
Annals of Actuarial Science, Vol. 13, part 1, pp. 67–79. © Institute and Faculty of Actuaries 2018
doi:10.1017/S1748499518000039
First published online 7 February 2018

Real-time Bayesian non-parametric prediction of
solvency risk

Liang Hong*
Department of Mathematics, Robert Morris University, 6001 University Boulevard, Moon Township,
PA 15108, USA

Ryan Martin
Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27695, USA

Abstract
Insurance regulation often dictates that insurers monitor their solvency risk in real time and take
appropriate actions whenever the risk exceeds their tolerance level. Bayesian methods are appealing
for prediction problems thanks to their ability to naturally incorporate both sample variability and
parameter uncertainty into a predictive distribution. However, handling data arriving in real time
requires a flexible non-parametric model, and the Monte Carlo methods necessary to evaluate the
predictive distribution in such cases are not recursive and can be too expensive to rerun each time
new data arrives. In this paper, we apply a recently developed alternative perspective on Bayesian
prediction based on copulas. This approach facilitates recursive Bayesian prediction without
computing a posterior, allowing insurers to perform real-time updating of risk measures to assess
solvency risk, and providing them with a tool for carrying out dynamic risk management strategies in
today’s “big data” era.
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1. Introduction

Solvency risk is a critical concern for both insurers and insurance regulators. Indeed, insurance
regulations often require that insurers monitor their solvency risk continuously and take into
consideration of the changes of their risk profiles. For example, the European insurance regulation
Solvency II (2009, e.g. Article 63) requires that all insurers must calculate their risk capital at least
once a year and monitor it on a continuous basis. Similar regulation can be found in the US
regulation Own Risk and Solvency Assessment (2017). From the insurers’ point of view, they should
go beyond the minimum requirement set by the regulators. That is, they should have clear picture of
their financial health at all times, not just at the end of each year. Therefore, it is desirable that they
know their solvency risk in real time so that they can respond in case their solvency risk goes above
their tolerance level. Since these questions about risk naturally involve future losses, this boils down
to a prediction problem, and any sort of risk summary would be best described as a suitable feature
of the predictive distribution for these future losses.
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A Bayesian approach is particularly attractive in the context of prediction, since the specification
of a joint distribution for all unknowns – including the model parameters and future losses – gives
the actuary the opportunity to evaluate a genuine predictive distribution, which is simply the
conditional distribution of the future losses, given the observed losses, marginalised over
model parameters. A key feature of this Bayesian-style predictive distribution is that the
marginalisation actually accounts for parameter uncertainty whereas other non-Bayesian methods
predict future losses by simply plugging in estimates of model parameters, effectively ignoring
the associated uncertainty, often resulting in an underestimation of solvency risk. Examples of
Bayesian methods for evaluating risk measures, such as value-at-risk (VaR) and conditional
tail expectation (CTE), to monitoring solvency risk include Gerrard & Tsanakas (2011), Fröhlich
& Weng (2015), Hong & Martin (2017a), and references therein. The trade-off for accurate
uncertainty assessment in prediction is that a sufficiently flexible Bayesian model will typically
require posterior computations that cannot be carried out in closed form. There are powerful
Markov chain Monte Carlo (MCMC) methods now available (e.g. Scollnik, 2001) to handle these
computations, but these methods generally cannot take advantage of the natural Bayesian updating
procedure, that is, where the old posterior becomes the new prior. Therefore, formal Bayesian
updating the posterior and/or the predictive distribution when a new loss is observed cannot be done
recursively or online; instead, it requires reprocessing the entire data set again, which can be com-
putationally prohibitive depending on the rate at which new loss variables are observed and/or how
quickly the updated predictions are needed.

So the question is how to maintain the desirable prediction features of a flexible Bayesian
model but do so in a recursive way that allows insurers to update the corresponding
predictive distribution in real time. Here, in the spirit of Makov (2001), we provide an answer
to this question by introducing to actuarial science a new Bayesian-inspired non-parametric
estimator, first developed in Hahn et al. (2017), that is fast and easy to compute and provides
recursive updating of the predictive distribution directly, without requiring any posterior
computations via MCMC. Given a recursive estimator of the predictive distribution, it is straight-
forward to evaluate risk measures such as VaR or CTE, which are just functionals of the predictive
distribution, to gauge the insurer’s solvency risk. Throughout this paper, we will focus on the risk
capital required by Solvency II, that is, VaR at the confidence level 99.5%, but see section 5 for
discussion of various extensions.

The remainder of this paper is organised as follows. Section 2 sets up the Bayesian
prediction problem and describes a sufficiently flexible non-parametric – or infinite-dimensional
parametric – model that is capable of adapting to a variety of distributional forms. The flexibility
of a non-parametric model is a necessity in real-time prediction applications since the insurer
will not be able to carry out a traditional exploratory analyses to identify a satisfactory
parametric model. In section 3, we describe an alternative view of the Bayesian predictive updating
through an interesting connection with bivariate copulas, which facilitates direct updating of
the predictive distribution without any posterior computations or MCMC. Deriving closed-form
expressions for the copula corresponding to the non-parametric models we have in mind is out
of reach, but a recursive approximation is available, which is easy to compute and has desirable
convergence properties. Two numerical examples are given in section 4 to highlight the quality of fit
as well as the online tracking of solvency risk that gives insurers the ability to make adjustments in
real time. Some concluding remarks are given in section 5. R code to implement the proposed
method and examples is available at the second author’s website: http://www4.stat.ncsu.
edu/~rmartin.
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2. Bayesian Prediction

2.1. General setup

While many methods in the frequentist framework are available (e.g. Klugman et al., 2012, chapters
11, 13, 20; Frees et al., 2014, chapters 5, 6, 8), the Bayesian approach is natural in this context, as it
provides a genuine predictive distribution for future claims, allowing actuaries to assess prediction
uncertainty. This is crucial from the risk management point of view, as described in Gerrard &
Tsanakas (2011) and Fröhlich & Weng (2015).

To set the scene, since insurance losses are non-negative and typically long right-tailed, throughout
this paper we will work with the natural logarithm of the losses; this removes the non-negativity
constraint and provides a more convenient scale on which to visualise the loss distribution.
Now, under the Bayesian approach, the actuary assumes a full probability model for all unknowns,
that is, a joint probability distribution for the real-valued log-losses X1,… , Xn, the future log-losses
Xn +1, Xn +2,… , and any unknown parameters θ. The marginal distribution for θ, denoted by Π, is
called the prior distribution, and the conditional distribution of (X1,… , Xn), given θ, defines a
likelihood function, as commonly used in classical statistics. Throughout, we take (X1,… , Xn,…)
to be independent and identically distributed (iid), given θ. This model can be described
hierarchically as

θ � π and ðX1; ¼ ;Xn; ¼ Þ j θ �iid Pθ

where Pθ is a probability measure on (a subset of) R, indexed by θ∈Θ, assumed to have a density
function pθ with respect to, say, Lebesgue measure μ.

The full probability model makes inference straightforward, at least conceptually. Indeed, given
(X1,… , Xn), Bayes’s formula leads to the posterior distribution for θ, that is,

πn Að Þ : = π θ j X1; ¼ ;Xnð Þ=
Ð
A

Qn
i=1 pθ Xið Þ πðdθÞÐ

Θ
Qn

i=1 pθ Xið Þ πðdθÞ (1)

where A is any π-measurable subset of Θ. Similarly, for predicting a future lossXn+1, given (X1,… ,Xn),
the posterior predictive distribution has a μ-density function given by

fnðxÞ=
ð
pθðxÞπnðdθÞ (2)

which is simply the conditional density of Xn+1, given (X1,… , Xn), under the proposed Bayesian
model. It will be helpful in what follows to refer to the so-called prior predictive distribution which is
just like (2) but with no data, that is,

f0ðxÞ=
ð
pθðxÞπðdθÞ (3)

Although fn in (2) is the usual Bayesian density estimator based on (X1,… , Xn), note that it is
generally very different from a classical plug-in estimator pθ̂, where θ̂ is some estimator of θ based on
(X1,… , Xn). In particular, fn need not be a member of the family {Pθ : θ∈Θ} of specified distribu-
tions. Moreover, integrating over θ with respect to the posterior πn implies that uncertainty about θ,
given (X1,… , Xn), which is encoded in πn, is accounted for in density estimation. This is what
distinguishes fn from a classical density estimator.
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From the predictive density fn, actuaries may obtain any feature of the predictive distribution for Xn+1,
such as spread, skewness, quantiles or CTEs. In particular, actuaries can calculate the risk capital level
set by Solvency II, that is, the 99.5% VaR, which is simply the predictive distribution quantile

vn := F�1
n ð0:995Þ (4)

where Fn is the cumulative distribution function corresponding to fn in (2). In what follows, our goal
will be to track the sequence {vn :n≥1} as new data arrive to give the insurer an assessment of their
capital risk in real time.

The Bayesian framework admits a type of recursive updating in the sense that the new prior is the old
posterior. That is, one can readily check that the posterior πn can be re-expressed as

πnðAÞ=
Ð
A pθðXnÞπn� 1ðdθÞ

fn� 1ðXnÞ (5)

In the case where the prior π admits a density g on Θ, this update can be written in terms of the
posterior density, that is,

gnðθÞ / pθðXnÞgn� 1ðθÞ
revealing the recursive nature of the updates. However, in cases where it is not possible to work
directly with the posterior density, as we discuss below, this natural Bayesian updating formula is out
of reach. For online recursive updates, especially in complex models, a suitable approximation may
be needed.

2.2. Dirichlet process mixture models

Hong & Martin (2017b) argue that the insurer might seek the flexibility of a non-parametric model,
largely to avoid potential model misspecification which can erroneously influence capital risk
assessments. Here, in our context of estimating the predictive distribution in real time, being able to
work with a non-parametric approach is especially important. Indeed, it is not possible to look at the
entire data set all at once, make a decision about what model is appropriate, and then fit that model.
It is necessary to start with a sufficiently flexible non-parametric model that can adapt to the shape of
the distribution as they arrive.

In these non-parametric cases, θ is not a finite-dimensional parameter, it is an infinite-dimensional
index of the density function pθ. While there are a number of ways this can be accomplished (see, e.g.
Müller & Quintana, 2004) arguably the most common strategy, in the present context of modelling
densities, is the so-called Dirichlet process mixture model. In this case, θ itself corresponds to a
distribution over defined on a specified latent variable space, U, possibly different from the sample
space, and pθ is the mixture

pθðxÞ=
ð
U

kðx juÞ θðduÞ

where k(x|u) is a known kernel – a density function in x for each fixed u 2 U. Then the model is
completed by introducing a Dirichlet process prior (Ferguson, 1973) for the mixing distribution θ,
that is, θ∼ π:=DP(α,G), where the precision parameter α> 0 controls the variability, and the base
measureG onU characterises the location. See Ghosal (2010) and Hong &Martin (2017a) for more
details. The most commonly used kernel is a normal, k(x |u)=N(x | μ, σ2), where u= (μ, σ2) in
U=R ´ R +:
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Whatever the choice of kernel and Dirichlet process parameters in the formulation above, the
analysis described in section 2.1 carries through word-for-word. That is, given the observed losses
(X1,… , Xn), the actuary can get a posterior πn for the (mixing distribution) θ, and construct a
corresponding posterior predictive density fn(x) for the next loss Xn+ 1 via the formula (2). The only
difference is that, since θ is an infinite-dimensional object, computation of the posterior and cor-
responding predictive necessarily requires MCMC methods; for the normal kernel, Kalli et al. (2011)
provide one such algorithm.

While these are indeed powerful computational methods, they do not allow the user to take
advantage of the natural Bayesian updating in (5), where the new prior is the old posterior, described
above. This means that, given the posterior πn− 1 based on (X1,… , Xn− 1), when new data Xn arrives,
the MCMC algorithm must be rerun on the full data (X1,… , Xn) to get the posterior πn or the
predictive density fn. This can be prohibitively slow, thereby motivating a fast recursive
approximation.

3. A Recursive Approximation

3.1. Formulation

To circumvent the aforementioned computational difficulties in Bayesian updating in non-parametric
models, we turn to a new strategy, recently proposed by Hahn et al. (2017), for updating the
predictive (2), via copulas (Nelson, 2006). For observations (X1,… , Xn −1, Xn), (5) and the definition
(2) of the predictive fn imply that

fn xð Þfn� 1 Xnð Þ= fn� 1 Xnð Þ
ð
pθ xð Þπn dθð Þ

= fn� 1 Xnð Þ
ð
pθ xð Þpθ Xnð Þπn�1 dθð Þ

fn�1 Xnð Þ

=
ð
pθ xð Þpθ Xnð Þ πn�1 dθð Þ; n≥1 ð6Þ

where f0(x) is the prior predictive density (3). This defines a symmetric joint density in the arguments
(x, Xn) and the marginals are both fn− 1. Then Sklar (1959) theorem implies that there exists a
symmetric copula density cn such that

fn xð Þ= cn Fn�1 xð Þ; Fn� 1 Xnð Þð Þfn� 1 xð Þ (7)

where Fn− 1 is the distribution function corresponding the predictive density fn −1. That is, for each
Bayesian model there exists a unique sequence {cn} of copula densities, depending on the sample
only through the size n, and can be found, at least in principle, by analysing the ratio fn(x)/fn− 1(x),
such that (7) holds. This representation reveals that it is indeed possible to directly and recursively
update the predictive distribution, thereby circumventing the need for MCMC methods that tend to
be slow. In parametric models, it is possible to derive a closed-form expression for the copula
density cn. Below we give one example to illustrate this. For more examples, see Hahn et al. (2017).

Example 1. Suppose that the claim amount X exceeding a given threshold x0 follows the single-
parameter Pareto distribution with parameter θ, that is

pθ xð Þ= θxθ0x
�ð1 + θÞ; x> x0
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This model is taken from Rytgaard (1990) and is widely used in reinsurance industry to model the
exceedance of claims over a given limit (Bühlmann & Gisler, 2005). Assume θ ~Gamma(α, λ), that is,
the prior density is given by

π θð Þ= λα

Γ αð Þ θ
α� 1e� λθ; θ> 0

where Γ(x) is the gamma function. Then

fn xð Þ= α + n
x

λ + log Mn=xn0
� �� �α +n

λ + log Mn=xn0
� �

+ log x=x0ð Þ� �α + n+1 ; x> x0

and

Fn xð Þ= 1� λ + log Mn=xn0
� �

λ + log Mn
�
xn0

� �
log x=x0ð Þ

" #α + n
; x>x0

where Mn =
Qn

i=1 Xi. It follows that

fnðxÞ
fn� 1ðxÞ =

α + n
α + n� 1

½1� Fn� 1ðxÞ�½1� Fn� 1ðXnÞ�f g� ðα +nÞ=ðα +n�1Þ

½1� Fn� 1ðxÞ�� 1=ðα + n� 1Þ + ½1� Fn� 1ðXnÞ�� 1=ðα + n� 1Þ � 1
n oα +n +1

Therefore, we have the Clayton copula density with parameter 1/(α + n −1):

cnðu; vÞ= α + n
α + n� 1

½ð1� uÞð1� vÞ��ðα +nÞ=ðα +n� 1Þ

½ð1� uÞ� 1=ðα + n� 1Þ + ð1� vÞ�1=ðα +n�1Þ � 1�α +n +1

That is, the genuine Bayesian predictive distribution under this Pareto–gamma model can be updated
recursively using formula (7) with the copula density cn above, avoiding any direct posterior dis-
tribution computations.

Whether a formula for cn is available in closed form or not, the representation (7) states that there is
a direct and recursive update of the predictive that does not require computing the posterior via
MCMC. This representation even holds for complex non-parametric models like the Dirichlet
process mixtures described above, although deriving a closed form for the copula cn is out of reach.
Nevertheless, approximations are available.

For a Dirichlet process mixture model, with kernel k(x|u)=N(x|u, 1), a priorDP(α,G) for the mixing
distribution θ on U=R, with G=N(0, τ−1), and (α, τ) fixed, if n=1, then Hahn et al. (2017) show
that the update from (f0, X1) to f1 is given by

f1ðxÞ= ð1� αÞf0ðxÞ + α f0ðxÞcρðF0ðxÞ; F0ðX1ÞÞ (8)

where ρ= τ−1 and cρ is the bivariate Gaussian copula density

cρðu; vÞ= N2ðΦ� 1ðuÞ;Φ� 1ðvÞ j0; 1; ρÞ
NðΦ� 1ðuÞ j0; 1ÞNðΦ� 1ðvÞ j0; 1Þ

withN2( ⋅ , ⋅ |0, 1, ρ) the standard bivariate normal density with correlation ρ, and Φ the standard normal
distribution function. The updates for general n>1 are analytically intractable, but Hahn et al. (2017)
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follow the idea in Newton (2002) to create an algorithm by simply applying the one-step predictive update
(8) at every iteration. In particular, we consider the following recursive sequence ðf̂nÞ of predictive densities

f̂nðxÞ= ð1� αnÞf̂n� 1ðxÞ + αnf̂n� 1ðxÞcρðF̂n� 1ðxÞ; F̂n� 1ðXnÞÞ; n≥ 1 (9)

where f̂0 is a user-specified prior predictive, not necessarily of the form (3), F̂n� 1 is the distribution
function corresponding to f̂n�1, ρ∈ (0,1) is a fixed correlation, and the weights (αn)⊂ (0, 1) are vanishing
at a suitable rate; see (12). This algorithm is similar to the predictive recursion method developed by
Newton & Zhang (1999) and Newton (2002), and analysed in Martin & Ghosh (2008), Tokdar et al.
(2009), and Martin & Tokdar (2009, 2011), except that it has the advantage of directly estimating the
predictive density and does not require numerical integration to compute normalising constants.

On the distribution function scale, the algorithm is a bit more transparent, that is,

F̂nðxÞ= ð1� αnÞF̂n� 1ðxÞ + αnCρðF̂n� 1ðxÞ; F̂n� 1ðXnÞÞ (10)

where Cρ is given by

Cρðu; vÞ=Φ
Φ� 1ðuÞ� ρΦ� 1ðvÞ

ð1� ρ2Þ1=2
 !

(11)

which is a distribution function in u for fixed v. From the expression in (11), it is clear that (1 − ρ2)1/2

plays a role similar to that of a bandwidth parameter in kernel-based density estimation, so it makes
sense for ρ to be relatively close to 1.

For comparison, the aforementioned kernel density estimators, as described in, for example,
Sheather (2004), take the form

~fnðxÞ= 1
n

Xn
i=1

khðx�XiÞ= n� 1
n

~fn� 1ðxÞ + khðx�XnÞ
n

where the kernel kh is often a normal density function with mean 0 and scale h> 0 as a bandwidth
parameter. From the latter expression, it appears that ~fn is a recursive estimator. However, it is
common to let the bandwidth h=hn depend on n and, for such a choice, the apparent recursive
structure breaks down. More importantly, this ~fn is effectively just a plug-in estimator that may not
properly account for uncertainty in prediction, which is undesirable as argued by Gerrard &
Tsanakas (2011) and Fröhlich & Weng (2015).

The take-away message is that there exists a recursive update of the predictive density fn in the
Dirichlet process mixture model formulation, characterised by a copula density, and even though the
particular copula density is not available in closed form for all n, there is a reasonable approximation
f̂n in (9) or (10). Moreover, the approximation f̂n retains the desirable flexibility and Bayesian
features of the true predictive fn.

3.2. Properties

Here, we provide some details about the convergence properties of the sequence F̂n of predictive
distributions as n → ∞ under iid sampling of Xi’s from a distribution F� with density f �. Hahn et al.
(2017) proved that, for a class of weights (αn) satisfyingX1

i=1

αi =1 and
X1
i= 1

α2i <1 (12)
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if f �, the initial guess F̂0, and the correlation ρ are compatible in the sense thatð
min F̂0ðxÞ; 1� F̂0ðxÞ

n o� 2ρ=ð1 + ρÞ
f � ðxÞ dx<1 (13)

then F̂n ! F� in the Kullback–Leibler divergence and, hence, the total variation distance sense, with
F�-probability 1, as n → ∞. The condition (12) implies that the weights are vanishing, which is
necessary for convergence of the algorithm, but that they are not vanishing too fast that Fn is unable
to forget the initial guess F̂0 and adapt to the shape of the true distribution F�. The integrability
condition (13), in particular, requires that the support of F̂0 contains that of F�, which is clearly
necessary for consistency, since the support of F̂n is contained in the support of F0 for all n.
More than that, the integrability condition (13) can fail only if F̂0 has too light of tails compared to
F�, which suggests that the insurer’s choice of F̂0 be sufficiently heavy-tailed.

We conclude here by saying that, if the insurer is interested in estimating some nice functional ψ F�ð Þ
of the true distribution F�, then consistency of the plug-in estimator ψ F̂n

� �
follows from the theory

described above. In particular, the VaR is such a functional so, if the conditions for F̂n ! F� are met,
then we can expect that v̂n = F̂� 1

n 0:995ð Þ as in (4) will converge to F�� 1 0:995ð Þ, the corresponding
quantile of the true distribution F�.

3.3. Implementation

3.3.1. Algorithm
For log-losses X1, X2,… , the following summarises the recursive algorithm. Software to implement
this algorithm is available at http://www4.stat.ncsu.edu/~rmartin.

1. Make an initial guess of F̂0 with density f̂0 whose support is the whole real line.

2. Fix a grid of points, xm : m= 1; ¼ ;Mf g, in R, covering roughly the entire support of f̂0, where
M is a positive integer set by the actuary.

3. For eachm, compute the sequence F̂n xmð Þ
� �

using ((10)). Since data Xi is surely not to fall exactly
on the specified grid, an interpolation procedure, like approxfun in R, can be used to evaluate
F̂i� 1ðXiÞ.

4. Given the distribution function F̂nðxÞ, the corresponding density function f̂nðxÞ can be readily
evaluated using difference ratios, that is,

f̂nðxmÞ � F̂nðxmÞ� F̂nðxm� 1Þ
xm � xm� 1

and, again, interpolation can be used to evaluate f̂nðxÞ for points x off the grid. Some additional
smoothing, for example, smooth spline in R, can also be used to improve the relatively crude
difference-ratio estimate above.

3.3.2. Algorithm inputs
Here, we make a few remarks concerning implementation of the recursive algorithm (10). To start,
the actuary is required to set the correlation ρ∈ (0, 1), the weight sequence (αn), and the initial guess
F0. The choice of ρ is entirely up to the discretion of the actuary, with values closer to 1 cor-
responding to less smoothing; as a general guideline, we find that ρ= 0.90 is a reasonable choice. For
the weights, condition (12) suggests a choice like αi= (i + 1)−r for r∈ (0.5, 1]. In our numerical
examples, we take r=1 as a default choice. Finally, in choosing the initial guess F0, the essential point
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is to adequately capture the support of log-loss distribution. Since this distribution is not known and,
by the nature of the recursive estimation problem, there is little or no data to use as a guide,
incorporating some prior information is essential. Motivated by the integrability condition (13), we
recommend taking f̂0 as a Student-t density with location μ and scale σ, with (μ, σ) specified by the
insurer based, for example, on data from previous years, etc. Taking the degrees of freedom equal
to 2, as we do here, guarantees that the CTE is finite, which is reasonable.

4. Examples

4.1. Danish fire insurance loss data

The complete Danish data on fire insurance losses, hereby abbreviated as the “Danish data”, has
been studied by several authors; see, for example, Scollnik & Sun (2012), Cooray & Cheng (2015),
Calderín-Ojeda & Kwok (2016), and the references therein. The data are comprised of n=2,492 fire
insurance loss entries from 1980 to 1990. To account for inflation, the data have been adjusted to
reflect 1985 values. All losses are expressed in Danish Krone, and about 94% are between 1 and
7 million Krones. (Note that the data set are traditionally stored in ascending order, which does not
resemble an iid sequence, so we work here with a random permutation Xi1 ; ¼ ; Xin of the sorted
data X1,… , Xn.) A histogram of the log-losses is shown in Figure 1(a), along with two final
estimators f̂n from the recursive algorithm presented in section 3.1 based on Student and normal
initial guesses and other default settings described in section 3.3. Since this data set is relatively large,
as the convergence theory in section 3.2 suggests, the two recursive estimators both are able to adapt
to the unusual shape of the data histogram, and provide a satisfactory fit.

The recursive algorithm also provides insurers with online updating of the predictive distribution so
that real-time updating of the risk capital is possible. To illustrate this, we treat the permuted data as
arriving in real time. We also assume that the insurer has no past data on this line of business. Recall
that Solvency II requires the insurer to set its risk capital to VaR at the level 99.5%. Figure 1(b) gives
a plot of the evolution of VaR along the data sequence for both t2 and N(0, 42) initial guesses with
the unit for the vertical axis being log-millions; the choice of σ=4 in the normal is to roughly match
the VaR of t2, so that the comparison essentially only involves their tail thicknesses, not an overall
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Figure 1. Results for the Danish fire insurance data described in section 4.1. (a) Data histogram
with the recursive estimators with t2 initial guess (solid) and N(0, 42) initial guess (dashed).
(b) Evolution of risk capital for the same two initial guesses. VaR, value-at-risk.
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scale difference. Table 1 also lists the values of VaR and CTE at several chosen observation indices.
For both VaR trajectories, the first few iterations have very large VaR as a result of the initial guess,
but they stabilise relatively quickly. The insurer may want to adjust its risk capital during the initial,
say, 1,000 steps to be prepared for increased solvency risk. Eventually, the asymptotic convergence
theory kicks in and the sequence of estimates stabilises, hence the insurer may streamline its capital
allocation accordingly. Indeed, the two VaR estimates appear to be merging together towards the
end of the data sequence.

4.2. 1988 Norwegian fire claims data

Next, we analyse the 1988 Norwegian fire claims data which has been studied by several authors;
see, for example, Brazauskas & Kleefeld (2011, 2014, 2016), Nadarajah & Bakar (2015), Scollnik
(2014), and references therein. The 1988 Norwegian data consists of n= 827 fire loss claims
exceeding 500 thousand Norwegian Krones in 1988. Figure 2(a) shows a histogram of the log-loss
data, along with the final iteration of the recursive algorithm from section 3, again based on t2 and
N(0, 42) initial guesses and the default settings, and following a random permutation of the data.
In this case, both the two density estimators for different initial guesses are almost indistinguishable.

Table 1. Evolution of value-at-risk (VaR) and conditional tail expectation (CTE)
values for Danish fire insurance data described in section 4.1.

F̂0 = t2 F̂0 =N 0;42
� �

Index VaR CTE VaR CTE

1,000 3.769 4.530 3.837 4.647
1,200 3.813 4.555 3.882 4.662
1,400 3.785 4.464 3.844 4.637
1,600 3.709 4.493 3.758 4.592
1,800 3.662 4.431 3.704 4.488
2,000 3.655 4.355 3.692 4.383
2,200 3.649 4.279 3.684 4.439
2,400 3.623 4.221 3.654 4.354
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Figure 2. Results for the 1988 Norwegian fire claims data described in section 4.2. (a) Data
histogram with the recursive estimators with t2 initial guess (solid) and N(0, 42) initial guess
(dashed). (b) Evolution of risk capital for the same two initial guesses. VaR, value-at-risk.
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But, with smaller n than in the previous example, there is an effect of the truncation at (the log of)
500,000 Krones, something that the recursive estimator is not aware of. If, on the other hand, it were
known that “loss< 500” is impossible, then this can be accommodated through the choice of f̂0.
In any case, the fit of f̂n in the right tail is adequate. Figure 2(b) shows the evolution of predictive risk
capital as data comes one at a time with vertical axis units log-thousands. Here there are some
substantial fluctuations at the early steps, but the two VaR trajectories seem to merge by around 600
steps. Table 2 provides several values of VaR and CTE.

5. Concluding Remarks

Sound management of solvency risk requires the insurer to monitor their solvency risk continuously
and preferably in real time. While Bayesian analysis has been successful in estimating the risk
measures to gauge solvency risk, no existing Bayesian insurance models are able to allow insurers to
perform real-time updating of their solvency risk. This is due to the fact implementation of
Bayesian models often requires MCMC, which makes real-time updating of predictive distribution
infeasible. Motivated by this, our paper introduces to actuarial science a new perspective of Bayesian
recursive prediction that allows insurers to recursively update predictive distribution without com-
puting the posterior. This new approach enables insurers to update the predictive distribution
recursively in real time. Though we chosen risk capital set by Solvency II as our vehicle for illus-
tration, the same can be done for any other risk measures such as ruin probabilities and CTE. Two
real-data examples show how insurers may use this new method to monitor its risk capital and
manage its solvency risk.

Throughout we followed Fröhlich & Weng (2015) and considered prediction of a single-future loss;
of course, our estimate of the predictive for the log-loss can readily be transformed back to the
original scale. But there may be cases where interest is in the predictive distribution of some function
γN= γ(Xn +1,… , Xn+N) of N future independent losses. One example of γN is the sum of the next N
future losses and, for this case, there is no conceptual barriers to extending the methodology pre-
sented here, since any feature of the distribution of γN is just a function of the predictive f̂n for each
individual future loss. If N is relatively large, then, by the central limit theorem, the distribution of γN
is approximately normal, and the mean and variance can be derived easily from f̂n. If N is relatively
small, then numerical evaluation of the N-fold convolution of f̂n may not be too inconvenient.

Table 2. Evolution of value-at-risk (VaR) and conditional tail expectation (CTE)
values for Norwegian fire claims data described in Section 4.2.

F̂0 = t2 F̂0 =N 0; 42
� �

Index VaR CTE VaR CTE

100 10.601 11.673 9.568 9.587
200 10.423 11.392 9.828 10.405
300 10.239 11.083 9.788 10.075
400 10.334 11.192 9.984 10.693
500 10.353 11.066 10.081 10.349
600 10.828 11.696 10.685 11.575
700 10.853 11.981 10.731 11.769
800 10.929 11.843 10.826 11.525
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Though primarily motivated by the need for online prediction of risk measures, the recursive algorithm is
also applicable in cases where only batch prediction is needed. In such a situation, the recursive algorithm
still has the advantage of being computationally efficient compared to MCMC methods. It is worth
mentioning that the estimator f̂n depends on the order in which the data were processed. In applications
involving streaming data, that is, where new data points arrive one at a time, the order-dependence makes
sense, but when the data becomes available all at once, the order is arbitrary so order-dependence in f̂n is
difficult to interpret. In the latter case, a (near) order-independent estimator can be obtained by averaging
the order-dependent estimators over several randomly chosen permutations of the data sequence. Martin
& Tokdar (2012) argue that averaging over roughly 10 random permutations is sufficient to effectively
eliminate the order-dependence, especially if n is relatively large. And since each order-dependent f̂n can be
computed very fast, averaging over a few permutations is not a computational burden.

Finally, we believe that the recursive method we introduced in this paper will prove to be more useful
for markets with concentration risk such as earthquake insurance, cyber insurance, and terrorism
insurance. In such a market, claims may occur on a large scale within just minutes for a company
that has written a large number of policies in an affected region, and real-time updating of the
predictive distribution becomes critical for managing risks associated with occurred losses even
though reported claims are likely to be processed in batches. Therefore, it is crucial that tools for
real-time updating of predictive distributions be available for insurers.

Acknowledgements

The authors thank the editor and two anonymous reviewers for comments and suggestions that led
to significant improvements in this article.

References
Brazauskas, V. & Kleefeld, A. (2011). Folded and log-folded-t distributions as models for insurance

loss data. Scandinavian Actuarial Journal, 1, 59–74.
Brazauskas, V. & Kleefeld, A. (2014). Author’s reply to “Letter to Editor: Regarding Folded

and the Paper by Brazauskas and Kleefeld” by Scollnik. Scandinavian Actuarial Journal, 8, 753–757.
Brazauskas, Y. & Kleefeld, A. (2016). Modeling severity and measuring tail risk of Norwegian

fire claims. North American Actuarial Journal, 20(1), 1–16.
Bühlmann, & Gisler (2005). A Course in Credibility Theory and Its Application. Springer, New York.
Calderín-Ojeda, E. & Kwok, C.F. (2016). Modeling claims data with composite Stoppa models.

Scandinavian Actuarial Journal, 9, 817–836.
Cooray, K. & Cheng, C.I. (2015). Bayesian estimators of the lognormal-Pareto composite

distribution. Scandinavian Actuarial Journal, 6, 500–515.
Ferguson, T.S. (1973). Bayesian analysis of some nonparametric problems. Annals of Statistics,

1, 209–230.
Frees, E.W., Derrig, R.A. & Meyers, G. (2014). Predictive Modeling Applications in Actuarial

Science, Vol. I: Predictive Modeling Techniques. Cambridge University Press, Cambridge.
Fröhlich, A. & Weng, A. (2015). Modeling parameter uncertainty for risk capital calculation.

European Actuarial Journal, 5, 79–112.
Gerrard, R. & Tsanakas, A. (2011). Failure probability under parameter uncertainty. Risk Analysis,

31, 727–744.
Ghosal, S. (2010). The Dirichlet process, related priors and posterior asymptotics. In N.L. Hjort,

C. Holmes, P. Müller & S.G. Walker (Eds.), Bayesian Nonparametrics (pp. 35–79).
Cambridge University Press, Cambridge.

Liang Hong and Ryan Martin

78

https://doi.org/10.1017/S1748499518000039 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000039


Hahn, P.R., Martin, R. & Walker, S.G. (2017). On recursive Bayesian predictive distributions.
Journal of the American Statistical Association, https://doi.org/10.1080/01621459.2017.
1304219.

Hong, L. & Martin, R. (2017a). A flexible Bayesian nonparametric model for predicting future
insurance claims. North American Actuarial Journal, 21(2), 228–241.

Hong, L. &Martin, R. (2017b). Dirichlet process mixture models for insurance loss data, Scandinavian
Actuarial Journal, https://doi.org/10.1080/03461238.2017.1402086.

Kalli, M., Griffin, J.E. & Walker, S.G. (2011). Slice sampling mixture models. Statistical Computing,
21, 93–105.

Klugman, S.A., Panjer, H.H. & Willmot, G.E. (2012). Loss Models: From Data to Decisions,
4th edition. Wiley, Hoboken, NJ.

Makov, U.E. (2001). Principal applications of Bayesian methods in actuarial science. North
American Actuarial Journal, 5(4), 53–57.

Martin, R. & Ghosh, J.K. (2008). Stochastic approximation and Newton’s estimate of a mixing
distribution. Statistical Science, 23, 365–382.

Martin, R. & Tokdar, S.T. (2009). Asymptotic properties of predictive recursion: robustness and
rate of convergence. Electronic Journal of Statistics, 3, 1455–1472.

Martin, R. & Tokdar, S.T. (2011). Semiparametric inference in mixture models with predictive
recursion marginal likelihood. Biometrika, 98, 567–582.

Martin, R. & Tokdar, S.T. (2012). A nonparametric empirical Bayes framework for large-scale
multiple testing. Biostatistics, 13, 427–439.

Müller, P. & Quintana, F.A. (2004). Nonparametric Bayesian data analysis. Statistical Science,
19, 95–110.

Nadarajah, S. & Bakar, S.A.A. (2015). New folded models for the log-transformed Norwegian fire
claim data. Communications in Statistics–Theory and Methods, 44, 4408–4440.

Own Risk and Solvency Assessment (2017). Available online at the address http://www.naic.org/
cipr_topics/topic_own_risk_solvency_assessment.htm [accessed on 8-Aug-2017].

Nelson, R.B. (2006). An Introduction to Copulas, 2nd edition. Springer, New York.
Newton, M. (2002). On a nonparametric recursive estimator of the mixing distribution. Sankhyā:

The Indian Journal of Statistics, 64, 306–322.
Newton, M. & Zhang, Y. (1999). A recursive algorithm for nonparametric analysis with missing

data. Biometrika, 86(1), 15–26.
Rytgaard, M. (1990). Estimation in the Pareto distribution. ASTIN Bulletin, 20, 201–216.
Scollnik, D.P.M. (2001). Actuarial modeling with MCMC and BUGS. North American Actuarial

Journal, 5(2), 96–124.
Scollnik, D.P.M. & Sun, C. (2012). Modeling with Weibull–Pareto models. North American

Actuarial Journal, 16, 260–272.
Scollnik, D.P.M. (2014). Letter to editor: regarding folded models and the paper by Brazauskas and

Kleefeld (2011). Scandinavian Actuarial Journal, 2014(3), 278–281.
Sheather, S.J. (2004). Density estimation. Statistical Science, 19(4), 588–597.
Sklar, M. (1959). Fonctions de répartition á n dimensions et leurs marges. Université Paris, 8,

229–231.
Solvency II (2009). Available online at the address http://eur-lex.europa.eu/LexUriServ/

LexUriServ.do?uri=OJ:L:2009:335:0001:0155:en:PDF [accessed 8-Aug-2017].
Tokdar, S.T., Martin, R. & Ghosh, J.K. (2009). Consistency of a recursive estimate of mixing

distributions. Annals of Statistics, 37, 2502–2522.

Real-time Bayesian non-parametric prediction

79

https://doi.org/10.1017/S1748499518000039 Published online by Cambridge University Press

https://doi.org/10.1080/01621459.2017.1304219
https://doi.org/10.1080/01621459.2017.1304219
https://doi.org/10.1080/03461238.2017.1402086
http://www.naic.org/cipr_topics/topic_own_risk_solvency_assessment.htm
http://www.naic.org/cipr_topics/topic_own_risk_solvency_assessment.htm
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:335:0001:0155:en:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:335:0001:0155:en:PDF
https://doi.org/10.1017/S1748499518000039

	Real-time Bayesian non-parametric prediction of solvency risk
	1.Introduction
	2.Bayesian Prediction
	2.1.General setup
	2.2.Dirichlet process mixture models

	3.A Recursive Approximation
	3.1.Formulation
	3.2.Properties
	3.3.Implementation
	3.3.1.Algorithm
	3.3.2.Algorithm inputs


	4.Examples
	4.1.Danish fire insurance loss data

	Figure 1Results for the Danish fire insurance data described in section 4.1.
	4.2.1988 Norwegian fire claims data

	Table 1Evolution of value-at-risk (VaR) and conditional tail expectation (CTE) values for Danish fire insurance data described in section�4.1.
	Figure 2Results for the 1988 Norwegian fire claims data described in section 4.2.
	5.Concluding Remarks
	Table 2Evolution of value-at-risk (VaR) and conditional tail expectation (CTE) values for Norwegian fire claims data described in Section�4.2.
	ACKNOWLEDGEMENTS
	References


