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Multipath streaming protocols have recently attracted much attention because they
provide an effective means to provide high-quality streaming over the Internet. Most
existing multipath streaming schemes also apply forward error correction (FEC)
encoding in the stream so as to provide high-quality streaming of prestored or live
media content. However, the problem of how to intelligently split the FEC-encoded
stream among multiple available paths has not been fully addressed. Most previous
work focused on protocol design or heuristic-based engineering approaches. Exact
analysis turns out to be hard, as it involves heavy combinatorics computation. In this
article, we develop an analytical model and use asymptotic analysis to address the
problem of optimal load distribution. Using asymptotic approximations, we propose
a closed-form formulation for the optimal load distribution problem. We then develop
interesting properties of the optimal solution based on majorization, interchanging
argument, and optimization techniques. These results are surprisingly simple yet
insightful. We further demonstrate through simulation that our asymptotic solution
works quite well in practice.
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1. INTRODUCTION

Live streaming applications have become increasingly popular nowadays, driven by
the widespread adoption of broadband networks. Such applications typically have
stringent quality of service requirements, and the transport protocol must ensure that
the streaming content is delivered in time, with minimal losses. Multipath streaming is
one promising approach that leverages the availability of multiple paths between end
hosts and exploits such path diversity to improve the streaming quality. Most of these
multipath streaming schemes also apply forward error correction (FEC) encoding in
the stream to guard against packet losses, so that the receiver can recover from packet
losses without retransmission. With the joint benefits of multipath and FEC, these
schemes can successfully provide high-quality streaming of prestored or live media
content.

Exploiting multipath to improve the quality of streaming has attracted much
attention. A broad overview of the general area can be found in Apostolopoulos and
Trott [2]. Although multipath is believed to be beneficial, the problem of how to
optimally split the load accross multiple lossy paths has not been well understood.
Most previous work focuses on new protocol designs in which the benefits of multipath
streaming are explored using heuristic policies and simulations; see, for example,
Chu and Nahrstedt [7], Begen, Altunbasak, and Ergun [3], Nguyen and Zakhor [13],
Abdouni, Cheng, Chow, Golubchik, Lee, and Lui [1], Wang, Wei, Guo, and Towsley
[15], and Sharma, Kalyanaraman, Kar, Ramakrishnan, and Subramanian [14].

Analytical models for multipath streaming under FEC have been developed by
Golubchik, Lui, Tung, Chow, Lee, Franceschinis, and Anglano [10], where the loss
characteristics on a network path are characterized by a so-called Gilbert model (refer
to Section 2) and it was illustrated that, compared with single-path streaming, multi-
path streaming can reduce the length of bursty losses and the correlation in consecutive
packet losses, thus having the potential advantage of improving the quality of service
delivery. Abdouni et al. [1] considered an optimization formulation for the load distri-
bution problem in multipath streaming and showed that both the packet loss rate and the
loss correlations are important when choosing an optimization objective. Chow, Gol-
ubchik, Lui, and Lee [6] further extended the previous studies to a functional Gilbert
model where the loss characteristics can depend on the data rate. Most of these studies
focused on exact distribution analysis (of the irrecoverable probability of an FEC group
under a fixed a load splitting scheme), which can be derived through some iterative
algorithms. However, as these algorithms involve heavy combinatorics computation,
the task of finding the optimal load splitting scheme becomes almost prehibitive.
Although optimal solutions were explored through numerical experiments and simu-
lations, it is hard to give many engineering insights. Their solutions also require fairly
accurate knowledge of the path loss model, which is difficult to obtain in practice.

In this article, we tackle the optimal load distribution problem for multipath
streaming under FEC through an asymptotic analysis. We study the same model as
in Golubchik et al. [10] but rely on an asymptotic approximation to get around the
combinatorics computation challenges. Such asymptotic approximation then enables
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us to study the optimal load distribution problem through a closed-form optimization
formulation. We further derive useful properties of the optimal load splitting solutions
under different scenarios. Specifically, we show the following:

• Given a set of homogeneous paths, equal splitting over all paths achieves the
lowest irrecoverable error if the probability of each path being lossy is lower
than the maximum tolerable fraction of losses for a FEC group to avoid an
irrecoverable error;

• Given a set of heterogeneous paths, it is asymptotically optimal to split the
traffic such that the load on each path is inversely proportional to its loss rate.

These surprisingly simple results can offer valuable insights for the protocol design.
To the best of our knowledge, this is the first work that provides closed-form optimal
solutions for multipath load splitting, as the previous work all involve heavy combi-
natorics computation. We further demonstrate through simulation that our asymptotic
solution works quite well in practice, even for small group sizes.

The rest of the article is organized as follows. In Section 2 we describe an ana-
lytical model to represent the multipath streaming system under FEC. An asymptotic
analysis is then presented in Section 3, which enables a closed-form approximation
to the irrecoverable error of a FEC frame under a given splitting scheme. In Section 4
the optimal load splitting problem is studied using the closed-form approximation.
These analytical results are further validated through a simulation study in Section 5.
Concluding remarks are presented in Section 6.

2. MODEL

Consider a streaming application that generates constant bit rate (CBR) stream data
at rate λ and needs to transmit the data in realtime from sender s to receiver d. The
streaming application will use FEC with group size N and redundancy r (r > 0) for
the transmission. We assume a simple FEC scheme as follows: For every group of N
data packets, we generate N ′ = N(1 + r) packets. We refer to these N ′ packets as a
FEC group. The encoding scheme is such that if the number of losses within a FEC
group is less than or equal to Nr, then we can reconstruct the original N data packets
with that FEC group.

There are K potential overlay paths between nodes s and d. We assume, as in
Golubchik et al. [10], that the network loss rate on each path is dominated by some
on and off background traffic on its bottleneck link, and we use a Gilbert model to
model the loss process. Such a model characterizes the potential correlations between
consecutive packet losses on a network path and is known to be more accurate than
the independent loss model, as packet losses tend to occur in a burst due to buffer
overflow. See, for example Cidon, Khamisy, and Sidi [8], and Bolot, Fosse-Parisis,
and Towsley [5].

Under the Gilbert model, the packet loss process along path k is a two-state
continuous-time Markov process {Ik(t)}, with Ik(t) ∈ {0, 1}. A packet transmitted at
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time t is considered lost if the state of path k is Ik(t) = 1; and otherwise it is considered
successfully delivered. The infinitesimal generator for this Gilbert model of path k is

Qk =
[−μ

(k)
0 μ

(k)
0

μ
(k)
1 −μ

(k)
1

]
.

Let πk denote the stationary probability that path k is in the lossy state. From the
balance equation, it is easily checked that πk := μ

(k)
0 /(μ

(k)
0 + μ

(k)
1 ).

Let P(k)
j,j′ (t) be the probability that path k is in state j′ at time t, given that it was in

state j at time 0; that is, P(k)
j,j′ (t) = P{Ik(t) = j′|Ik(0) = j}. The transition probabilities

P(k)
j,j′ (t) can be derived in closed form (Kulkarni [11]) as follows:

P(k)
j,j′ (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − πk)(1 − e−μ
(k)
� t), j = 1, j′ = 0

πk(1 − e−μ
(k)
� t), j = 0, j′ = 1

πk + (1 − πk)e−μ
(k)
� t , j = 1, j′ = 1

(1 − πk) + πke−μ
(k)
� t , j = 0, j′ = 0

for all t ≥ 0,

where μ
(k)
� = μ

(k)
0 + μ

(k)
1 .

Consider a simple multipath routing strategy under load splitting vector x = [xk],∑
k xk = 1 as follows. For every N packets, exactly Nxk packets1 will use path k

and they are evenly spaced throughout the time window N/λ with interarrival times
τk = 1/λ(1 + r)xk . This can be achieved by a proportional round-robin scheme based
on the weight vector x.

Let X(k)
n = 0 (resp. = 1) if the nth transmitted packet on path k is lost (resp.

successfully delivered) for xk > 0. Then the packet delivery process {X(k)
n } on path k

forms a discrete-time Markov chain, with transition matrix

Pk =
[

1 − αk αk

βk 1 − βk

]
,

where

αk = πk(1 − e−μ
(k)
� τk ) and βk = (1 − πk)(1 − e−μ

(k)
� τk ). (1)

Let S(k)
n := ∑n

l=1 X(k)

l be the number of successes in n transmissions on path k
and let S(k)

0 = 0. Then the total number of successes in n transmissions over all paths
under load splitting vector x is Sn(x) = ∑K

k=1 S(k)
nxk

. For a FEC group of N packets,
if SN(1+r)(x) is smaller than N , then it is not possible to recover all N original data
packets within the FEC group. The probability of an irrecoverable error within a FEC
group is thus defined as

LN (x) := P(SN(1+r)(x) < N),

which we also refer to as the group loss rate. The percentage of data that cannot be
recovered within a FEC group is typically called the information loss rate. Since the
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optimal decision that minimizes the information loss rate is quite similar to that which
minimizes the group loss rate, it is sufficient to focus on minimizing the group loss
rate LN .

As presented in Golubchik et al. [10], the exact distribution of Sn(x) can be
derived using a complex two-dimensional recursive procedure with heavy combina-
torics computation. This makes the task of finding the optimal load splitting scheme
almost prehibitive. Although optimal solutions can be explored through numerical
experiments and simulations, it is hard to give many engineering insights.

3. ASYMPTOTIC ANALYSIS

We next present an asymptotic analysis on Sn(x), which is more mathematically
tractable and helps provide useful guidelines in searching for an optimal design that
achieves the least information loss.

Consider a fixed load splitting scheme defined by x = [xk], ∑
k xk = 1. The fol-

lowing asymptotic result for total successful transmissions S(k)
n on path k (with xk > 0)

is immediate from the well-known central limit theorem for Markov chains (see Cox
and Miller [9, p. 138]).

Lemma 1: Consider Markov chain {X(k)
n }n≥1 with transition matrix Pk and cumulative

sum S(k)
n = ∑n

l=1 X(k)

l . Then

√
n

(
S(k)

n

n
− mk

)
d−→ σk(xk)N(0, 1) as n −→ ∞,

where

mk = αk

αk + βk
and σ 2

k (xk) = αkβk(2 − αk − βk)

(αk + βk)3
(2)

and
d→ denotes convergence in distribution.

Plug Eq. (1) into Eq. (2); we see that

mk = 1 − πk and σ 2
k (xk) = πk(1 − πk)

1 + e−μ
(k)
� τk

1 − e−μ
(k)
� τk

, (3)

where σ 2
k (xk) is a function of xk due to the dependence of τk on xk .

Lemma 1 states that the number of successful transmissions S(k)
n on path k (with

xk > 0) is asymptotically normal with mean nmk and variance nσ 2
k (xk). We next show

that the total successful transmissions on all paths Sn(x) = ∑
k:xk>0 S(k)

nxk
is also asymp-

totically normal. The result might appear to be immediate from Lemma 1. However,
since convergence in distribution is not additive in general (see, e.g., Billingsley [4]),
a rigorous proof is needed. See the Appendix for the detailed proof.
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Theorem 2:

√
n

(
Sn(x)

n
− m(x)

)
d−→ σ(x)N(0, 1) as n −→ ∞,

where

m(x) :=
∑

k:xk>0

xkmk and σ 2(x) :=
∑

k:xk>0

xkσ
2
k (xk).

Note from Eq. (3) that σ 2
k (xk) is only defined for xk > 0. We extend its definition

to the case xk = 0 and define σ 2
k (0) = πk(1 − πk). Hence, we can rewrite m(x) and

σ 2(x) as

m(x) =
K∑

k=1

xkmk and σ 2(x) =
K∑

k=1

xkσ
2
k (xk).

Theorem 2 shows that Sn(x) is asymptotically normal with

E[Sn(x)] ∼ nm(x),

Var(Sn(x)) ∼ nσ 2(x),

where the notation fn ∼ gn denotes limn→∞(fn/gn) = c for 0 < c < ∞.
We can now approximate the irrecoverable error LN for a large group size N . Recall

that for a group of N data packets, the FEC scheme under redundancy r generates a
total number of N(1 + r) data packets and an irrecoverable error occurs when the total
number of successfully transmitted packets is less than N. The following corollary is
immediate.

Corollary 3: For a large group size N, we can approximate the irrecoverable error
LN (x) by

LN (x) ≈ 	

(
a − m(x)

σ (x)

√
N√
a

)
. (4)

Furthermore, if a − m(x) < 0, then LN (x) → 0 as N → ∞ and

ln(LN (x)) ∼ −N
(a − m(x))2

2a · σ 2(x)
. (5)

On the other hand, if a − m(x) > 0, then LN (x) → 1 as N → ∞ and

ln(1 − LN (x)) ∼ −N
(a − m(x))2

2aσ 2(x)
. (6)

https://doi.org/10.1017/S0269964810000148 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964810000148


OPTIMAL LOAD DISTRIBUTION 515

Proof: Denote N ′ = N(1 + r) and a = 1/(1 + r); then

LN (x) = P(SN ′(x) ≤ N)

= P

(
SN ′(x)

N ′ ≤ a

)

= P

(√
N ′

(
SN ′(x)

N ′ − m(x)

)
≤ √

N ′(a − m(x))

)

≈ 	

(
a − m(x)

σ (x)

√
N√
a

)
,

where 	(·) denotes the cumulative distribution function of a standard normal random
variable.

Based on the above approximation, we see that the irrecoverable error LN (x)

converges to zero as N gets large if a − m(x) < 0 and it goes to 1 if a − m(x) > 0.
Expressions (5) and (6) are based on the fact that for large y(> 0), 	c(y) ∼ e−y2/2. �

4. OPTIMAL LOAD SPLITTING

Consider a FEC scheme with fixed group size N and redundancy r. Based on Eq. (4),
we see that in order to find the optimal load splitting scheme x that minimizes the
irrecoverable error LN (x), it suffices to solve

max
x:

∑
k xk=1

m(x) − a√
aσ(x)

= max
x:

∑
k xk=1

m(x) − a√
v(x)

, (7)

where m(x) = ∑K
k=1 xkmk and v(x) = aσ 2(x) = ∑K

k=1 axkσ
2
k (xk).

For most streaming applications, the data rate (constant bit rate) λ tends to be
large; hence, the interarrival times τk are typically small. Using the approximation
e−μ

(k)
� τk ≈ 1 − μ

(k)
� τk in Eq. (3), we can then approximate σ 2

k (xk) as

σ 2
k (xk) = bk

(ρk

a
xk − 1

)
,

where bk = πk(1 − πk) and ρk = 2λ/μ
(k)
� . Consequently,

v(x) =
K∑

k=1

axkσ
2
k (xk) =

K∑
k=1

bkxk(ρkxk − a).

We will focus on solving Eq. (7) under the above expression of v(x). It can be
easily shown that the optimal solution to Eq. (7) is unique and can be obtained by
solving the equations from Karush–Kuhn–Tucker (KKT) conditions.
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Observe from the optimization formulation (7) that there are interesting trade-offs
between single path versus multipath load splitting. On the one hand, sending more
traffic to the less lossy (higher mk) path increases m(x), encouraging the usage of the
single (least lossy) path; on the other hand, as losses tend to happen in a burst (when
packets are sent during the lossy period), having smaller xk would result a smaller
variance σ 2

k (xk), encouraging the usage of a multipath to disperse the burstiness of
traffic to reduce losses.

4.1. Homogeneous Case

Suppose that all paths are homogeneous with πk ≡ π , ρk ≡ ρ, and bk ≡ b. We have
the following theorem.

Theorem 4: Suppose the paths are homogeneous.

(i) If π < 1 − a, then the optimal solution to Eq. (7) is multipath routing with
equal splitting.

(ii) If π > 1 − a, then the optimal solution to Eq. (7) is single-path routing with
no splitting.

Proof: When the paths are homogeneneous, m(x) − a = 1 − a − π and it does not
depend on x. In order to solve Eq. (7), it suffices to minimize (resp. maximize) σ 2(x)

when π < 1 − a (resp. π > 1 − a).
Note that v(x) is symmetric and convex in all the arguments xks. Therefore, σ 2(x)

is a Schur convex function of x (see Marshall and Olkin [12]). The claimed results
then follow immediately from properties of Schur convexity since

v(1, 0, . . . , 0) ≥ v(x1, . . . , xK) ≥ v

(
1

K
, . . . ,

1

K

)
.

�

Note that 1 − a defines the maximum tolerable fraction of losses for a FEC group
to avoid an irrecoverable error. Theorem 4 states that given a set of homogeneous
paths, when the probability that a path is in lossy state (π ) is smaller than the maximum
tolerable fraction of losses (1 − a), multipath routing is beneficial. On the other hand,
if all paths are very lossy, then one should avoid multipath and use single-path routing
instead. In other words, in order to take advantage of multipath routing, the FEC
scheme should increase its redundancy r so that the tolerable fraction of losses is
larger the the fraction of time that the path is lossy.

4.2. Heterogeneous Case

We next consider the general case when the K paths are heterogeneous. Without
loss of generality, assume the K paths are ordered such that π1 ≤ π2 ≤ · · · ≤ πK(<
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1
2 ). To make the problem interesting, assume π1 < 1 − a; that is, there is at least
one path whose probability of being in the lossy state is lower than the maximum
tolerable fraction of losses under FEC. Therefore, the optimal solution x∗ should
satisfy m(x∗) − a > 02

In this case, we can show that the optimal load splitting should be monotone in
the path quality, where a less lossy path should be assigned more load in routing.

Theorem 5: Suppose π1 < 1 − a. The optimal solution to Eq. (7) must satisfy

x∗
1 ≥ x∗

2 ≥ · · · ≥ x∗
K

that is, the optimal load splitting tends to assign more load to less lossy paths.

Proof: Suppose, to the contrary, that the optimal solution x∗ to Eq. (7) has x∗
i < x∗

j
for some i < j, where πi < πj.

Let x̃i = x∗
i + ε, x̃j = x∗

j − ε, and x̃k = x∗
k for k 
= i, j for some small ε > 0. Then

m(x̃) − m(x∗) = ε(mi − mj) > 0 and

v(x̃) − v(x∗) = 2ερ

[
bi

(
x∗

i − a

2ρ

)
− bj

(
x∗

j − a

2ρ

)]
+ ε2ρ(bi + bj) < 0

for ε sufficiently small, where the last inequality holds because x∗
i < x∗

j and bi < bj.

Since m(x∗) − a > 0, we then have (m(x̃) − a)/
√

v(x̃) > (m(x∗) − a)/
√

v(x∗),
which contradicts the assumption that x∗ is optimal to Eq. (7). �

The next theorem establishes the asymptotic behavior for the high redundancy
case.

Theorem 6: As the redundancy r becomes large, the optimal load splitting approaches

x∗
k = c

πk
, k = 1, . . . , K ,

where c−1 = ∑K
k=1(1/πk); that is, as the FEC redundancy becomes large, the optimal

load xk on path k becomes inversely proportional to the path loss rate πk.

Proof: We solve Eq. (7) by dropping K (since it does not affect the optimal solution)
and using the Lagrangian

J(x) = m(x) − a√
v(x)

+ θ

K∑
k=1

xk .
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Setting ∂J/∂xk = 0, we have

−mk + m(x) − a

v(x)
bk

(
ρxk − a

2

)
= θ

√
v(x). (8)

Having a weighted sum of Eq. (8) with weights xk , we then have

θ =
[
−a + m(x) − a

v(x)

(∑
k

bkxk

)
a

2

] (√
v(x)

)−1
.

As redundancy r becomes larger (i.e., a → 0), we have θ → 0, and Eq. (8) becomes

−mk + m(x)

v(x)
bkρxk = 0.

Thus,

xk = mk

bkρ

v(x)

m(x)
= 1

πkρ

v(x)

m(x)
.

It is easily checked that, by setting xk = c/πk for all k, we have v(x)/m(x) = cρ.
Since

∑
k xk = 1, we have c−1 = ∑K

k=1(1/πk). �

4.3. Independent Case

We next illustrate that without the Gilbert (on and off) model, if one assumes that the
packet delivery process on path k is i.i.d. Bernoulli with fixed loss probability πk at
all times (as assumed in Sharma et al. [14]), then the benefit of multipath routing no
longer exists.

Without loss of generality, we assume that the loss probabilities on all paths
πk < 1/2. Based on the standard central limit theorem, we have a result similar to
Lemma 1 with mk = 1 − πk and σ 2

k (xk) = πk(1 − πk) = bk . Note that the larger mk

is, the smaller the variance σ 2
k . The following result is then immediate with a simple

interchange argument.

Theorem 7: If the packet delivery process {X(k)
n }n≥1 on each path is i.i.d. Bernoulli

with loss probability πk (< 1/2), then multipath splitting is not preferred and the
policy that uses the single best path (with the least loss rate πk) achieves the least
irrecoverable error.

Theorem 7 shows that under i.i.d. Bernoulli transmissions, there is no variance
reduction on each path by dispersing the traffic over a multipath, and multipath rout-
ing has no advantage over single-path routing. This further illustrates the need for
dependent models to study the benefit of multipath routing. Since packet losses tend
to occur in a burst due to buffer overflow, one needs to account for the dependence
structure in consecutive packet losses.
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5. MODEL VALIDATION

In this section we present a simulation study to evaluate the performance of the solu-
tions obtained through analytical models. We consider a two-path streaming case
under FEC in which we use brute-force search to find the optimal splitting in different
scenarios. Our simulation results show that the optimal splitting solution obtained by
the brute-force search agrees amazingly well with that obtained using our analytical
model, even under relatively small group sizes.

Our simulation topology consists of access routers and overlay nodes, as shown
in Figure 1. Between the sender and the receiver, there are multiple overlay paths, one
through each relay node. The bandwidth and delay for the access links are chosen to
reflect the common settings found in residential broadband links, which have asym-
metric upload and download capacity. Background traffic is introduced on the core
links between the core routers. To emulate the bursty loss behavior in the Internet, the
background traffic for each link is composed of five FTP sessions and UDP On/Off
traffic. Note that we do not directly set the path loss rate; we control it by introducing
the background traffic and measure the resulting path loss rate. When the UDP traffic
is active, it sends UDP packets at 10 Mbp with packet size of 1400 bytes. The queue
length of the routers is 50. The sender generates CBR live traffic of 768 kbps with
500 B packets.

Each simulation run consists of 30 s of a warm-up time (for the background traffic
to ramp up) and 10,000 s of streaming. Table 1 shows the default parameters used in
the simulation.

Figure 2 presents a sample set of results obtained in a two-path case. It suffices
to note that the loss rates on Path 1 and Path 2 are 5.29% and 8.26%, respectively.
Thus, based on Theorem 6, we can calculate the asymptotic optimal splitting as (x1 =
61%, x2 = 39%) as redundancy becomes large.

In these simulations, we fix the FEC group size to 20 and gradually increase the
FEC redundancy from 0% to 60%. For each redundancy value, we vary the load on
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.
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.
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FIGURE 1. Topology for performance evaluation.
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TABLE 1. Default EMS Settings

Parameter Value

Loss requirement, Lreq 5%
Delay constraint 500 ms
Adapt window, Ts 30 s
OLS step size, �L 3%
FEC redundancy adapt step size, �R 5%
FEC redundancy adapt threshold, α and β 0.5
FEC redundancy adapt threshold, γ 0.75
FEC redundancy init value 10%
FEC group size init value 10
FEC group size adapt threshold, b 3
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FIGURE 2. Optimal splitting with two paths.

Path 1 (x1) from 0% to 100%, with an increment of 3%. The load on Path 2 is always
x2 = 1 − x1. The results of such brute-force search are shown in Figure 2, which
plots how the information loss rates changes as we vary x1. We can see that as the
FEC redundancy becomes large, the optimal splitting vector is indeed approaching
the asymptotic optimal one provided by Theorem 6.

We have also validated the model using three-path cases and a subset of the results
are summarized in Table 2 (in which the FEC group size and redundancy are 20%
and 40%, respectively). In all cases, we have observed that our asymptotic analysis
matches the simulation results very well.

TABLE 2. Optimal Splitting with Three Paths

Path 1 Path 2 Path 3

Loss rate 3.69% 6.89% 9.97%
Optimal load (asymptotic analysis) 52.4% 28.1% 19.4%
Optimal load (brute-force search) 51% 24% 25%
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From both analytical and simulation results, we can see that the optimal load
splitting depends on both path quality and the FEC redundancy. In general, we can
make the following remarks:

• With large FEC redundancy, the optimal load splitting is close to the asymp-
totic optimal one, with the load on a path inversely proportional to its loss
rate (Theorem 6).

• With small FEC redundancy, the optimal load splitting is biased toward those
less lossy paths (Theorem 5).

We will use these guidelines in designing the algorithms searching for the optimal
load distribution in the general settings.

6. CONCLUDING REMARKS

In this article, we study the optimal load distribution problem for multipath streaming
under FEC for emerging real-time live streaming applications with tight loss require-
ments. Through modeling and asymptotic analysis, we have developed a closed-form
approximation for finding optimal load splitting solutions and derived properties of the
optimal solutions with useful engineering insights. The effectiveness of our analytical
results is further confirmed by simulation.

In addition to the optimal load distribution, our asymptotic framework can also
be used to explore the optimal decision on the FEC group size and redundancy. This
is part of our ongoing research, as choice of these parameters also directly affects the
overall service delay, which is another important attribute in the quality of service
delivery of streaming applications. Our preliminary investigation indicates that an
analytical framework can also be helpful in addressing both delay and information
loss constraints, but the analysis will be much more involved. We, therefore, defer it
to future research.

Notes

1. To be technically correct, it should be �Nxk� packets instead since we can only take integer values.
This, however, will not matter much since we are interested in asymptotic analysis for large N .

2. If, instead, πk ≥ 1 − a for all k, then m(x) − a < 0 under all load splitting policy x. Note from
Corollary 3 that the irrecoverable error LN (x) becomes close to zero for large N if m(x) > a, and LN (x)

converges to 1 if m(x) < a. We should therefore choose the redundance r high enough such that a =
c1/(1 + r) is at least smaller than m1 so as to ensure that the irrecoverable rate is low.
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APPENDIX

Proof ofTheorem 2.

To prove Theorem 2, first we need the following lemma, which is also known as the continuity
theorem.

Lemma A.1 (Continuity Theorem. See Billingsley [4]): Let {Xn}n≥1 be a sequence of random
variables with characterisitc function ϕXn (s) = E[eisXn ] for n ≥ 1. Let Fn(·) be the cumulative
distribution function (cdf) of Xn, n ≥ 1, and F be the cdf of (a possibly defective random
variable) X. Then

lim
n→∞ Fn(t) = F(t)

at all continuity points of F if and only if

lim
n→∞ ϕXn (s) = ϕX (s) for all s > 0.

Proof of Theorem 2: Define Z̄(k)
n = √

n(S(k)
n /n−mk ). Based on Lemma 1, we know that Z̄(k)

n

converges in distribution to a Normal random variable Z(k)∗ with mean 0 and variance σ 2
k (xk).
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Apply Lemma A.1, we then have

lim
n→∞ ϕZ̄ (k)

n
(s) = ϕZ (k)∗ (s) = e− 1

2 σ 2
k (xk)s2

for all s > 0.

Define Z̄n(x) = √
n[Sn(x)/n − m(x)], where m(x) = ∑

k:xk>0 xkmk . It is easily checked
that

Z̄n(x) =
∑

k:xk>0

√
xkZ̄(k)

nxk
.

Hence, for all s > 0,

lim
n→∞ ϕZ̄n(x)(s) = lim

n→∞ eis
∑

k:xk >0
√

xk Z̄ (k)
nxk

= lim
n→∞

∏
k:xk>0

φZ̄ (k)
nxk

(s
√

xk)

=
∏

k:xk>0

e− 1
2 σ 2

k (xk)s2xk = e− 1
2 σ 2(x)s2

. (A.1)

Note that the right-hand side of (A.1) is the moment generating function of a normal
random variable with mean 0 and variance σ 2(x). Based on Lemma A.1, we can then claim
that Z̄n(x) converges in distribution to a normal random variable with mean 0 and variance
σ 2(x). �
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