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SUMMARY
Frenet—Serret and Bishop rigid-body motions have many
potential applications in robotics, graphics and computer-
aided design. In order to study these motions, new
characterisations in terms of their velocity twists are derived.
This is extended to general motions based on any moving
frame to a space curve. Furthermore, it is shown that any
such general moving frame motion is the product of a Frenet—
Serret motion with a rotation about the tangent vector.
These ideas are applied to a simple model of needle
steering. A simple kinematic model of the path of the needle
is derived. It is then shown that this leads to Frenet—Serret
motions of the needle tip but with constant curvature. Finally,
some remarks about curves with constant curvature are made.

KEYWORDS: Rigid-body motions; Frenet—Serret motions;
Bishop motions; Screw theory; Needle steering.

1. Introduction

1.1. Background

Frenet—Serret motions are the motions traced by the Frenet
frame of a curve in space. Likewise, Bishop motions are
produced by following the Bishop frame of a curve. Klok!
investigated these motions in order to produce sweeping
surfaces from curves. It was probably Wagner and Ravani,’
who first suggested using rational Frenet—Serret motions for
motion interpolation. Although the notion of Frenet—Serret
motions themselves have a much longer history, see Bottema
and Roth,? for example. Frenet—Serret motions occur in other
situations too. In medical applications, a flexible needle can
be steered through soft tissue. As discussed in Duindam
et al.* the motion of the needle will be a special Frenet—
Serret motion (see also Section 3).

In a seminal paper, Bishop® explored different ways to
frame curves and defined an alternative to the standard Frenet
frame, which has many useful properties. Bishop’s frame
for a curve is also sometimes called the natural frame or
the rotation-minimising frame. The motion associated with
the Bishop frame of a curve has been suggested by several
workers for different applications.!-7 Notice that any regular
curve will define a Frenet—Serret or Bishop motion for a rigid
body.

Previous studies have concentrated on the curve defining
the motion. For example, Wagner and Ravani’s approach
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was to find space curves with rational Frenet—Serret motions.
They showed that the condition for a curve to have a rational
Frenet—Serret motion is that its speed and curvature functions
must be rational functions of the arc-length parameter.
The problem of finding rational Bishop motions has been
addressed in the work of Farouki et al.® The focus there was
on finding space curves, Pythagorean-hodographs, with the
appropriate properties.

A different problem is studied here. The question
considered first is: Given a rigid-body motion, how can one
tell if it is a Frenet—Serret or a Bishop motion, and if it is
what is the underlying curve in space for the motion? The
conditions for a rigid-body motion to be a Frenet—Serret or
a Bishop motion turn out to be that the velocity twist of the
body, computed in a coordinate frame fixed in the body, must
lie in a particular screw system.

2. Rigid-Body Motions Determined by Space Curves

2.1. Motivation

Let p(¢) be a curve in space parameterised by ¢. Such a curve
determines arigid-body motion as follows. Ateach parameter
value, take the origin of the frame fixed in the moving body
as p(¢) and orient this frame, so that the x, y and z axes in
the moving body lie along the tangent, normal and binormal
vectors of the Frenet frame to the curve. This is the definition
of the well-known Frenet—Serret motion.> As a4 x 4 matrix,
such a motion can be written as

G- (0 Y. o

where the rotation matrix R is given by
R(t) = (t|n[b) 2

and t, n and b are, respectively, the tangent, normal and
binormal vectors to the curve.

To motivate the discussion here, consider the following
rigid-body motion

M(t)
11 —2 =(1=®) 2422343243213
\/§(1+1‘2) (1+12) \/E(I-HZ) 3\/5(1_“2)
2t (1-12) .y A2/t
= | v2a+» U+ V20412 (+1%)
L L 1,3 1
7 0 7 AR
0 0 0 1


https://doi.org/10.1017/S026357471300026X

982

Now consider the question: Is this a Frenet—Serret motion
as described above? The definition of a Frenet—Serret motion
begins with a curve in space, here we have no particular
curve in space. However, under the action of this motion,
every point in space will trace out a trajectory. So perhaps
the question should be sharpened to: Is there a point in space
where the Frenet frame for the point’s trajectory coincides
with the given motion?

It might be argued that there is a particular point
distinguished by the motion given above, the origin of the
coordinates. This point traces the trajectory

—285 4+ 2283 + 312 + 32t — 3

. 3v2(1 + 12)

yt) | = - Vu

() (1 +12)
1, 1
Pttt —

3 V2

The tangent to this curve is given by

1422t +12 —1* —1°
(1 +12)v/4 + 812 4+ 12t% + 816 4+ 218
—V2 42t + V262 + 48 + 265
(1 +12)v/4 + 812 + 12t% + 816 4+ 218
(1 +1%)?
4 4 812 + 1214 4 816 + 218

It is clear that this is different from the first column of the
matrix M (¢) and hence, the motion is not a Frenet-Serret
motion about this trajectory. But there remains the question:
Is it a Frenet—Serret motion for the trajectory of some other
point, and if so, which point?

2.2. Frenet—Serret motion

In general, given an arbitrary rigid-body motion how could
one determine whether or not it was such a Frenet—Serret
motion? To answer this question neatly, it is useful to make
a small definition. It is well known that the Frenet frame
of a curve does not exist at points where the speed or the
curvature vanishes. It is usual to talk about regular curves,
whose speed is never zero. We also want to exclude from
discussion curves with points of zero curvature. Hence, the
small definition needed is that here a regular Frenet—Serret
motion will be taken to mean a Frenet—Serret motion based
on a regular curve with non-vanishing curvature. With this
definition, it is possible to state the main theorem of this
section:

Theorem 1: A rigid-body motion is a regular Frenet-Serret
motion if and only if its body—frame velocity twist lies in a
1By three-system of screws with moduli p, = p, = 0, with
non-zero velocity in the translational direction.
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Proof. Consider the body—frame velocity twist, this is
given by
d

Sp=G'—0G.
B dt

The derivative of the matrix G can be found using the famous
Frenet—Serret equations for the curve:

t = vin,
n = —v«kt+vth,
b= —vtn,

together with the definition of the tangent vector
p = vt.

In the above, v is the speed of the curve since an arbitrary

parameterisation of the curve has been assumed. That

is, the parameterisation is not necessarily a unit speed

parameterisation. The functions « and t are the usual

curvature and torsion functions of the curve. The above is

possible provided the speed v and curvature « do not vanish.
This gives

0 —« 0 1
d k 0 -1 0
79=%lo « o o
0 O 0 0
and hence,
0 —« 0 1
k 0 -1 0 .
Sp=v 0 1 0 0 or as a twist vector,
0 O 0O 0
T
0
Sp =V ’; A3)
0
0

As v, k and 7 vary along the curve, it is clear that this twist
is a linear combination of three constant twists

and sy =

cococooco~

7]

w

I
coco~oco
cor~rooO

That is, sg lies in a three-system of screws.

In the appendix, it is shown that this is a /B, system with
moduli p, = pp, = 0. The coefficient of the translational
twist s4 is simply the speed v and this was assumed to be
non-zero.

On the other hand, suppose that the twist velocity of arigid-
body motion was such that it always lay in a /B, three-system
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with moduli p, = p, = 0. Then, by the classification result
of Gibson and Hunt, it would be possible to find a coordinate
frame in the body such that the normal form for the screw
system consisted of the twists s;, s3 and s4 above. That is,
there would be a coordinate frame in the body such that the
twist velocity could be written in the form

Sp = as| + Bs3 + ys4.

The functions «, 8 and y can obviously be related to the
speed, curvature and torsion of a Frenet—Serret motion: v =
y, k = B/y and T = «/y. Notice that the orientation of this
frame must be chosen, so that k = /y is positive since the
curvature of space curves is always positive. Note also that
by the hypothesis of the theorem y, the coefficient of the
translational twist, is non-zero. O

Finally here, notice that the curve producing the Frenet—
Serret motion is the trajectory of the origin of the frame
giving the normal form of the screw system in the body.

2.3. Example

Returning to the motivating example given in Section 2.1.
Using the results above, it is a straightforward matter to

verify that this motion is indeed a Frenet—Serret motion. All

that is needed is to compute the body-fixed velocity twist of

the motion. After some algebra, the result is

Sp = M*‘(z)iM(z)
dt

-2
0 (IJ:/;) 0 V2(1 +12)
V2 0 -2 —2
=| 1+ A4+  (A+1?)
0 V2 0 0
1412
0 0 0 0

This can be written as a six-dimensional vector as

V2/(1+1%)
0
V2/( + %)
V2(1 +12)
—V2/(1 +1?)
0

Sp =

This twist is not in the same form as the one given in Eq. (3)
above. However, it is easy to see that we can transform it into
the required form with a simple translation in the z-direction.
In the adjoint representation, a translation in the z-direction
is given by a 6 x 6 matrix of the form

L0
HZ_(TZ 13)’
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where I3 is the 3 x 3 identity matrix. The required translation
is by one unit in the z-direction and this is represented by

0 -1 0
TZ=<1 0 0).
0O 0 O

Thinking of this as a change in coordinates, the twist s in
the new coordinates will be given by

V2/0 +1%)
0
V2/(1 4 1%)
V2(1 +1?)

0
0

H;sp =

Hence, we can see, by the theorem above, that this is indeed
a Frenet—Serret motion, generated by the curve traced by the
origin in these new coordinates.

In the standard 4 x 4 representation of SFE(3), this
coordinate change corresponds to a matrix

M, = o

0 O
0 0
1

0 1

1 0
0 1
00
0 0
So in the new coordinates, the motion is given by

G(t) = M(H)M,

1 —1¢? —2t —(1—=1% 3
t—1°/3
V21413 (413 V201 +12)
2t (1 —1%) —2t 2
=| V20 +2) A+ 20+
1 0 1 t+13/3
V2 V2
0 0 0 1

This motion can be recognised as the rational Frenet—Serret
motion given by Wagner and Ravani.”? In these coordinates,
the curve traced by the origin, and hence the one which
generates the motion, is given by the twisted cubic

t—13/3
p(t) = r
t+13/3

The speed, curvature and torsion of this curve are given by

1 1
v =201 +1?), K= ———, T=—>.
=+ (1+12) (1+12)

Notice that the trajectory of a general point in space, not
the origin, will be a curve of degree 5. The motion does not
pass through the identity in the group.
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2.4. Bishop motion

Bishop motion can be treated in a similar fashion to the
Frenet—Serret motions. However, there is a slight difference
between the Bishop frame and the Frenet frame. The Frenet
frame is uniquely defined for any regular curve with non-zero
curvature, by contrast the Bishop frame has some freedom.
This freedom is removed by choosing a starting frame,
effectively this can be done by selecting a vector in the normal
plane to the curve at some point.

The Bishop frame exists even if the curvature functions k;
or ky vanish. So here, it is simple to define a regular Bishop
motion as a Bishop motion based on a regular curve. Again,
these motions can be characterised by the screw system in
which their velocity twist lies:

Theorem 2: A rigid-body motion is a regular Bishop motion
if and only if its body—frame velocity twist lies in a IIB
three-system of screws with moduli p = 0, with non-zero
translational velocity.

Proof. The equations for the Bishop frame are given by

t = \)k]ll] + Ukznz,
fl] = —l)klt,
1:12 = —l)kzt.
In the above, n; and n; are two mutually orthogonal normal

vectors to the curve and k; and k, are two curvature-like
functions. The motion is given by the 4 x 4 matrix

G = (R PO,

as above, but now the rotation matrix R is given by
R(1) = (tn;|ny). “

The body-fixed velocity twist of such a motion is thus

0 —k —kr 1
Sp=G 16 = o0 0
dt ko 0

0 0

As a six-dimensional twist vector, this is

0
—ky
ki

Sp =V
1

It is not difficult to see that this twist must lie in a IIB three-
system of screws and since every screw in this system is a
line, the modulus is p = 0.
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The part of the proof showing that if the twist velocity lies
in such a screw system, then the motion must be a Bishop
motion is precisely analogous to the case of the Frenet—Serret
motions given above. O

2.5. General moving frame motion

The Frenet—Serret and Bishop motions are particular types of
motion based on moving frames to space curves. In general,
a moving frame for a curve is a frame with one axis aligned
along the tangent to the curve. The other axes of the moving
frame must be normal to the curve, but are otherwise allowed
to rotate freely about the curve. This prompts the question:
When does a rigid-body motion move a frame in such a
way that it is the moving frame to a regular curve? This is
answered by the following theorem.

Theorem 3: A rigid-body motion moves a frame in such a way
that it is the moving frame to a regular curve if and only if its
body-fixed velocity lies in a four-system of screws reciprocal
to a IIA, p = 0 two-system. Again, we must stipulate that
the velocity in the translational direction is never zero.

Proof. The trajectory of a point py in space is given by

p() Po
<1>_Gm<1)

R() q()
Gm_<0 1)

At some parameter value ¢, the tangent vector t to the
trajectory will be given by the derivative of this

t d
(o) = oo (7):
0 dt 1
If t is the tangent vector to the curve at t = 0, then the rigid
motion will carry this to

to
G(t)(o),

at parameter value ¢. If the motion is generated as a moving
frame of the trajectory, then the tangent at ¢ and the image of
to must agree, at least in the direction

d Po to
EGO)< ) ) = K(I)G(l)(o),

where A(f) is some scale factor. For regular curves, the
tangent will always exist, so A(f) is never zero. Pre-
multiplying by G~! gives

_li Po i Po i t0
G dtG(l)—SB<l>—)»(t)<O>. (®)]

Here, Sp is the Lie algebra element representing the

where
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body-fixed velocity of the body. Writing this Lie algebra

element as
QB VB>
Sp = ,
s ( 0 0

we can extract the first three components of previous equation
to get

wp X po+ v = At)to.

Finally, the scale factor A(¢) is removed by taking the cross
product with t;

to X (wp X po) +to x vg =0.

This is a system of three homogeneous linear equations
for the six components of the body-fixed velocity twist
sp = (wk, vi)T. However, the three equations only have
rank 2, so there are four possible solutions, or rather any
solution is a linear combination of four linearly independent
twists

(O] w? w3
Sp = +,3 +vy
Po X @1 Po X @ Po X w3
0
+8( )1
to

where «, B, y and § are arbitrary constants. Another way
of saying this is that sp must lie in the screw system
defined by the four linearly independent twists. This screw
system is clearly of the required type, since the reciprocal
system is clearly generated by the two linearly independent

twists
t t
(a) = ()
0 0

withty-t; =0andty-t, = 0.

Substituting this solution back into Eq. (5), it is clear that
8 = A(t) = v. The speed of the motion v is thus never zero.

On the other hand, if we were given a rigid-body motion
whose body-fixed velocity twist lies in a four-system of the
given type then, as in the first two theorems above, we can
change coordinates, so that the screw system has the standard
generators

(o) () () = (5)

Now suppose, we take this new frame as the frame fixed in the
moving body. From the computations above, it is clear that
the given motion will sweep the frame along the trajectory
of the origin and the first axis of the moving frame will stay
aligned with the tangent to this curve. Hence, the sequence
of frames produced by the motion will form a moving frame
field for the curve. O
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By thinking of rigid motions as curves in SE(3), it is easy
to see that parameterised motions can be multiplied together
to produce new motions. The group of all such motions is
essentially the loop group of SE(3). A general moving frame
motion can always be decomposed into the product a pair of
motions as follows.

Theorem 4: Any moving frame motion on a regular curve
Y (t) can be factorised into the product of the regular Frenet—
Serret motion generated by y(t) and a motion that rotates
about the initial tangent of the curve y’(0).

Proof. Let G(t) be an arbitrary moving frame motion. The
theorem states that the motion must decompose into a product
G,(t)G(t), where G,(t) is the regular Frenet—Serret motion
and G(¢) is a rotational motion, that is

G(1) = G2()G1 ().

This can be rearranged to give G,(t) = G(t)Gl_l(t), which
can be solved as follows. Choose a coordinate frame in the
moving body, so that the velocity twist of the body for the
motion G(t) has the normal form

0 —A3 Ay 1
A 0 —x O
Sp = 3 1
- Ap 0 O
0 0 0 0

In these coordinates, the pure rotation will be of the form

1 0 0 0
Gi(t) = 0 cosf® —sinf O
0 sinf cosf O
0 O 0 1

The velocity twist of the product can be computed as

6;' L6, = Gisp6r =
2 dt 2 — U1vwBlU; dt s
where X is the Lie algebra element
00 0 O
0 0 -1 0
X =
0 1 0
0 0 0
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The action of G| on S can be written in terms of six vectors,
so the above equation becomes

1 0 0 0 o0 0 A
0 cosf® —sinf O 0 0 Ao
0 sinf® cos6® O 0 0 A3
i IR 0 1 0 0
0 0 0 0 cosf —siné
0 0 0 0 sinf® cosé
1
0
do 0
dt | o
0
0

Now by setting 8 = arctan(X,/X3), it can be seen that the
velocity twist for the motion G, lies in a /B three-system
with p, = p, = 0; hence by Theorem 1, above is a regular
Frenet—Serret motion. It is clear from the form of G that both
G and G, are generated by the same curve: the trajectory of
the origin in the moving coordinate frame.

Conversely, it is easy to see that the product of a regular
Frenet—Serret motion with a rotation about the initial tangent
produces a general moving frame motion. O

Notice that a Bishop motion is a particular type of
moving frame motion and so can be produced in this way.
In particular, the angular function 6 must be chosen, so
that A; vanishes, that is 0 = f vt dt + 6y. The different
Bishop motions mentioned above correspond to the choice
of integration constant 8.

This type of general moving frame motion seems to occur
in many applications, in particular it is the possible motion of
an aeroplane that can roll, pitch and yaw, but must maintain
a positive forward speed. It can also be used to model the
motions of a roller coaster, a neutrally buoyant submarine, a
car without suspension or to model directional drilling of oil
wells using steerable motors. These ideas have been applied
in Robot vision by Duric et al.,'! for example.

3. Needle Steering
Recently, in the literature, there have been several works
addressing the problem of needle steering. The needle in
question is long and flexible with a bevelled tip and is
used as an active cannula in surgical applications. When
the needle is inserted into soft tissue, its path curves due to
the asymmetrical force generated by the bevelled tip.

In the following, some of the ideas introduced above are
used to study an idealised model of this physical device.

3.1. Kinematic equations

Park et al.'® derive a kinematic model of the needle by
considering an equivalent unicycle. This model was modified
later by Webster et al.'> who considered an equivalent
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Reaction on Bevel

y

lnsertioR Force X

z
Fig. 1. Body-fixed coordinate frame for a needle tip.

bicycle. The derivation of the model here is given without
reference to an equivalent vehicle.

The needle has two controls: the speed of insertion can be
controlled and the rate at which the needle is turned about
its axis can be regulated. Suppose the needle is inserted at
a rate of v units per second (in practice, a realistic insertion
rate will be a small fraction of one meter per second), the
effect of insertion will be a force along the axis of the needle
but there will also be a reaction force on the bevel caused
by the surrounding tissue and possibly a frictional force too.
All these forces lie in a plane and hence, the effects of the
all the forces can be regarded as a force plus a torque about
a line normal to the plane. The torque will bend the needle
and cause the tip of the needle to rotate. It is convenient to
take the axis that the tip turns about as the z-axis in the tip
(see Fig. 1).

Inserting the needle at a rate v will produce a twist on the
tip given by

0 0 0

0 0 0

0 1 K
VS, =V + vk =v ,

1 0 1

0 0 0

0 0 0

where « is some proportionality constant. This constant will
depend on the details of the interaction between the bevel
and the surrounding tissue.

This very simple model assumes that the torsional stiffness
of the needle is very high, so that any twist of the needle is
instantaneously transmitted to the needle tip. Turning the
needle at a rate of u radians per second will result in a twist
on the tip given by

—_—

us; =

S O o o O

The total twist in the body-fixed frame will be

Sp = VS; + US;.
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From the results of Section 2.2, this is a Frenet—Serret
motion. However, in this case, the curvature « is constant.
Moreover, it is easy to see that v, the insertion rate, is equal
to the speed of the generating curve for the motion and the
torsion of the generating curve is given by 7 = p/v.

In this case, the velocity twist of the motion sp clearly lies
in a two-system of screws, generated by s; and s,. Clearly,
such a two-system cannot contain any infinite pitch screws,
so it is a type-I system. The pitch of a general screw in
the system is uv/(u? + v2k?) = /(% + «?), which is not a
constant and so this is a JA two-system. Such two-systems
are classified by a pair of moduli p,, p; also known as the
principal pitches of the system. The principal screws of the
system are the screws in the system satisfying

T T
S, QoS = 0, s, Qosp, = 0.
In this case, we have
S, = kS; + 8¢, Sp = —KS; + S;.

The principal pitches are the pitches of these principal screws;
here, it is easy to compute the principal pitches, which are
Pa = 1/(2k) and p, = —1/(2«) (see the appendix for more
details).

In summary, for this simple model, the motion of the needle
tip is characterised as a motion in which the body-fixed twist
velocity remains in a IA two-system with principal pitches
+1/(2k).

3.2. Unicycle and bicycle models

Experimental and simulation results reported by Alterovitz
et al.'* suggest that the curves followed by these needles
are curves with constant curvature at least when there is no
deformation of the surrounding tissue. Later, this assumption
was taken as a starting point for modelling by Duindam
etal*

The model given in the previous section is the same as
both the models given by Park et al. and Webster et al.
The rigid-body motion of the needle tip will be the same
in both models. The only difference between the models is
relation between the point chosen to represent the tip of the
needle and the origin of the coordinate frame. In the unicycle
model, the origin of coordinates is located at the middle of
the needle tip. Hence in this model, the curve described by
the needle will be the curve of constant curvature, which
generates the motion. For the bicycle model, the origin of
the coordinate system is displaced slightly from the needle
tip. Hence, in this model, the curve followed by the needle
tip is slightly different. However, it must be emphasised that
in both models the rigid-body motion that the needle tip
performs is a Frenet—Serret motion generated by a curve of
constant curvature.

In the bicycle model presented by Webster et al., the origin
of the coordinate frame traces a constant curvature trajectory
and the tip of the needle is located a small distance along the
tangent vector to the curve. Hence, the curve traced by the
needle will be slightly different from a constant curvature
trajectory. It is possible to say a little about these curves.
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In particular, the curvature and torsion of the curves can be
estimated.

Choose a global-fixed coordinate frame that coincides with
the body-fixed frame when ¢ = 0. In these coordinates, the
end-point of the needle at + = 0 will be given by

rop =

- o O =

Note that in ref. [12], the distance x is denoted £, and the
coordinates are oriented, so that the z-axis lies along the
tangent to the constant curvature trajectory.

Now subsequent positions of the needle tip will be given
by

r(r) = G(t)ry.

The first derivative of this gives the velocity of the needle tip
and the tangent to the curve

—r = GSry,
dtr BY0

where Sp is the 4 x 4 matrix representing the twist velocity
of the motion as given in Eq. (3). Note that the curvature «
will be taken as a constant in the following. The speed of the
needle tip can be easily computed from the magnitude of this
vector to be, vy = v+/1 + x2k2. Notice that for the unicycle
model, the speed of the curve is the same as the insertion rate
of the needle v.
The acceleration of the needle tip is given by

2

d )
ﬁl‘ = G(SB + SB)I'().

Using standard formulas to compute the curvature of the
curve, we have

VK
K| = —3\/a4x4 + a3x3 + arx? + a;x + ao,
v
1

where
a, = v6/c4(/<2 + 7:2),
as = =20 + v — D),
a, = vzlcz(v4(2/c2 + )+ W4 — 1'))2),
ar = =202 + o — D),
ap = vk

Assuming that x is small, it is probably more useful to
write this as a Taylor expansion

K

2(12 — k) 4+ 0.

K L 3
K1 =K+x—2(v+vv—v)+x
v
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To compute, the torsion requires the third derivative

d? . . .

AT = G(S +2S5Sp + SpSp + Sp)ro.

Again using standard formulas, the torsion of the curve is
given as

b3x3 + b2x2 + blx + bo

cax* +e3xd + x4+ ceix + ¢’

T =

where

by = v3k’7,

by = v (k? + )T — vt + vV — D) — 30T (V 4+ VD — D)
+ vtV + vV — D),
by = =3v’t(v + v — D) + 131,

b() = V4‘L’,

and where

cs = v + 1),

ez = =202 (v 4+ vv — D),

e = v+ )+ (W4 vv — D),
1= =202 (v +vv — D),

co = v

For small x, the Taylor expansion of this is

t(w+vv—v)+ vt
T T

T1=7+ 5

v

t<v3/<2 —3(1 4 D)W + Vb — D)+ (20 + Vi — ii)) —r'(v+m>—f;)
3

+x2
)

+0(x3).

These formulas may be useful when trying to identify the
parameter x from experimental data. Notice that if we assume
that the insertion rate v is constant, then the curvature of the
needle’s path is constant to first order in x.

3.3. Curves with constant curvature

From the above, it is clear that curves with constant curvature
are important for the needle steering problem. However, very
few examples of curves with constant curvature seem to be
known. Of course, one could decide on a torsion function
and then solve the Frenet—Serret equations numerically for
a fixed curvature. The results, however, would not be very
useful for path planning.

The circular helix is a curve with both constant curvature
and torsion. Koch and Englehardt’> give a method for
interpolating curves from pieces of circular helix. These
curves will have constant curvature, but the torsion will
be discontinuous at the junctions of different pieces. This
might be achieved by stopping the insertion of the needle
at a junction point, reorienting the tip and then continuing
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the insertion. A better solution might be to use curves with
smoothly varying torsion.

In 1909, Salkowski'¢ introduced a family of curves with
constant curvature but smoothly varying torsion, see also
more recent work by Monterde.!” These curves are given by
the following parameterisation:

-1 1—n
ST+ m? <4<1 +2n)
" 1+n

4(1 — 2n)

x(t) = sin(1 + 2n)t

1
sin(1 — 2n)t + 3 sin t) ,

1—n

1
V1 +m? (4(1 + 2n)
+ 1+n
4(1 — 2n)

cos(1 + 2n)t

y(@) =
1
cos(1 — 2n)t + 2 cos t) ,

z(t) =

cos 2nt,

1
4m~/1 + m?
where n = m/+/1 + m?2.

The speed, curvature and torsion of these curves are given
by

cos nt
V= ——, k=1,
1+ m?

Notice that for needle steering, it would necessary to use
the portion of the curve between the cusps att = +7/(2n) =
+m+/1 4+ m2/(2m). In fact, it may be useful to begin and end
the needle motion at or near a cusp since at these points
the velocity of the motion is zero. Hence, the insertion
will begin with the needle at rest and end with the needle
gradually slowing to rest. Unfortunately, there are some
practical problems with such a scheme, the distance between
the cusp points and the direction of the tangent to the curve
at these points is rather tightly constrained by the parameter
m. This means that only a small range of possible start
and end points can be specified. (Technically, the tangent
to the curve at a cusp is undefined; however, it is possible
to find the initial direction of the curve segment under
consideration.)

For the problem of planning a path for a flexible needle, it is
probably useful to know about surfaces that the curves lie on.
For example, if the tissue contains physiological structures
that it is important to avoid then it could be surrounded by a
virtual surface on which the path of the needle will lie. The
helices mentioned above lie on circular cylinders and the
Salkowski curves lie on circular ellipsoids or hyperboloids.
It is possible to show that the equation of the quadric that
these curves lie on is given by

T = —tannt.

A(x*+y*)— B —C(z+ D)y =0,
where

A=1+m?,
B = 27n*/(4(1 — n®)(1 — 4n*)?),
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Fig. 2. Salkowski curves lying on quadrics. The left figure has
m = 0.42 and the right figure has m = 1.0.

C =4n*/((1 —n*)(1 — 4n?)),
D = (1 +2n%)/(4n).

The type of quadric that this equation represents depend
on the sign of C, this in turn is dependant on the value of m.
Ifm < 1/+/3,then C > 0 and the quadric is a hyperboloid of
one sheet. Whenm > 1/ /3, then C < 0and the quadricis an
ellipsoid. Both of these quadrics will be circularly symmetric
about the z-axis (see Fig. 2).

The above discussion on curves of constant curvature is
only intended to set forth some preliminary ideas. Clearly, a
better knowledge of such curves would be helpful.

4. Conclusion

The characterisations of the Frenet-Serret and Bishop
motions in terms of properties of their velocity twists are
believed to be novel. This allows one to check easily whether
or not any proposed motion is of one of these types.

Much previous work in this area has tended to concentrate
on the trajectories of points in space produced by rigid-body
motions. Here, the view is taken that the primary object of
interest is the curve in the group, which defines the motion.
Though the rigid motions discussed in this work are all
based on curves in space, it is hoped that the advantages of
this viewpoint are demonstrated by the work presented here.
The advantage is perhaps most easily seen when discussing
motions defined in other ways. For example, many special
rigid-body motions are defined as solutions to variational
problems, for example the stationary acceleration motions,’
stationary jerk motions and even the dynamics of rigid
bodies. These motions also have applications in computer
animation and robotics.

From the results presented here, it can be seen that many
types of motion can be characterised in a similar fashion. A
one-parameter finite screw motion could be characterised as
amotion whose twist velocity, in either a globally fixed frame
or a frame fixed in the body, is constant — a one-system of
screws. Spherical motions, motions with a fixed point could
be characterised as motions whose twist velocities lie in a
ITA(p = 0) three-system. Planar motions, motions in a fixed
plane must have velocity twists lying in a IIC(p = 0) three-
system. Pure translations could be characterised as motions
whose velocity twist lies in the /1D three-system.

New types of special motions could also be defined by
requiring that the body-fixed velocity twist remains in some
other screw system. Restricting the body-fixed velocity to a
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IA; system, for example, would produce interesting motions
not related to any moving frame field on any space curve.

It is also clear that these sorts of motions are important for
modelling vehicles with actuators, which provide forces and
torques lying on constant screws relative to the vehicle itself.

The results for needle steering are only intended to be
indicative. The models used to represent the motion of the
needle are very simple and probably not accurate enough
for real tissue. However, the work does seem to suggest that
it would be useful to know more about curves of constant
curvature lying on simple surfaces, a neglected subject in
classical differential geometry.
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Appendix: Introduction to Screw Theory

Screw theory was introduced by R. S. Ball in the late 1800s.
Ball’s work culminated in the publication of his ‘treatise’,'®
in 1900. For Ball, a screw was a geometric figure, a line
in space together with a real number called the pitch of the
screw. Giving an ‘amplitude’ for a screw turns it into, either
a twist — an infinitesimal rigid-body motion, or a wrench that
is the combination of a force with a moment.

A modern approach identifies twists with elements of the
Lie algebra of the group of rigid-body displacements, S E(3).
A screw is then technically a ray through the origin of the
Lie algebra. In other word, an element of the projective space
formed from the Lie algebra.

By Charles’s theorem, a general rigid-body displacement
is a finite screw motion, a rotation about a line in space
followed by a translation in the direction of the line. In the
limit, as the angle of rotation becomes small, the general finite
screw motion becomes an infinitesimal screw motion. The
Lie algebra of SE(3) is six-dimensional; hence, a twist can
be written as a six-dimensional vector. It is often convenient
to partition a twist into a pair of three-vectors

()

where w is a vector in the direction of the infinitesimal screw
motion’s axis. The second three-vector v can be decomposed
as

V=pw—+Tr X o,

where r is the position vector of any point on the axis of
the motion, so that the vector product, r X ®, is the moment
of the axis. The quantity p is the pitch of the motion and
gives the amount of translational motion for each radian of
rotational motion. A pure rotation is given by a twist with
pitch p = 0. In a pure translational motion, ® = 0 and in
these circumstances, the pitch is usually said to be infinite
although technically it is undefined.

The group S E(3) acts on its own Lie algebra by the adjoint
representation. The adjoint representation can be written in
terms of 6 x 6 matrices, partitioned so that

® R 0 ®
— ,
v TR R v
where R is the 3 x 3 rotation matrix of the displacements
and T is the 3 x 3 anti-symmetric matrix corresponding to
the translation vector t of the displacement.

There are two quadratic forms defined on the twists, which
are invariant with respect to the adjoint representation. They
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are the reciprocal or Klein form, given by

0 I ®
s’ Qos = (w7, VT)< 3)( )=2w-v,
13 0 A\

and the Killing form

I 0
sTQoos = (wT, VT) (03 0) (3) =W,

where I3 is the 3 x 3 identity matrix. In terms of these
invariants, the pitch of the twist is given by

8" Qgs
© 25T Qus’

A screw system is a linear system of screws; in terms of
twists, we can write a two-system of screws as

S ={s:s=as; + bsy}.

The twists s; and s; are called the basis of the screw system.
The coefficients a and b are real numbers. Three, four and
five systems are defined similarly using three, four and five
twists, respectively.

There are two groups, which act on these screw systems,
first the group of rigid-body displacements S E(3) acts on any
screw system via the adjoint representation of the group on
the basis screws. The second group action on a screw system
is the action of the general linear group, which acts by a
change of basis. For the two-system above, a change of basis
would be

S| = as; + bsy,

s, = cs; +ds;

with det (g Z) # 0. Two screw systems are considered

to be the same if they only differ by a change of basis. In
many cases, we want to consider two screw systems to be
equivalent if they differ by a rigid displacement.
Fortunately, there is a classification of screw systems upto
equivalence under the action of these two groups. This
classification was first studied by Hunt and then a formal
classification and proof was given by Gibson and Hunt.” A
later work by Donelan and Gibson'? gives further details.
The Gibson—Hunt classification can be outlined as follows.
First of all, we only need to consider one-, two- and three-
systems of screws; the four- and five-systems are classified
by their reciprocal two- and one-systems, respectively. The
reciprocal of a four-system, for example, is given by

S = {s: sT Qo(as; + bs, + cs3 + dss) = 0},

foralla, b, c and d.

Next, the one-systems are completely classified by their
pitch. That is, two twists differ by a rigid-body displacement
if and only if their pitches are equal.
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To classify two- and three-systems (and hence four- and
five-systems), consider the family of quadric hypersurfaces
in P determined by the 6 x 6 symmetric matrices

Qp ZaQO+/3Qoo,

where Q¢ and Q. are as described above. These quadrics
are known as the pitch quadrics. In this geometric view, a
screw system is a linear subspace of P°, that is a two-system
corresponds to a line, a three-system to a plane. Now, it
might happen that the screw system under consideration lies
entirely in one of the pitch quadrics, this would be referred to
as a II system of screws. Notice that in a /I system (almost),
all the screws will have the same pitch. If the screws in a screw
system have different pitches, then the system is called a 1
system and it will intersect (almost) all the pitch quadrics.
This partitions the screw systems into two possible classes.
They can be further subdivided by observing how they meet
the pitch-quadric Q, that is Q, with « = 0. This quadric
is degenerate and forms a two-plane that lies in all of the
other pitch quadrics. Now the linear space corresponding to
the screw system under consideration might not meet Q ., in
this case we say that the system is an A system. If the screw
system meets Q.. in a point, then we have a B system and
so forth.

So, we can find two-systems of class /A, IB, IIA, 1IB
and [IC. The three-systems fall into classes,
IA, IB, IC, IIA, IIB, IIC and IID. The IID system
is the unique three-system that consists of all of O, that
is the set of all infinite pitch twists. In general, each of
these classes contains many screw systems and these can be
classified more finely. The intersection of the screw systems
with the pitch quadrics is a much studied object in classical
Algebraic geometry — a pencil of quadrics. The final level
of classification distinguishes screw systems for which the
projective type of this pencil of quadrics is different. In
many cases, there are continuous families of equivalent
screw systems and these will be distinguished by one or
more moduli. The simplest example here is the one-systems,
there is a one-parameter family of equivalence classes of
one-systems these are distinguished by a single modulus —
the pitch.

As an example, consider the following screw system from
the text above

S A

Sp =V

S O = X

That is

S={s:s=uas + Bs3+ ys4},

where «, 8 and y are arbitrary coefficients, and s, s3, sS4 are
as given above in Section 2.2.
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This is clearly a three-system since the three basis screws
S1, s3 and s4 are linearly independent. The pitch of s is
clearly ay /(a® + B?%). This is not in general constant, hence
in terms of the Gibson-Hunt classification, this must be a
type-I system. Moreover, it is clear that the system contains
asingle screw of infinite pitch, s4, so this is a /B three-system.

There are two finer classes of these three-systems: the /B
systems and the /B3 systems. These are distinguished by the
projective type of the pencil of conics formed by the pitch
quadrics, more specifically here, by the type of degenerate
quadrics in the pencil. In general, a pencil of conics will
contain three degenerate conics, where a degenerate conic is
a line-pair. According to Donelan and Gibson,'” the pencil
corresponding to a /By system contains a single real line-pair
and a repeated complex line-pair. The pencil corresponding
to the /B3 systems is a singular pencil with two distinct
repeated lines.

A general 1B, system has basis screws given by the normal
form

1 0 0
1 0
0 0
Sa = ) Sb = ) SC =
Pa 0 1
0 Pa 0
0 Pb

The numbers p, and p, are known as moduli. These give
the finest level of classification, Donelan and Gibson show
that two 1By systems with moduli p,, p, and q,, g5 can be
rigidly transformed into each other if and only if p, = g,
and pg = qg.

The pitch quadrics for the normal form are given by

SaT QOSa SaT Q()Sb SaT QOSC o
( B, y) | ' Qosa 57 Qoss " Qose | | g
s’ Qosa e’ Qosy S Qose )\ y

200 0 1\ /g

=@ B )| O 20 Of|B]|=0,
1 0 0

Y
and

SaTQooSa SaTQooSb SaTQooSc o
@ B, )| ' Qoosa " Qusy sb" Oocse | | B
ScTQooSa SCTQooSb SCTQooSc Y

1 0 0 o

=@ B |0 1 Ofls]|=0
0 0 O Y
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The degenerate conics in the pencil are found by solving the
characteristic equation

2p. 0 1 1 0 0
det | A 0 2p. O] 4 w 010 =0,
1 0O o0 0 0 0

which gives —A%(2Ap, + u) = 0. The root A = 0 clearly
corresponds to a repeated complex line-pair: a® + g2 = 0.
While the root © = —2Ap, gives the real line-pair ay = 0,
that is the pair of lines ¢ = 0 and y = 0.

Returning to the example, pitch quadrics restricted to the
three-system give the basis for the pencil
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0 1\ /g4
(a, B, ) 0 0OllBl=0 and
100)\,
1 0 0\ /g
(@, B, ) 10 =0.
0 0/)\y

These conics are clearly singular, again corresponding to the
complex line-pair ? 4+ B2 = 0 and the real line-pairay = 0.
Computing the characteristic equation for the pencil shows
that the complex line-pair must be counted with multiplicity
two. So, this is indeed a /B, system and it is easy to see that
the moduli must be p, = 0 and p;, = 0.
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