classAnalysis(m, i) Handler(i, C) ↑
i C

Pm[i] = invokevirtual mID C ∈ excAnalysis(mID) Handler(i, C) = t

i C t

Pm[i] = invokevirtual mID C ∈ excAnalysis(mID) Handler(i, C) ↑
i C

Fig. 12. Successor relation for the JVME.

6.1.5. CDR properties. The CDR results are now associated not only with program

points but also with tags:

regionm : PP × ({Norm} + C) → ℘(PP) junm : PP × ({Norm} + C) ⇀ PP

We call a point i such that there exists τ ∈ {Norm} + C with i �→τ a return point. When

possible, we will write i �→ j for ∃τ, i �→τ j.

CDR1: For all program points i, j, k and tag τ such that i �→ j, i �→τ k and j �= k (i is

hence a branching point), k ∈ region(i, τ) or k = jun(i, τ).

CDR2: For all program points i, j, k and tag τ, if j ∈ region(i, τ) and j �→ k, then either

k ∈ region(i, τ) or k = jun(i, τ).

CDR3: For all program points i, j and tag τ, if j ∈ region(i, τ) and j is a return point,

then jun(i, τ) is undefined.

CDR4: For all program points i and tags τ1, τ2, if jun(i, τ1) and jun(i, τ2) are defined and

jun(i, τ1) �= jun(i, τ2), then jun(i, τ1) ∈ region(i, τ2) or jun(i, τ2) ∈ region(i, τ1).

CDR5: For all program points i, j and tag τ, if j ∈ region(i, τ) and j is a return point,

then for all tag τ′ such that jun(i, τ′) is defined, we have jun(i, τ′) ∈ region(i, τ).

CDR6: For all program point i and tag τ1, if i �→τ1 , then for all tag τ2, we have

region(i, τ2) ⊆ region(i, τ1) and if jun(i, τ2) is defined, we have jun(i, τ2) ∈ region(i, τ1).

Junction points uniquely delimit the ends of regions.

— CDR1 expresses the requirement that successors of branching points belong to (or

end) the region associated with the same kind as their successor relation.

— CDR2 says that a successor of a point in a region is either still in the same region or

at its end.

— CDR3 forbids junction points for a region that contains a return point.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1066

i

E2

region(i, E1)

region(i, ∅)

jun(i, E2)

jun(i, E1)

region(i, E2)

E1 ∅

jun(i, ∅)

Fig. 13. (Colour online) Example of a CDR in the JVME. Only relevant tags are presented here.

— CDR4 and CDR5 express properties between regions of the same program point but

with different tags:

– CDR4 says that if two differently tagged regions end in distinct points, the junction

point of one must belong to the region of the other.

– CDR5 imposes the requirement that the junction point of a region must be within

every region that contains a return point and is decorated with a different tag.

— CDR6 imposes the requirement that a return point i of tag τ1 has a region region(i, τ1)

large enough to contain all the others regions (and the eventual junction points) that

are attached to i. CDR6 can be seen as an extension of CDR5 for the case j = i. Any

region that contains a return point or start at an ending point must contain all other

regions.

Figure 13 presents an example of a safe CDR for an abstract transition system.

6.2. Non-interference

Method signatures are now of the form

�kv
kh−→ �kr

where �kv , kh are defined as in JVMC (in the rest of the paper we will write �kr[n] instead of

kn and �kr[ei] instead of kei). The security level �kr (called the output level ) is now a list of

security levels of the form {Norm : kn, e1 : ke1
, . . . en : ken}, where kn is the security level of

the return value and ei is an exception class that might be propagated by the method in

a security environment (or due to an exception-throwing instruction) of level ki.

The notion of output indistinguishability is adapted accordingly.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1067

Definition 6.1 (output indistinguishability). Given an attacker level kobs, a partial function

β ∈ L ⇀ L and an output level �kr , the indistinguishability of two final states in method

m is defined by the clauses

h1 ∼kobs ,β h2
�kr[n] � kobs ⇒ v1 ∼β v2

(v1, h1) ∼
kobs ,β,�kr

(v2, h2)

h1 ∼kobs ,β h2 (class(h1(l1)) : k) ∈ �kr k � kobs l1 ∼β l2

(〈l1〉, h1) ∼
kobs ,β,�kr

(〈l2〉, h2)

h1 ∼kobs ,β h2 (class(h1(l1)) : k) ∈ �kr k �� kobs

(〈l1〉, h1) ∼
kobs ,β,�kr

(v2, h2)

h1 ∼kobs ,β h2 (class(h2(l2)) : k) ∈ �kr k �� kobs

(v1, h1) ∼
kobs ,β,�kr

(〈l2〉, h2)

h1 ∼kobs ,β h2 (class(h1(l1)) : k1) ∈ �kr (class(h2(l2)) : k2) ∈ �kr
k1 �� kobs k2 �� kobs

(〈l1〉, h1) ∼
kobs ,β,�kr

(〈l2〉, h2)

In each case, heaps must be indistinguishable. This definition implies that if indistin-

guishability outputs are of a different nature (such as a normal value and an exception

or two exceptions from different classes), the security level of the corresponding exception

must be high in the output signature �kr . When outputs are of a similar nature (two normal

values or two exceptions of the same class) they are indistinguishable if the corresponding

security level in �kr is low.

Both the previous definition and the following one for non-interference rely on

indistinguishability definitions already given for the JVMO (see Definition 4.1).

Definition 6.2 (non-interferent JVME method). A method m is non-interferent with respect

to a policy �kv−→�kr if for every attacker level kobs, every partial function β ∈ L ⇀ L and

every ρ1, ρ2 ∈ X ⇀ V, h1, h2, h
′
1, h

′
2 ∈ Heap, r1, r2 ∈ V + L such that

〈1, ρ1, ε, h1〉 �+
m r1, h

′
1

〈1, ρ2, ε, h2〉 �+
m r2, h

′
2

h1 ∼kobs ,β h2

ρ1 ∼�kv ,kobs ,β
ρ2,

there exists a partial function β′ ∈ L ⇀ L such that β ⊆ β′ and

(r1, h
′
1) ∼

kobs ,β′ ,�kr
(r2, h

′
2).

As in the JVMC, we impose a side-effect-safe condition (see Definition 5.2 for a formal

definition) on methods. This notion is used when a virtual call occurs in a high context in

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1068

order to enforce the requirement that no low information is modified during the execution

of the called method.

Definition 6.3 (secure JVME method). A method m is secure with respect to a policy

�kv
kh−→ �kr if m is side-effect-safe with respect to kh and m is non-interferent with respect to

�kv−→�kr .

Definition 6.4 (secure JVME program). A program is secure with respect to a table of

method signatures Γ if for all its methods m, we have m is secure with respect to all

policies in PoliciesΓ(m) – see Equation (1) in Section 5.2 for the definition of PoliciesΓ(m).

6.3. Typing rules

The typing rules for the JVMC are extended (and modified in the case of ifeq and

invokevirtual) with the rules given in Figure 14. These rules are concerned with exception-

throwing and branching instructions only; the rules for the other instructions are as in

the JVMC.

The rule for ifeq is updated to flag with Norm the region that it is concerned with.

The virtual call now needs three typing rules. The first corresponds to a normal control

flow edge from the call site to its successor in the calling method, and is very similar to

the rule in the JVMC, except that invokevirtual is now a branching instruction because

of the various exceptions that may be thrown at this point. We rely on the information

excAnalysis(mID) to compute the level upper bound ke of all exceptions that may be

thrown by the method. The level ke and the level k of the receiver object (which may be

null and may throw a null pointer exception at runtime) are used to constrain the security

environment and the next stack type. The second and third rules are parametrised by any

exception e that may be thrown by mID. The second rule corresponds to the case where

the exception is caught at the caller site, while the third rule corresponds to the case

where the exception is not caught there. In each of these rules, the level �k′
r[e] is used to

constrain the corresponding region region(i, e).

Note that the typing judgement is now parametrised by a tag τ ∈ {Norm}+C, which will

be used to describe without ambiguity which typing constraint must be verified according

to the kind of execution performed in the semantics.

This notion of a tag requires us to update the notion of a typable method.

Definition 6.5 (typable method). A method m is typable with respect to a method signature

table Γ, a global field policy ft, a policy sgn and a CDR regionm : PP → ℘(PP) if there

exists a security environment se : PP → S and a function S : PP → S� such that S1 = ε

and for all i, j ∈ PP, we have e ∈ {Norm} + C:

(1) i �→e j implies there exists st ∈ S� such that Γ, ft, region, se, sgn , i 
e Si ⇒ st and

st � Sj;

(2) i �→e implies Γ, ft, region, se, sgn , i 
e Si ⇒

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1069

Pm[i] = ifeq j ∀j ∈ region(i, Norm), k ≤ se(j )

Γ, region, se, ka
kh−→ kr, i Norm k :: st ⇒ liftk(st)

Pm[i] = return k se(i) ≤ kr[n]

Γ, region, se, ka
kh−→ kr, i Norm k :: st ⇒

Pm[i] = invokevirtual mID ΓmID [k] = ka

kh−→ kr

k kh se(i) ≤ kh length(st1) = nbArguments(mID)

k ≤ ka[0] ∀i ∈ [0, length(st1) − 1], st1[i] ≤ ka[i + 1]

ke = kr[e] | e ∈ excAnalysis(mID)

∀j ∈ region(i, Norm), k ke ≤ se(j)

Γ, region, se, ka
kh−→ kr, i Norm st1 :: k :: st2 ⇒ liftk ke (kr[n] se(i)) :: st2

Pm[i] = invokevirtual mID ΓmID [k] = ka

kh−→ kr

k kh se(i) ≤ kh length(st1) = nbArguments(mID)

k ≤ ka[0] ∀i ∈ [0, length(st1) − 1], st1[i] ≤ ka[i + 1]

e ∈ excAnalysis(mID) np} ∀j ∈ region(i, e), k kr[e] ≤ se(j) Handler(i, e) = t

Γ, region, se, kv
kh−→ kr, i e st1 :: k :: st2 ⇒ (k kr[e]) :: ε

Pm[i] = invokevirtual mID ΓmID [k] = kv

kh−→ kr

k kh se(i) ≤ kh length(st1) = nbArguments(mID)k ≤ kv [0]

∀i ∈ [0, length(st1) − 1], st1[i] ≤ kv [i + 1] e ∈ excAnalysis(mID) np}
k se(i) kr[e] ≤ kr[e] ∀j ∈ region(i, e), k kr[e] ≤ se(j) Handler(i, e) ↑

Γ, region, se, kv
kh−→ kr, i e st1 :: k :: st2 ⇒

Pm[i] = throw e ∈ classAnalysis(i) ∪ {np}
∀j ∈ region(i, e), k ≤ se(j) Handler(i, e) = t

Γ, region, se, kv
kh−→ kr, i e k :: st ⇒ k se(i) ::

Pm[i] = throw e ∈ classAnalysis(i) ∪ {np}
k ≤ kr[e] ∀j ∈ region(i, e), k ≤ se(j) Handler(i, e) ↑

Γ, region, se, kv
kh−→ kr, i e k :: st ⇒

Fig. 14. The transfer rules for the instructions of the JVME.

6.4. A typable example

Figure 15 presents an example of a typable method m, giving the corresponding source

code and the tagged flow graph. A method m may throw two kinds of exceptions: an

exception of class C depending on the value of x and an exception of class np depending

on the values of x and y. Normal return depends on y because execution terminates

normally only if it is not null . The method m is typable with the policy

m : (this : L, x : L, y : H)
H−→ {Norm : H, C : L, np : H},

with the CDR (given only for branching points), the type stacks and the security

environment shown in Figure 15.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1070

int m(boolean x,C y) throws C

{

if (x) {throw new C();}

else {y.f = 3;};

return 1;

}

0 : load x

1 : ifeq 4

2 : new C

3 : throw

4 : load y

5 : push 3

6 : putfield f

7 : const 1

8 : return

i S(i) se(i)

0 ε L

1 L :: ε L

2 ε L

3 L :: ε L

4 ε L

5 H :: ε L

6 L :: H :: ε L

7 ε H

8 H :: ε H

0

1

2

3

4

5

6

7

8

∅

∅

∅

C

∅

∅

∅ np

∅

∅ ∅

region(1, Norm) = {2, 3, 4, 5, 6, 7, 8}
jun(1, Norm) undef.

region(6, Norm) = ∅
jun(6, Norm) = 7

region(6,np) = {7, 8}
jun(6,np) undef.

Fig. 15. Typable methods at source and bytecode level.

0 : load oL

1 : load yH

2 : load xL

3 : invokevirtual m

4 : store zH

5 : push 1

6 : store tL

handler : [0, 3], NullPointer → 4

0 1 2

3

4

5

6

np

∅ ∅

∅
C

∅

∅

∅

i S(i) se(i)

0 ε L

1 L :: ε L

2 L :: L :: ε L

3 L :: H :: L :: ε L

4 H :: ε L

5 ε L

6 L :: ε L

region(3, Norm) = region(3,np) = ∅ jun(3, Norm) = jun(3,np) = 4

region(3, C) = {4, 5, 6, . . .} jun(3, C) undef.

Fig. 16. Typable fragment with virtual call.

Figure 16 gives another example†, where fine-grain exception handling is necessary

for the code to be typable. Here the update tL = 1 at point 6 is accepted if and only if

se(6) is low. This fragment is accepted by our type system since, thanks to the fine-grain

† To save space, we have only included a compressed version of the compiled code.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1071

regions, the typing rule for the virtual call only propagates exception levels �kr[np] = H in

the region region(3, np) (instead of region(3, C)).

6.5. Type system soundness

We conclude this section by stating the type soundness theorem for the JVME.

Theorem 6.6. Let P be a JVME typable program with respect to the safe CDRs

(regionm, junm) and a table of signatures Γ. Then P is secure with respect to Γ.

7. Machine-checked proof

We have formalised within the Coq proof assistant the information flow type system for

the JVME fragment, and proved its soundness formally. Moreover, we have formalised

executable checkers for the CDR properties and for typability, and proved their soundness

formally (in the sense that an annotated program that is accepted by the CDR checker

satisfies the CDR properties, and that an annotated program that is accepted by the

information flow checker is typable with respect to our type system and non-interferent).

The statement of soundness of the type system hinges on a formalisation of the operational

semantics of the JVM, and of the notion of a non-interferent program.

This section presents an overview of the proof. We start with a short discussion of

the relevance of formal proofs, and some statistics related to the development. Following

that, we describe our formalisation of the semantics of the JVM and of the notion of

a non-interferent program. We then discuss our approach to proving unwinding lemmas

and constructing executable checkers. Finally, we conclude with an example.

7.1. Motivation and overview

Our formalisation is a contribution to an increasing trend in the use of proof assistants

to build machine-checked proofs of the metatheory of programming languages (Aydemir

et al. 2005). One primary motivation for using proof assistants is that they provide

significant help in managing the complexity of type soundness proofs. In our view, the

complexity of information flow type systems for full-fledged languages makes machine-

checked formalisations extremely important, if not compulsory, for three reasons:

(1) The formalisation of the operational semantics contains a significant number of rules;

for example, the JVM virtual call has five different transitions (a call on a null

reference, which generates a null pointer exception that may be caught or not, normal

termination of the callee, and termination by an exception that may or may not be

caught in the caller context).

(2) The type system contains over 60 rules, and many rules have a large (up to 10)

number of premises – see, for example, Figure 14.

(3) The proof of non-interference relies on unwinding lemmas, which require reasoning

about two program executions, which lead to a very large number of cases in proofs.

Moreover, the proof of correctness of the type system is stratified: we must first prove

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1072

TCB

program

PA analyser

CDR analyser

IF analyser

PA checker

CDR checker

IF checker

diagnostic

annotations

annotations

annotations

Fig. 17. (Colour online) Information flow analyser and checker.

that the CDR checker is correct (assuming that the pre-annotations are), and then

prove that the type system is correct (assuming that the pre-annotations and the CDR

checker are – we do not currently provide a means of checking the correctness of

pre-annotations; this is left for future work).

Summarising, we have proved the following theorem (the second part corresponds to

Theorem 6.6).

Theorem 7.1.

(1) CDR and IF can be checked by executable functions.

(2) For every annotated program P ,

PA(P ) ∧ CDR(P ) ∧ IF(P ) =⇒ SAFE(P )

where:

— the security condition is formalised by the predicate SAFE;

— the correctness of program annotations is formalised by the predicate PA;

— the CDR properties (given in Section 6) are formalised by the predicate CDR;

— the notion of a typable program is formalised by the IF predicate.

Foundational Proof-Carrying Code (Appel 2001) provides another motivation for

carrying out machine-checked proofs: a certified checker can be used to reduce the

Trusted Computing Base of a security architecture for mobile code. Figure 17 describes

how our type system would operate in a Proof-Carrying Code scenario. The left-hand

side of the figure corresponds to the code producer, which should produce a certificate in

the form of the results of the PA, CDR and IF analysers. Our formalisation focuses on

the right-hand side of the figure, which corresponds to the code consumer:

(1) The PA checker verifies that annotations provided by the PA analyser are correct.

(2) The CDR checker verifies that regions provided by the CDR analyser verify the safe

over-approximation properties of Section 6.

(3) The IF checker verifies type correctness in the style of lightweight bytecode verification.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1073

program

PA analyser

CDR analyser

IF analyser

PA checker

CDR checker

IF checker

diagnostic

annotations

annotations

annotations

Coq
+

Bicolano
+

Non-Interference
definition

TCB

proof

Fig. 18. (Colour online) Information flow analyser and checker with Coq TCB.

Lines of code

JVM semantics (Bicolano), bytecode program manipulation tools 4287

Non-Interference type checker

General non-interference proof 942

Unwinding lemmas 3527

Typing rules (definitions, properties, checker) 5236

Indistinguishability 2157

CDR checker 1003

Total 17152

Fig. 19. Size of the Coq development.

One virtue of Foundational Proof Carrying Code is that it yields a significantly simpler

Trusted Computed Base: specifically, the Trusted Computing Base is reduced to the Coq

type checker and the formal definition of non-interference, as shown in Figure 18 –

contrast this with Figure 17, where formal proofs were not mentioned.

The full Coq development is about 17,000 lines. Its main components are: the

operational semantics of the JVM; the definition of the type system; and the proof

of soundness of the type system. Each of these is a significant formalisation in itself –

Figure 19 gives an indication of the sizes of the components. The development is available

at

http://www.irisa.fr/celtique/pichardie/ext/iflow/

7.2. Formal semantics

The development relies on a formal semantics of the JVM in Coq, which is called

Bicolano and was developed within the Mobius project to serve as a common basis for

the certification of proof carrying code technologies in Coq. Bicolano closely follows the

official JVM specification – although some features such as initialisation, subroutines,

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1074

Pm[i] = invokevirtual mID m = lookupP (mID, class(h(l)))

l ∈ dom(h) length(os1) = nbArguments(mID)

f = [m , 1, {this os1}, ε] f = [m, pc, ρ, os2]

h, [m, pc, ρ, l :: os1 :: os2], sf h, f , f :: sf

instrAt(m, pc, return)

h, [m, pc, ρ, v :: os], [m , pc , ρ , os ] :: sf h, [m , pc + 1, ρ , v :: os ], sf

Fig. 20. Small-step semantics rule for virtual method call.

multi-threading, dynamic class loading, garbage collection, 64-bit arithmetic and floats

are omitted.

The core of Bicolano is a small-step operational semantics that describes the dynamic

behaviour of a bytecode program according to the JVM specification. The small-step

semantics is formalised as an inductively defined relation · → · between states of the

virtual machine, where a state consists of a heap and a stack frame. Figure 20 presents

the small-step semantics for method calls and return. In addition, Bicolano formalises a

mix-step semantics in which method calls are performed in one step – as in Section 5. In

particular, the mix-step semantics for virtual method invocation is shown in Figure 9 in

Section 5.1.3. The mix-step semantics is also formalised as an inductively defined relation

· → · between states of the virtual machine, but using a simplified notion of state in which

the stack frame is replaced by a single frame. Both semantics are equivalent in the sense

that the big-step semantics induced by the two semantics coincide – Bicolano formally

establishes this equivalence between them. The crux of the proof is a lemma stating that

each execution of the JVM to a final value implies the corresponding judgment of the

mix-step semantics:(
〈h, [m, pc, ρ, os], ε〉 →∗ 〈h′, [m, pc′, ρ′, v′ :: os ′], ε〉

with Pm[pc′] = return

)
=⇒ 〈h, pc, l, s〉 �+

m (h′, v′) .

A similar lemma is required for execution terminating with an uncaught exception.

The two semantics play different roles in our work. The mix-step semantics brings

important simplifications in the definition of state indistinguishability and in the soundness

proofs, so we use it to machine-check type soundness. The small-step semantics serves as

a reference formalisation, so the final theorem is stated using the small-step semantics.

For the purposes of the information-flow type system, we have also developed an

instrumented semantics of annotated programs. In such an instrumented semantics, extra

properties taken from annotation information are assumed in the premise of the transition

rules. Figure 21 gives an example of an instrumented transition. Annotations take the

form of safe flags attached to program points where the pre-analyser predicts that no

exception may be thrown. Moreover, the instrumented semantics imposes constraints that

mean exceptions can only be raised at program points that are not annotated as safe.

Assuming that the annotations are correct, the mix-step semantics and the instrumented

mix-step semantics coincide:

〈h, pc, l, s〉 �+
m (h′, v′) ∧ Sound(annot) =⇒ 〈h, pc, l, s〉 �annot+

m (h′, v′) .

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1075

Pm[i] = getfield f l = fresh(h) annotm[i] = safe

i, ρ,null :: os, h m,np RuntimeExcHandling(h, l ,np, i, ρ)

Fig. 21. Example of an annotated semantic rule.

7.3. Formalisation of the security condition

The definition of non-interference for programs and the proof of soundness of the type

system both rely on the notion of state indistinguishability. The main issue with the

formalisation of the latter is the notion of a finite bijection used to relate heaps in the two

program executions. Instead of parametrising state indistinguishability by a finite bijection

β from A to A, we have found it more convenient to parametrise the definition using a

pair of finite functions (β1, β2) from natural numbers to A. Informally, the finite functions

β1 and β2 are determined by the execution of the first and second programs, respectively:

β1 is extended when a new low object is created during execution of the first program,

and likewise for β2. This allows us to define an instrumented operational semantics in

which the partial function βi is part of the program state – see the next section for details.

7.3.1. Finite maps. A finite function from nat to A is modelled by the dependent type

Record ffun (A:Type) : Set := make {

lookup :> nat -> option A;

domain_size : nat;

lookup_domain : forall n, n<domain_size <-> (lookup n<>None)

}.

Hence, an element of type ffun A is given by three elements:

— a partial function from natural numbers to A, which is modelled as a type-theoretical

function lookup from natural numbers to option A;
— a natural number domain size that gives the current size of the function domain;

and

— a proof lookup domain that the domain of lookup is equal to the set of the numbers

smaller than domain size.

In order to carry out the reasoning, we have built a library that includes operators and

lemmas to manipulate and reason about finite maps.

7.3.2. Indistinguishability relations. We have formalised the required indistinguishability

relations and built a library of basic results to reason about indistinguishability – the

library contains more than 100 lemmas.

Indistinguishability relations are defined with respect to a pair of finite functions from

natural numbers to locations. As in the paper, the formalisation defines indistinguishability

incrementally for values, operand stacks, local variables, heaps and states. As an example,

the signature for the heap indistinguishability relation is

hp_in (newArT : Method * PC -> L.t’) (ft:FieldSignature -> L.t’)

(b b’: FFun.t Location) (h h’: Heap.t) : Prop

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1076

Here the parameter newArT gives the annotation for array allocation (with one array

content type at each newarray location in the program). L.t’ is the type of information

flow types extended to arrays (see Section 4). The finite functions b and b’ correspond to

the partial bijection of the previous sections; the predicate hp in enforces the requirement

that the two functions satisfy some expected properties, for example, that they are bijective.

7.4. Soundness proof methodology

The main technical component of the soundness proof is a (mix-step) defensive semantics

that keeps track of type information and partial bijections, and is particularly useful for

reasoning about well-typed executions.

The defensive semantics manipulates states of the form (in Coq syntax)

Inductive state : Type :=

| intra : IntraNormalState -> TypeStack -> ffun Location -> state

| ret : Heap.t -> ReturnVal -> ffun Location -> state.

The following Coq code presents the rule corresponding to object allocation:

Inductive NormalStep_new (c:ClassName) (m:Method) (sgn:sign) :

IntraNormalState -> TypeStack -> ffun Location ->

IntraNormalState -> TypeStack -> ffun Location -> Prop :=

| new : forall h pc pc’ s l loc h’ st b,

next m pc = Some pc’ ->

Heap.new h p.(prog) (Heap.LocationObject c) = Some (pair loc h’) ->

NormalStep_new c m sgn

(pc,(h,s,l)) st b

(pc’,(h’,(Ref loc::s),l)) ((se pc)::st) (newb (se pc) b loc).

In this example, (pc,(h,s,l)) and (pc’,(h’,(Ref loc::s),l)) represent the (JVM)

states before and after executing the instruction, while st and ((se pc)::st) represent

the corresponding type stacks and b and (newb (se pc) b loc) are the partial bijections.

The newb operator is used to extend the domain of a partial bijection that depends on

the current security level (given here by (se pc)).

7.5. Executable checkers

The first item of Theorem 7.1 is proved by formalising boolean-valued functions checkCDR

and checkIF that enforce the predicates CDR and IF, respectively. The function checkCDR

performs a direct verification of the CDR properties for each method. However, the

implementation of a verifier checkPA that entails PA is left for future work.

The functions checkCDR and checkIF are executable Coq programs that have been

successfully extracted into Ocaml. We have tested them on a Tax Calculation Java

program inspired by the case study proposed in Deng and Smith (2004). The full Java

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1077

source program is given in Figure 22, with its information flow type annotations given

in a Jif-like syntax and safety annotations given in comments. The program computes

income taxes from an input array of taxable income and marital status. The program

takes as argument an array input of inputs and a tax table taxTable. Then, for each

index i in the array range, it performs a binary search to find an index lo such that

taxTable[lo].brackets � input[i].taxableIncome < taxTable[lo + 1].brackets,

and updates the output array out.tax[i] with the computed tax, which is either

taxTable[lo].married or taxTable[lo].single, depending on the marital status, and

then increments a counter out.married nb or out.single nb to count the whole number

of married and single tax returns. The taxable incomes (field taxableIncome) and the

array content of the income taxes (field tax) are given a high security level, while other

data are low.

Most of the annotations for runtime exceptions (NP means NullPointer, NAS means

NegativeArraySize, AOB means ArrayOutofBounds) are easy to prove using a simple

null pointer analysis that maintains the invariant this �= null. The others require more

complex arithmetic reasoning, such as a relational numeric static analysis (Besson et al.

2010).

8. Conclusion

We have introduced a provably sound information flow type system for a fragment of the

JVM that includes objects, methods, exceptions and arrays. To the best of our knowledge,

no previous work has provided a sound type system for such an expressive fragment

of the sequential JVM. In combination with our companion paper on the preservation

of information flow types by compilation (Barthe et al. 2006), our results here provide

a sound basis for end-to-end security solutions for Java-based mobile code. The most

immediate direction for further work is to extend the type system to a concurrent fragment

of the Java Virtual Machine, and to support declassification. As an initial step towards

dealing with concurrency, we have proposed a sound information flow type system for

a concurrent extension of the JVM (Barthe et al. 2010; Barthe and Rivas 2011). This

extension supports objects, methods, multi-threading and dynamic thread creation, but

does not include exceptions, locks or synchronisation primitives. The extension builds

on the idea in Russo and Sabelfeld (2006) to constrain the behaviour of schedulers so

that high branches execute uninterruptedly, thereby avoiding internal timing leaks. In

our setting, the idea of a secure scheduler is modelled by making the behaviour of the

scheduler depend on the security environment.

The applicability of the type system could be enhanced significantly by considering

more flexible policies that allow some controlled form of information release. In Barthe

et al. (2008), we show, in the setting of the JVMI language, how to adapt our type

system so that it provides support for delimited non-disclosure, which is a specific form of

declassification that enables us to declassify the value of a variable at a specified program

point. Technically, the main difference between Barthe et al. (2008) and the current paper

is that the former considers local policies, that is, there is a security policy for each

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1078

class Output {

int{L} single_nb; int{L} married_nb; int[]{L[H]} tax;

Output{L}(int nbPeople) {

single_nb = 0; // no NP exception

married_nb = 0; // no NP exception

tax = new int[nbPeople]; // no NP exception, no NAS exception

}

void updateMarried{L}(int{L} i, int{H} tax_data) {

tax[i] = tax_data; // no NP exception, no AOB exception

married_nb++; // no NP exception

}

void updateSingle{L}(int{L} i, int{H} tax_data) {

tax[i] = tax_data; // no NP exception, no AOB exception

single_nb++; // no NP exception

}}

class Input {int{H} taxableIncome; boolean{L} maritalStatus;}

class Tax {int{L} single; int{L} married; int{L} brackets;}

class TaxCalculation {

Output{L} main{L}(Input[]{L[L]} input, Tax[]{L[L]} taxTable) {

Output{L} out = new Output(input.length);

for (int{L} i=0; i < input.length; i++) {

int{H} lo = 0;

int{H} hi = taxTable.length;

try { while (lo+1 < hi) {

int{H} mid = (lo + hi) / 2;

if (input[i].taxableIncome

< taxTable[mid].brackets) //no AOB exception

{hi = mid;} else {lo = mid;};

};

} catch (NullPointerException e){};

if (input[i].maritalStatus)

{ out.updateMarried(i,taxTable[lo].married);}

else { out.updateSingle(i,taxTable[lo].single);};

};

return out;

}}

Fig. 22. The Tax Calculation program.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1079

program point, which allows the security level of variables to change during execution so

that variables can be declassified. The type system that enforces delimited non-disclosure

is built systematically from the baseline type system for non-interference, and we do not

foresee any difficulties in extending the results of Barthe et al. (2008) to richer fragments

of the JVM.

References

Abadi, M., Banerjee, A., Heintze, N. and Riecke, J. (1999) A core calculus of dependency. In: POPL

’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages 147–160.

Agat, J. (2000) Type Based Techniques for Covert Channel Elimination and Register Allocation, Ph.D.

thesis, Chalmers University of Technology and Gothenburg University.

Amtoft, T., Bandhakavi, S. and Banerjee, A. (2006) A logic for information flow in object-oriented

programs. In: Morrisett, G. and Jones, S. P. (eds.) POPL ’06: Conference record of the 33rd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages 91–102.

Appel, A.W. (2001) Foundational proof-carrying code. In: Halpern, J. (ed.) LICS ’01 Proceedings

of the 16th Annual IEEE Symposium on Logic in Computer Science 247.

Askarov, A. and Sabelfeld, A. (2005) Security-typed languages for implementation of cryptographic

protocols: A case study. In: di Vimercati, S. and Syverson, P. and Gollmann, D. (eds.) Proceedings

European Symposium On Research In Computer Security – ESORICS 2005. Springer-Verlag

Lecture Notes in Computer Science 3679 197–221.

Aydemir, B. E. et al. (2005) Mechanized metatheory for the masses: The PoplMark challenge. In:

Hurd, J. and Melham, T. (eds.) Theorem Proving in Higher Order Logics – Proceedings 18th

International Conference, TPHOLs 2005. Springer-Verlag Lecture Notes in Computer Science 3603

50–65.

Banerjee, A. and Naumann, D. (2005) Stack-based access control for secure information flow.

Journal of Functional Programming 15 131–177. (Special Issue on Language-Based Security.)

Barthe, G., Basu, A. and Rezk, T. (2004) Security types preserving compilation. In Steffen, B. and

Levi, G. (eds.) Verification, Model Checking and Abstract Interpretation. Springer-Verlag Lecture

Notes in Computer Science 2934 2–15.

Barthe, G., Cavadini, S. and Rezk, T. (2008) Tractable enforcement of declassification policies. In:

Proceedings 21st IEEE Computer Security Foundations Symposium, CSF 2008 83–97.

Barthe, G., Naumann, D. and Rezk, T. (2006) Deriving an information flow checker and certifying

compiler for Java. In: Proceedings 2006 IEEE Symposium on Security and Privacy 230–242.

Barthe, G., Pichardie, D. and Rezk, T. (2007) A certified lightweight non-interference Java bytecode

verifier. In: Nicola, R. (ed.) Programming Languages and Systems: Proceedings of the 16th

European Symposium on Programming, ESOP 2007. Springer-Verlag Lecture Notes in Computer

Science 4421 125–140.

Barthe, G. and Rezk, T. (2005) Non-interference for a JVM-like language. In: Fähndrich, M. (ed.)

TLDI ’05: Proceedings of the 2005 ACM SIGPLAN international workshop on Types in languages

design and implementation 103–112.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


G. Barthe, D. Pichardie and T. Rezk 1080

Barthe, G., Rezk, T., Russo, A. and Sabelfeld, A. (2010) Security of multithreaded programs by

compilation. ACM Transactions on Information and System Security 13 (3).

Barthe, G. and Rivas, E. (2011) Static enforcement of information flow policies for a concurrent

JVM-like language. In: Bruni, R. and Sassone, V. (eds.) Trustworthy Global Computing: Revised

Selected Papers 6th International Symposium, TGC 2011. Springer-Verlag Lecture Notes in

Computer Science 7173 73–78.

Bernardeschi, C. and Francesco, N. D. (2002) Combining Abstract Interpretation and Model

Checking for Analysing Security Properties of Java Bytecode. In: Cortesi, A. (ed.) Verification,

Model Checking and Abstract Interpretation: Revised Papers Third International Workshop,

VMCAI 2002. Springer-Verlag Lecture Notes in Computer Science 2294 1–15.

Besson, F., Jensen, T. P., Pichardie, D. and Turpin, T. (2010) Certified result checking for polyhedral

analysis of bytecode programs. In: Wirsing, M., Hofmann, M. and Rauschmayer, A. (eds.)

Trustworthly Global Computing: Revised Selected Papers 5th International Symposium, TGC

2010. Springer-Verlag Lecture Notes in Computer Science 6084 253–267.

Bieber, P., Cazin, J., Girard, P., Lanet, J.-L., Wiels, V. and Zanon, G. (2002) Checking secure

interactions of smart card applets: Extended version. Journal of Computer Security 10 (4) 369–

398.

Bonelli, E., Compagnoni, A. B. and Medel, R. (2005) Information flow analysis for a typed assembly

language with polymorphic stacks. In: Barthe, G., Grégoire, B., Huisman, M. and Lanet, J.-L.

(eds.) Construction and Analysis of Safe, Secure, and Interoperable Smart Devices: Revised

Selected Papers Second International Workshop, CASSIS 2005. Springer-Verlag Lecture Notes in

Computer Science 3956 37–56.

Deng, Z. and Smith, G. (2004) Lenient array operations for practical secure information flow. In:

Proceedings 17th IEEE Computer Security Foundations Workshop, 2004. CSFW 115–124.

Freund, S. N. and Mitchell, J. C. (2003) A type system for the Java bytecode language and verifier.

Journal of Automated Reasoning 30 (3-4) 271–321.

Genaim, S. and Spoto, F. (2005) Information flow analysis for Java bytecode. In: Cousot, R.

(ed.) Verification, Model Checking and Abstract Interpretation: Proceedings 6th International

Conference, VMCAI 2005. Springer-Verlag Lecture Notes in Computer Science 3385 346–362.

Girard, P. (1999) Which security policy for multiapplication smart cards? In: Workshop on Smart

Card Technology, USENIX Association.

Hammer, C., Krinke, J. and Snelting, G. (2006) Information flow control for Java based on

path conditions in dependence graphs. In: IEEE International Symposium on Secure Software

Engineering (ISSSE 2006) 1–10.

Hankin, C., Nielson, F. and Nielson, H. R. (2005) Principles of Program Analysis, second edition,

Springer-Verlag.

Hedin, D. and Sands, D. (2006) Noninterference in the presence of non-opaque pointers. In: 19th

IEEE Computer Security Foundations Workshop, (CSFW-19 2006) 217–229.

Hunt, S. and Sands, D. (2006) On flow-sensitive security types. In: Proceedings POPL ’06: Conference

record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages

79–90

Kobayashi, N. and Shirane, K. (2002) Type-based information analysis for low-level languages.

In: Proceedings of the Third Asian Workshop on Programming Languages and Systems, APLAS’02

302–316.

Leroy, X. (2002) Bytecode verification on Java smart cards. Software – Practice and Experience 32

(4) 319–340.

Mantel, H. and Sabelfeld, A. (2003) A Unifying Approach to the Security of Distributed and

Multi-threaded Programs. Journal of Computer Security 11 (4) 615–676.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850


A certified lightweight non-interference Java bytecode verifier 1081

Medel, R., Compagnoni, A. B. and Bonelli, E. (2005) A typed assembly language for non-interference.

In: Coppo, M., Lodi, E. and Pinna, G.M. (eds.) Theoretical Computer Science: Proceedings 9th

Italian Conference, ICTCS 2005. Springer-Verlag Lecture Notes in Computer Science 3701 360–374.

Montgomery, M. and Krishna, K. (1999) Secure object sharing in Java Card. In: Workshop on Smart

Card Technology, USENIX Association.

Morrisett, G., Walker, D., Crary, K. and Glew, N. (1999) From system F to typed assembly language.

In: Pugh, W. (ed.) ACM Transactions on Programming Languages and Systems (TOPLAS) 21 (3)

527–568. (Expanded version of a paper presented at POPL 1998.)

Myers, A. C. (1999) JFlow: Practical mostly-static information flow control. In Proceedings 26th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages – POPL ’99 228–

241. (Ongoing development at http://www.cs.cornell.edu/jif/.)

O’Neill, K. R., Clarkson, M. R. and Chong, S. (2006) Information-flow security for interactive

programs. In: 19th IEEE Computer Security Foundations Workshop, (CSFW-19 2006) 190–201.

Pottier, F. and Simonet, V. (2003) Information flow inference for ML. ACM Transactions on

Programming Languages and Systems 25 (1) 117–158.

Rezk, T. (2006) Verification of confidentiality policies for mobile code, Ph.D. thesis, Université de Nice

Sophia-Antipolis.

Rose, E. (2003) Lightweight bytecode verification. Journal of Automated Reasoning 31 (3–4) 303–334.

Russo, A. and Sabelfeld, A. (2006) Securing interaction between threads and the scheduler. In: 19th

IEEE Computer Security Foundations Workshop, (CSFW-19 2006) 177–189.

Sabelfeld, A. and Myers, A. (2003) Language-based information-flow security. IEEE Journal on

Selected Areas in Communication 21 5–19.

Volpano, D. and Smith, G. (1997) A type-based approach to program security. In: Bidoit, M. and

Dauchet, M. (eds.) Proceedings TAPSOFT ’97: Theory and Practice of Software Development –

7th International Joint Conference CAAP/FASE. Springer-Verlag Lecture Notes in Computer

Science 1214 607–621.

Volpano, D. and Smith, G. (1998) Probabilistic noninterference in a concurrent language. In:

Procedings 11th IEEE Computer Security Foundations Workshop 34–43.

Yu, D. and Islam, N. (2006) A typed assembly language for confidentiality. In: Sestoft, P. (ed.)

Programming Languages and Systems: Proceedings of the 15th European Symposium on

Programming, ESOP 2006. Springer-Verlag Lecture Notes in Computer Science 3924 162–179.

https://doi.org/10.1017/S0960129512000850 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000850

