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The multiarmed-bandit problem is often taken as a basic model for the trade-off
between the exploration and utilization required for efficient optimization under
uncertainty+ In this article, we study the situation in which the unknown perfor-
mance of a new bandit is to be evaluated and compared with that of a known one
over a finite horizon+We assume that the bandits represent random variables with
distributions from the one-parameter exponential family+When the objective is to
maximize the Bayes expected sum of outcomes over a finite horizon, it is shown
that optimal policies tend to simple limits when the length of the horizon is large+

1. INTRODUCTION

The multiarmed-bandit problem is a basic model for the trade-offs between the ex-
ploration and utilization required for efficient optimization under uncertainty+ In this
article,we study the situation in which the unknown performance of a new bandit is
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to be evaluated and compared with that of a known one over a finite horizon+ There
are two experiments denoted byEj ~ j 5 1,2!+ Associated with experimentEj are
independent and identically distributed~i+i+d+! random variables which represent the
outcomes of the experiment each time it is used+ These random variables model, for
example, the responses of medical treatments, industrial processes, investment de-
cisions, and even the outcomes of a slot machine~the “bandit”!+ Associated with
each outcome is a reward+We are allowed to use either experiment forN times~finite
horizon!+We wish to maximize the expected value of the sum of the rewards achieved
during this finite horizon+ Furthermore, we assume that the characteristics of exper-
imentE1 are known in advance, whereas those ofE2 are not; that is, experimentE1

corresponds to a process presently in use, whereasE2 corresponds to a new process
that is to be evaluated+ In this article, we study the case in which the outcomes from
Ei ~i 5 1,2! are random variables from theone-parameter exponential familyof
distributions+ In Section 2, we postulate a priori on the unknown parameter of the
second experiment, and formulate the problem of maximizing the expected sum of
outcomes+We point out that this is equivalent to minimizing a suitably defined regret
~expected loss function!+ In Section 3,we summarize a set of results on the existence
of an optimal policy of a simple-form finite-horizon case, obtained in Burnetas and
Katehakis@7# + The main contribution of this article is to extend the finite-horizon
results and derive a simple explicit approximation to the optimal policy in the case
that the planning horizon is large+ This is done in Section 4+ Section 5 extends the
asymptotic approximations to a generalized form of the regret function+

The results of Section 4 are related to those of Lai and Robbins@23# and
Lai @21# , who obtained asymptotic solutions for the more general problem in
which one has to choose amongk unknown experiments+ Our proofs are along
different lines and are based on classical Dynamic Programming arguments, as
Bradt, Johnson, and Karlin@4# did for the binomial case+ The results of Section 5
are new+

Chernoff and Ray@10# and Chernoff@9# obtained asymptotic testing plans for
the case of binomial populations using diffusion processes approximations+ The
approximation technique we use to obtain the asymptotic results is related to that of
Schwarz@25# , who derived asymptotic expressions for the hypothesis testing prob-
lem, for the case where there is an indifference region separating the two hypotheses+
We use a modification of Schwarz’s argument to obtain upper and lower bounds for
the optimal stopping sets and then derive asymptotic expressions on these bounds
using Laplace’s method for the asymptotic expansions of integrals+

For early work in this area, see Robbins@24# and Bellman@2#+ A recent and
rather exhaustive survey of the general area is given in Lai@22#; additional recent
work in this area is contained in Whittle@29#, Gittens@15#, Burnetas and Katehakis
@5–8# , Katehakis and Robbins@18# , and Shimkin and Shwartz@26,27# + For other
related work on the infinite-horizon discounted reward version of this problem, see
Gittins @14# , Varaiya, Walrand, and Buyukkoc@28# , Katehakis and Derman@17# ,
Katehakis and Veinott@19# , Berry and Fristedt@3# ,Agrawal,Hedge, and Teneketzis
@1# , and Glazebrook and Mitchell@16# +
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2. THE MODEL

Let E1 andE2 be two statistical experiments+With eachEi , i 5 1,2, there are asso-
ciated~i! a scalar parameterui belonging to some setQ and~ii ! a sequence of random
variablesXi ,Yi1,Yi 2, + + + such thatYij represents the outcome of experimentEi thej th
time it is performed, whereasXi is a generic random variable used to denote an
outcome fromEi +Given the value ofui 5 u, the random variablesXi , Yi1, Yi 2, + + + are
i+i+d+, with a probability density function~p+d+f+! f ~x6u! with respect to a nondegen-
erate measuren+ Let µ~u! ands2~u! denote the expected value and variance, re-
spectively,of a random variableXdistributed according tof ~x6u! @i+e+,µ~u!5E~X6u!
ands2~u! 5 Var~X6u!# +

We make the following assumptions+

Assumption 1: The p.d.f. f~x6u! belongs to the one-parameter exponential family
with a single natural parameteru; that is,

f ~x6u! 5 eux2c~u!1s~x!+ (2.1)

Assumption 2: The parameter space is an interval of the formQ 5 ~ su Nu!, with end
points that can be infinite, and satisfies the following conditions:

z1 5 inf
u[Q

c ''~u! . 0, z2 5 sup
u[Q

c ''~u! , `+ (2.2)

Assumption 3: Parameteru1 is known in advance, whereasu2 is unknown, and
following the Bayesian approach,u2 is a random variable with prior distribution:
H0~u!, u [ Q.

Assumption 4: We assume thatsu , u1, Nu, where su and Nu are such that~µ~ su!,µ~ Nu!!5
$µ~u! : u [ Q%.

Remark 2.1:

~a! We use the natural parameter representation of the exponential family~cf+
Cox and Hinkley@11, p+ 28# !+ It is known that for the one-parameter expo-
nential familyµ~u! 5 c '~u! ands2~u! 5 c ''~u!, µ~u! is strictly increasing
in u and the set$µ~u! : u [ Q% is an interval of the form~µ~ su!,µ~ Nu!!+

~b! Note that ifu1 # su~u1 $ Nu! then the problem is trivial, because then one
should always chooseE2~E1!+

Let t~n 5 N 2 t ! denote the number of samples that have already been taken
~remain to be taken!+At t 5 0, we haveX1 ; f ~x6u1! with respect ton~dx! andX2 ;
f ~x6u2! with respect ton~dx!, u1 known, u2 ; H0~u!+

An observed sample of sizeki from experimentEi will be denoted bydi~ki ! 5
~ yi1, + + + ,yi,ki

!, i 5 1, 2+ Let sk 5 ~k1, k2! and td~ sk! 5 ~d1~k1!,d2~k2!!+
Sinceu1 is known, the future observations fromE1, Y1, k111, Y1, k112, + + + , given

d1~k1!, are i+i+d+ random variables with p+d+f+ f ~x6u1!,with respect ton~dx!+ Sinceu2

is unknown, the future observations fromE2, Y2, k211, Y2, k212, + + + given$d2~k2! and
u2 5 u% , are i+i+d+ random variables with p+d+f+ f ~x6u!, with respect ton~dx!+ Given
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only d2~k2!, u2 is a random variable with~posterior! distributionH~u6d2~k2!!, de-
fined as follows:

dH~u6d2~k2!! 5
Df ~d2~k2!6u!dH0~u!

Df ~d2~k2!6H0!
5

f ~ y2, k2
6u!dH~u6d2~k2 2 1!!

E
Q

f ~ y2, k2
6u!dH~u6d2~k2 2 1!!

, (2.3)

wheredi ~ki ! 5 ~di ~ki 2 1!, yi, ki
! andH~u6d2~0!! 5 H0~u!, and Df ~d2~k2!6u! ~respec-

tively Df ~d2~k2!6H0!! denotes the joint p+d+f+ of the sampled2~k2!, givenu2 5 u ~re-
spectively given the priorH0!+

Given d2~k2!, unconditional on the value ofu2, the future observations from
E2,Y2, k211, Y2, k212, + + + , are i+i+d+ random variables with distribution determined by
the marginal p+d+f ~with respect ton~dx!!:

f ~x6d2~k2!! 5E
Q

f ~x6u!dH~u6d2~k2!!+ (2.4)

The Bayes estimate ofµ~u2! given the sampled2~k2! is equal to

[µ2~d2~k2!! 5 EH~{6d2~k2!! @µ~u2!# 5 Ef ~{6d2~k2!! @Y2, k211# + (2.5)

For notational convenience, we use the same symbolf to denote the p+d+f+ of an
outcome given a specific parameter value, as well as the marginal p+d+f+ of an out-
come fromE2 given the history of observationsd2~k2!+ Although they are different
quantities, there is no danger of confusion+

For the one-parameter exponential family case, it is well known that the poste-
rior distributionH~u6d2~k2!! and the marginal densityf ~x6d2~k2!! defined in~2+3!
and~2+4!, respectively, are uniquely determined by the two-dimensional sufficient
statistic, for the unknown parameter, ~k2, Ty2, k2

!, where Ty2, k 5 ~10k!(j51
k y2, j + Thus,

we can assume that in~2+3!–~2+5!, d2~k2! is simply the vectord2~k2! 5 ~k2, Ty2, k2
!+

Givend2~k221! 5 ~k21, y! andY2, k2
5 y2, k,d2~k2! is defined by the following

updating scheme:

d2~k26d2~k 2 1!, y2, k! 5 Sk,
k 2 1

k
y 1

1

k
y2, kD5 ~k,m~k 2 1, y, y2, k!!, (2.6)

wherem~k, y, x! 5 ~ky1 x!0~k 1 1!+
An N-stage allocation policy is defined as a rulep5 ~p~0!,p~1!, + + + ,p~N21!!,

where

p~t ! 5 p~t 6d1~k1~t,p!!,d2~k2~t,p!!! (2.7)

is equal toa1 or a2, according to whether at staget, p dictates to take a sample from
E1 or E2, respectively, where

ki ~t,p! 5 (
j50

t21

1$p~ j !5ai %
+ (2.8)
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The performance of a policyp is measured by

S~t,p! 5 (
j50

t21

Yp~ j !, kp~ j !~ j,p! , (2.9)

and the expected values

Eu S~t,p! 5 E@S~t,p!6u2 5 u# 5 µ~u1!Eu k1~t,p! 1 µ~u!Eu k2~t,p!, (2.10)

M~t,H0,p! 5 EH0
@Eu S~t,p!# 5 Ef ~{6H0! @S~t,p!# + (2.11)

A policy p* is optimal for the problem of horizonN and initial priorH0~u! andu2,
if and only if

M~N,H0,p * ! 5 max
p

M~N,H0,p!, (2.12)

where the maximum is taken over all sequential policies defined earlier+
A more general description of the problem is in terms of a loss functionL~u, i !,

which represents the expected one-step loss incurred when the unknown parameter
is equal tou and a sample from experimentEi is taken; that is,

L~u, i ! 5 µ*~u! 2 Eu Xi , (2.13)

whereµ*~u! 5 max$µ~u1!,µ~u!% + Then, the Bayes risk during the firstt observa-
tions is

R~t,H0p! 5 EH0F(
j51

t

L~u,p~ j !!G5 tEH0
@µ*~u!# 2 M~t,H0,p!+ (2.14)

SincetEH0
@µ*~u!# in ~2+14! is independent ofp, maximization ofM is equivalent

to minimization of R+ This leads us to the alternative definition of an optimal
policy p* :

R~N,H0,p * ! 5 min
p

R~N,H0,p!+ (2.15)

In Section 5, we will consider the following more general form of the loss function:

L~u, i ! 5 5
~µ~u! 2 µ~u1!!b if i 5 1 andu $ u1 1 e

~µ~u1! 2 µ~u!!b if i 5 2 andu # u1 2 e

0 otherwise,

(2.16)

whereb $ 1 ande $ 0+

3. OPTIMALITY EQUATIONS: PRELIMINARY RESULTS

In this section, we state some preliminary properties and two theorems of Burnetas
and Katehakis@7# on the structure of an optimal policy for the finite-horizon prob-
lem+ It will be more convenient to discuss the problem in terms ofn, the number of
samples remaining to be taken until the end of the horizonN+
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Let P~n, k, y! be the problem of maximizing the expected sum of observations
over a horizonn,when the initial information aboutu2 is summarized byH~u6~k, y!!
~i+e+, the posterior distribution ofu2 givend2~k2! 5 ~k, y!# +Also, let Q~n, k, y! be the
problem of minimizingR~n,H,p!, with the same conventions+

For problemsP~n, k, y! andQ~n, k, y!, define the optimal value functions

V~n, k, y! 5 sup
p

M~n,H~{6~k, y!,p!, (3.1)

U~n, k, y! 5 inf
p

R~n,H~{6~k, y!,p!, (3.2)

respectively+
Using standard arguments of Markovian Decision Processes with general state

and finite action spaces~cf+ Dynkin @12# !, one obtains the following proposition+

Proposition 3.1:

(a) The functions V~n, k, y! are the unique solutions of (3.3) and (3.4):

V~n, k, y! 5 max$r ~k, y;a1! 1 V~n 2 1, k, y!, r ~k, y;a2!

1 Ef ~{6~k, y!!V~n 2 1, k 1 1,m~k, y,X2!!%,

n 5 1,2, + + + ,N, k 5 0,1, + + + ,N 2 n, y [ R, (3.3)

V~0, k, y! 5 0+ (3.4)

(b) The functions U~n, k, y! are the unique solutions of (3.5) and (3.6):

U~n, k, y! 5 min$c~k, y;a1! 1 U~n 2 1, k, y!,c~k, y;a2!

1 Ef ~{6~k, y!! U~n 2 1, k 1 1,m~k, y,X2!!%,

n 5 1,2, + + + ,N, k 5 0,1, + + + ,N 2 n, y [ R, (3.5)

U~0, k, y! 5 0+ (3.6)

The one-step expected reward and cost functions r~k, y;ai ! and c~k, y;ai !, i 5 1,2,
are defined as

r ~k, y;a1! 5 Eu1
@X1# 5 µ~u1!, (3.7)

r ~k, y;a2! 5 Ef ~{6~k, y!! X2

5 EH~{6~k, y!! @Eu X2# 5E
Q

µ~u!dH~u6~k, y!!, (3.8)

c~k, y;a1! 5 EH~{6~k, y!! @µ*~u! 2 r ~k, y;a1!#

5E
u$u1

~µ~u! 2 µ~u1!!dH~u6~k, y!!, (3.9)

c~k, y;a2! 5 EH~{6~k, y!! @µ*~u!# 2 r ~k, y;a2!#

5E
u,u1

~µ~u1! 2 µ~u!!dH~u6~k, y!!+ (3.10)
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Moreover, the supremum and infimum in (3.1) and (3.2) are attained by a policyp*,
and they can be replaced by maximum and minimum, respectively.

In the next proposition, it is stated that~3+3! and ~3+5! are equivalent to the
optimality equations of appropriately defined stopping problems, where “stopping”
means switching to the known experiment and staying there for the remaining trials+
The proof is an extension of that given in Bradt et al+ @4# for the case of binomial
populations+

Proposition 3.2:

(a) Equation (3.3) is equivalent to

V~n, k, y! 5 max$nµ~u1!, r ~k, y;a2!

1 Ef ~{6~k, y!!V~n 2 1, k 1 1,m~k, y,X2!!%+ (3.11)

(b) Equation (3.5) is equivalent to

U~n, k, y! 5 min$nc~k, y;a1!,c~k, y;a2!

1 Ef ~{6~k, y!! U~n 2 1, k 1 1,m~k, y,X2!!%+ (3.12)

We will use the following quantities in the sequel, where log denotes the base e
logarithm+

Definitions 3.1: For y 5 ~10k!(j51
k y2j , let

,~u,u16y! 5 log
f ~ y6u!

f ~ y6u1!
, (3.13)

L~k, y! 5E
Q

ek,~u,u16y!dH0~u!, (3.14)

d~u! 5 u 2 u1, (3.15)

d~u! 5 µ~u! 2 µ~u1!, (3.16)

v~u! 5 c~u! 2 c~u1!+ (3.17)

Remark 3.1:From ~2+1!, it is easy to see that

,~u,u16y! 5 d~u!y 2 v~u!, (3.18)

k,~u,u16y! 1 ,~u,u16x! 5 ~k 1 1!,~u,u16m~k, y, x!!+ (3.19)

Using Remark 3+1, we can rewrite the optimality equations so that the expectations
on the right-hand side are taken with respect to the densityf ~x6u1! instead of the
marginal densityf ~x6~k, y!!+ This is done in the next proposition+
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Proposition 3.3:

(a) Equation (3.11) is equivalent to

v~n, k, y! 5 max$0,q~k, y! 1 Ef ~{6u1! n~n 2 1, k 1 1,m~k, y,X2!!%,

n 5 1,2, + + + ,N, k 5 0,1, + + + ,N 2 n, y [ R, (3.20)

v~0, k, y! 5 0, (3.21)

where

v~n, k, y! 5 ~V~n, k, y! 2 nµ~u1!!L~k, y! (3.22)

and

q~k, y! 5E
Q

d~u!ek,~u,u16y!dH0~u!+ (3.23)

(b) Equation (3.12) is equivalent to

u~n, k, y! 5 min$n Sc~k, y;a1!, Sc~k, y;a2!

1 Ef ~{6u1! u~n 2 1, k 1 1,m~k, y,X2!!%,

n 5 1,2, + + + ,N, k 5 0,1, + + + ,N 2 n, y [ R, (3.24)

u~0, k, y! 5 0, (3.25)

where

u~n, k, y! 5 U~n, k, y!L~k, y!, (3.26)

Sc~k, y;a1! 5E
u$u1

d~u!ek,~u,u16y!dH0~u!, (3.27)

Sc~k, y;a2! 5 2E
u#u1

d~u!ek,~u,u16y!dH0~u!+ (3.28)

Theorem 3+1 describes the structure of the optimal policy with respect to stop-
ping and continuation intervals fory 5 ~10k!(j51

k y2, j , whereas Theorem 3+2 gives
a more intuitive characterization in terms of inflation factors added to the Bayes
estimate ofµ~u2!+

Theorem 3.1:

(a) For each n and k, there exists a number yn~k! with the property

p *~n, k, y! 5 Ha1 if y , yn~k!

a2 if y $ yn~k!,
(3.29)

wherep*~n, k, y! is the action indicated by the optimal policy in state~n, k, y!.
(b) The sequence yn~k! is nonincreasing in n.
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Theorem 3.2:

(a) For each n, k, and y, there is a real numbere~n, k, y! with the property

p *~n, k, y! 5 Ha1 if EH~{6~k, y!! @µ~u2!# 1 e~n, k, y! , µ~u1!

a2 if EH~{6~k, y!! @µ~u2!# 1 e~n, k, y! $ µ~u1!,
(3.30)

wherep*~n, k, y! is the action indicated by the optimal policy in state~n, k, y!,
and

e~n, k, y! 5 2
q~k, yn~k!!

L~k, y!
+ (3.31)

(b) The quantitiese~n, k, y! are positive and increasing in n.

Remarks:The thresholdyn~k! represents the amount of immediate reward which
we can afford sacrificing in order to obtain information aboutu2, which is valuable
for the remaining decisions+

An interpretation of the quantitiese~n, k, y! is that they represent a positive in-
flation that is added to the current estimate of the reward ofE2, [µ25EH~{6~k, y!! @µ~u2!# ,
in order to take into account the uncertainty associated with it+

4. ASYMPTOTICS FOR LARGE N

In this section, we obtain properties of the optimal policy that are related to its
behavior when the planning horizon is large+ Before we proceed with the analysis,
we shall make another assumption in addition to those in Section 2+ Specifically,we
assume that the prior distribution ofu2 is continuous in@ su, Nu# ; that is, there is a prior
probability density function denoted byh0~u!, such thatdH0~u! 5 h0~u!du, with
Nh0 5 supQ h0~u!+ This assumption helps simplify the derivation of the asymptotic

approximations below+ However, it does not restrict the generality of the results,
because the discrete case can be treated in an analogous but simpler way+

The derivations in this section are based on the optimality equations in terms of
the regret defined in~3+24!+ The main results are given in Theorems 4+1 and 4+2,
which provide upper and lower bounds for the optimal stopping regions+ The proofs
of these two theorems are based on a number of intermediate properties, which are
given in the Appendix in Lemmata A+1–A+7+

For eachn, define the stopping regionSn 5 $~k, y! :p*~n, k, y! 5 1% +

Theorem 4.1: Under the assumptions made, when nr `

sSn , Sn , NSn, (4.1)

where

sSn 5 $~k, y! : n Sc~k, y;a1! , Sc~k, y;a2!%, (4.2)

NSn 5 $~k, y! : n Sc~k, y;a1! , 2MA~n 1 k! Sc~k, y;a2!%+ (4.3)
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Proof: From ~3+24! and Lemma A+4~a!, it follows that u~n, k, y! . 0+ Thus, if
n Sc~k, y;a1! , Sc~k, y;a2!, then it is optimal to stop@i+e+,p*~n, k, y! 51# + This proves
the first part of~4+1!+

In order to prove the second part, consider the allocation rulet~i ! defined as
follows: ~a! take a fixed numberi ~i # n! of samples fromE2 and~b! take the re-
mainingn 2 i samples fromE1 andE2, according to whether

Sc~k 1 i,m~k, y, y2, k11, + + + , y2, k1i !;a1! , Sc~k 1 i,m~k, y, y2, k11, + + + , y2, k1i !;a2!

(4.4)

or

Sc~k 1 i,m~k, y, y2, k11, + + + , y2, k1i !;a1! $ Sc~k 1 i,m~k, y, y2, k11, + + + , y2, k1i !;a2!,

(4.5)

respectively, wherem~k, y, y2, k11, + + + , y2, k1i ! denotes the new average after thei
additional outcomes

m~k, y, y2, k11, + + + , y2, k1i ! 5
ky

k 1 i
1

y2, k11 1{{{1 y2, k1i

k 1 i
+ (4.6)

Now, from Lemma A+4~c!, rule t~i ! has the following risk:

Rt~i ! ~n, k, y! 5 i Sc~k, y;a2! 1 ~n 2 i !Ef ~{6u1! @g~k 1 i,m~k, y,Y2, k11, + + + ,Y2, k1i !!# ,

(4.7)

whereg~k, y! 5 min$ Sc~k, y;a1!, Sc~k, y;a2!% + Note that in~4+7!, the risk is the one
corresponding to the transformed experiments~see Remark 3+1!+

From Lemma A+5, it follows that there existsA . 0 such that

Rt~i ! ~n, k, y! 5 i Sc~k, y;a2! 1 ~n 2 i !
A

k 1 i
5 f~i ;n, k, y!, i 5 0,1, + + + , n+

(4.8)

If we consider the extension off~i ! to the real domain,

f~i ;n, k, y! 5 i Sc~k, y;a2! 1 ~n 2 i !
A

k 1 i
, 0 # i # n, i [ R, (4.9)

then we can differentiate with respect toi :

f '~i ! 5 Sc~k, y;a2! 2 A
k 1 n

~k 1 i !2 , (4.10)

f ''~i ! 5 2A
k 1 n

~k 1 i !3 . 0; (4.11)
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hence, f~i ! is convex+We also have

f '~0! 5 Sc~k, y;a2! 2 A
k 1 n

k2 , (4.12)

which is negative forn sufficiently large, and

f '~n! 5 Sc~k, y;a2! 2
A

k 1 n
, (4.13)

which is positive also forn sufficiently large+ This means thatf attains its minimum
at somei *, 1 # i * , n, for which f '~i *! 5 0; that is,

i * 5 ! A

Sc~k, y;a2!
~k 1 n! 2 k+ (4.14)

Let [i *]5 min$i [ N : i $ i *% + Then, [i *] , i *1 1, and becausef is convex,

f~[i * ]! , f~i * 1 1!+ (4.15)

Note that

f~i * 1 1! 5 ~i * 1 1! Sc~k, y;a2! 1 ~n 2 i * 2 1!
A

k 1 i * 1 1

# ~i * 1 1! Sc~k, y;a2! 1 ~n 2 i * !
A

k 1 i *

5 2MA~n 1 k! Sc~k, y;a2! 2 ~k 2 1! Sc~k, y;a2! 2 A

, 2MA~n 1 k! Sc~k, y;a2! 5 f*~n, k, y!+ (4.16)

Combining the above inequalities, we have

Rt~[i * ]! ~n, k, y! , f*~n, k, y!+ (4.17)

From this discussion,we see that for each~n, k, y!, there is an allocation rule, namely
t~[i *~n, k, y!]!, as described above, which has expected risk less thanf*+ Thus, if
n Sc~k, y;a1! $ f*, then it is not optimal to stop, since continuing fori * more steps
gives a better policy+ So, n Sc~k, vy;a1! $ f* implies thatp*~n, k, y! 5 2 or, equiva-
lently, p *~n, k, y! 5 1 implies thatn Sc~k, y;a1! , f*, which completes the proof of
the theorem+ n

Based on Theorem 4+1, we now derive an asymptotic approximation of the
optimal policyp*~n, k, y! asn r `+ Let

G~k, y,u1! 5 HkI ~u*~ y!,u1! if µ~ su! , y , µ~u1!

k,~ su,u1! if y # µ~ su!,
(4.18)
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where

I ~s,t! 5 EsFlog
f ~x6s!

f ~X6t!
G

is the Kullback–Leibler information number+

Theorem 4.2: If h0~u! . 0, ∀u [ Q, then the optimal policy corresponding to the
solution of (3.40) when nr ` can be approximated by the following policy:

p1~n, k, y! 5 Ha1 if y , µ~u1! and G~k, y,u1! . log n

a2 otherwise+
(4.19)

Proof: We will show that, for largen, the setssSn and NSn defined in Theorem 4+1 can
both be approximated by the setK 5 $~k, y! : y , µ~u1! andkG~k, y,u1! . log n% +We
first consider thesSn, which are described by the following relation:

Sc~k, y;a1!

Sc~k, y;a2!
,

1

n
+ (4.20)

From~4+20!, we see that, asn r `, at least one of the following conditions holds:

Sc~k, y;a1! r 0 or Sc~k, y;a2! r `+

From the definition of Sc~k, y;a1! and Sc~k, y;a2! in ~3+27! and~3+28!, it follows that
for any fixedy, in order for either of the above conditions to be true it is necessary
thatkr`+ From Lemma A+6, it is easy to see that whenkr`, the values ofy for
which the above ratio tends to 0 are those included in the rangey , µ~u1!+We can
now use explicitly the results of Lemma A+6 to obtain an asymptotic approximation
for the inequality in~4+20!+ In the casey, µ~u1!,which we are interested in,we have
from ~A+32! that

Sc~k, y;a1! ;
2h0~u1!

~µ~u1! 2 y!2k2 +

As for Sc~k, y;a2!, we must consider three cases: ~a! y , µ~ su!, ~b! y 5 µ~ su!, and
~c! µ~ su! , y , µ~u1!+ For each of these cases, ~4+20! takes the following forms:

In case~a!,

Sc~k, y;a1!

Sc~k, y;a2!
;

2h0~u1!

~µ~u1! 2 y!2~µ~u1! 2 µ~ su!!h0~ su!kek,~ su,u16y!
,

1

n
+ (4.21)

Sincey , µ~ su!, from Lemma A+3, ,~ su,u16y! . 0; therefore, the above approximate
expression is decreasing ink, and sincen r `, the inequality holds for

k,~ su,u16y! . log n 2 o~ log n!+ (4.22)
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For cases~b! and~c!, we can show in the same way that the approximate solution of
~5+22! is

k,~ su,u16y! . log n 2 o~ log n! (4.23)

and

kI ~u*~ y!,u1! . log n 2 o~ log n!, (4.24)

respectively+
We now turn to the inequality which defines the setNSn in ~4+3!+ This can be

rewritten as

~ Sc~k, y;a1!!2

Sc~k, y;a2!
,

4A~n 1 k!

n2 + (4.25)

We can use again the approximations obtained in Lemma A+6 to obtain relations
analogous to~4+22!, ~4+23!, and~4+24! for the three cases+ For case~a!,we now have

~ Sc~k, y;a1!!2

Sc~k, y;a2!
;

4h0
2~u1!

~µ~u1! 2 y!4~µ~u1! 2 µ~ su!!h0~ su!k3ek,~ su,u16y!
,

4A~n 1 k!

n2 +

(4.26)

Consider~4+26! with the inequality replaced by equality+Assuming that for fixedy,
the unique solution ink satisfiesk0nr 0 and the right-hand side is of the same order
as 10n, thus we obtain the following:

k,~ su,u16y! 5 log n 2 o~ log n! (4.27)

for the asymptotic solution of the equality+ This form is in agreement with the as-
sumptionk0n r 0+ Since the approximation expression in~4+26! is decreasing ink
while the right-hand side is increasing, the required inequality will hold for

k,~ su,u16y! . log n 2 o~ log n!+ (4.28)

In cases~b! and~c!, the corresponding expressions will be

k,~ su,u16y! . log n 2 o~ log n! (4.29)

and

kI ~u*~ y!,u1! . log n 2 o~ log n!+ (4.30)

If we combine~4+22! with ~4+28!, ~4+23! with ~4+29!, and~4+24! with ~4+30!, we can
see that bothsSn and NSn can be described approximately for largen by the following
inequalities:

k,~ su,u16y! . log n wheny # µ~ su! (4.31)

kI ~u*~ y!,u1! . log n whenµ~ su! , y , µ~u1!+ (4.32)
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Therefore, based on Theorem 4+1, we can also approximate the stopping setSn

with the same region, and now the asymptotic interpretation of the optimal policy
is possible+ Namely, in the caseµ~ su! , y , µ~u1!, stopping is required when
kI ~u*~ y!,u1! . log n, and in the casey # µ~ su!, whenk,~ su,u16y! . log n+

Remark 4.1:

~a! A consequence of Theorem 4+2 is that for largen, it is never optimal to stop
sampling fromE2 wheny $ µ~u1!, even if the current posterior distribution
of u2 is unfavorable@i+e+, EH @u2# , µ~u1!# +

~b! The asymptotic policy derived in Theorem 4+2 is independent of the initial
prior p+d+f+ h0, whenh0~u! . 0, ∀u [ Q+ If this condition fails, it can still
be shown, based on Remark A+1, that a more general form of the asymp-
totically optimal policy is

p1~n, k, y! 5 H1 if y , µ~j! andk,~t,u16y! . log n

2 otherwise,
(4.33)

where

j 5 inf $u $ u1, h0~u! . 0%, (4.34)

andt is the value ofu which maximizes,~u,u16y! in the support of the prior
p+d+f+

~c! The policy in~4+19! is analogous to that described in Lai and Robbins@23#
and in Lai@22# in the general case where there aremunknown experiments
to be compared+ Their asymptotically optimal policy is based on the use of
upper confidence bounds~which essentially estimate the unknown param-
eters! in the following way+ If xj is the average ofTj successive observations
from experimentEj , j 5 1, + + + , i , the upper confidence bound is defined as

Uj ~Tj , xj ! 5 inf Hu . uxj
, I ~uxj

,u! .
g~Tj 0N!

Tj
J , (4.35)

whereuxj
is the maximum likelihood estimate foruj given~Tj , xj !, andg is

a function that satisfies certain assumptions~cf+ Lai @22# !, among which is
thatg~t !; log t21 whentr 0+Then, the policy suggests sampling from the
experiment with the largest upper confidence bound+

Here, from ~4+33! we can see that for every state~n, k, y!, there is a number
u1
'~n, k, y! such that if the known parameteru1 of E1 is less thanu1

'~n, k, y!, then it is
optimal to continue, otherwise it is optimal to stop+ The value ofu1

'~n, k, y! can also
be determined from~4+33! as follows:

u1
'~n, k, y! 5 inf Hu . u*~ y!, I ~u*~ y!,u! .

log n

k J if µ~ su! , y , µ~u1!; (4.36)
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thus,

u1
'~n, k, y! 5 inf Hu . su,,~ su,u16y! .

log n

k J if y # µ~ su!+ (4.37)

Therefore, u1
'~n, k, y! plays essentially the same role as the upper confidence bounds,

if one considers the fact thatTj 0N r 0 in ~4+35!+

5. GENERALIZATION OF THE REGRET

The regretR~t,H,p! was defined in~2+16! as the Bayes risk corresponding to the
loss functionL~u, i ! defined in~2+15!+ It was shown that for this particular choice of
loss function, the problems of maximizing the expected sum of outcomes and min-
imizing the Bayes risk are equivalent+ In this section, we consider a more general
form for L~u, i !, namely

L~u, i ! 5 ~µ*~u! 2 Eu Xi !
b1{ 6u2u16.e% (5.1)

or, equivalently,

L~u, i ! 5 5
~µ~u! 2 µ~u1!!b if i 5 1 andu $ u1 1 e

~µ~u1! 2 µ~u!!b if i 5 2 andu # u1 2 e

0 otherwise,

(5.2)

whereb $ 1 ande $ 0+ This definition ofL~u, i ! includes~2+15! as a special case
obtained whenb 51 ande 5 0+ It also includes other useful loss functions, such as
the quadratic loss~b 5 2, e 5 0!+ Furthermore, the casee . 0 corresponds to the
existence of an indifference region in a neighborhood of the known value, in which
no loss is incurred; that is, if u2 [ ~u1 2 e,u1 1 e!, then both actions are optimal+

Remark 5.1:To avoid trivialities, we assume thate , min$u1 2 su, Nu 2 u1% + This
ensures that there are possible values ofu2 on both sides ofu1 which are distinguish-
able fromu1 with respect to the loss function; thus, the decision problem is not
trivial+

For the loss function defined in~5+1!, the second equality in~2+16! is not true in
general+ Therefore, there is no immediate analog for reward maximization+ Never-
theless,we can still formulate optimality equations for the problem of minimization
of the regretR~n,H,p!, as in Section 3+ For the finite-horizon case, Theorem 3+1 is
still valid+ Furthermore, there are analogous expressions for the asymptotic approx-
imations derived in Section 4+ In the remainder of this section, we highlight the
necessary modifications in the formulation, the intermediate properties of the one-
step regret functions, and the profits+

For the dynamic programming formulation,we can still define the optimal value
function for the regret as in~3+2!+ Then, the optimality equations forU~n, k, y! have
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exactly the same form as those given in~3+5! and~3+12!, the only difference being
that the one-step cost functions defined in~3+9! and~3+10! now take the form

c~k, y;a! 5 EH~{6~k, y!! @L~u,a!# , (5.3)

and, more specifically,

c~k, y;a1! 5E
u$u11e

~µ~u! 2 µ~u1!!bdH~u6~k, y!!, (5.4)

c~k, y;a2! 5E
u#u12e

~µ~u1! 2 µ~u!!bdH~u6~k, y!!+ (5.5)

Proposition 3+3+b still holds, but now with

Sc~k, y;a1! 5E
u$u11e

~ d~u!!bek,~u,u16y!dH0~u!, (5.6)

Sc~k, y;a2! 5E
u#u12e

~2d~u!!bek,~u,u16y!dH0~u!+ (5.7)

The discussion in Section 3 was based on the optimal reward functionv~n, k, y! and
the optimality equation~3+20!+ If we define

q~k, y! 5 Sc~k, y;a1! 2 Sc~k, y;a2! (5.8)

and

v~n, k, y! 5 n Sc~k, y;a1! 2 u~n, k, y!, (5.9)

then the quantitiesq~k, y! andv~n, k, y!, although they do not possess immediate
interpretation as in Section 3, satisfy optimality equations analogous to~3+20!+Thus,
we can establish the structure of the optimal policy for the finite-horizon problem
analogous to that described in Theorem 4+1+

Now, we turn to the asymptotic properties corresponding to those of Section 4+
LemmataA+7 andA+8 in theAppendix are the equivalent ofA+5 andA+6 for this case+

Letj5z1e202+The analog of Theorem 4+1 is presented in the following theorem+

Theorem 5.1: Under the assumptions made, when nr `

sSn , Sn , NSn, (5.10)

where

sSn 5 $~k, y! : n Sc~k, y;a1! , Sc~k, y;a2!%, (5.11)

NSn 5 H~k, y! : n Sc~k, y;a1! ,
2 Sc~k, y;a2!

j
log

Ajn

Sc~k, y;a2!J (5.12)
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Proof: Equation~5+11! can be proved in the same way as~4+2!+ For ~5+12!, we can
also use the same arguments as in Theorem 4+1, up to inequality~4+8!, which here,
using Lemma A+8, takes the form

Rt~i ! ~n, k, y! , i Sc~k, y;a2! 1 nAe2~k1i !j 5 f~i; n, k, y!, i 5 0,1, + + + , n+ (5.13)

For the extension off in the real domain, we obtain

f '~i ! 5 Sc~k, y;a2! 2 jnAe2~k1i !j+ (5.14)

Thus, f is still convex, f '~0! , 0, andf '~n! . 0 for n sufficiently large+ Therefore,
the minimum is attained at the root of the first derivative,

i * 5
1

j
log

Ajn

Sc~k, y;a2!
2 k+ (5.15)

Let [i *]5 min$i [ N : i $ i *% + Then, [i *] , i *1 1, and, sincef is convex,

f~[i * ]! , f~i * 1 1!+ (5.16)

However,

f~i * 1 1! 5 ~i * 1 1! Sc~k, y;a2! 1 nAe2~k1i *11!j

# ~i * 1 1! Sc~k, y;a2! 1 nAe2~k1i * !j

5
Sc~k, y;a2!

j
log

Ajn

Sc~k, y;a2!
2 ~k 2 1! Sc~k, y;a2! 1

Sc~k, y;a2!

j

, 2
Sc~k, y;a2!

j
log

Ajn

Sc~k, y;a2!
5 f*~n, k, y!+ (5.17)

Now, the second inclusion relationship in~5+10! follows from~5+17! in the same way
that the second inclusion relationship in~4+1! follows from ~4+16!+ n

We finally establish the approximation of the optimal policy for large horizon,
similarly to Theorem 4+2, for e , 0+ Define the following sets:

K1~n, k, y! 5 $~k, y! : µ~u1 2 e! # y , µ~u1 1 e!,

,~u1 2 e,u16y! . ,~u1 1 e,u16y!, and

k~,~u1 2 e,u16y! 2 ,~u1 1 e,u16y!! . log n%, (5.18)

K2~n, k, y! 5 $~k, y! : µ~ su! , y , µ~u1 2 e! and

k~I ~u*~ y!,u1! 2 ,~u1 1 e,u16y!! . log n%, (5.19)

K3~n, k, y! 5 $~k, y! : y # µ~ su! andk~,~ su,u16y! 2 ,~u1 1 e,u16y!! . log n%+

(5.20)
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Theorem 5.2: If e . 0 and h0~u! . 0, ∀u [ Q, then the optimal policy as nr `
can be approximated by the following policy:

p1~n, k, y! 5 51 if ~k, y! [ ø
i51

3

Ki ~n, k, y!

2 otherwise+

(5.21)

Proof: The approximate characterization of the setssSn of Theorem 5+1 can be de-
rived in the same way as in Theorem 4+2, now making use of Lemma A+9 for the
asymptotic approximation ofSc~k, y;a!+As for the approximation ofNSn, we note the
following+ It must be still true thatSc~k, y;a2! tends to infinity in order for~5+12! to
hold+ So, log Sc~k, y;a2! will be positive for~k, y! [ NSn, and

f*~n, k, y! , 2
Sc~k, y;a2!

j
log~Ajn!, (5.22)

or in set notation,

NSn , H~k, y! : n Sc~k, y;a1! ,
2 Sc~k, y;a2!

j
log~Ajn!J + (5.23)

Instead of approximatingNSn, we obtain asymptotic characterizations for the sets on
the right-hand side of~5+23!+ Following the same reasoning as in Theorem 4+2, it can
be shown that these sets, as well assSn, are approximately described byKi ~n, k, y!, as
they were defined in~5+18!–~5+20!+ n

6. CONCLUSIONS AND FURTHER WORK

The asymptotic policy of Theorem 4+2 has interesting properties that are intuitively
expected+ In each step, if the average of the observed samples taken from the un-
known experimentE2 exceeds the expected value of the outcome for the known
experimentE1 @i+e+, y $ µ~u1!# , we continue sampling fromE2+ Otherwise, the de-
cision is based on the quantity

G~k, y! 5 HkI ~u*~ y!,u1! if µ~ su! , y , µ~u1!

k,~ su,u1! if y # µ~ su!,
(6.1)

wherek denotes the number of samples taken fromE2,u*~ y! is the maximum like-
lihood estimate of the unknown parameteru2 of E2 based on the averagey of the
previousk outcomes, andI ~u*~ y!,u1! is the Kullback–Leibler information number,
which represents, in some sense, the estimated distance between the distributions of
the two experiments~Kullback and Leibler@20# !+We continue or stop, according to
whetherG~k, y! # log n or G~k, y! . log n, respectively+Note thatG~k, y! increases
when either the number of available samples or the Kullback–Leibler information
number increases+ So, this quantity is a measure of the confidence that the true value
of u2 is really less thanu1, when the sample average we have observed is less than
µ~u1!+
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The following conjectures concerning the asymptotically optimal policy for the
case that there arem unknown experiments to be compared, instead of one known
and one unknown~i+e+, the multiarmed-bandit problem! can be made+ A key idea
here would be to consider the policy described in Theorem 5+1 as a function of the
valueu1 of the known experiment, as we did in Remark 5+1~b!+ Using sufficient
statistics similar to those used forE2, we can compute, using~4+36! and~4+37!, for
each unknown experimentEi , i 5 1, + + + ,m, a valueu1i of a hypothetical known ex-
perimentE1i ,which would make it indifferent to continue sampling fromEi or switch
to E1i for the remaining samples+ Then, we can compare the “index” valuesu1i and
take the next sample from the experiment with the largest index value+We shall deal
with a rigorous statement and justification of these conjectures in a future article+
The idea to replace the unknown parameters with indices equivalent to them in some
appropriate sense appears in the fundamental papers of Lai and Robbins@23# , as we
have already discussed, and Gittins@14# , which deals with the discounted infinite-
horizon version of the multiarmed-bandit problem+
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APPENDIX

The following lemma summarizes properties of the Kullback–Leibler information number
I ~ r,t!:

I ~s,t! 5 EsFlog
f ~X6s!

f ~X6t!
G + (A.1)

Lemma A.1: When f belongs to the one-parameter exponential family (2.1),

I ~s,t! 5 ~s 2 t!µ~s! 2 ~c~s! 2 c~t!!, (A.2)

I ~s,t! 5E
s

t

~t 2 u!c ''~u! du, (A.3)

z1

~t 2 s!2

2
# I ~s,t! # z2

~t 2 s!2

2
+ (A.4)

Proof: For~A+1! and~A+2!, see Lai@21# + Inequality~A+4! is immediate from~2+2! and~A+3!+
n
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Lemma A+2 indicates a useful relationship between the log-likelihood ratio,~u,u16x!

defined in~3+13! and the Kullback–Leibler information number+

Lemma A.2:

(a) ,~u,u16x! is concave inu.
(b) ∀x [ R : ∃u*5 u*~x!, such that,~u*,u16x! 5 maxu[Q ,~u,u16x!, where

u*~x! 5 5
µ21~x! if µ21~x! [ Q

Nu if µ21~x! Ó Q and,~ Nu,u16x! . ,~ su,u16x!

su if µ21~x! Ó Q and,~ Nu,u16x! # ,~ su,u16x!+

(A.5)

Moreover, if µ21~x! [ Q, then

,~u*,u16x! 5 I ~u*,u1!+ (A.6)

(c) If x , µ~ su!, then

,~ su,u16x! . 0+ (A.7)

Proof: From~3+18!,

],~u,u16x!

]u
5 x 2 µ~u!, (A.8)

]2,~u,u16x!

]u2 5 µ'~u! 5 2c ''~u! , 0+ (A.9)

Hence, ,~u,u16x! is concave inu, and its maximum inu [ Q is attained either at the point
where,u 5 0 @i+e+, at u* 5 µ21~x!# , if this point belongs toQ, or at one of the end points+
Furthermore,

,~µ21~x!,u16x! 5 ~µ21~x! 2 u1!x 2 ~c~µ21~x!! 2 c~u1!!

5 ~µ21~x! 2 u1!µ~µ21~x!! 2 ~c~µ21~x!! 2 c~u1!!

5 I ~µ21~x!,u1!+ (A.10)

This proves~a! and~b!+
For~c!,we first note that every concave function has at most two roots, lying on opposite

sides with respect to its maximizing value+ Hence, ∀x [ R, the equation,~u,u16x! 5 0, in
addition tou1, has at most one more solutionDu~x!, possibly not inQ,which has the following
property

Du~x! , µ21~x! , u1 if x , µ~u1!,

u1 , µ21~x! , Du~x! if x . µ~u1!+

Whenx , µ~ su! , µ~u1!, it is true that Du~x! , µ21~x! , su , u1; thus, ,~ su,u16x! . 0+ n
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Lemma A.3: Let x~n! denote the solution of the equation

A

xaelx
5

1

n
, (A.11)

for x, n . 0, and constantsa, A, l . 0. Then

(a) Equation (A.11) holds with“,” for x . x~n!.
(b) There exists a functione~n! such that

e~n! ; a log~log n! as nr ` and lx~n! 5 log n 2 e~n!+

Proof:

~a! For A, l . 0, the left-hand side of~A+11! is increasing inx+
~b! For x 5 x~n!, ~A+11! can be rewritten

lx~n! 2 log n 5 2a log x~n! 1 log A (A.12)

from which it follows that

x~n! 5
log n 2 a log x~n! 1 log A

l
+

Substituting this expression forx~n! on the right-hand side of~A+12!,

lx~n! 2 log n 5 2a logS log n 2 a log x~n! 1 log A

l
D1 log A+

Let e~n! 5 log n 2 lx~n! andB 5 a log l 1 log A+ Then,

e~n! 5 a logS log n 2 a log x~n! 1 log A

l
D2 log A

5 a logSlog nS12
a log x~n!

log n
1

log A

log n
DD2 log l 2 log A

or, equivalently,

e~n! 5 a log logn 1 a logS12
a log x~n!

log n
1

log A

log n
D2 B+ (A.13)

From ~A+11!, it follows that x~n! . 0 and limnr` x~n! 5 `; thus, limnr` @ log x~n!0
x~n!# 5 0+ Therefore, rewriting ~A+12! as

l 2
log n

x~n!
5 2

a log x~n!

x~n!
1

log A

x~n!
,

it follows that

lim
nr`

x~n!

log n
5

1

l
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and

lim
nr`

log x~n!

log n
5 lim

nr`

log x~n!

x~n!

x~n!

log n
5 0+ (A.14)

From~A+14!, it follows that

lim
nr`

logS12
a log x~n!

log n
1

log A

log n
D 5 0;

thus, from ~A+13!, asn r `, e~n! ; a log logn+ This completes the proof+ n

The following lemmata describe useful properties of the transformed one-step regret
functions+

Lemma A.4: The quantities Sc~k, y;a! defined in (3.27) and (3.28) satisfy

(a) Sc~k, y;a! . 0, ∀k, y+ (A.15)
(b) ∀k, Sc~k, y;a1! is increasing in y; ∀k, Sc~k, y;a2! is increasing in y.
(c) Eu1

@ Sc~k 1 1,m~k, y,X !;a!# 5 Sc~k, y;a!. (A.16)

Proof: The proof of~a! is immediate by definition+ Part ~b! can be proved by taking the
derivative iny and observing thatd~u!d~u! $ 0+ Part~c! expresses an intuitive martingale
property,which can be easily proved as follows+ Fora 51,we use~3+19! and~3+27! to obtain

Eu1
@ Sc~k 1 1,m~k, y,X !;a1!# 5E Sc~k 1 1,m~k, y, x!;a1! f ~x6u1!n~dx!

5E
R
E

u1

Nu

d~u!e~k11!,~u,u16m~k, y, x!!dH0~u! f ~x6u1!n~dx!

5E
R
E

u1

Nu

d~u!ek,~u,u16y!1,~u,u16x!dH0~u! f ~x6u1!n~dx!

5E
u1

Nu

d~u!ek,~u,u16y!E
R

f ~x6u!n~dx!dH0~u!

5E
u1

Nu

d~u!ek,~u,u16y!dH0~u! 5 Sc~k, y;a1!+ (A.17)

The casea 5 2 can be proved similarly+ n

Let us define the function

g~k, y! 5 min$ Sc~k, y;a1!, Sc~k, y;a2!%+ (A.18)

For this quantity, the following result holds+

Lemma A.5: g~k, y! 5 O~10k! uniformly in y.
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Proof: It suffices to prove the following intermediate claim:

∃A . 0: Sc~k,µ~u1!;ai ! ,
A

k
∀k 5 1,2, + + + , i 5 1,2+ (A.19)

Indeed, suppose that~A+19! holds+ Then, we consider two cases+

~a! y $ µ~u1!+ From Lemma A+4~b!,

g~k, y! # Sc~k, y;a2! # Sc~k,µ~u1!;a2! ,
A

k
+ (A.20)

~b! y , µ~u1!+ In the same way,

g~k, y! # Sc~k, y;a1! # Sc~k,µ~u1!;a1! ,
A

k
+ (A.21)

Sog~k, y! , A0k, ∀k, y, which proves the lemma+
We next prove~A+19!+ From~3+27!,

Sc~k,µ~u1!;a1! 5E
u1

Nu

d~u!ek,~u,u16µ~u1!!h0~u!du+ (A.22)

However,

,~u,u16µ~u1!! 5 ~u 2 u1!µ~u1! 2 ~c~u! 2 c~u1!! 5 2I ~u1,u!,

and from~A+12!,

2z2

~u 2 u1!2

2
# ,~u,u16µ~u1!! # 2z1

~u 2 u1!2

2
+ (A.23)

From mean value theorems of calculus, we obtain

d~u! 5 µ~u! 2 µ~u1! 5 c ''~j!~u 2 u1!, (A.24)

for somej [ ~u1,u!+ So, for u $ u1,

d~u! # z2~u 2 u1!+ (A.25)

From~A+23! and~A+25!, we obtain

Sc~k,µ~u1!;a1! # z2 Nh0E
u1

Nu

~u 2 u1!e2kz1~u2u1!202 du+ (A.26)

Let A 5 z2 Nh00z1+ Then,

Sc~k,µ~u1!;a1! #
A

k
~12 e2kz1~ Nu2u1!202! ,

A

k
+ (A.27)
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Following the same reasoning, it can be shown that

Sc~k,µ~u1!;a2! ,
A

k
, (A.28)

and~A+19! is proved+ This completes the proof of the lemma+ n

The next two lemmas describe asymptotic properties ofSc~k, y;a!+

Lemma A.6: If h0~u! . 0 ∀u [ Q and y, µ~u1!, then the following asymptotic relations
hold, as kr `+

1. For a5 a1,

Sc~k, y;a1! ;
h0~u1!c ''~u1!

~ y 2 µ~u1!!2k2 + (A.29)

2. For a5 a2,
(a) If µ~ su! , y , µ~u1!, then

Sc~k, y;a2! ; 2d~u*~ y!!h0~u*~ y!!ekI ~u*~ y!,u1!! 2p

c ''~u*~ y!!k
+ (A.30)

(b) If y , µ~ su!, then

Sc~k, y;a2! ;
d~ su!h0~ su!

y 2 µ~ su!

ek,~ su,u16y!

k
+ (A.31)

(c) If y 5 µ~ su!, then

Sc~k, y;a2! ; 2d~ su!h0~ su!ek,~ su,u16y!! p

c ''~ su!k
+ (A.32)

Proof: The proof is based on the Laplace method for approximating integrals of exponential
functions~cf+ Erdélyi @13# !+ From~3+27!, we have

Sc~k, y;a1! 5E
u1

Nu

d~u!ek,~u,u16y!h0~u!du, (A.33)

Sc~k, y;a2! 5 2E
u#u1

d~u!ek,~u,u16y!dH0~u!+ (A.34)

From Lemma A+2,we see that wheny , µ~u1!, ,~u,u16y! attains its maximum value in@u1, Nu#
for u 5 u1, and in@ su,u1# for u 5 t, wheret 5 su or t 5 u*~ y!, according to whetherµ~ su! ,
y , µ~u1! or y 5 µ~ su!, respectively+ Therefore, whenk r `, the main contribution to the
value of Sc~k, y;a! for a51,2, will arise from the values of the integrand in a neighborhood of
this maximizing value+ The main idea of the Laplace method is to introduce a new variable of
integrationz, such that

z2 5 ,~t,u16y! 2 ,~u,u16y!, (A.35)

z , 0~.0!, for u , t~u . t!, (A.36)

and to reduce the area of integration in a neighborhood oft+
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We first consider the casea1+ From~A+35!,

2z dz5 2~ y 2 µ~u!! du, (A.37)

du 5 22
z

y 2 µ~u!
dz+ (A.38)

Heret 5 u1, ,~t,u16y! 5 0, and so forh . 0

Sc~k, y;a1! ; E
u1

u11h

d~u!ekl~u,u16y!h0~u! du 5 2E
0

Z

2z
d~u~z!!h0~u~z!!

y 2 µ~u~z!!
e2kz2

dz, (A.39)

where

Z 5 M2,~u1 1 h,u16y!+ (A.40)

Because only the values ofz close to zero are significant, we can expand the region of inte-
gration to infinity

Sc~k, y;a1! ; 2E
0

`

2z
d~u!h0~u~z!!

y 2 µ~u~z!!
e2kz2

dz+ (A.41)

We can further approximate the above expression by substitutingh0~u!0@ y 2 µ~u!# with its
value atz5 0 ~i+e+, at u 5 u1!+ Then, we integrate by parts, consideringu a function of the
integration variablez:

Sc~k, y;a1! ; 2
h0~u1!

y 2 µ~u1!
E

0

`

2zd~u~z!!e2kz2
dz

5
h0~u1!

~ y 2 µ~u1!!k
E

0

`

d~u~z!!de2kz2
dz

5 2
h0~u1!

~ y 2 µ~u1!!k
E

0

`

e2kz2 dd~u~z!!

dz
dz+ (A.42)

However,

dd~u~z!!

dz
5 c ''~u~z!!

du

dz
5 c ''~u~z!!

22z

y 2 µ~u~z!!
(A.43)

from ~A+38!+ Again, substitutingc ''~u~z!!0@ y 2 µ~u~z!!# with its value atz5 0,

Sc~k, y;a1! ; 2
h0~u1!c ''~u1!

~ y 2 µ~u1!!2k
E

0

`

2 2ze2kz2
dz

5
h0~u1!c ''~u1!

~ y 2 µ~u1!!2k2 , (A.44)

and~A+29! is proved+
We now consider the casea 5 2 and each one of the three subcases+
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For part 2~a!, µ~u1! , y, µ~ Nu!+Here, t5u*~ y!,whereas from LemmaA+2, ,~t,u16y!5
I ~u*~ y!,u1!+ Following the same method, we obtain a relation analogous to~A+39! for a5 2,
namely for someh1,h2 . 0

Sc~k, y;a2! ; 2E
u*2h1

u*1h2

d~u!ek,~u,u16y!h0~u! du

5 ekI ~u*~ y!,u1!E
Z1

Z2

2z
d~u~z!!h0~u~z!!

y 2 µ~u~z!!
e2kz2

dz, (A.45)

where

Z1 5 2M I ~u*~ y!,u1! 2 ,~u*~ y! 2 h1,u16y!, (A.46)

Z2 5 M I ~u*~ y!,u1! 2 ,~u*~ y! 1 h2,u16y!+ (A.47)

We expand the integration region from2` to`, and since, in this case, z5 0 corresponds to
u 5 u*~ y!, we substituted~u~z!!h0~u~z!! with d~u*~ y!!h0~u*~ y!!:

Sc~k, y;a2! ; 2d~u*~ y!!h0~u*~ y!!ekI ~u*~ y!,u1!E
2`

` z

y 2 µ~u~z!!
e2kz2

dz+ (A.48)

For z 5 0, it is y 2 µ~u~0!! 5 0+ Applying l’Hospital’s rule to find the limiting value of
z0@ y 2 µ~u~z!!# whenzr 0 yields

lim
zr0

z

y 2 µ~u~z!!
5 lim

zr0

1

2c ''~u~z!!du0dz
5 2

1

c ''~u*~ y!!
lim
zr0

1

22z0@ y 2 µ~u~z!!#
;

thus,

S lim
zr0

z

y 2 µ~u~z!!
D2

5
1

2c ''~u*~ y!!
+ (A.49)

We also note thatz0@ y 2 µ~u~z!!# , 0 for all z, which implies that

lim
zr0

z

y 2 µ~u~z!!
5 2! 1

2c ''~u*~ y!!
, (A.50)

and the integral becomes

Sc~k, y;a2! ; 2! 2

c ''~u*~ y!!
d~u* ~ y!!h0~u*~ y!!ekI ~u*~ y!,u1!E

2`

`

e2kz2
dz

5 2! 2

c ''~u*~ y!!
d~u*~ y!!h0~u*~ y!!ekI ~u*~ y!,u1!! p

k
+ (A.51)

Thus, we have established~A+30!+
The remaining cases to be proved are parts 2~b! and~2c!,which correspond toy# µ~ su!+

Now we have thatt 5 su and,~t,u16y! 5 ,~ su,u16y! . 0 from Lemma A+3~c!+ Performing the
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transformations~A+43! and~A+44! and reducing the integration region to a neighborhood of
su ~i+e+, @ su, su 1 h# for someh . 0!, we get

Sc~k, y;a2! ; E
su

su1h

d~u!ek,~u,u16y!h0~u! du

5 2ek,~ su,u16y!E
0

Z

2z
d~u~z!!h0~u~z!!

y 2 µ~u~z!!
e2kz2

dz, (A.52)

where

Z 5 M,~ su,u16y! 2 ,~ su 1 h,u16y!+ (A.53)

For part 2~b!, wheny 5 µ~ su!, a relation analogous to~A+59! can be established:

lim
zr02

z

y 2 µ~u~z!!
5 2! 1

2c ''~ su!
+ (A.54)

Using the same reasoning as in the previous cases,

Sc~k, y;a2! ; 2! 2

c ''~ su!
d~ su!h0~ su!ek,~ su,u1!E

0

`

e2kz2
dz

5 2! 2

c ''~ su!
d~ su!h0~ su!ek,~ su,u1!! p

2k
, (A.55)

which proves~A+35!+
For part 2~c!, wheny , µ~ su!,

Sc~k, y;a2! ; 2
d~ su!h0~ su!

y 2 µ~ su!
ek,~ su,u1!E

0

`

~22z!e2kz2
dz

5 2
d~ su!h0~ su!

y 2 µ~ su!
ek,~ su,u1!

1

k
E

0

`

de2kz2
5

d~ su!h0~ su!

y 2 µ~ su!

ek,~ su,u1!

k
+ (A.56)

Remark A.1:In Lemma A+5,we made the assumption that the prior p+d+f+ h0 is positive on the
entire parameter spaceQ 5 @ su, Nu# + This ensures that the values for which the log-likelihood
ratio attains its maximum value in the integration region are independent ofh0~u!+ When
this assumption is dropped, the same line of argument remains valid+However, the expansion
of the integrals becomes more tedious, since one has to consider separately cases such as
h0~u!50, for u # u11e, or foru $ u12e, oru12e # u # u11e+According to each individual
case examined, one must integrate in a neighborhood of a valueu, which is closest to the
maximizing value and has positive prior p+d+f+ The corresponding asymptotic expressions
cannot be given in advance for the general case, but can be derived following the same general
approach+

Lemma A.7: If h0~u! . 0, ∀u [ Q, and y$ µ~u1!, then the following asymptotic relations
hold, as kr `.
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1. For a5 a1:
(a) If y 5 µ~u1!, then

Sc~k, y;a1! ;
h0~u1!

k
+ (A.57)

(b) If µ~u1! , y , µ~ Nu!, then

Sc~k, y;a1! ; d~u*~ y!!h0~u*~ y!!ekI ~u*~ y!,u1!! 2p

c ''~u*~ y!!k
+ (A.58)

(c) If y 5 µ~ Nu!, then

Sc~k, y;a1! ; d~ Nu!h0~ Nu!ek,~ Nu,u16y!! p

c ''~ Nu!k
+ (A.59)

(d) If y . µ~ Nu!, then

Sc~k, y;a1! ;
d~ Nu!h0~ Nu!

y 2 µ~ Nu!

ek,~ Nu,u16y!

k
+ (A.60)

2. For a5 a2:
(a) If µ~ su! , y , µ~u1!, then

Sc~k, y;a2! ; 2d~u*~ y!!h0~u*~ y!!ekI ~u*~ y!,u1!! 2p

c ''~u*~ y!!k
+

(A.61)

(b) If y , µ~ su!, then

Sc~k, y;a2! ;
d~ su!h0~ su!

y 2 µ~ su!

ek,~ su,u16y!

k
+ (A.62)

(c) If y 5 µ~ su!, then

Sc~k, y;a2! ; 2d~ su!h0~ su!ek,~ su,u16y!! p

c ''~ su!k
+ (A.63)

We next state and prove the following lemma+

Lemma A.8: In the caseb $ 1 ande . 0, g~k, y! 5 O~e2kz1e202!, uniformly in y.

Proof: The proof goes along the same lines as in Lemma A+5, up to relation~A+26!, which
takes the form

Sc~k,µ~u1!;a1! # z2
b Nh0E

u11e

Nu

~u 2 u1!be2kz1~u2u1!202 du

# z2
b Nh0~ Nu 2 u1!bE

u11e

Nu

e2kz1~u2u1!202 du

# z2
b Nh0~ Nu 2 u1!be2kz1e202E

u11e

Nu

du

5 z2
b Nh0~ Nu 2 u1!b~ Nu 2 u1 2 e!e2kz1e202 5 A1e2kz1e202+ (A.64)
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Similarly, we can show that there existsA2 , ` such that

Sc~k,µ~u1!;a1! # A2e2kz1e202, (A.65)

and so,

g~k, y! # Ae2kz1e202, (A.66)

with A 5 max$A1,A2% +
For the casee . 0, we can prove the following lemma, using the same method as in

Lemma A+6+ n

Lemma A.9: If h0~u! . 0, ∀u [ Q, then, according to the value of y, Sc~k, y;a! has the
following asymptotic forms, as kr `:

1. For a 5 a1, if y , µ~u1 1 e!, then

Sc~k, y;a1! ;
h0~u1 1 e!~d~u1 1 e!!b

µ~u1 1 e! 2 y

ek,~u11e,u16y!

k
+ (A.67)

2. For a 5 a2,
(a) If y . µ~u1 2 e!, then

Sc~k, y;a2! ;
h0~u1 2 e!~2d~u1 2 e!!b

y 2 µ~u1 2 e!

ek,~u12e,u16y!

k
+ (A.68)

(b) If y 5 µ~u1 2 e!, then

Sc~k, y;a2! ; h0~u1 2 e!~2d~u1 2 e!!bek,~u12e,u16y!! p

kc ''~u12e!
+ (A.69)

(c) If µ~ su! , y , µ~u1 2 e!, then

Sc~k, y;a2! ; ~2d~u*~ y!!!bh0~u*~ y!!ekI ~u*~ y!,u1!! 2p

c ''~u*~ y!!k
+ (A.70)

(d) If y 5 µ~ su!, then

Sc~k, y;a2! ; ~2d~ su!!bh0~ su!ek,~ su,u16y!! p

c ''~ su!k
+ (A.71)

(e) If y , µ~ su!, then

Sc~k, y;a2! ;
~2d~ su!bh0~ su!

µ~ su! 2 y

ek,~ su,u16y!

k
+ (A.72)
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