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The multiarmed-bandit problem is often taken as a basic model for the trade-off
between the exploration and utilization required for efficient optimization under
uncertainty In this article we study the situation in which the unknown perfor-
mance of a new bandit is to be evaluated and compared with that of a known one
over a finite horizonWe assume that the bandits represent random variables with
distributions from the one-parameter exponential fanMiren the objective is to
maximize the Bayes expected sum of outcomes over a finite hgrizisnshown

that optimal policies tend to simple limits when the length of the horizon is large

1. INTRODUCTION

The multiarmed-bandit problem is a basic model for the trade-offs between the ex-
ploration and utilization required for efficient optimization under uncertalntshis
articlg we study the situation in which the unknown performance of a new bandit is
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to be evaluated and compared with that of a known one over a finite hofibene
are two experiments denoted Iy(j = 1,2). Associated with experimerg; are
independent and identically distributéd.d.) random variables which represent the
outcomes of the experiment each time it is uSdtese random variables mogfr
examplethe responses of medical treatmetmslustrial processemvestment de-
cisions and even the outcomes of a slot machitiee “bandit’). Associated with
each outcome is arewalye are allowed to use either experimentformes(finite
horizon. We wish to maximize the expected value of the sum of the rewards achieved
during this finite horizonFurthermorewe assume that the characteristics of exper-
imentE; are known in advangevhereas those d&, are not that is experimenE;
corresponds to a process presently in wggereas, corresponds to a new process
that is to be evaluateth this article we study the case in which the outcomes from
E; (i = 1,2) are random variables from thene-parameter exponential famibf
distributions In Section 2 we postulate a priori on the unknown parameter of the
second experimenand formulate the problem of maximizing the expected sum of
outcomesWe point out that this is equivalent to minimizing a suitably defined regret
(expected loss functignin Section 3we summarize a set of results on the existence
of an optimal policy of a simple-form finite-horizon castained in Burnetas and
Katehakig 7]. The main contribution of this article is to extend the finite-horizon
results and derive a simple explicit approximation to the optimal policy in the case
that the planning horizon is larg&his is done in Section.&ection 5 extends the
asymptotic approximations to a generalized form of the regret function

The results of Section 4 are related to those of Lai and Robf#8kand
Lai [21], who obtained asymptotic solutions for the more general problem in
which one has to choose amoRkgunknown experimentOur proofs are along
different lines and are based on classical Dynamic Programming argunasnts
Bradt Johnsonand Karlin[4] did for the binomial caseThe results of Section 5
are new

Chernoff and Ray10] and Chernoff9] obtained asymptotic testing plans for
the case of binomial populations using diffusion processes approximafibes
approximation technique we use to obtain the asymptotic results is related to that of
SchwarZ 25], who derived asymptotic expressions for the hypothesis testing prob-
lem, for the case where there is an indifference region separating the two hypotheses
We use a modification of Schwarz’s argument to obtain upper and lower bounds for
the optimal stopping sets and then derive asymptotic expressions on these bounds
using Laplace’s method for the asymptotic expansions of integrals

For early work in this areassee Robbin$24] and Bellman[2]. A recent and
rather exhaustive survey of the general area is given if23; additional recent
work in this area is contained in Whitt]@9], Gittens[15], Burnetas and Katehakis
[5-8], Katehakis and Robbins 8], and Shimkin and Shwar{26,27]. For other
related work on the infinite-horizon discounted reward version of this pratdem
Gittins [14], Varaiya Walrand and Buyukkod 28], Katehakis and Dermafi7],
Katehakis and Veinoftl9], Berry and Fristedt3], Agrawal Hedge and Teneketzis
[1], and Glazebrook and Mitch€lL6].
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2. THE MODEL

Let E; andE, be two statistical experimentd/ith eachE;, i = 1,2, there are asso-
ciated(i) a scalar parametérbelonging to some s€tand(ii) a sequence of random
variablesX;, Y1, Yi», ... such thatyj represents the outcome of experimgnthej th
time it is performedwhereasX; is a generic random variable used to denote an
outcome fronE;. Given the value o), = 6, the random variablex;, Y4, Yi»,... are
i.i.d., with a probability density functiofp.d.f.) f (x|#) with respect to a nondegen-
erate measure. Let p(6) ando?(6) denote the expected value and variarree
spectivelyof arandom variabl¥ distributed according th(x|0) [i.e., u(6) = E(X|0)
ando?(6) = Var(X|9)].

We make the following assumptians

AssumptioN 1: The p.d.f. fx|6) belongs to the one-parameter exponential family
with a single natural parametef; that is,

f(x|9) = e @+s(x), (2.1)

AssumpTION 2: The parameter space is an interval of the fa®m= (96), with end
points that can be infinite, and satisfies the following conditions:

{ = Iinf ¢ (0) >0, Lo =supy”(6) < oo. (2.2)
(2= €6
AssumpTION 3: Parameteré, is known in advance, whereds is unknown, and
following the Bayesian approach; is a random variable with prior distribution:
Ho(6), 6 € 6.

AssuMPTION 4: We assume that< 6, < 6, wheres and@ are such thatu(6), pu(9)) =
(u(6): 60 € O

Remark 2.1:

(&) We use the natural parameter representation of the exponential fafily
Cox and Hinkley[ 11, p. 28]). It is known that for the one-parameter expo-
nential familyu(0) = ¢'(0) anda?(0) = 4" (6), u(8) is strictly increasing
in @ and the sefu(0): 6 € O} is an interval of the fornf (), u(9)).

(b) Note that if; = 6(8, = ) then the problem is trivialbbecause then one
should always choodg,(E;).

Lett(n = N — t) denote the number of samples that have already been taken
(remain to be takenAt t = 0, we haveX; ~ f(x|6,) with respect ta’(dx) andX, ~
f(x|6,) with respect tar (dx), 8; known, 6, ~ Ho(6).

An observed sample of size from experimeng; will be denoted byd;(k;) =
(Yivs-->Yik), 1 =1, 2. Letk = (ky, ko) andd(k) = (dy(kq),dx(ky)).

Sinced), is known the future observations fro,, Yy +1, Yok, +2;--., given
d,(kq), are ii.d. random variables with.p.f. f (x|0,), with respect ta’ (dx). Sincef,
is unknown the future observations froi,, Y, y,+1, Y2, k,+2,.-. given{d,(k,) and
0, = 6}, are ii.d. random variables with.g.f. f(x|6), with respect ta’(dx). Given
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only d,(k,), 6, is a random variable witkposterioy distributionH (8| d,(k,)), de-
fined as follows

f(da(kz)|0)dHo(0) _ f(¥21,[0)dH(9]d (ke — 1))

dH(6]dy(ky)) = —
(el 1Ho) Jf(yz,k2|e>dH<e|d2(k2—1>>

» (2.3)

whered; (ki) = (d;(k — 1), ) andH(6|d(0)) = Ho(8), andf(da(k,)|6) (respec-
tively f(d,(ky)|Ho)) denotes the joint jl.f. of the samplel,(k,), givend, = 6 (re-
spectively given the prio,).

Givend,(k,), unconditional on the value @, the future observations from
Ez, Y2 k,+15 Yo kpt25--+, are ii.d. random variables with distribution determined by
the marginal p.f (with respect tar(dx)):

f(x|dx(kz)) =J®f(X|0)dH(0|dz(kz))- (2.4)

The Bayes estimate @f(6,) given the samplé,(k,) is equal to
2(da(kz)) = EH(~\d2(k2))[|J~(‘92)] = Ef(-ldz(kz)) [YZ,k2+1]- (2.5)

For notational convenienceve use the same symbbto denote the pl.f. of an
outcome given a specific parameter valas well as the marginal.gif. of an out-
come fromE, given the history of observatiors (k,). Although they are different
quantitiesthere is no danger of confusion

For the one-parameter exponential family Gatsis well known that the poste-
rior distributionH (6| d»(k,)) and the marginal densitiy x| d,(k,)) defined in(2.3)
and(2.4), respectivelyare uniquely determined by the two-dimensional sufficient
statistic for the unknown parametgik,, ¥, «,), wherey, , = (1/k) E};l Y»j. Thus
we can assume that {2.3)—(2.5), d,(k,) is simply the vectod,(k;) = (kp, ¥5,k,)-

Givend,(k, —1) = (k— 1, y) andY; , = ¥, «, d=(ks) is defined by the following
updating scheme

k—1 1
da(Ko| da(k— 1), 5 k) = <k, T y+ E y2,k> =(kmk—1y,¥24), (2.6)

wherem(k, y, X) = (ky + x)/(k + 1).
An N-stage allocation policy is defined as arale= (77 (0), 7 (1),...,7(N—1)),
where

7(t) = m(t|di(ki(t, 7)), do(Ko(t, 7)) (2.7)

is equal toa, or a,, according to whether at stager dictates to take a sample from
E, or E,, respectivelywhere

t—1

ki (t,’?T) = 2 ]‘{W(i):ai}' (28)
j=0
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The performance of a policy is measured by

t—1

S(t,7) = OYw(j),k,,m(j,w), (2.9)

i=
and the expected values

EyS(t,7) = E[S(t,7)|6, = 0] = p(62) E, Ka(t, ) + W(O)E, k(L 77),  (2.10)

M(t’ H0’7T) = EHO[E()S(I’W)] = Ef(-\HO) [S(t’ﬂ-)]~ (211)

A policy 7* is optimal for the problem of horizoN and initial priorHq(6) andé,,
if and only if

M(N, Ho, 7*) = maxM(N, Ho, 7), (2.12)

where the maximum is taken over all sequential policies defined earlier

A more general description of the problem is in terms of a loss funé&ti{@ni ),
which represents the expected one-step loss incurred when the unknown parameter
is equal tod and a sample from experimeltis taken that is

L(6,i) = w(0) — Eo X, (2.13)
wherep*(6) = max{(6,), u(0)}. Then the Bayes risk during the firgtobserva-
tions is

R(t,Hom) = EHO[E Lw,w(m] — By, [(0)] - M(t Ho, ). (2.14)
j=1

SincetEy [u*(6)] in (2.14) is independent ofr, maximization ofM is equivalent
to minimization of R. This leads us to the alternative definition of an optimal
policy 7*:

R(N, Ho, 7*) = min R(N, Ho, 7). (2.15)

In Section Swe will consider the following more general form of the loss function
(L(O) — ()P ifi=1andd =0, +¢€
L(6,i) =9 (1(B) — ()P ifi=2andd=6,—¢ (2.16)
0 otherwise

whereB =1 ande = 0.

3. OPTIMALITY EQUATIONS: PRELIMINARY RESULTS

In this sectionwe state some preliminary properties and two theorems of Burnetas
and Katehaki$7] on the structure of an optimal policy for the finite-horizon prob-
lem. It will be more convenient to discuss the problem in terms,dhe number of
samples remaining to be taken until the end of the horldon
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Let P(n,k, y) be the problem of maximizing the expected sum of observations
over a horizom, when the initial information about is summarized bid (6|(k, y))
(i.e., the posterior distribution af, givend,(k,) = (k, y)]. Also, let Q(n, k, y) be the
problem of minimizingR(n, H, 77), with the same conventions

For problemsP(n, k, y) andQ(n, k, y), define the optimal value functions

V(n,KY) = SUpM(n,H(“(k,y),ﬂ'), (31)
U(nk y) = inf R(n,H(-|(k,y), ), (3.2)

respectively
Using standard arguments of Markovian Decision Processes with general state
and finite action spacedgf. Dynkin [12]), one obtains the following proposition

PRrRoOPOSITION 3.1:
(a) The functions Vh, k, y) are the unique solutions of (3.3) and (3.4):
V(n ky) = maxr(k y;a,) + V(n = Lk y),r(k y;a,)
+ Bty V(N =Lk +1,m(k,y, X))},
n=212...,Nk=0,1,...,N—ny€ER, (3.3)
V(0,k,y) = 0. (3.4)
(b) The functions Un, k, y) are the unique solutions of (3.5) and (3.6):
U(n,ky) = min{c(k y;a;) + U(n =1k y),c(k y;a,)
+ EtjypU(N =Lk +1L,m(k,y, Xz))},
n=12,..Nk=01...N-nyER, (3.5)
U@,k y) =0. (3.6)

The one-step expected reward and cost functidhsyra;) and dk, y;a;),i = 1,2,
are defined as

r(k y;a1) = Eg [X] = u(6s), (3.7)
r(k y;az) = Eq oy Xa

= EH<.|<k,y>>[EeXz]=Lu(0)dH(ﬂl(k,y)), (3.8)
c(k y;a1) = En gy [H7(0) —r(K y;a1)]

= Lel(u(e) — H(60))dH(8](k, y)), (3.9)

c(k, y;a2) = Eng oy [M(0)] — (K y;a2)]

=L , (H(62) — u(0))dH(8| (K, y)). (3.10)
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Moreover, the supremum and infimum in (3.1) and (3.2) are attained by a poficy
and they can be replaced by maximum and minimum, respectively.

In the next propositionit is stated tha(3.3) and (3.5) are equivalent to the
optimality equations of appropriately defined stopping problestere “stopping”
means switching to the known experiment and staying there for the remaining trials
The proof is an extension of that given in Bradt et[4] for the case of binomial
populations

PropoSITION 3.2:
(a) Equation (3.3) is equivalent to
V(n,ky) = maxinu(6,), r(k, y;a,)
+Er oV —Lk+Lmk v, X))k (3.11)
(b) Equation (3.5) is equivalent to
U(n k,y) = min{nc(k, y;a1),c(k, y;a,)
+ Et ey U(n—1Lk+ 1L, m(ky, X))} (3.12)

We will use the following quantities in the sequelhere log denotes the base e
logarithm

DeriNITIONS 3.1: Fory = (1/k) Ej-kzl Y, let

. fyle)

€(6,0,]y) = log —f(y\ﬁl)’ (3.13)
Ay = [ @ narye), (3.14)
d(#) =0—06,, (3.15)
8(0) = u(0) — u(6y), (3.16)
(0) = (0) — ¢ (61). (3.17)

Remark 3.1:From(2.1), it is easy to see that
€(0,01]y) = d(0)y — w(6), (3.18)
k€(0,0,]y) + €(6,601]x) = (k+ 1)€(6,01/m(K, Y, X)). (3.19)

Using Remark 3., we can rewrite the optimality equations so that the expectations
on the right-hand side are taken with respect to the deméitjp,) instead of the
marginal density (x|(k, y)). This is done in the next proposition
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ProroSITION 3.3:
(a) Equation (3.11) is equivalent to
U(n, k’ y) = max{o’q(k’ y) + Ef(-\Hl) V(n - 17 k+ 1’ m(k’ y, XZ))}7

n=12..,Nk=01....N—ny€ER, (3.20)
v(0,k,y) =0, (3.21)
where
v(n,ky) = (V(n,k,y) — nu(61)) Ak y) (3.22)
and
acky) =f 8(0)e @V dH,(0). (3.23)

(b) Equation (3.12) is equivalent to

u(n,k, y) = min{nc(k, y;a,), c(k, y;a,)
+ Ef(-\ﬁl) U(n - 17 k+ 1’ m(k’ Y, XZ))}’

n=112,...,Nk=0,L...,N—nyER, (3.24)
u(O,ky) =0, (3.25)
where
u(nky) = U(nk y)Aky), (3.26)
c(ky;a;) = f 5(0)e - aMdH,(0), (3.27)
0=0,
c(k y;a,) = —f 5(0)e@-0INgH, (). (3.28)
0=6,

Theorem 31 describes the structure of the optimal policy with respect to stop-
ping and continuation intervals fgr= (1/k) 2};1 Y»,j, Whereas Theorem.3 gives
a more intuitive characterization in terms of inflation factors added to the Bayes
estimate ofu(6,).

THEOREM 3.1:

(a) For each n and k, there exists a numbg(ky with the property
a; ify<yn(k)
a, if y=yn(k),

wherer*(n, k, y) is the action indicated by the optimal policy in stétek, y).
(b) The sequenceg,fk) is nonincreasing in n.

7*(n, K y) = { (3.29)
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THEOREM 3.2:
(a) Foreachn, k, andy, there is a real numkén, k, y) with the property

ar If Exg ey [H(02)] + €(n, K, y) < p(61)
"(nky) = i 3.30
Ty {aZ if Encjyy[H(62)] + €(n,k, y) = u(6y), (3.30)

wherer*(n, k, y) is the action indicated by the optimal policy in stétek, y),
and

_a(k o(k)
Ak, y)
(b) The quantitieg(n, k, y) are positive and increasing in n.

e(nky) = (3.31)

Remarks: The thresholdy,(k) represents the amount of immediate reward which
we can afford sacrificing in order to obtain information abéytwhich is valuable
for the remaining decisions

An interpretation of the quantitiegn, k, y) is that they represent a positive in-
flation thatis added to the current estimate of the rewabg gfi, = Eyy (.« y)) [ H(62)],
in order to take into account the uncertainty associated with it

4. ASYMPTOTICS FOR LARGE N

In this sectionwe obtain properties of the optimal policy that are related to its
behavior when the planning horizon is lardggefore we proceed with the analysis
we shall make another assumption in addition to those in Secti®petifically we
assume that the prior distribution@fis continuous i 6, 81; that i there is a prior
probability density function denoted by(6), such thatdHy(68) = hy(#)do, with
ho = sup, ho(#). This assumption helps simplify the derivation of the asymptotic
approximations belowHowever it does not restrict the generality of the results
because the discrete case can be treated in an analogous but simpler way

The derivations in this section are based on the optimality equations in terms of
the regret defined i3.24). The main results are given in Theorem4 4nd 42,
which provide upper and lower bounds for the optimal stopping regidmes proofs
of these two theorems are based on a number of intermediate propettiels are
given in the Appendix in Lemmata.A-A.7.

For each, define the stopping regio®, = {(k, y): #*(n,k, y) = 1}.

THEOREM 4.1: Under the assumptions made, whensno

SSCSCS, (4.1)

where
S ={k y):nc(k y;a;) < c(k y;az)}, (4.2)
S = {(ky):nc(k y;a;) < 24A(n + k)c(k, y;az)}. (4.3)
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Proor: From (3.24) and Lemma A4(a), it follows thatu(n,k,y) > 0. Thus if
nc(k, y;a,) < ¢(k, y;a,), thenitis optimal to stofi.e., 77*(n, k, y) = 1]. This proves
the first part of(4.1).

In order to prove the second pacbnsider the allocation rule(i) defined as
follows: (a) take a fixed number(i = n) of samples fronE, and(b) take the re-
mainingn — i samples fronk,; andE,, according to whether

C(K+1,m(K, Y, Yo k1505 Yo kai ;1) < C(K+1,M(K Y, Yo ki1ye05 Yo, ki) 82)

(4.4)
or
C(K+0,m(K, Y, Y2 ks15--+5 Yo, kei); 1) = CK+ 1, MK, Y, Yo k1505 Yokt ); A2),
(4.5)

respectivelywherem(k, y, ¥» k+1,---, ¥2.k+i) denotes the new average after the
additional outcomes

ky N Yo ki1 Tt Yo ki
k+i k+i ’

MK, Y, Yo, k100> Yo, ki) = (4.6)

Now, from Lemma A4(c), rule 7 (i) has the following risk

RT(i)(n’ k7 y) = Ic(k7 y;a2) + (n - I)Ef(\Hl)[Y(k + i’ m(k5 y’YZ,k+lv' . "Y2,k+i ))]’
4.7)

wherey(k,y) = min{c(k, y;a;), c(k, y;a,)}. Note that in(4.7), the risk is the one
corresponding to the transformed experimdste Remark.3).
From Lemma A5, it follows that there existé& > 0 such that

. A
R™ W (n,ky) =ic(k y;a,) + (n—1i) P o(i;nky), i=01...,n
(4.8)

If we consider the extension @f(i ) to the real domain
. . A . .
qs(l;n,k,y)=|C(k,y;a2)+(n—|)m, O=i=n,i R, (4.9)

then we can differentiate with respectito

(i) = ek vias) — A k+n 410
d) (I) - C(kay’aZ) (k+|)2, ( . )
¢" (i) = 2A PENIE > 0; (4.11)
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hence ¢(i) is convex We also have

) ~ k+n
¢'(0) = c(k y;a) — A?, (4.12)
which is negative fon sufficiently large and
"(n) = ¢(k,y;a,) A 4.13
¢'(n) =ck y;a; K (4.13)

which is positive also fon sufficiently large This means thap attains its minimum
atsoma®, 1=i* < n, for which¢’'(i*) = 0; that is

‘*=/agegyk+m—k (4.14)
Let[i*]=min{i € N:i =i*}. Then[i*] <i* + 1, and becausé is convex
d(1I*]) < oi*+1). (4.15)
Note that
A

GI*+1) = (" + Dok yiap) + (=17 1)

= (i"+Dcky;a) +(n—i%)

k+i*
= 2yA(n + K)c(k y;a,) — (k—1)e(k y;a,) — A
<2YA(n+Ke(k y;a,) = *(nk,y). (4.16)
Combining the above inequalitiese have
R™0"D(n,ky) < ¢*(n,k,y). (4.17)

From this discussignwe see that for eadim, k, y), there is an allocation ruj@amely
7([i*(n,k, y)]), as described aboyahich has expected risk less théri. Thus if
nc(k, y;a;) = ¢*, then it is not optimal to stgpsince continuing for“ more steps
gives a better policySo, nc(k,vy;a;) = ¢* implies thatz*(n, k, y) = 2 or, equiva-
lently, 77*(n,k, y) = 1 implies thanc(k, y;a,) < ¢*, which completes the proof of
the theorem u

Based on Theorem.%, we now derive an asymptotic approximation of the
optimal policy7*(n,k, y) asn — co. Let

KI(6%(y),0,) if (@ 0,
G(k’y’el):[ (67(y),01) if u(@) <y < u(6:) (4.18)

k€(0,6,) if y= (o),
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where

f(ch)}

I(o,7) = E(,[Iog F(X[7)

is the Kullback—Leibler information numher

THEOREM 4.2: If ho(#) > 0, 06 € 0, then the optimal policy corresponding to the
solution of (3.40) when r> oo can be approximated by the following policy:

a, ify<u(6,) and Gk,y,6,)>logn

m(n, K y) = { (4.19)

a, otherwise

Proor: We will show thagfor largen, the setsS, andS, defined in Theorem .4 can
both be approximated by the $€t={(k, y) : y < u(6,) andkG(k, y, 6;) > logn}. We
first consider thes,, which are described by the following relatton

clkysa) 1

ckyia) (4.20)

From (4.20), we see thatasn — oo, at least one of the following conditions holds
ck,y;a;) >0 or c(ky;a) — co.

From the definition of(k, y;a;) andc(k, y;a,) in (3.27) and(3.28), it follows that

for any fixedy, in order for either of the above conditions to be true it is necessary
thatk — co. From Lemma A6, it is easy to see that whén— oo, the values of for
which the above ratio tends to 0 are those included in the rgrge(6,). We can
now use explicitly the results of Lemma@\to obtain an asymptotic approximation
for the inequality in(4.20). Inthe case < pu(6,), which we are interested,iwe have
from (A.32) that

2ho(61)
(H(61) — y)?k*
As for ¢(k, y;a,), we must consider three caséa) y < u(6), (b) y = u(g), and

(c) u(@) <y < u(h,). For each of these casdd.20) takes the following forms
In case(a),

c(k y;a,) _ 2hy(61) - E
cky;az)  (H(61) — Y)2(H(6;) — H(B))ho(8) ke @y~ n’

Sincey < p(#), from LemmaA3, €(6, 6,|y) > 0; thereforethe above approximate
expression is decreasingknand sincen — oo, the inequality holds for

C(k’ Y§ al) -~

(4.21)

ke(0,6,]y) > logn— o(logn). (4.22)
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For casesh) and(c), we can show in the same way that the approximate solution of
(5.22) is
k€(6,6.]y) > logn — o(logn) (4.23)
and
kI (6*(y),6,) > logn — o(logn), (4.24)

respectively

We now turn to the inequality which defines the §tin (4.3). This can be
rewritten as

(c(k, y;a1))? L AAM+ k)

c(ky;az) I

(4.25)

We can use again the approximations obtained in Lemmngaté\ obtain relations
analogous t@§4.22), (4.23), and(4.24) for the three casefor casda), we now have

(c(k y;a1)* 4h5(6,) _ 4A(n + k)
c(k, y;az) (H(62) = ¥)*(1(61) — () ho () k3ek(E-faly) n>
(4.26)

Considern(4.26) with the inequality replaced by equalisssuming that for fixed,
the unique solution ik satisfiesk/n — 0 and the right-hand side is of the same order
as ¥/n, thus we obtain the following

k€(0,6,|y) = logn— o(logn) (4.27)

for the asymptotic solution of the equalifihis form is in agreement with the as-
sumptionk/n — 0. Since the approximation expression(#26) is decreasing ik
while the right-hand side is increasirthe required inequality will hold for

k€(0,6,]y) > logn— o(logn). (4.28)
In casedb) and(c), the corresponding expressions will be
k€(6,0,]y) > logn — o(logn) (4.29)
and
kI (6*(y),0,) > logn — o(logn). (4.30)

If we combine(4.22) with (4.28), (4.23) with (4.29), and(4.24) with (4.30), we can
see that botlg, andS, can be described approximately for largby the following
inequalities

k€(6,0:]y) > logn wheny = u(9) (4.31)
kI (0*(y),0,) >logn whenu(f) <y < u(6,). (4.32)
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Therefore based on Theorem.X4 we can also approximate the stopping Sgt
with the same regiagrand now the asymptotic interpretation of the optimal policy
is possible Namely in the caseu(§) <y < u(6,), stopping is required when
Kl (6*(y),6,) > logn, and in the casg = (@), whenk€(9,6,]y) > logn.

Remark 4.1:

(a) Aconsequence of Theoren®4s that for largen, it is never optimal to stop
sampling fromE, wheny = u(6,), even if the current posterior distribution
of 6, is unfavorabldi.e., E4[6,] < p(64)].

(b) The asymptotic policy derived in Theoren?4s independent of the initial
prior p.d.f. hy, whenhy(#) > 0, (16 € 6. If this condition fails it can still
be shownbased on Remark A, that a more general form of the asymp-
totically optimal policy is

1 ify<p(é)andké(r,6,]y) >logn
minky) = 2 otherwise (4.33)
where
= inf{0 = 6,,hy(0) > 0}, (4.34)

andr is the value ob which maximize<€ (6, 6,|y) in the support of the prior
p.d.f.

(c) The policy in(4.19) is analogous to that described in Lai and Robh2#
and in Lai[22] in the general case where there aranknown experiments
to be comparedrheir asymptotically optimal policy is based on the use of
upper confidence boundwhich essentially estimate the unknown param-
eterg in the following way If x; is the average ofF; successive observations

from experimeng;, j =1,...,i, the upper confidence bound is defined as
T./N
UJ-(Tj,xj)=inf{6>0xj,l(ﬂxj,0)>%}, (4.35)
j

whereex is the maximum likelihood estimate féy given(Tj, ), andg is

a function that satisfies certain assumptiéefsLai [22]), among which is
thatg(t) ~logt~* whent — 0. Then the policy suggests sampling from the
experiment with the largest upper confidence baund

Here from (4.33) we can see that for every state k, y), there is a number
01(n,k, y) such that if the known parametgrof E; is less tha;(n, k, y), then itis
optimal to continugotherwise it is optimal to stof he value ob;(n, k, y) can also
be determined fron4.33) as follows

01(n,k y) = inf {0 > 60*(y),1(0*(y),0) > lo%} if u(@) <y <u(6); (4.36)

https://doi.org/10.1017/50269964803171045 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803171045

ASYMPTOTIC BAYES ANALYSIS 67

thus

logn
6i(n, k. y) = inf {9 > 60,0(0,6,]y) > %} ity = (o). (4.37)

Therefore6;(n, k, y) plays essentially the same role as the upper confidence bounds
if one considers the fact that/N — 0 in (4.35).

5. GENERALIZATION OF THE REGRET

The regretR(t, H, 7) was defined in(2.16) as the Bayes risk corresponding to the
loss functionL (6, i) defined in(2.15). It was shown that for this particular choice of
loss functionthe problems of maximizing the expected sum of outcomes and min-
imizing the Bayes risk are equivalemn this sectionwe consider a more general
form forL(6,i), namely

L(6,1) = (W(0) — Eg X )P L(jp—g,>) (5.1)
or, equivalently

(@) —(6,))? ifi=1andd=0,+¢
L(6,i) =4 (u(B) — ()P ifi=2andd =6, —¢ (5.2)
0 otherwise

whereB = 1 ande = 0. This definition ofL(6,1) includes(2.15) as a special case
obtained wher = 1 ande = 0. It also includes other useful loss functigssich as
the quadratic los§B = 2,e = 0). Furthermorethe cases > 0 corresponds to the
existence of an indifference region in a neighborhood of the known yalwehich
no loss is incurregthat is if 6, € (0, — €,0, + ¢€), then both actions are optimal

Remark 5.1:To avoid trivialities we assume that < min{6; — 6,6 — 6,}. This
ensures that there are possible values, oh both sides of; which are distinguish-
able from#; with respect to the loss functiomhus the decision problem is not
trivial.

For the loss function defined i®.1), the second equality i(2.16) is not true in
general Therefore there is no immediate analog for reward maximizatigever-
thelesswe can still formulate optimality equations for the problem of minimization
of the regreR(n, H, 7), as in Section 3For the finite-horizon cas@heorem 3L is
still valid. Furthermorethere are analogous expressions for the asymptotic approx-
imations derived in Section.4n the remainder of this sectipmve highlight the
necessary modifications in the formulatjdhe intermediate properties of the one-
step regret functiongnd the profits

For the dynamic programming formulatipme can still define the optimal value
function for the regret as i(8.2). Then the optimality equations fdd (n, k, y) have
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exactly the same form as those given(&b) and(3.12), the only difference being
that the one-step cost functions defined3m) and(3.10) now take the form

ckya)= EH(-\(k,y))[L(H’a)]’ (5.3)

and more specifically

ok yia) = | () - w(e)an(eloy), 5.9
ok yia) = | () ~ o) aH(Eley) 5)

Proposition 33.b still holds but now with

clhoyan = [ (o) enaHys), (5.6)
clhoyian) = | (ao)ren o) (5.7)

The discussion in Section 3 was based on the optimal reward fundtipk, y) and
the optimality equatiori3.20). If we define

a(ky) = c(k, y;a1) — ¢k y;az) (5.8)
and
U(n’ k’ y) = nc(k’ y’ a-l) - U(n, ka y)’ (59)

then the quantitieg(k, y) andv(n,k, y), although they do not possess immediate
interpretation as in Section 8atisfy optimality equations analogoug820). Thus
we can establish the structure of the optimal policy for the finite-horizon problem
analogous to that described in Theorerh. 4
Now, we turn to the asymptotic properties corresponding to those of Section 4
Lemmata A7 and A8 in the Appendix are the equivalent of5fand A6 for this case
Leté = {,€%/2. The analog of Theorem#is presented in the following theorem

TueoreM 5.1: Under the assumptions made, whesso
SSCSCS, (5.10)

where
Sy ={k y):nc(k y;a1) < c(k y;az)}, (5.11)
2c(k y;az) | Agn }

(5.12)

S = {(k, y):nc(k,y;a;) < ¢ 9 ik yiay)
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Proor: Equation(5.11) can be proved in the same way(@<). For (5.12), we can
also use the same arguments as in Theordinu to inequality(4.8), which here
using Lemma A8, takes the form

R (n,k,y) <ic(k y;a,) + nAe *D¢ = ¢ (i; n kK, y), i=01,...,n (513)
For the extension ap in the real domainwe obtain
@' (i) = c(k y;a,) — énAg kHDe, (5.14)

Thus ¢ is still convex ¢'(0) < 0, and¢’(n) > 0 for n sufficiently large Therefore
the minimum is attained at the root of the first derivative

) 1 Aén
*=—log——— — k. 5.15
T %%k yiay) (5.15)

Let[i*]=min{i € N:i =i*}. Then[i*] <i* + 1, and since¢ is convex
d(i]) < p(i*+1). (5.16)
However
$(i* +1) = (i* + ek y;a) + nAe ke

= (i* + 1k y;a,) + nAe kHi0¢

c(k y;az) Aén c(k y;az)
= lo —(k=Dcky,a,) + ——
¢ oy, KTy T
c(k y;az) Aén
<2 log — =¢*(n, Kk y). 5.17
3 9k y;az) ¢ d (5-17)
Now, the second inclusion relationship(@10) follows from(5.17) in the same way

that the second inclusion relationship(#hl) follows from (4.16). u

We finally establish the approximation of the optimal policy for large horjzon
similarly to Theorem £, for e < 0. Define the following sets

Ki(nky) ={(ky):u(6, —€) =y < (6, + ¢),
€(0, — €,0,|y) > €(6, + €,01]y), and

K(€(0, — €,0,]y) — €(0, + €,0,]y)) > logn}, (5.18)
Ka(n,ky) = {(k,y): p(@) <y < p(6, —€) and
k(1(6*(y),0,) — €(6, + €,6:]y)) > logn}, (5.19)
Ka(n, ky) = {(k,y):y = p(8) andk(€(8,6:|y) — £(6, + €,6,]y)) > logn}.
(5.20)
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THEOREM 5.2: If e > 0and hy(#) > 0, 06 € 0, then the optimal policy as #» oo
can be approximated by the following policy:

3
1 if (ky) € UKi(nky)

7Tl(n’ k’ y) = (521)

2 otherwise

Proof: The approximate characterization of the sgtef Theorem 51 can be de-
rived in the same way as in Theoren24now making use of Lemma. A for the
asymptotic approximation daf(k, y; «). As for the approximation of,, we note the
following. It must be still true tha€(k, y;a,) tends to infinity in order fof5.12) to
hold. Sq log c(k, y;a,) will be positive for(k,y) € S,, and

o (nky) <2 @ log(Aén), (5.22)
or in set notation
_ 2 H
S C {(k, y):nc(k, y;a;) < W Iog(Afn)}. (5.23)

Instead of approximating,, we obtain asymptotic characterizations for the sets on
the right-hand side 6.23). Following the same reasoning as in Theoreg) 4 can
be shown that these se#s well asS,, are approximately described By(n, k, y), as
they were defined i165.18)—(5.20). u

6. CONCLUSIONS AND FURTHER WORK

The asymptotic policy of Theorem2ihas interesting properties that are intuitively
expectedIn each stepif the average of the observed samples taken from the un-
known experiment, exceeds the expected value of the outcome for the known
experiment, [i.e., y = u(6,)], we continue sampling fror&,. Otherwise the de-
cision is based on the quantity

KI(0°(y),0,) if u(@) <y <p(61)
Gty = {ka_o,el) ity =p(0), ©-D

wherek denotes the number of samples taken filgsyp*(y) is the maximum like-
lihood estimate of the unknown parametgrof E, based on the averageof the
previousk outcomesandl (0*(y), 0,) is the Kullback—Leibler information numher
which representsn some sensehe estimated distance between the distributions of
the two experiment&ullback and Leiblef20]). We continue or stomccording to
whetherG(k, y) =lognor G(k, y) > log n, respectivelyNote thatG(k, y) increases
when either the number of available samples or the Kullback—Leibler information
number increaseSa this quantity is a measure of the confidence that the true value
of 6, is really less tham,;, when the sample average we have observed is less than

H(61).
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The following conjectures concerning the asymptotically optimal policy for the
case that there ama unknown experiments to be compayétstead of one known
and one unknowiti.e., the multiarmed-bandit problentan be madeA key idea
here would be to consider the policy described in Theorelas a function of the
value #; of the known experimenias we did in Remark.&(b). Using sufficient
statistics similar to those used fg, we can computausing(4.36) and(4.37), for
each unknown experimeit, i = 1,...,m, a valuefy; of a hypothetical known ex-
perimentE;, which would make it indifferent to continue sampling fré&or switch
to Ey; for the remaining sample$hen we can compare the “index” valuég and
take the next sample from the experiment with the largest index Waleishall deal
with a rigorous statement and justification of these conjectures in a future article
The idea to replace the unknown parameters with indices equivalent to them in some
appropriate sense appears in the fundamental papers of Lai and Ri&#jires we
have already discussgaind Gittins[ 14], which deals with the discounted infinite-
horizon version of the multiarmed-bandit problem
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APPENDIX

The following lemma summarizes properties of the Kullback—Leibler information number

1(p,7):
l(o,7) = E [Io f(x|”)] (A1)
o,7) =k, gf(X|T) . .

LemMma A.1: When f belongs to the one-parameter exponential family (2.1),
I(o,7) = (0 = 1)u(o) = (o) — (7)), (A.2)
I(o,7) = fT (r—0)y"(6)do, (A.3)

(r—0)? (1 —0)?

h—F = l(a'vT)*{ZT‘ (A.4)

Proor: For(A.1) and(A.2), see La21]. Inequality(A.4) isimmediate fron{2.2) and(A.3).
| |

https://doi.org/10.1017/50269964803171045 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803171045

ASYMPTOTIC BAYES ANALYSIS 73

Lemma A2 indicates a useful relationship between the log-likelihood rétig 64| x)
defined in(3.13) and the Kullback—Leibler information number

LEMMA A.2:

(a) €(6,6,]x) is concave irg.
(b) Ox € R: H* = 6*(x), such thatf (6%, 6,|X) = maxyee € (0, 01]X), where
i(x) ifut(x) €0
0" (x) =10 if LX) & © and€(6,6:|x) > £(8,64]%) (A5)
0 if LX) & © and £(8, 6,|x) = €(8,6,/x).

Moreover, if I1(x) € 0, then

€(0%,6,]x) = 1(0%,6,). (A.6)
(c) Ifx< u(g), then
£(6,6,]x) > 0. (A7)
Proor: From(3.18),
(0,010
g X (o), (A.8)
92€(0,0
;T“X) = W(0) = —y"(6) <0. (A.9)

Hence €(6, 6,|x) is concave i, and its maximum irf € O is attained either at the point
wheref, = 0[i.e., at@* = u~1(x)], if this point belongs td®, or at one of the end points
Furthermore

COUTH(X), 04]%) = (LX) = ) x = (P (LX) — ¢ (61))
= (W) = 6 (P () — (P (LX) — ¢ (61))
= (LX), 61). (A.10)
This provedqa) and(b).
For(c), we first note that every concave function has at most two rbgotey on opposite
sides with respect to its maximizing valugence [Ox € R, the equatiorf(6,0:|x) = 0, in

addition tod,, has at most one more solutiéx), possibly not in®, which has the following
property

6() <P (x) <6, if x<p(6y),
01 <P X)) < O(x) if x> p6y).

Whenx < p(8) < p(6y), it is true thatd (x) < p~1(x) < 6 < 6;; thus €(9,6,/x) >0. M
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LemMA A.3: Let x(n) denote the solution of the equation

A 1
o = (A1)

for x,n > 0, and constant&, A, A > 0. Then

(a) Equation (A.11) holds with<” for x > x(n).
(b) There exists a functioa(n) such that

e(n) ~alog(logn) asn— o and Ax(n)=logn— e(n).
Proor:

(@) ForA, A > 0, the left-hand side ofA.11) is increasing irx.
(b) Forx=x(n), (A.11) can be rewritten

Ax(n) —logn = —alogx(n) + log A (A.12)
from which it follows that

_logn — alogx(n) +logA

x(n) 3

Substituting this expression fakn) on the right-hand side dfA.12),

logn — alogx(n) + log A
g “ %\() g>+|OgA.

Ax(n) —logn = —«a Iog(

Lete(n) =logn— Ax(n) andB = alog A + log A. Then

logn — alogx(n) + log A>
—logA

e(n) = alog< Iy

I logA
alogx(n) N og

logn Iogn)) —logA —logA

= alog (Iog n <1 -
or, equivalently

alogx(n) 'OLA> B (A13)

e(n) = alog Iogn+a|og<1f logn logn

From (A.11), it follows that x(n) > 0 and lim,_,.,x(n) = oo; thus lim,_[logx(n)/
x(n)] = 0. Therefore rewriting (A.12) as

3 logn _alogx(n) logA
x(n) x(n) x(n)’

A

it follows that
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and
logx(n logx(n) x(n
lim g()=Iim g()()=. (A.14)
nse logn oo X(N) logn
From(A.14), it follows that
logx(n logA
lim Iog<1— M + L) =0
N logn logn
thus from (A.13), asn — oo, €(n) ~ a log logn. This completes the proof |

The following lemmata describe useful properties of the transformed one-step regret
functions

LemMA A.4: The quantitie€(k, y; ) defined in (3.27) and (3.28) satisfy

(@) c(ky;@) >0, Ok,y. (A.15)
(b) Ok, ¢(k,y;a,) isincreasing in y Ok, ¢(k, y;a,) is increasing in y.
(c) Eg,[c(k+1,m(ky,X);a)] = C(k y;). (A.16)

Proor: The proof of(a) is immediate by definitionPart(b) can be proved by taking the
derivative iny and observing thai(#)d(#) = 0. Part(c) expresses an intuitive martingale
property which can be easily proved as followor« = 1, we usg(3.19) and(3.27) to obtain

Eo [C(k+ 1L m(ky, X);a,)] = fé(k+ 1L m(ky, x);a,) f(x|6;) v (dx)
0
szf 5(0)elk+De@.amiydH (9)f(x|6,) v (dX)
01
0
szf 5(0) ek @0+ 0 dH (9)f (x|6,) v (dX)
01

:f 5()ek@-aly) fRf(x\H)v(dx)dHo(G)

1

q
:f 5(0)ex@udH,(9) = c(k, y;a,). (A.17)
0

The caser = 2 can be proved similarly u
Let us define the function
y(ky) = min{c(k, y;a1),c(k, y;az)}. (A.18)
For this quantitythe following result holds

Lemma A.5: y(k y) = O(1/k) uniformly iny.
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Proor: It suffices to prove the following intermediate claim
A .
OA > 0: c(k, u(6,);a) < © Ok=12,...i=12 (A.19)

Indeed suppose thatA.19) holds Then we consider two cases

(@ y= p(6y). From Lemma Ad(b),

y(ky) = ok y:an) = Clk pBy:s) < - (A20)
(b) y < u(6y). In the same way

yiky) = ok yian) = Clk p(6);a0) < - (A21)

Soy(k,y) < A/k, OOk, y, which proves the lemma
We next provgA.19). From(3.27),

0
clkubysan) = [ (e 00y 6) 0o (A22)
01

However
€(0,0:|1(61) = (0 — 0)(01) — (¥ (0) — ¢ (61)) = —1(64,0),

and from(A.12),

(6 — 61)° (60— 6,)?
ey = .60 =~ (A.23)
From mean value theorems of calculu obtain
3(0) = () — u(61) = " (€)(0 — 64), (A.24)
for some¢ € (64,60). Sq, for 6 = 64,
8(0) = £2(0 — 6,). (A.25)
From(A.23) and(A.25), we obtain
o
C(k,u(6,);a9) = &5 hof (6 — 6y)e K072 4 (A.26)
01
LetA= fzﬁo/fl. Then
A o A
c(k, u(61);a;) = X (1— e alimw7z) < PR (A.27)
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Following the same reasoninig can be shown that
- A
Clk, u61);az) < (A.28)

and(A.19) is proved This completes the proof of the lemma u
The next two lemmas describe asymptotic properties kfy; « ).

LeEmmA A.6: If ho(#) > 0 06 € 6 and y< u(6,), then the following asymptotic relations
hold, as k— oo.

1. Fora=a,,

ho(61) " (61)

(y— W)k (A-29)

C(k7 y; al) -~

2. Fora= ay,
(@) Ifu(@) <y <p(61), then

. 2
c(k, y:a5) ~ —8(07(y)he(67(y))eH @ 0 | wTTW (A.30)

(b) Ify < (@), then
5(0)ho(0) et .aly)
y—u(@) k

c(k,y;az) ~ (A.31)

(c) Ify=p(@), then

N KE(9,6,1y) ™
c(k y;a;) ~ —8(0)ho(0)e 1/¢,,(_0)k. (A.32)

Proor: The proofis based on the Laplace method for approximating integrals of exponential
functions(cf. Erdélyi[13]). From(3.27), we have

0
Clhyian = [ 61 ng(0)00, (A.33)
01
ctkyian =~ [ a(o)e e aarys) (A.34)
6=6,

From Lemma A2, we see that whepn< p(6,), £(0, 6,]y) attains its maximum value {6, 0]
for 0 = 0., and in[0, 6,] for 6 = 7, wherer = § or 7 = #*(y), according to whethegu(g) <
y < W(01) ory = (), respectivelyTherefore whenk — oo, the main contribution to the
value ofc(k, y;a) for a= 1,2, will arise from the values of the integrand in a neighborhood of
this maximizing valueThe main idea of the Laplace method is to introduce a new variable of
integrationz, such that

22 = €(7,0,]y) — €(6,6]y), (A.35)

z<0(>0), foro<t(0>r1), (A.36)

and to reduce the area of integration in a neighborhoad of
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We first consider the casg. From(A.35),

2zdz= —(y — u(0)) de, (A.37)
z
do = -2 ) dz (A.38)

Herer = 604, £(7,6,]y) = 0, and so forp > 0

01+7m z
5(6)eN@4Yn(9) do = —f Zzw e dz, (A.39)

c(ky;a;) ~ f o y— H(0(2)

01

where

Z=—€(0,+ n,0:]y). (A.40)

Because only the values otlose to zero are significanve can expand the region of inte-
gration to infinity

8(6)ho(6(2))

*kZZ
y—n(6(2) e dz (A.41)

c(k, y;a,) ~ —fo 2z

We can further approximate the above expression by substithgit®g/[ y — p(6)] with its
value atz= 0 (i.e,, atd = 0,). Then we integrate by parizonsideringd a function of the
integration variable:

c(k, y;ay) ~ _ o) w225(0(z))e*k22dz
y— H(61) Jo
_ he(B) (" o
- <y—u<el>>kfo o(6(m)ae" dz
_ ho(6y) > 2 d8(6(2)
- (y—u(el»kfo az 9% (A-42)
However
POD _ o) % = pr(02) —22— A.43
" Ve@) G (A.43)

from (A.38). Again, substituting)”(6(z))/[y — u(0(2))] with its value az= 0,

ho0u" (6 [
(y — u(62)%k Jo

(67 (6)
(y — u(6,))%k*’

c(k y;a;) ~ —2ze < dz

(A.44)

and(A.29) is proved
We now consider the case= 2 and each one of the three subcases
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For part2a), u(6,) <y < (). Here 7 = 0*(y), whereas from Lemmada, €(7,6,|y) =
1(0*(y),01). Following the same methoud/e obtain a relation analogous.39) for a = 2,
namely for some)q, n, > 0

ckyay) ~ — fg.*ﬂ]za(g)eke(g’eﬂy)ho(e) de
. Z _5(0(2)he(0(2) .,
— ki (67(y),61) NPT N A—kzZ
e [ a2 e (A49
where
Z, = —\[1(6%(y),6,) — €(6%(y) — 11, 64]y), (A.46)
Z, = \[1(6°(y).02) = €(67(y) + 2. 6] y). (A47)

We expand the integration region froAwoe to co, and sincein this casez = 0 corresponds to
0 = 6*(y), we substituted (6 (z))ho(0(2)) with 6 (6*(y))ho(6*(y)):

o5}

c(k y;a,) ~ 25(0*(y))ho(e*(y))ek'<"*<y>’6ﬂI ﬁfawz)) e dz (A.48)

Forz =0, itis y — u(6(0)) = 0. Applying I'Hospital’s rule to find the limiting value of
z/[y — u(6(2))] whenz — 0 yields

. z . _ . 1 )
) y—u(2) o =" (6(2)do/dz 4" (07(y)) ) =2z/[y — u(6(2)1’

thus

(Iim 2 )2 = - (A.49)
=oy—W(2)) 29" (6%(y)’ '

We also note that/[y — u(0(z))] < 0 for all z which implies that

, z _
My —we@ - Nz (A.50)

and the integral becomes

c(k y;a2) ~ — m3(0*(y))hO(B*(y))ek'((’*(y),(h) J: e 4z
= b (6 ()6 () \/E (A51)
v (6"(y) K

Thus we have establishe@.30).
The remaining cases to be proved are patts and(2c), which correspond tg < pu(9).
Now we have that = § and{(r, 01| y) = €(0, 61]y) > 0 from Lemma A3(c). Performing the

https://doi.org/10.1017/50269964803171045 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803171045

80 A. N. Burnetas and M. N. Katehakis

transformationgA.43) and(A.44) and reducing the integration region to a neighborhood of
g (i.e, 0,0 + n] for somen > 0), we get

c(ky;ay) ~ fjn‘s(e)eke(g’eﬂy)ho(e) de
Z_ 8(6(2)ho(6(2)) 2
— _ ake(0,01]y) 2NN k2
ety [ e e (452
where
Z = \{(0,0:]y) — €(6 +n,064]y). (A.53)

For part 2b), wheny = u(6), a relation analogous t@#.59) can be established

lim z___ |1 (A.54)
o y—pe@)  V2ure) '

Using the same reasoning as in the previous ¢ases

[ 2 o ,
C(k’ y;az) -~ = ma(_ﬂ)ho(_ﬂ)ekﬁ(gyel)ﬁ esz dZ
Y Lﬁ(ﬁ)h (9)ex@.0 | z (A.55)
pr) 0 2k’ .
which provegA.35).

For part 2c), wheny < pu(9),

5(0)ho(6)
———e

c(k y;a,) ~ — km”“’ﬂjw —27)e K dz
o2 = =3 ") , 2
o k€(0,01)
— _w ek(f(ﬁ,(il) }J de*kz2 — w i (A56)
y —H(@) kJo y— ) k

Remark A.1:In Lemma A5, we made the assumption that the priat.fp hg is positive on the
entire parameter spaée= [6,8]. This ensures that the values for which the log-likelihood
ratio attains its maximum value in the integration region are independdmf(6f. When

this assumption is droppethe same line of argument remains vaktbwever the expansion

of the integrals becomes more tedipaiice one has to consider separately cases such as
ho(6) =0,for =0, +¢€,0rfor0 =6, —e,0r6, — e =0 = 6, + €. According to each individual
case examinedne must integrate in a neighborhood of a va@uevhich is closest to the
maximizing value and has positive priordd. The corresponding asymptotic expressions
cannot be given in advance for the general chsecan be derived following the same general
approach

Lemma A.7: If ho(6) > 0, 00 € O, and y= u(64), then the following asymptotic relations
hold, as k— oo.
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1. Fora=as:
(@) Ify=p(6y), then

ho(61)
k

¢k y;a,) ~ . (A.57)

(b) If u(61) <y < u(d), then

c(k y;a1) ~ 8(6*(y)ho(6*(y)) e @ V- 2—77 (A.58)
P (6*(y)k

(c) Ify=pu(6), then

ek yay) ~ 8(B)ho(G)e @y | l//”?é)k' (A59)

(d) Ify> (@), then

5(G)ho() P

c(k,y;a;) ~ VS ” (A.60)
2. Fora=ay:
(@) 1fpu(9) <y < u(6,), then
6k, y:az) ~ —5(6°(y)ho(6°(y))eH @00 | ﬁ
prenly (A.61)
(b) Ify < u(6), then
ke(0,04]y)
Sk ;) ~ 2D ol®) €7 (A.62)

y — K@) k
(c) Ify=n(@), then

c(k y;az) ~ —8(0)ho(0)e -2 | W’(T(’)k. (A.63)

We next state and prove the following lemma

LemMA A.8: Inthe case8 =1 ande > 0, y(k, y) = O(e %1<%2) uniformly in y.

Proor: The proof goes along the same lines as in Lemnig #p to relation(A.26), which
takes the form
0
c(k,u(6,);a1) = fﬁof (6 — 6,)Pek0-00%2 4g
O1+e
0
= {F'ho(6 — Hl)ﬁf e a-w72 gg
01+e
o 0
= {£ho(6 — 61)Pe 2 f do

01+e

=PRg(0— 0P (0 — 0, — e)e 72 = p g K12 (A.64)
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Similarly, we can show that there exisAs < co such that
c(k W(6y);a,) = Aye k<72 (A.65)
and sQ
y(ky) = Ae <72 (A.66)

with A= max{A, As}.
For the case > 0, we can prove the following lemmasing the same method as in
Lemma A6. u

LEmMA A.9: If ho(#) > 0, 06 € 0, then, according to the value of §(k, y;a) has the
following asymptotic forms, as-e oo:

1. Fora = ay, ify < u(6, + €), then

ho(6; + €)(8(0, + €))# ektlorteoly)

c(k, y;a,) ~ 6t e)—y ” (A.67)
2. Fora = a,,
(@) Ify> (0, —¢€), then
ha(6, — —5(0, — B eke(gl_é’gl‘y)
ek, y;a,) ~ (01— €)(=6(0, — €)) ' (A.68)

y— Wb —€) k
(b) Ify=p(6,—€), then

ek y;a,) ~ ho(6y — €)(=8(6, — €))Pekr=enly) | ﬁ (A.69)

(c) Ifpu(g) <y <u(h,—e), then

2
. ~ (— * * KI(0*(y),6,) | — —~"
c(k y;az) ~ (—=8(07(y))Pho(67(y))e ¥ | 50 (YK (A.70)

(d) Ify=p(@), then

c(k, y;a,) ~ (—8(6))Phy(g)e ey | w,f(;)k. (A.71)

(e) Ify< u(®), then

(—8(8)Pho(0) ek(eoaly)
ug) —y K

c(k, y;a,) ~ (A.72)
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