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The object of research is G-network with positive customers and signals of multiple classes.
The present paper describes an analysis of this network at a non-stationary regime, also
provided a description of method for finding non-stationary state probabilities.

At the beginning of the article, a description of the network with positive customers
and signals is given. A signal when entering the system destroys a positive customer of its
type or moves the customer of its type to another system. Streams of positive customers
and signals arriving to each of the network systems are independent. Selection of positive
customers of all classes for service – randomly. For non-stationary state probabilities of
the network, the system of Kolmogorov difference-differential equations (DDE) has been
derived. It is solved by a modified method of successive approximations, combined with
the method of series. The convergence of successive approximations with time has been
proved to the stationary distribution of probabilities, the form of which is indicated in the
article, and the sequence of approximations converges to the unique solution of the DDE
system. Any successive approximation is representable in the form of a convergent power
series with an infinite radius of convergence, the coefficients of which satisfy recurrence
relations, which is convenient for computer calculations.

The obtained results can be applied for modeling behavior of computer viruses and
attack in computer systems and networks, for example, as model impact of some file viruses
on server resources.

Keywords: classes, combined with the method of series, g-network, method of successive
approximations, non-stationary regime, positive customers and signals of multiple

1. INTRODUCTION

G-networks were first introduced in an article [1] by Gelenbe in 1991. The transient regime
of this network has been considered in [2]. These networks have wide practical application:
as a model of a neural networks [3], gene regulatory networks [4], models of the behavior of
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computer viruses [5]. The concept of a trigger was introduced in [6]; in contrast to a nega-
tive customer, it does not destroy a positive customer, but it moves it to another queue or
sub-system. Combining the trigger and the negative customer into one object, the “signal”
was introduced in [7], and the transient regime of such systems was first discussed in [8].
The work in [2,8] discusses the non-stationary probabilities of G-network states using the
method of multidimensional generating functions. In [9], G-networks with positive and neg-
ative customers of multiple classes were introduced, where a negative customer of one type
could destroy with a given probability a negative customer of another type, and expres-
sions were obtained for the stationary state probabilities, and they were shown to have
product form. In [10], the same network was considered at a transient regime under the
assumption that a negative customer can destroy a positive customer of only its own type.
Using the modified method of successive approximations, combined with the method of
series, the non-stationary state probabilities were found. In [11], the steady-state probabil-
ities of states for a network with positive customers and signals of multiple types were also
obtained.

This article is devoted to finding the non-stationary probabilities of network states [11],
by the modified method of successive approximations, combined with the method of series.

G-networks with revenues were introduced in [12]. Revenues in a G-network are used
to calculate the losses by the modified method of successive approximations, combined
with the series method in [13] and z-transforms method were used in [14], while revenues
from transitions between states are considered to be random values with first and second
moments. Simulation modeling of this network was carried out in [15]. Expected revenues
for G-networks with signals were found in [16]. Revenues for G-networks with positive and
negative customers of multiple classes were found by the method of successive approxima-
tions, combined with the method of series in information systems and the penetration of
variable computer viruses, for example, DDoS attack [17]. For finding expected revenues,
a method of successive approximations was applied, combined with the method of series
in the assumption that a negative customer can destroy a positive customer of only its
type has been found in paper [18]. We also note that transient response is relevant to the
bioinformatics applications of G-networks [19,20].

This paper is also devoted to finding the expected revenues of network systems described
in [11] by the modified method of successive approximations, combined with the method of
series.

2. NETWORK DESCRIPTION

We will consider an open G-network with n single-queue systems (QS). Simple flow of
customers arrives to the network from external environment (QS S0) with the rate λ+

and additional simplest signal flow also arrives with the rate λ(1). Streams arriving in
all systems of the network are independent. All positive customers arrive the stream of
class c independently of other customers which move in the queue Si with a probability
p+
0ic,

∑n
i=1

∑r
c=1 p+

0ic = 1. The service durations of positive customers of class c in i-th QS
are distributed exponentially with the rate μic. We assume that customers are randomly
selected on service: if in i-th QS are kis customers of class s, then the probability of select
for service customer of class c is (kic/

∑r
s=1 kis), i = 1, n, c = 1, r.

The positive customer of class c processed by Si moves to QS Sj as a positive customer
of class s with a probability p+

icjs, moves as a signal of class s with a probability p−icjs,
and moves out of the network to the external environment with a probability pic0 = 1 −∑n

j=1

∑r
s=1(p

+
icjs + p−icjs).
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The signal of class c arriving to the system, in which there are no positive customers of
class c, does not exert any influence on the queueing network and immediately disappears
from it. Otherwise, while in this system arriving to signal of class c, the following can occur:
arriving signal moves positive customer of class cfrom this system into queue Sj as a positive
customer of class s with a probability qicjs; in this case, signal is referred to as a trigger;
signal acts as a negative customer of class c with a probability qic0 = 1 −∑n

j=1

∑r
s=1 qicjs

and destroys one positive customer of class c.
The network state at time t is described by the vector (�k, t) = (k11, k12, . . . , k1r, k21,

k22, . . . , k2r, . . . , kn1, kn2, . . . , knr, t), where kic - number positive customer of i-th QS of
class c, which forms a homogeneous Markov process with a countable number of states.
There is a need to find time-dependent state probability in non-stationary mode.

3. FINDING STATE PROBABILITIES

Denoted by Iic vector of dimension n × r, consisting of zeros, with the exception of the
component with a number r(i − 1) + c, which is equal to 1, I00 − n × r zero-vector, and

P (�k, t) – probability of state �k(t);u(x) =

{
1, x > 0
0, x ≤ 0

– the Heaviside function. The following

transitions of the Markov chain to the state (�k, t) during the time Δt are possible:

(1) From the state (�k − Ijs, t) in this case in the j-th QS in time Δt, a positive customer
of class s will arrive with a probability λ+p+

0jsu(kjs)Δt + o(Δt), j = 1, n, s = 1, r;

(2) From the state (�k + Iic, t) in this case in the i-th QS in time Δt, a signal of class s
will arrive and the signal acts as a negative customer of class cand destroys positive
customer this class or positive customer and moves out of the network to the external
environment or moves in j-th QS as a signal of class sand if there were no customers
of this class in it with a probability
(λ(1)p−0icqic0 + μic(kic + 1/

∑r
s=1 kis + 1)pic0 + μic(kic + 1/

∑r
s=1 kis + 1)p−icjs

(1 − u(kic)))Δt + o(Δt), i = 1, n, c = 1, r;

(3) From the state (�k + Iic + Ijs, t) in this case, after the end of the service of the positive
customer of class c in the i-th QS, it is moved to the j-th QS again as a positive
customer of class s or arrived to the i-th QS signal of class c and instantly moves the
positive customer of class c from the i-th QS to the j-th QS as a positive customer
of class swith a probability
(μic(kic + 1/

∑r
s=1 kis + 1)p+

icjs + λ(1)p0icqicjs)u(kjs)Δt + o(Δt), i, j = 1, n;

(4) From the state (�k + Iic + Ijs, t) in this case, after the end of the customer of
class c service in the i-th QS, it is sent to the j-th QS as a signal of class s
that destroys positive customers of class s; probability of this event is equal to
μic(kic + 1/

∑r
s=1 kis + 1)p−icjsqjs0Δt + o(Δt);

(5) From the state (�k + Iic + Ijs − Iml, t) in this case, after the end of the service of
the customer of class c in the i-th QS, it is sent to the j-th QS as a signal of
class s, which instantly moves the positive customer of class s from the j-th QS
with a number m as a customer of class l; the probability of this event is equal to
μic(kic + 1/

∑r
s=1 kis + 1)p−icjsqjmu(kml)Δt + o(Δt);

(6) From the state (�k, t) in this case, in time Δt no positive customers of all classes
or signals of all classes are received in each, and no positive customers of all
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classes have been served in them for a time; the probability of this event is
1 −∑n

i=1

∑r
c=1[λ

+p+
0ic + λ−p−0ic + μic]Δt + o(Δt); i = 1, n.

(7) From the remaining states with a probability o(Δt).

Then, using the formula of total probability and taking the limit Δt → 0, we obtain the
system of difference-differential equations (DDE) for the state probabilities of the network:

dP (�k, t)
dt

= −
n∑

i=1

r∑
c=1

[
λ+

0ic + λ−
0ic + μic

]
P (�k, t) +

n∑
i=1

r∑
c=1

{
λ+

0icu(kic)P (�k − Iic, t)

+

{(
μic

kic + 1∑r
s=1 kis + 1

pic0 + λ−
0icqic0

)

+
n∑

j=1

r∑
s=1

μic
kic + 1∑r

s=1 kis + 1
(1 − u(kjs))p−icjs

⎫⎬
⎭P (�k + Iic, t)

+
n∑

j=1

r∑
s=1

[(
μic

kic + 1∑r
s=1 kis + 1

p+
icjs + λ−

0icqicjs

)
u(kjs)P (�k + Iic − Ijs, t)

+ μic
kic + 1∑r

s=1 kis + 1
p−icjsqjs0P (�k + Iic + Ijs, t)

+
n∑

m=1

r∑
l=1

μic
kic + 1∑r

s=1 kis + 1
p−icjsqmlu(kml)P (k + Iic + Ijs − Iml, t)

]}
. (1)

The system of DDE (1) is represented in the form:

dP (�k, t)
dt

= −Λ(�k)P (�k, t) +
n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(�k)P (�k + Iic − Ijs, t)

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(�k)P (�k + Iic + Ijs, t)

+
n∑

i,j,m=1

r∑
c,s,l=1

Φ++
icjsml(�k)P (�k + Iic + Ijs − Iml, t), (2)

where

Λ(�k) =
n∑

i=1

r∑
c=1

[
λ+

0ic + λ−
0ic + μic

]
,

Φ+−
icjs(�k) = δ0iδ0cλ

+
0jsu(kjs) + δ0jδ0s

(
μic

kic + 1∑r
s=1 kis + 1

pic0 + λ−
0icqic0

)

+ μic
kic + 1∑r

s=1 kis + 1
(1 − u(kjs))p−icjs

+
(

μic
kic + 1∑r

s=1 kis + 1
p+

icjs + λ−
0icqicjs

)
u(kjs),
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Φ++
icjs(�k) = μic

kic + 1∑r
s=1 kis + 1

p−icjsqjs0,

Φ++
icjsml(�k) = μic

kic + 1∑r
s=1 kis + 1

p−icjsqmlu(kml).δij =

{
1, i = j

0, i �= j
.

The solution of the system (2) has the form:

P (�k, t) = e−Λ(�k)t

⎛
⎝P (�k, 0) +

∫ t

0

eΛ(�k)x

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(�k)P (�k + Iic − Ijs, x)

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(�k)P (�k + Iic + Ijs, x)

+
n∑

i,j,m=1

r∑
c,s,l=1

Φ++
icjsml(�k)P (�k + Iic + Ijs − Iml, x)

⎞
⎠ dx

⎞
⎠ . (3)

Let Pq(�k, t) – be approximation of P (�k, t) at the q-th iteration, Pq+1(k, t) – the solution of
(2) obtained by successive approximations. Then it follows from (3):

Pq+1(�k, t) = e−Λ(�k)t

⎛
⎝P (�k, 0) +

∫ t

0

eΛ(�k)x

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(�k)Pq(�k + Iic − Ijs, x)

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(�k)Pq(�k + Iic + Ijs, x)

+
n∑

i,j,m=1

r∑
c,s,l=1

Φ++
icjsml(�k)Pq(�k + Iic + Ijs − Iml, x)

⎞
⎠ dx

⎞
⎠ . (4)

As an initial approximation, we take the stationary distribution P0(�k, t) = P (�k) =
limt→∞ P (�k, t), which satisfies the relation

Λ(�k)P (�k) =
n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(�k)Pq(�k + Iic − Ijs)

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(�k)Pq(�k + Iic + Ijs)

+
n∑

i,j,m=1

r∑
c,s,l=1

Φ++
icjsml(�k)Pq(�k + Iic + Ijs − Iml). (5)

The following theorems are valid for successive approximations.

Theorem 1: Sequential approximations Pq(�k, t), q = 0, 1, 2, . . . , converge for t → ∞ to a
stationary solution of the system of equation (2), and the sequence constructed according to
scheme (4), for any zeroth approximation bounded in {Pq(�k, t)}, q = 0, 1, 2, . . . , converges
for q → ∞ to a unique solution of the system of equation (2).
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Theorem proof is similar to [10] for the network with multiple positive and negative
customers.

Theorem 2: Each successive approximation Pq(�k, t), q ≥ 1, is represented in the form of
a convergent power series

Pq(�k, t) =
∞∑

l=0

d+−
ql (�k)tl, (6)

whose coefficients satisfy the recurrence relations:

d+−
q+1l(�k) =

−Λ(�k)l

l!

{
P (k, 0) +

l−1∑
u=0

(−1)u+1u!/Λ(�k)u+1D+−
qu (�k)

}
, l ≥ 0, d+−

q0 (k)

= P (�k, 0), d+
0l(k) = P (�k, 0)δl0,D

+−
ql (�k) =

n∑
i,j=1

r∑
s,c=1

Φ+−
icjs(�k)d+−

ql (�k + Iic − Ijs)

+ Φ++
icjs(�k)d+−

ql (�k + Iic + Ijs) +
n∑

i,j,m=1

r∑
c,s,l=1

Φ++
icjsml(�k)d+−

ql (�k + Iic + Ijs − Iml).

(7)

Proof: We show that the coefficients of the power series (6) satisfy the recurrence rela-
tions (7). We substitute the successive approximations (6) in relation (4). Then, given
that

e−Λ(
⇀
k )t

∫ t

0

eΛ(�k)xxldx =

[
1

Λ(�k)

]l+1

l!
∞∑

j=l+1

[−Λ(�k)]l

j!
, l = 0, 1, 2, . . . ,

we obtain
∞∑

l=0

d+−
ql (�k)tl = e−Λ(�k)tP (�k, 0) +

∞∑
l=0

n∑
i,j=1

[
r∑

c,s=1

Φ+−
icjs(�k)d+−

ql (�k + Iic − Ijs)

+ Φ++
icjs(�k)d+−

ql (�k + Iic + Ijs)

+
n∑

i,j,m=1

r∑
c,s,l=1

Φ++
icjsml(�k)d+−

ql (�k + Iic + Ijs − Iml)

⎤
⎦ .

Using (7), this series can be written in the form

∞∑
l=0

d+−
ql (�k)tl = e−Λ(�k)tP (�k, 0) +

∞∑
l=0

D+−
ql (�k)

[
1

Λ(�k)

]l+1

l!
∞∑

u=l+1

[−Λ(�k)]u

u!
tu.

After interchanging summation indices and expanding e−Λ(�k)t in a series in powers of t, we
have

∞∑
l=0

d+−
ql (�k)tl = e−Λ(�k)tP (�k, 0) +

∞∑
l=0

D+−
ql (�k)

[
1

Λ(�k)

]l+1

l!
∞∑

u=l+1

[−Λ(�k)]u

u!
tu.

If we equate the coefficients of tl in expression (8), we obtain the relations (7) for the
coefficients of the series (6).
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To find the radius of convergence of the power series (6), we can use the Cauchy–

Hadamard formula 1/R(�k) = liml→∞ l

√
|d+−

ql (�k)|. Similarly, as in [10], it can be shown that
the radius of convergence of the series (10) is equal to +∞. �

4. FINDING EXPECTED REVENUES

Let us introduce vector Iic of dimension n × r, consisting of zeros, with the exception of
the component with a number r(i − 1) + c, which is equal to 1, I00 − n × r zero-vector,
and vi(�k, t) – be the expected revenue obtained by the i-th QS in time t, if at the initial

time instant the network is in the state �k;u(x) =

{
1, x > 0
0, x ≤ 0

– the Heaviside function. The

following transitions of the Markov random process to the state (�k, t) during the time Δt
are possible:

In case (1), the revenue of the system Si in this case will be ri(�k)Δt + vi(�k − Ijs, t);
if i = j, s = c then the revenue of the system Si will be r0ic(�k − Iic) + vi(�k − Iic, t),
where r0ic(�k − Iic), the revenue of the i-th system from the given transition.

In case (2), the revenue of the system Si in this case will be ri(�k)Δt + vi(�k + Ijs, t), if
i = j, s = c then the revenue of the system Si will be −Ric0(�k + Iic) + vi(�k + Iic, t),
while Ric0(�k + Iic) the revenue of the i-th system from the given transition.

In case (3), the revenue of the system Si in this case will be ri(�k)Δt + vi(�k +
Iml − Idh, t); if m = j, l = s, i = d, c = h, then the revenue of the system Si will
be −rjsic(�k + Ijs − Iic) + vi(�k + Ijs − Iic, t); if k = i, l = c, j = d, s = h, then the
revenue of the system Si will be ricjs(�k − Ijs + Iic) + vi(�k − Ijs + Iic, t);

In case (4), the revenue of the system Si in this case will be ri(�k)Δt + vi(�k + Iml +
Idh, t); if m = j, l = s, i = d, c = h, then the revenue of the system Si will be ricjs(�k +
Ijs + Iic) + vi(�k + Ijs + Iic, t);

In case (5), the revenue of the system Si in this case will be ri(�k + Iml + Idh −
Iαβ , t)Δt + vi(�k + Iml + Idh − Iαβ , t); if m = i, l = c, the revenue of the system Si

will be −rdhα(�k + Iic + Idh − Iαβ , t) + vi(�k + Iic + Idh − Iαβ , t), if α = i, β = c, then
the revenue of the system Si in this case will be −rdhα(�k + Iml + Idh − Iic, t) + vi(�k +
Iml + Idh − Iic, t), otherwise rdhα(�k + Iml + Iic − Iαβ , t) + vi(�k + Iml + Iic − Iαβ , t),

In case (6), the revenue of the system Si in this case will be ri(�k)Δt + vi(�k, t).

Then, using the formula of total probability and taking the limit Δt → 0, we obtain a
system of DDE for the expected revenues of the network:

dvi(�k, t)
dt

= ri(�k) −
⎡
⎣λ+ + λ− +

n∑
j=1

r∑
s=1

μjsu(kjs)

⎤
⎦ vi(�k, t)

+
n∑

j=1

r∑
s=1

λ+p+
0jsu(kjs)vi(�k − Ijs, t)
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+
n∑

j=1

r∑
s=1

⎛
⎝λ(1)p−0jsqjs0 + μjs

kjs + 1∑r
s∗=1 kjs∗ + 1

pjs0

+
n∑

j=1

r∑
s=1

μjs
kjs + 1∑r

s∗=1 kjs∗ + 1

n∑
m=1

r∑
l=1

p−jsml(1 − u(kml))

)
vi(�k + Ijs, t)

+
r∑

c=1

⎧⎨
⎩λ+p+

0icu(kic)vi(�k − Iic, t) +

⎛
⎝λ(1)p−0icqic0 + μic

kic + 1∑r
s∗=1 kis∗ + 1

pic0

+ μic
kic + 1∑r

s∗=1 kis∗ + 1

n∑
m=1

r∑
l=1

p−icml(1 − u(kml))

)
vi(�k + Iic, t)

+
(

μic
kic + 1∑r

l∗=1 kil∗ + 1
p+

icjs + λ(1)p0icqicjs

)
u(kjs)vi(�k + Iic − Ijs, t)

+
n∑

m,d=1

r∑
l,h=1

(
μml

kml + 1∑r
l∗=1 kml∗ + 1

p+
mldh + λ(1)p0mlqmldh

)

× u(kdh)vi(�k + Iml − Idh, t)

+
n∑

m,d=1

r∑
l,h=1

μml
kml + 1∑r

l∗=1 kml + 1
p−mldhqdh0vi(�k + Iml + Idh, t)

+
n∑

j=1

r∑
c,s=1

μic
kic + 1∑r

l∗=1 kil∗ + 1
p−icjsqic0vi(�k + Iic + Ijs, t)

+
n∑

m,d,α=1

r∑
l,h,β=1

μml
kml + 1∑r
l=1 kml + 1

p−mldhqdhαβu(kdh)vi(�k + Iml + Idh − Iαβ , t)

+
n∑

d,α=1

r∑
h,β=1

μic
kic + 1∑r
l=1 kil + 1

p−icdhqdhαβu(kdh)vi(�k + Iic + Idh − Iαβ , t)

+
n∑

m,α=1

r∑
l,β=1

μml
kml + 1∑r
l=1 kml + 1

p−mlicqicαβu(kdh)vi(�k + Iml + Iic − Iαβ , t)

+
n∑

m,d=1

r∑
l,h=1

μml
kml + 1∑r
l=1 kml + 1

p−mldhqdhicu(kdh)vi(�k + Iml + Idh − Iic, t)

−
[
λ(1)p−0jsqjs0 + μjs

kjs + 1∑r
s∗=1 kjs∗ + 1

pjs0

+ μjs
kjs + 1∑r

s∗=1 kjs∗ + 1
p−jsml(1 − u(kml))

]
Ric0(�k − Iic, t)

+
n∑

j=1
j �=i

r∑
c=1

[(
μic

kic + 1∑r
l∗=1 kil∗ + 1

p+
icjs + λ(1)p0icqicjs

)
u(kic)ricjs(�k − Iic + Ijs, t)

−
n∑

j=1
j �=i

r∑
c=1

[(
μjs

kjs + 1∑r
l∗=1 kjl∗ + 1

p+
jsic + λ(1)p0jsqjsic

)
u(kjs)ricjs(�k − Ijs + Iic, t)
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+ λ+p+
0icu(kic)r0ic(�k − Iic, t) + μic

kic + 1∑r
l∗=1 kil∗ + 1

p−icjsqjs0vi(�k + Iic + Ijs, t)

+
n∑

d,α=1

r∑
h,β=1

μic
kic + 1∑r
l=1 kil + 1

p−icdhqdhαβu(kdh)ridα(�k + Iic + Idh − Iαβ , t)

+
n∑

m,α=1

r∑
l,β=1

μml
kml + 1∑r
l=1 kml + 1

p−mlicqicαβu(kdh)rmiα(�k + Iml + Iic − Iαβ , t)

+
n∑

m,d=1

r∑
l,h=1

μml
kml + 1∑r
l=1 kml + 1

p−mldhqdhicu(kdh)rmdi(�k + Iml + Idh − Iic, t).

(8)

Let �V T (�k, t) = (v1(�k, t), v2(�k, t), . . . , vn(�k, t)). Then (8) is represented in the form

d�V (�k, t)
dt

= −Δ(∂)(�k)�V (�k, t) +
n∑

i,j,m=0

n∑
c,s,l=1

Θ(∂)
icjs(�k)�V (�k + Iic − Ijs, t)

+ Φ(∂)
icjs(�k)�V (�k + Iic + Ijs, t) + Φ(∂)

icjsml(�k)�V (�k + Iic + Ijs − Iml, t) + �E(�k), (9)

where

�ET (�k) = (E1(�k), E2(�k), . . . , En(�k)), Ei(�k) = ri(�k) + λ+p+
0icu(kic)r0ic(�k − Iic)

−
[
λ(1)p−0jsqjs0 + μjs

kjs + 1∑r
s∗=1 kjs∗ + 1

pjs0

+ μjs
kjs + 1∑r

s∗=1 kjs∗ + 1
p−jsml(1 − u(kml))

]

× Ric0(�k − Iic, t) +
n∑

j=1
j �=i

r∑
c=1

[(
μic

kic + 1∑r
l∗=1 kil∗ + 1

p+
icjs + λ(1)p0icqicjs

)

× u(kic)ricjs(�k − Iic + Ijs, t)

−
n∑

j=1
j �=i

r∑
c=1

[(
μjs

kjs + 1∑r
l∗=1 kjl∗ + 1

p+
jsic + λ(1)p0jsqjsic

)

× u(kjs)ricjs(�k − Ijs + Iic, t) + μic
kic + 1∑r

l∗=1 kil∗ + 1
p−icjsqjs0vi(�k + Iic + Ijs, t)

+
n∑

d,α=1

r∑
h,β=1

μic
kic + 1∑r
l=1 kil + 1

p−icdhqdhαβu(kdh)ridα(�k + Iic + Idh − Iαβ , t)

+
n∑

m,α=1

r∑
l,β=1

μml
kml + 1∑r
l=1 kml + 1

p−mlicqicαβu(kdh)rmiα(�k + Iml + Iic − Iαβ , t)

+
n∑

m,d=1

r∑
l,h=1

μml
kml + 1∑r
l=1 kml + 1

p−mldhqdhicu(kdh)rmdi(�k + Iml + Idh − Iic, t).
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Φ(∂)
icjs(�k) = μic

kic + 1∑r
l∗=1 kic + 1

p−icjsδ0mδ0l,

Φ(∂)
icjsml(�k) = μic

kic + 1∑r
l=1 kil + 1

p−icjsqjsmlu(kjs),Δ(∂)(�k) = λ+ + λ− +
n∑

j=1

r∑
s=1

μicu(kic),

Θ(∂)
icjs(�k) = δ0jδ0s

(
λ(1)p−0icqic0 + μic

kic + 1∑r
s∗=1 kis∗ + 1

pic0

+ μic
kic + 1∑r

s∗=1 kis∗ + 1

n∑
m=1

r∑
l=1

p−icml(1 − u(kml))

)

+ δ0iδ0cλ
+p+

0jsu(kjs) +
(

μic
kic + 1∑r

l∗=1 kil∗ + 1
p+

icjs + λ(1)p0icqicjs

)
u(kjs).

The solution of the system (9) has the form:

�V (�k, t) = e−Δ(∂)(�k)t

⎛
⎝�V (�k, 0) +

∫ t

0

eΔ(∂)(�k)x

⎧⎨
⎩

n∑
i,j.m=0

n∑
c,s,l=1

Θ(∂)
icjs(�k)�V (�k + Iic − Ijs, x)

+Φ(∂)
icjs(�k)�V (�k + Iic + Ijs, x) + Φ(∂)

icjsml(�k)�V (�k + Iic + Ijs − Iml, x)

⎫⎬
⎭ dx

⎞
⎠

+
�E(k)

Δ(∂)(�k)

[
1 − e−Δ(∂)(�k)t

]
. (10)

Let �Vq(�k, t) – be the approximation of �V (�k, t) at the q-th iteration, �Vq+1(k, t) – the solution
of (9) obtained by successive approximations. Then it follows from (3):

�Vq+1(�k, t) = e−Δ(∂)(�k)t

⎛
⎝�V (�k, 0) +

∫ t

0

eΔ(∂)(�k)x

⎧⎨
⎩

n∑
i,j.m=0

n∑
c,s,l=1

Θ(∂)
icjs(�k)�Vq(�k + Iic − Ijs, x)

+Φ(∂)
icjs(�k)�Vq(�k + Iic + Ijs, x) + Φ(∂)

icjsml(�k)�Vq(�k + Iic + Ijs − Iml, x)

⎫⎬
⎭ dx

⎞
⎠

+
�E(k)

Δ(∂)(�k)

[
1 − e−Δ(∂)(�k)t

]
. (11)

As an initial approximation, we take the stationary distribution �V0(�k, t) = �V (�k) =
limt→∞ �V (�k, t), which satisfies the relation

Δ(∂)(�k)�V (�k) =
n∑

i,j=0

n∑
c,s=1

Θ(∂)
icjs(�k)�V (�k + Iic − Ijs) + Φ(∂)

icjs(�k)�V (�k + Iic + Ijs)

+ Φ(∂)
icjsml(�k)�Vq(�k + Iic + Ijs − Iml) + �E(�k). (12)

The following theorems are valid for successive approximations.

Theorem 3: Sequential approximations �Vq(�k, t), q = 0, 1, 2, . . . , converge for t → ∞ to a
stationary solution of the system of equation (2), and the sequence constructed according to
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scheme (4), for any zeroth approximation bounded by {�Vq(�k, t)}, q = 0, 1, 2, . . . , converges
for q → ∞ to a unique solution of the system of equation (2).

Theorem 4: Each successive approximation �Vq(�k, t), q ≥ 1 is represented in the form of a
convergent power series:

�Vq(�k, t) =
∞∑

l=0

�g
(∂)
ql (�k)tl, (13)

whose coefficients satisfy the recurrence relations:

�g
(∂)
q+1l(�k) =

−Δ(∂)(�k)l

l!

{
�V (�k, 0) −

�E(�k)

Δ(∂)(�k)
+

l−1∑
u=0

(−1)u+1u!

Δ(∂)(�k)u+1
�G

(∂)
q+1l(�k)

}
,

l ≥ 0�g(∂)
q0 (�k) = �V (�k, 0), �g(∂)

0l (�k) = �V (�k, 0)δl0,

�G
(∂)
ql (�k) =

n∑
i,j,m=1

r∑
c,s,l=1

[
Θ(∂)

icjs(�k)�g(∂)
ql (�k + Iic − Ijs)

+ Φ(∂)
icjs(�k)�g(∂)

ql (�k + Iic + Ijs) + Φ(∂)
icjsml(�k)�g(∂)

ql (�k + Iic + Ijs − Iml)
]
. (14)

Theorems 3 and 4 are proofed similarly as in [18] for the network with batch removal
of positive customers.

5. MODEL EXAMPLE

Let n = 5 and r = 3 be types of positive customers and signal. Let the probabilities of
arriving of positive customers and signals to the i-th system of types c be equal respec-
tively p+

011 = 0, 15; p+
012 = 0, 1; p+

013 = 0, 05; p+
021 = 0, 05; p+

022 = 0, 03; p+
022 = 0, 02; p+

031 =
p+
041 = p+

051 = 0, 1; p+
032 = p+

042 = p+
052 = 0, 06; p+

033 = p+
043 = p+

053 = 0, 04; p−0i1 = 0, 1, p−0i2 =
0, 06, p−0i3 = 0, 04, i = 1, 5; and

∑5
i=1

∑3
c=1 p+

0ic = 1;
∑5

i=1

∑3
c=1 p−0ic = 1. Let also the inten-

sities of incoming streams of positive customers and signals are equal respectively λ+ = 100
and λ(∂) = 90.

Let the rates of customers of type c in the network systems are equal:
μ11 = 50;μ12 = 30;μ13 = 20;μ21 = 50;μ22 = 40;μ23 = 20;μ31 = 50;μ32 = 40;μ33 = 20;

μ51 = 50;μ52 = 30;μ41 = 50;μ42 = 40;μ43 = 20, μ53 = 20. Suppose also that the probabili-
ties of the transitions of positive customers and signals between the QS are equal

p+
1111 = 0, 01, p+

1112 = 0, 012, p+
1113 = 0, 011, p+

1211 = 0, 01, p+
1212 = 0, 012, p+

1213 = 0, 011,

p+
1311 = 0, 01, p+

1312 = 0, 012, p+
1313 = 0, 012, p−1111 = 0, 01, p−1112 = 0, 012, p+

1121 = 0, 03;

p+
1122 = 0, 036; p+

1123 = 0, 033; p−1113 = 0, 011, p−1211 = 0, 01, p−1212 = 0, 012, p−1213 = 0, 011,

p−1311 = 0, 01, p−1312 = 0, 012, p−1313 = 0, 012, p+
1221 = 0, 03; p+

1222 = 0, 036; p+
1223 = 0, 033;

p+
1321 = 0, 03; p+

1322 = 0, 036; p+
1323 = 0, 036; p−1121 = 0, 01, p−1122 = 0, 012, p−1123 = 0, 011,

p−1221 = 0, 01, p−1222 = 0, 012, p−1223 = 0, 011, p−1321 = 0, 01, p−1322 = 0, 012, p−1323 = 0, 012,

p+
12i1 = 0, 005, p+

12i2 = 0, 006, p+
12i3 = 0, 0055, p+

13i1 = 0, 005, p+
13i2 = 0, 006, p+

13i3 = 0, 006,

p−11i1 = 0, 005, p−11i2 = 0, 006, p−11i3 = 0, 0055, p−12i1 = 0, 005, p−12i2 = 0, 006, p−12i3 = 0, 0055,
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p−13i1 = 0, 005, p−13i2 = 0, 006, p−13i3 = 0, 006, i = 3, 5, p110 = 0, 05; p120 = 0, 03; p120 = 0, 02;

p+
2311 = 0, 01, p+

2312 = 0, 012, p+
2313 = 0, 012, p+

2111 = 0, 01, p+
2112 = 0, 012, p+

2113 = 0, 011,

p+
2211 = 0, 01, p+

2212 = 0, 012, p+
2213 = 0, 011, p+

2311 = 0, 01, p+
2321 = 0, 02, p+

2322 = 0, 024,

p+
2323 = 0, 024, p−2321 = 0, 012, p−2322 = 0, 012, p−2323 = 0, 01, p+

2121 = 0, 02, p+
2122 = 0, 024,

p+
2123 = 0, 022p+

2222 = 0, 024, p+
2223 = 0, 022, p+

2321 = 0, 02, p−2121 = 0, 01, p−2122 = 0, 012,

p−2123 = 0, 011, p−2221 = 0, 01, p+
11i1 = p+

11i3 = 0, 005, p+
11i2 = 0, 006, p−2222 = 0, 012,

p−2223 = 0, 011, p−2321 = 0, 01, p−22i1 = p+
22i1 = 0, 005, p−22i2 = p+

22i2 = 0, 006,

p−22i3 = p+
22i2 = 0, 0055, p−23i1 = p+

23i1 = 0, 005, p−23i2 = p+
23i2 = 0, 006, p+

j1i1 = p−j1i1 = 0, 01,

p−23i1 = p+
23i1 = 0, 005, p−23i2 = p+

23i2 = 0, 006, p+
j1i2 = p−j1i2 = 0, 012, p+

j1i3 = p−j1i3 = 0, 011,

p+
i3j2 = p−i3j2 = 0, 012, p+

i3j3 = p−i3j30, 012, i, j = 3, 5,pi10 = 0, 1; pi20 = 0, 07; pi30 = 0, 03,

i = 2, 5.qicjs = 0, 02, i �= j, i, j > 0, qicis = 0, 02; qic0 = 1/30.

Let ri(k̄) = 2, r0ic(�k) = 2, Ric0 = 4, ricjs(�k) = 4, rijα = 3.

Figure 1. State probability �k at [0; 7].

Figure 2. Revenues of the second QS at [0; 5].
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Find the state probability �k = (1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5) and expected revenues
of the second QS, if the state �k0 = (1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2, 2) under the initial condi-
tion v2(�k0, 0) = 0. Solving the problem using the programming language C # on the interval
[0, 7] with ε = 10−6, we obtain the dependence presented in Figures 1 and 2.
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