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Abstract

Evaluating observed wine-tasting results as a mixture distribution, using linear regression on a
transformation ofobserved results, has been described in thewine-tasting literature. This article
advances the use ofmixturemodels byconsidering that existingwork, examiningfiveanalyses of
ranking and mixture model applications to non-wine food tastings and then deriving a mixture
model with specific application to observedwine-tasting results. The mixture model is specified
with Plackett-Luce probability mass functions, solved with the expectation maximization
algorithm that is standard in the literature, tested on a hypothetical set of wine ranks, tested
with a random-ranking Monte Carlo simulation, and then employed to evaluate the results
of a blind tasting of Pinot Gris by experienced tasters. The test on a hypothetical set of wine
ranks shows that a mixture model is an accurate predictor of observed rank densities. The
Monte Carlo simulation yields confirmatory results and an estimate of potential Type I
errors (the probability that tasters appear to agree although ranks are actually random).
Application of themixturemodel to the tastingof PinotGris,withover a 95% level of confidence
based on the likelihood ratio and t statistics, shows that agreement among tasters exceeds the
random expectation of illusory agreement. (JEL Classifications: A10, C10, C00, C12, D12)

Keywords: mixture model, preference rank, statistics, wine tasting.

I. Introduction

A mixture distribution is the result of combining the distributions of two or more
random variables. The distribution of the mixture is observable, and the underlying
component distributions may be unobservable or latent. Bodington (2012) showed in
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JWE that the relative ranks assigned bywine tasters are heterogeneous and posited that
those ranks have amixture distributionwith random, commonpreference, and idiosyn-
cratic preference mixture components. Cao (2014), also in JWE, applied a mixture
model with two components to results for the 2009 California State Fair Commercial
Wine Competition. Cao used a transformation of rank assignments, score simulations,
and linear regression to estimate the proportion of scores that appeared to be random
and the remainingproportion that appeared to reflect consensus among thewine judges.

This article seeks to build on Bodington (2012) and Cao (2014) in several respects.
Assigning relative preference ranks to wines is common and ordinal scores are also
sometimes transformed into preference rankings.1 Ranked preference and mixture
models have been applied to tastings as diverse as soft drinks and salad dressings,
and the literature for five applications is summarized in Section II. Next, as a foun-
dation for applying such models to wine-tasting data and so that the results herein
are replicable, the results of a blind tasting of Pinot Gris appear in Section III.
Then, in Section IV, a mixture of Plackett-Luce rank preference models is derived
that yields a multinomial probability mass function (PMF) for each wine in the
Pinot Gris tasting. The unknown parameters in the mixture model are estimated
in Section V using the expectation maximization (EM) algorithm. The additional
benefits of this approach include its direct use of observed tasting data, use of
information embedded in the variance of observed data, reliance on the standard
EM solution, and its feasibility for the small sample sizes that are typical of wine
tastings. The mixture model also yields estimates of the share of ranks that appear
to be random and the probability of Type I errors.

Section V ends with a test using hypothetical tasting data that have a known result
to show that the model is an accurate predictor of observed densities. Further, a
Monte Carlo simulation with random rankings yields confirmatory results and
shows that the probability of illusory consensus among tasters, a Type I error, is
0.20. In Section VI, the mixture model is applied to the tasting of Pinot Gris.
Results show that, with likelihood ratio tests and t statistics supporting a level of
confidence of over 95%, random ranking behavior accounts for approximately
30% of ranks and that there is nonrandom agreement among tasters on a
common preference order. Conclusions follow in Section VII.

As noted throughout, this article applies ranking and mixture models to tasting
results in which each taster determines an order of preference for the wines in a
tasting. Each taster’s result is a preference order vector. There are related methods for

1Judges in the California State Fair competition assign each wine an ordered rank label of No Award,
Bronze, Bronze+, Silver-, Silver, Silver+, Gold- and Gold. Cao (2014) analyzed averages of numbers
assigned to those ranks. Wines in the 2006 Re-Judgment of Paris were compared using preference
ranks. Liquid Assets’ tasting results are reported as preference ranks. An example of ordinal scores eval-
uated as preference ranks is Quandt (2012)’s analysis of the Judgment of Princeton.
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evaluating tied rankings and ordinal scores that are transformed into ranks, and the
application of those methods towine-tasting results must begin with this starting point.

II. Previous Applications of Rank and Mixture Models to Tasting Data

Ranked preference models are employed widely to express and evaluate compari-
sons. The models are diverse, Mallows (1957) is an early article, and Marden
(1995) is a widely referenced text. Among many applications, ranking and mixture
models are employed to divide heterogeneous agent or “expert” or “judge” behavior
into latent components, subpopulations, or classes of agents that express homo-
geneous behavior (see, e.g., Gormley and Murphy, 2008; Marden, 1995, p. 133;
Mengersen et al., 2011; and Vigneau et al., 1999). In a few cases, ranking and
mixture models have been employed to evaluate taste-related data. Those
applications are described below.

First, a notional mixture model for ranked data appears in Equation (1). For a
vector of observed preference ranks (x), the PMF for those ranks ( f ) is the sum of
the probabilities (πi) that an expert belongs to a particular latent class (i with a
total of n classes) in which each πi is multiplied by the PMF for that latent class
(fi with parameters θi). Under Equation (2), the probabilities are bounded and
their sum equals unity. The πi are also known as mixing proportions, mixture
weights, or component weights.

f xjπ; θð Þ ¼
Xn

i¼1
πi fi xj θið Þ ð1Þ

1:0 ¼
Xn

i¼1
πi and 0 � πi � 1:0 ð2Þ

Critchlow (1985) analyzed the preferences of 16 mothers and 22 boys for five types of
crackers (Critchlow, 1985, p. 119; Linacre, 1992, p. 6; Marden, 1995, p. 284). In the
framework of Equation (1), Critchlow estimated parameters for two classes, both
fi (x|θi) were Plackett-Luce models, and Critchlow solved for θ using a maximum
likelihood estimator (MLE). In Placket-Luce, each unknown parameter in θ is the
probability that the respective object will be selected as first or most-preferred
among the choices (Marden, 1995, pp. 119, 216; Plackett, 1975), and this model
also is derived and discussed in Section IV below. To conclude, Critchlow found
that the boys’ top choice was animal crackers.

Bockenholt (1992) analyzed the preferences of 278 male psychology students for
eight different soft drinks. Within Equation (1), Bockenholt estimated parameters
for a cola class (Coke Classic, Pepsi, Diet Coke, Diet Pepsi) and a non-cola class
(Seven Up, Sprite, Diet Seven Up, Diet Sprite). Both fi (x|θi) were Pendergrass-
Bradley models, and Bockenholt solved for θ using MLE. He asked tasters to
compare drinks in sets of three, and Pendergrass-Bradley is a ranking model for
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triple comparisons (Pendergrass and Bradley, 1960). Bockenholt found that the
students liked Coke Classic the most and Diet Seven Up the least.

Marden (1995), using data from Nombekla et al. (1993), analyzed the preferences
of six cows for animal feed that was either a control or flavored with sucrose, hydro-
chloride, urea, or sodium chloride. Each cow’s preference for each feed was
measured by how much of each feed it ate. In the framework of Equation (1),
there was one class of taster, fi (x|θ1) was the Plackett-Luce model noted above,
and Marden solved for θ using MLE. Again, the Plackett-Luce model is derived
and discussed in Section IV below. Marden concluded that cows preferred the
sucrose-flavored feed the most.

Vigneau et al. (1999) analyzed the preferences of 56 consumers of seven snacks
that differed in cheese flavor and water content. Again using Equation (1), the
authors estimated parameters for two latent classes of taster. Both fi(x|θi) were
Bradley Terry Mallows (BTM) models, and Vigneau et al. solved for θ and π
using an EM algorithm. In BTM, each unknown parameter is a numerical
expression of relative preference, and, in some cases, BTM can be computationally
burdensome (Mallows, 1957; Marden, 1995, p. 117). Vigneau found that water
content most differentiated the two classes of snack.

Thuesen (2007), using data from Critchlow and Fligner (1991), evaluated 24
tasters’ preferences for four types of salad dressing. In the form of Equation (1),
Thuesen estimated parameters for two latent classes, both fi(x|θi) were BTM
models, and Thuesen solved for θ and π using an EM algorithm. The BTM model
was summarized above, and Thuesen explains that the results appear odd but does
not diagnose and fix a flaw if there is one.

All the evaluations above employed ranking models, and those that considered
more than one class of taster employed mixture models. All solved for the
unknown parameters using MLE, and those that needed to estimate mixing pro-
portions π used the EM algorithm in which MLE is a step. However, none of
the evaluations above addressed an analog to the findings of Ashton (2012),
Cao (2014), Maltman (2013), Soares et al. (2012), and others in JWE and else-
where that some wine tasters, even judges, are just not reliable. None of the five
evaluations described above take a priori information about random ranking be-
havior into account.2 In each analysis above, the probability that an agent with
random preferences chooses any of the choices is 1/m, where m is the number of
choices. The PMF for the random class or mixture component is merely 1/m.
The PMF for a latent class with random expressions of preference is thus
already known; the only remaining question about that class is its mixing

2Cleaver and Wedel (2001) add a random scoring class to a regression model of scores assigned by con-
sumers to an unidentified product or set of products. Their model is primarily a mixture of normal distri-
butions and they do not employ a ranking model.
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proportion (πr). If tasting data do not support the existence of such a class then
πr=0.

With application to wine tasting, a ranking and mixture model solved using EM is
proposed here in Sections IV through V below. This model does include a random
class of taster. To structure the analysis and provide a replicable example, we next
present data from a tasting of Pinot Gris.

III. Blind Tasting of Pinot Gris

This tasting of Pinot Gris involved six wines and 18 tasters.3 Each of the tasters had
more than ten years’ experience as a wine maker, writer, distributor, collector, or
enthusiast.

The wines were in brown bags identified only by the letters A through F. Each
taster had seven glasses, one for water and the others for the wines. The six wines
were poured in a flight, and then tasting began. The protocol was open, meaning
that tasters could taste and re-taste in any order before assigning any ranks. Each
taster ranked each wine from 1 (most preferred) to 6 (least preferred) and recorded
his or her ranks on a score sheet. There was no discussion of the wines until all tasters
had completed their score sheets and the results had been tabulated. Neither the
tasters nor the person recording the results knew the vintner or price of any wine
until all scores had been recorded; the tasting was blind. The ranks assigned by
the tasters appear in Table 1.

The mean ranks in the table imply that the preference order is BFADCE.
However, the results above are heterogeneous. Variances differ, some ranks skew
left, some skew right, some are positively correlated with the mean, and others are
the opposite. Many tasters ranked wine E last, and many ranked wine F first or
second. Together, these findings imply the possibility of a mixture distribution.
There may be a latent class or subpopulation of tasters who have preferences in
common. There may also be classes of tasters who exhibit random and idiosyncratic
ranking behavior.

IV. Mixture Model of Wine-Tasting Results

For the Pinot Gris results above, the ranks (x) assigned to the corresponding wines
A, B, C,… by any one taster (t) for awine (i) are the rank vector (xtwith elements xt, i)
in Equation (3) below. If the corresponding wines are arranged according to

3Tasting of Pinot Gris on June 2, 2014, by FOG, a San Francisco basedwine-tasting group started by wine
writer and judge Steven R. Pitcher and collector David S. Rosen that has hosted blind wine tastings each
month since the early 1980s. The author is a member. For results and tasting protocol, contact David
Rosen at daverosen1114@gmail.com.
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their ranks from most- to least-preferred, the result is an order vector (yt with
elements yt, j). For example, the order vector for Taster #1 of Pinot Gris appears
in Equation (4). Taster #1 likes wine B the most and wine E the least.

xt ¼ ðxt;1; xt;2; xt;3; xt;4; xt;5; xt;6Þ ð3Þ

yt¼1 ¼ ðB; A; F ; D; C;EÞ ð4Þ

For six wines, the order vector in Equation (4) has 6! or 720 permutations. Assuming
just three wines with 3! permutations to make an example tractable, the order vector
for one taster is one of ABC, ACB, BAC, BCA, CAB, and CBA. Assume further that
the probability of ranking wine A first is 0.5, ranking B first is 0.3 and C first is 0.2.
On that basis for example, the probability of the order vector CAB appears in
Equation (5). As a check, the sum of the probabilities for the six potential order
vectors is unity; ABC = 0.300, ACB= 0.200, BAC= 0.214, BCA = 0.086, CAB=
0.125, and CBA= 0.075. The general form appears in Equation (6), and this is
the Plackett-Luce model. The probability of a particular preference order for n
wines (f(yt| ρ)) is the product of the probabilities that each wine would be ranked
first (ρi for each wine i) where the ρi have been normalized with the sum of the ρi
of the wines remaining in the taster’s order vector. The first denominator and the

Table 1
Pinot Gris Tasting Results

Rank assigned by indicated Taster
Correlation

Wine A B C D E F w/ Mean

Taster #1 2 1 5 4 6 3 0.89
Taster #2 3 2 5 4 6 1 0.85
Taster #3 2 1 4 3 6 5 0.77
Taster #4 5 6 4 3 2 1 (0.45)
Taster #5 4 3 1 2 6 5 0.39
Taster #6 3 2 4 1 5 6 0.42
Taster #7 6 5 1 4 2 3 (0.63)
Taster #8 1 3 4 5 6 2 0.71
Taster #9 3 4 1 5 6 2 0.42
Taster #10 2 6 4 3 5 1 0.27
Taster #11 3 2 1 4 6 5 0.49
Taster #12 3 2 6 4 5 1 0.69
Taster #13 4 1 5 3 6 2 0.89
Taster #14 1 2 4 3 6 5 0.70
Taster #15 3 1 6 5 2 4 0.01
Taster #16 1 4 6 3 5 2 0.54
Taster #17 6 2 4 1 5 3 0.47
Taster #18 5 1 3 2 6 4 0.69
Mean 3.17 2.67 3.78 3.28 5.06 3.06 1.00
Variance 2.36 2.67 2.84 1.42 2.05 2.61 −
Skewness 0.40 0.93 (0.61) (0.38) (1.59) 0.25 −

Note: Rank #1 is most preferred, #6 is least.
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last quotient will always equal unity. Under Equation (7), the ρi are bounded, and
their sum equals unity.

f yt ¼ CABð Þ ¼ 0:2= 0:2þ 0:5þ 0:3ð Þ � 0:5= 0:5þ 0:3ð Þ � 0:3=0:3 ¼ 0:125 ð5Þ

f ytjρð Þ ¼
Yn

i¼1

ρiPn
j ¼i ρj

� � ����yt; ρ
0
@

1
A ð6Þ

0 � ρi � 1:0 and 1:0 ¼
Xn

i¼1
ρi ð7Þ

One purpose of this application is to rank the wines according to the tasters who have
preferences in common and thus to divide the population of heterogeneous rankings
into a subpopulation of those who appear to express preferences that some tasters
have in common. That leaves two other subpopulations: those who exhibit
random ranking behavior and those whose preferences appear to be idiosyncratic.
Idiosyncratic preferences are those that vary from taster to taster; some prefer
oaky Chardonnay while others prefer an austere style, some like more citrus or
acid than others, some prefer more tannin in Zinfandel than others, some like
more evident fruit in Pinot Noir than others, some like toast in white wines—
there are many examples. Those individual preferences are neither random nor
held in common. As described in Section II, the PMF for random ranking behavior
is already known, and only its mixture weight is unknown. Regarding idiosyncratic
preferences, to date, no method exists for statistically identifying rankings that are
based on neither common preference nor random-appearing behavior.
Consequently, idiosyncratic preferences must account for model error or lack of
fit. Note that Bockenholt (1992), Critchlow (1985), Marden (1995), Thuesen
(2007), and Vigneau et al. (1999) made the same assumption and did not model
either random or idiosyncratic classes.

A mixture model with two latent classes of tasters, random tasters (r) and those
who express similar preferences (p), appears in Equation (8). In Equation (8),
the PMF for the observed order vector (f(yt)) is the weighted sum of the PMFs for
the random and preference-based order vectors (fr(yt)) and (fp(yt)) with parameters
θr and θp), in which the mixture weights (πr and πp) are the respective probabilities of
the taster’s membership in the respective latent class. In Equation (9), the mixture
weights are bounded and their sum equals unity.

f ytjπ̂; θ̂
� �

¼ bπr � fr ytjbθr� �
þ bπp � fp ytj bθp� �

ð8Þ

1:0 ¼ bπr þ bπp and 0 � dπr and p � 1:0 ð9Þ

Again as explained in Section II, the PMF for random ranks is known. Random
tasters assign ranks as if drawing from an urn with six balls labeled #1, #2, and
so on, through #6. For any wine, the probability of any rank is 1/6. For any
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random draw of six wines, the Plackett-Luce model yields a probability of 0.0014,
and this is, of course, also 1/6!. Substituting this result and the Plackett-Luce
PMF into Equation (8) yields the likelihood function (L yjπ̂; θ̂

� �
) for the mixture

model in Equation (10) with, using conventional notation for mixture model
parameters, θ̂ ¼ ρ̂.

L yjπ̂; θ̂
� �

¼
YT

t¼1
bπr � 1

6!

� �
þ ð1� bπrÞ � Yn

i¼1

bρiPn
j¼i bρj� � ����y; θ̂

0
@

1
A

2
4

3
5 ð10Þ

Moving forward, the Plackett-Luce model yields the probability of ending on one
branch of a probability tree with n! branches. Using the same tractable three-wine
example as above, the multinomial PMF for wine B appears in Equation (11). It
shows how the probabilities of the six branches of the probability tree add to yield
a PMF, and, as a check, the sum of the probabilities is unity. The general form
appears in Equation (12), in which the probability that wine i is ranked
l (f 0i;l i; ljρð Þ) equals the sum of the Plackett-Luce probability for every possible
order vector permutation (P with one permutation Pk) multiplied by unity if a
respective order vector has wine i in order l or, if not, multiplied by zero. This is
merely the sum of the probabilities for the probability tree branches that have the
right wine in the right place. Calculating Equation (12) for each possible rank for
each wine yields the n x n matrix of probabilities in Equation (13). In Equation
(13), each row is a vector expressing the multinomial PMF for a particular wine,
and the sum of each row vector is unity. As an example, results for the three-wine
tasting appear at the right in Equation (13).

ForProbability ABCð Þ ¼ 0:300;ACB ¼ 0:200;BAC ¼ 0:214;

BCA ¼ 0:086;CAB ¼ 0:125 and CBA ¼ 0:075:

Pr rank on B ¼ 1ð Þ ¼ 0þ 0þ 0:214þ 0:086þ 0þ 0 ¼ 0:300

Pr rank on B ¼ 2ð Þ ¼ 0:300þ 0þ 0þ 0þ 0þ 0:075 ¼ 0:375

Pr rank on B ¼ 3ð Þ ¼ 0þ 0:200 þ 0 þ 0 þ 0:125þ 0 ¼ 0:325

ð11Þ

f 0i;l i; ljρð Þ

¼
Xn!

k¼1

Yn

i¼1

ρiPn
j ¼i ρj

� �
0
@

1
A � 1:0 if wine i has rank l

0:0 otherwise

�0
@

1
A����ρ; Pk

0
@

1
A ð12Þ

f 0 njρð Þ ¼
f 01;1 1; 1jρð Þ . . . f 01;n 1; njρð Þ

. . . . . . . . .
f 0n;1 n; 1jρð Þ . . . f 0n;n n; njρð Þ

2
4

3
5 ¼

0:500 0:339 0:161
0:300 0:375 0:325
0:200 0:286 0:514

2
4

3
5 ð13Þ
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Building on Equation (13), a mixture model expressing the density of each rank l for
each individual wine i appears in Equation (14). The PMF for random ranks is 1/6,
and the PMF for common preference assignments is the ith multinomial PMF from
Equations (12) and (13). Equation (14) is thus a mixture PMF for each wine that is
consistent with the underlying Plackett-Luce probabilities ρ̂. Also, for reference,
Equation (14) is employed to calculate the mixture model results shown in Figures
2, 3, and 4.

f 0i;l i; ljbπr; ρ̂ð Þ ¼ bπr � 16 þ ð1� bπrÞ � f 0i;l i; ljρ̂ð Þ ð14Þ

V. Solving for the Unknown Parameters

The EM algorithm is a widely employed method for estimating the unknown par-
ameters in mixture models. An often-cited initial journal reference is Dempster
et al. (1977), McLachlan and Peel (2000) explains EM, and a more recent text is
Mengersen et al. (2011). In sum, EM begins with exogenous estimates of the
unknown parameters and then iteratively climbs to the maximum of a likelihood
function. The MATLAB code written by the author for the EM algorithm and inte-
grated MLE employed here is available on request.

Before turning to results for the Pinot Gris tasting, the mixture model and EM sol-
ution were subjected to two tests. The first test employed hypothetical data that were
selected to yield a known result. The second test employed aMonte Carlo simulation
in which tasters assigned their ranks randomly. Both tests yield results that validate
the mixture model and EM solution.

A model should solve to yield an obvious answer, when there is one, so the
first test is designed to have an obvious answer. Six hypothetical tasters are
assumed to have ranked the wines with (1 2 3 4 5 6), (2 3 4 5 6 1), (3 4 5 6 1 2),
and so on. Although those assumed ranks are not random, together, they
give each rank on each wine a random expectation. In addition to those six
tasters, twelve tasters are assumed to have ranked every wine (2 1 4 3 6 5).
Those tasters represent common preference rank assignments by tasters with
identical preferences. By design in this simple test, the mixture weight for the

random class is thus bπr ¼ 6
18

¼ 0:33, and the mixture density from Equation

(14) for each wine’s common-preference rank is thus (0.33)(1/6) + (1–0.33)
(1.00) = 0.72.

EM begins with exogenous estimates of the unknown parameters. For the
hypothetical tasting data above, the null hypothesis starting parameters were bπr ¼
1:00 and bρi ¼ 1=6. EM results appear in Figures 1 and 2 and Table 2. Figure 1
shows that the log likelihood does increase monotonically and the EM solution
does converge. Using fourth-ranked wine C as an example, Figure 2 shows that
the mixture model is an accurate predictor of the observed rank densities.
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Beginning from null hypothesis initial conditions, Table 2 shows that the EM
solution is close to the solution used to design the test data. Except for the
most-preferred wine B, as they should be, the estimates of bρi are small but in pro-
portions that establish a preference order for the Plackett-Luce PMF. Further, the

Figure 2

Distribution of Ranks on Wine C

Figure 1

Log Likelihood as EM Iterates
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bρi in Table 2 imply the correct common preference order (2 1 4 3 6 5 or
BADCFE). The likelihood ratio statistic (LRS) is 135, and that value is significant
with a chi-square of p < 0.01.4

The simple test above employs hypothetical ranks. Next, the mixture model and
EM solution were tested with a Monte Carlo simulation. Each taster’s ranks for
each wine were assigned randomly in each of 1,000 iterations. Results appear in
Table 3. As they should be for random rankings, none of the bρi are significantly
different from 1/6 = 0.167. However, the estimate of the random class mixture
weight πr shows that the probability of illusory common preference agreement,
although rankings are actually random, a false positive and Type I error, is approxi-
mately 1.000–0.807 = 0.193. Almost 20% of random ranks appear to be based on
illusory common preference.

Table 2
Simple Test Results

Wine

A B C D E F Sum Other

bρi
Value 0.003 0.996 small but

> 0
small but
> 0

small but
> 0

small but
> 0

1.000 −

log (Value) (5.776) (0.003) (16.228) (11.073) (27.260) (21.536)bπr − − − − − − − 0.333
Log Likelihood
Null H: − − − − − − − (118.43)
Final − − − − − − − (51.05)
LRS 135

Table 3
Monte Carlo Simulation Results (1,000 iterations)

Wine

A B C D E F Sum Other

bρi
Mean 0.170 0.169 0.162 0.161 0.172 0.167 1.000 0.167
S.D. 0.267 0.276 0.264 0.257 0.276 0.269 − −bπr
Mean − − − − − − − 0.807
S.D. − − − − − − − 0.090

Log Likelihood
Mean − − − − − − − (113.36)
S.D. − − − − − − − 2.10

4LRS ¼ �2ðlog Lnull hypothesis initial conditions
� 	� log Lsolutionð ÞÞ
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The Monte Carlo simulation results quantify a problem evident in the Judgment
of Paris and many wine tastings. That problem is sample size. The Judgment
involved nine French tasters (see Taber, 2004). See also a survey of wine tastings
in Hanson (2013) and the sample sizes for Liquid Assets wine tastings. The Pinot
Gris results above involved eighteen tasters and six wines. A simple example with
just two wines demonstrates the effect of a small sample size. For two tasters, the
observed result is that they agree either that one wine is better or that they differ.
If the tasters agree then, the EM solution for πr will be zero and πp will be unity.
Even if each taster’s preference was determined by the flip of a coin, the EM solution
for πp is unity when the tasters’ flips agree by chance. That is an illusion of common-
preference agreement false-positive Type I error, and with only two tasters, the prob-
ability that they appear to agree is 0.500. With many coin-flipping tasters, a large
sample size, the probability that they all appear to agree tends to zero. In that
case, the EM solution for πp will also tend to zero, and Type I error vanishes.
Wine-tasting sample sizes are small enough that the illusion of common preference
agreement is material, and the Monte Carlo simulation quantifies the extent of that
illusion. Results above show that the probability of Type I error for 18 tasters and
six wines is 0.193. Additional Monte Carlo simulations show that the probability of
Type I error is 0.48 for 6 tasters and 0.08 for 72 tasters. Those additional results
confirm the downward and asymptotic-to-zero trend in Type I error with sample size.

The findings in Table 2 set a threshold. The hypothesis that observed results are
not random must be tested against a null hypothesis defined by the Monte Carlo
simulation results. This approach quantifies the possibility of illusory agreement,
false-positive Type I error.

VI. Pinot Gris Results

Results for the Pinot Gris tasting appear in Table 4 and Figures 3 and 4. Note that
the t statistic for each parameter estimate, based on the corresponding Monte Carlo
null hypothesis mean and standard deviation, also appears in Table 4.5 The par-
ameter estimates for the most- and least-preferred wines, B and E respectively, are
significant at a level of confidence of over 95%. The estimate of the random class
mixture weight πr is also significant at a level of confidence of over 95%. In addition,
comparing the solution to the random Monte Carlo expectation, the LRS is 14 and
significant with a chi-square of p< 0.05.

First, the bρi in Table 4 make sense. The sum of the bρi sum is unity. Wine B is most
preferred according to both bρB and its mean rank in Table 1. Wine E is least preferred
according to both cρE and its mean rank in Table 1.

5For Monte Carlo (MC) results and Pinot Gris (PG) results, each t statistic is calculated using the form:

t statistic ¼ xPG � μMC

�� ��
σMC=

ffiffiffiffiffi
18

p
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More important, Table 4 yields information about the Pinot Gris tasting results
that is not evident in Table 1. The preference order implied by the bρi is BADFCE,
and the order implied by ranks in Table 1 is BFADCE. Wines A, F, and D are in
different places. This implies that the preference order based on mean ranks in
Table 1 is influenced by random assignments and, for example, that wine F is thus
an unreliable first or second choice. Next, the aggregate fraction of wine rankings
that appear to be random, bπr, in the Pinot Gris tasting is 0.299 or approximately
0.30. Cao (2014) found 0.60 or more for State Fair wine data and, although for
an undisclosed consumer product, Cleaver and Wedel (2001) found a random

Table 4
Pinot Gris Results

Wine

A B C D E F Sum Other

bρi 0.206 0.425 0.080 0.154 0.018 0.118 1.000 −
t statistic 0.576 3.932 (1.329) (0.122) (2.358) (0.769) − −bπr − − − − − − − 0.299
t statistic − − − − − − − (24.007)

Log Likelihood − − − − − − − (106.50)
t statistic − − − − − − − 13.885
LRS − − − − − − − 14

Figure 3

Distribution of Ranks on Wine B
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share of 0.48. Many factors may account for the differences in those results; all of
them imply that random-looking expressions of preference are material. Although
the fraction of random rank assignments in the Pinot Gris tasting is material, 1 – bπr ¼bπp thus the results in Table 4 also show that approximately 70% of observed ranks
appear to be based on nonrandom common preference assignments.

Further, Figures 3 and 4 depict the Equation (14) results for the most and least
preferred wines B and E. Figure 3 shows that the mixture model fits between the
high-probability first and second ranks that earned wine B the highest preference
and then trends to the right and down for ranks that appear to be random or idio-
syncratic. Figure 4 shows the reverse, the mixture model results track the random or
idiosyncratic ranks at the left and then lift to the higher-probability but low ranks
than earned wine E the lowest preference.

VII. Conclusion

Bodington (2012) posited that observed wine-tasting results have a mixture distri-
bution, and Cao (2014) evaluated California State Fair results using a mixture
model. This article extends that work by providing a literature review of previous
applications of ranking and mixture models to non–wine-tasting data and then
deriving a model for application to observed wine-tasting results. The benefits of
the approach include its direct use of observed tasting data, its use of information
embedded in the variance of observed data, absence of bias introduced by simu-
lation-based parameters, a multinomial PMF for each wine, reliance on the standard

Figure 4

Distribution of Ranks on Wine E
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EM solution, feasibility for the small sample sizes typical of wine tastings, quantifi-
cation of Type I error, and quantification of the share of ranks that appear to be
random. An application of the mixture model to results for a blind tasting of
Pinot Gris shows, with likelihood ratio tests and t statistics supporting a level of
confidence of over 95%, that random ranking behavior accounts for approximately
30% of ranks and that there is nonrandom agreement among approximately 70% of
tasters on a common preference order.

This article presents a model with two latent classes of taster, those who appear to
have preferences in common and those tasters who appear to rank randomly. Tasters
may also have idiosyncratic preferences that account for a lack of fit or unexplained
variance and further analysis of those idiosyncratic preferences is work for the future.
In addition, this article applied a ranking and mixture model to wine-tasting results
for one tasting in which each taster determined an order of preference for the wines in
the tasting. Application of ranking and mixture models to other tastings, to results
with tied rankings and to ordinal scores must follow.
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