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Viterbi training (VT) provides a fast but inconsistent estimator of hidden Markov
models (HMM). The inconsistency is alleviated with a little extra computation
when we enable VT to asymptotically fix the true values of the parameters. This
relies on infinite Viterbi alignments and associated with them limiting probability
distributions. First in a sequel, this article is a proof of concept; it focuses on
mixture models, an important but special case of HMM where the limiting
distributions can be calculated exactly. A simulated Gaussian mixture shows that
our central algorithm (VA1) can significantly improve the accuracy of VT with
little extra cost. Next in the sequel, we present elsewhere a theory of the adjusted
VT for the general HMMs, where the limiting distributions are more challenging
to find. Here, we also present another, more advanced correction to VT and verify
its fast convergence and high accuracy; its computational feasibility requires
additional investigation.

1. INTRODUCTION

Motivated by applications of the Viterbi training (VT) algorithm to estimate parameters
of hidden Markov models (HMM) in speech recognition (Huang, Ariki, and Jack [11],
Ney, Steinbiss, Haeb-Umbach, Tran, and Essen [26], Rabiner and Juang [31], Rabiner,
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Wilpon, and Juang [32], Steinbiss et al. [36], Ström, Hetherington, Hazen, Sandness,
and Glass [37]), natural language models (Ji and Bilmes [14], Och and Ney [27]),
image analysis (Joshi, Li, and Wang [15], Li, Gray, and Olshen [22]), bioinformatics
(Ehret et al. [8], Ohler, Niemann, Liao, and Rubin [28]), and gene discovery via
unsupervized learning (Lomsadze, Ter-Hovhannisyan, Chernoff, and Borodovsky
[24]), we propose a new principled way to improve the accuracy of the VT estimators
while preserving the essential computational advantages of the baseline algorithm.

Let ul be the emission parameters of an HMM with states l [ S ¼ f1, . . . , Kg. The
central method for computing u ¼ (u1, . . . , uK) (and, optionally, the parameters of the
hidden chain) via likelihood maximization is the expectation-maximization (EM)
algorithm that in the HMM context is also known as the Baum–Welch or
forward–backward algorithm (Baum and Petrie [1], Bilmes [2], Huang et al. [11],
Jelinek [13], Rabiner [30], Rabiner and Juang [31], Young [40]). Since expection-
maximization (EM) can, in practice, be computationally expensive, it is commonly
replaced by VT. Viterbi training effectively replaces the computationally costly
expectation (E) step of EM by an appropriate maximization step that is computation-
ally less intensive. An important example of successful and elaborate application of
VT in industry is Philips speech recognition systems (Ney et al. [26]).

There are also variations of VT that use more than one best alignment, or several
perturbations of the best alignment (Och and Ney [27]). The improvements that we
explore are, however, of a different nature. Roughly, we increase the estimation accu-
racy by means of analytic calculations and do not require computing more than one
optimal alignment.

The message of our work is as follows: If an application relies on the compu-
tational efficiency of VT and, in particular, finds any of the efficient implementations
of EM (e.g. Jank and Booth [12], Wei and Tanner [39]) still too intensive, such an
application might still benefit from our adjustment since the proposed accuracy
improvement requires no extra pointwise processing of the data.

Let us recall that VT can be inferior to EM in terms of accuracy because the VT
estimators need not be (local) maximum likelihood estimators (VT does not necess-
arily increase the likelihood), leading to bias and inconsistency (Section 2).

Given current parameter values, VT first finds a Viterbi alignment that is a
sequence of hidden states maximizing the likelihood of the observed data.
Observations assumed to have been emitted from state l are regarded as an indepen-
dent and identically distributed (i.i.d.) sample from Pl, the corresponding emission
distribution. These observations produce P̂l

n, the empirical version of Pl, and, ulti-
mately, m̂l, a maximum likelihood estimate of ul. m̂ is then used to find an alignment
in the next step, and so forth. It can be shown that, in general, this procedure termi-
nates in finitely many steps; moreover, it is usually much faster than EM.

In speech recognition, the same training procedure was already described by
Rabiner and colleagues in [16,32] (see also [2,31]), who considered his procedure
a variation of the Lloyd algorithm from vector quantization and referred to it as
segmential K-means training. The analogy with vector quantization is especially
pronounced when the underlying chain is a sequence of i.i.d. variables, in which
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case the observations are simply an i.i.d. sample from a mixture distribution
(Section 3). For mixture models, VT was also described by Gray and colleagues in
(Chou, Lookbaugh, and Gray [6]), where the training algorithm was considered in
the vector quantization context under the name entropy constrained vector quantiza-
tion (ECVQ). (See also Gray, Linder, and Li [10] for more recent developments in
this theory.) A better known name for VT in the mixture case is Classification EM
(CEM) (Celeux and Govaert [5], Fraley and Raftery [9]), stressing that instead of
the mixture likelihood, CEM maximizes the Classification Likelihood (Celeux and
Govaert [5], Fraley and Raftery [9], McLachlan and Peel [25]). Also, for the
uniform mixture of Gaussians with a common covariance matrix of the form s2I
and unknown s, VT, or CEM, is equivalent to the k-means clustering (Celeux and
Govaert [5], Chou et al. [6], Fraley and Raftery [9], Sabine and Gray [34]).

Our ultimate goal is to alleviate the inconsistency of the VT estimators in the
general HMM case while preserving the fast execution and computational feasibility
of the baseline VT algorithm. First in a sequel, this article introduces the main ideas of
our approach and provides an overall proof of their relevance to the goal. Thus, we
begin by noticing that u �, the true emission parameters, are asymptotically a fixed
point of EM but not of VT (Sections 2 and 3). That significance of this observation
extends beyond its mere mathematics might be conjectured, for example, from that in
the multivariate mixture models, EM typically produces improved partitions when
started with reasonable ones (Fraley and Raftery [9]). This latter observation also
leads us to expect the effect of the fixed-point property to be appreciable in the
general HMM case, which is indeed verified via simulations in Koloydenko,
Lember, and Käärik [19], the third part of the sequel. We therefore attempt to
adjust VT in order to restore this property, and we do so by studying asymptotics
of P̂l

n. Thus, we study the existence of Ql, l [ S:

P̂n
l ¼)Ql; l [ S a:s:; (1)

first in the general HMM context (Section 2), in much more detail in [21], and then in
the special case of mixture models (Section 3). If such limiting measures exist, then
under certain continuity assumptions, the estimators m̂l will converge to ml [19], where

ml ¼ arg max
ul

ð
ln fl(x; ul)Ql(dx) and fl(x; ul) is a p:d:f: of Pl:

Taking into account the difference between ml and the true parameter, the appropriate
adjustment of the Viterbi training can now be defined (Section 2).

However, the asymptotic behavior of P̂l
n is not, in general, straightforward and its

analysis requires an extension of the definition of Viterbi alignment, or path, at
infinitum (Lember and Koloydenko [20]). Earlier attempts to consider convergence of
Viterbi paths appear in [3,4] with a more general and more complete treatment of the
problem to be found in [20,21], the second part of this sequel. Once the infinite align-
ment is properly defined, Lember and Koloydenko [20,21] prove the existence of the
limiting measures Ql (1), which is essential for the general definition of the adjusted VT.
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To implement these ideas in practice, a closed form of Ql (or m̂l) as a function of the
true parameters is necessary. However, the measures Ql depend on the transition as
well as on the emission models, and computing Ql can be very difficult. In the
special case of mixture models (Section 3), on the other hand, the measures Ql are
easier to find. Although mixture models are not our goal, we are in part motivated
by the continuing interest of others in computational efficiency and accuracy of par-
ameter estimation in mixture models (Dias and Wedel [7], Lin, Chen, and Wu [23]).
In Section 3, we describe the adjusted Viterbi training (VA1) for the mixture case,
which we view, however, only as a proof of concept: VA1 recovers the asymptotic
fixed-point property, and since its adjustment function does not depend on data,
each iteration of VA1 enjoys the same order of computational complexity (in terms
of the sample size) as VT. Moreover, for commonly used mixtures, such as mixtures
of multivariate normal distributions with unknown means and known covariances
(Example 3.1), the adjustment function is available in a closed form requiring
integration with the mixture densities. Depending on the dimension of the emission
variates, on the number of components, and on the available computational resources,
one can vary the accuracy of the adjustment. We reiterate that, unlike the compu-
tations of the E step of EM, computations of the adjustment do not involve evaluation
and subsequent summation of the mixture density at individual data points.

We first introduce these ideas for the case of known mixture weights (Section 3.1)
and then extend them in Section 3.2 to the case of unknown weights. In terms of the
general HMMs, the latter case corresponds to the transition matrix of the hidden chain
being unknown.

To test our theory, in Section 5 we simulate a mixture of two univariate normal dis-
tributions with unit variance, unknown means, and unequal but comparable weights.
The main goal of our simulations is to compare the performances of VT, VA1, and
EM in terms of the accuracy, convergence, amount of computations per iteration,
and the total amount of computations. The simulations are performed with different
types of initialization, and with the weights assumed to be known (Section 5.1)
and unknown (Section 5.2); the results (Section 5.3) are consistently in favor of
VA1. Similar simulations have been performed for mixtures of multivariate
Gaussians with known covariances, using stochastic approximations for the adjust-
ment and leading to similar conclusions, but details (except for the discussion of
Example 3.1) are omitted for conciseness.

In Section 4, we briefly introduce VA2, a more advanced correction to VT, pre-
sently merely as a mathematical complement of our adjustment idea; we verify its
fast convergence and high accuracy on the simulated data in Section 5, but its
computationally feasible implementations would require more investigation. A
concluding summary is given in Section 6.

2. GENERAL HMMs

Let Y be a Markov chain with a finite state space S. We assume Y to be irreducible and
aperiodic with the transition matrix P ¼ ( pij) and the initial distribution p that is also

J. Lember and A. Koloydenko454

https://doi.org/10.1017/S0269964807000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964807000083


the stationary distribution of Y. To every state l [ S there corresponds an emission
distribution Pl on (X, B), a separable metric space, and the corresponding Borel
s-algebra. Let fl, the density of Pl with respect to some reference measure l (for
instance, the Lebesgue measure), be known up to the parametrization fl(x; ul).
When Y is in state l, an observation according to Pl(u �) and independent of everything
else is emitted, with u � ¼ (u1

�, . . . , uK
�) being the unknown true parameters.

Thus, for any y ¼ y1, y2, . . . , a realization of Y, there corresponds a sequence
of independent random variables X1, X2, . . . , where Xn has distribution Pyn

. Note that
we only observe X ¼ X1, X2, . . . and the realization y is unknown (Y is hidden).

The distribution of X is completely determined by the chain parameters P and the
emission distributions Pl, l [ S. The process X is also mixing and, therefore,
ergodic. We now recall the notions of Viterbi alignment and training.

Let x1, . . . , xn be the first n observations on X. Let L(q1, . . . , qn; x1, . . . , xn; u) be
the (complete) likelihood function P(Yi ¼ qi, i ¼ 1, . . . , n)

Q
i¼1
n fqi

(xi; uqi
), qi [ S.

The Viterbi alignment is any sequence of states q1, . . . , qn [ S that maximizes the
likelihood of x1, . . . , xn, u being fixed. Thus, for a fixed u, the Viterbi alignment is the
maximum (conditional) likelihood estimator of the realization of Y1, . . . , Yn, given
x1, . . . , xn. In the following, the Viterbi alignment will be referred to as the alignment.
Since the alignment need not be unique, for each n � 1 let V denote the set of all state
sequences resulting in the alignment

V(x1; . . . ; xn; u) ¼ fv [ Sn: 8w [ SnL(v; x1; . . . ; xn; u)

� L(w; x1; . . . ; xn; u)g: (2)

Any map v: X n 7! V(x1, . . . , xn; u) will also be called an alignment. Further, unless
explicitly specified, vu will denote an arbitrary element of V(x1, . . . , xn; u).

Viterbi Training

1. Choose an initial value u0 ¼ (u1
0, . . . , uK

0 ).
2. Given u j ( j � 0), compute the alignment

vu j (x1; . . . ; xn) ¼ (v1; . . . ; vn)

and partition x1, . . . , xn into (at most) K subsamples, with xk going to the lth
subsample if and only if vk ¼ l. Equivalently, define (at most) K empirical
measures in accordance with (3):

P̂n
l (A; u j) ¼

Pn
i¼1

IA�l(xi; vi)

Pn
i¼1

Il(vi)
; A [ B; l [ S; (3)

where IA stands for the indicator function of set A.
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3. For every subsample, find the maximum likelihood estimate (MLE) given by

m̂l(u
j) ¼ arg max

ul[Ql

ð
ln fl(x; ul)P̂

n
l (dx; u j) (4)

and take u l
jþ1 ¼ m̂l(u

j), l [ S. If for some l [ S, vi = l for any i ¼ 1, . . . , n
(lth subsample is empty), then the empirical measure P̂l

n is formally
undefined, in which case, we take ul

jþ1 ¼ ul
j. We omit this exceptional case

in the ensuing discussion.

Viterbi training can be interpreted as follows. Suppose that at step j, u j ¼ u � and,
hence, vu j is obtained using the true parameters. The training is then based on the assump-
tion that the alignment v(x1, . . . , xn) ¼ (v1, . . . , vn) is correct (i.e., vi ¼ Yi, i ¼ 1, . . . , n).
If this assumption were true, the empirical measures P̂l

n(u j), l [ S, would be obtained
from the i.i.d. sample generated from Pl(u �) and the MLE m̂l(u �) would be the natural
estimator to use. Clearly, under this assumption (and passing from x1, x2, . . . to X1,
X2, . . .), P̂l

n(u �)) Pl(u �) a.s. and, provided that f fl(.; u): u [ Qlg is a Pl-Glivenko–
Cantelli class and Ql is equipped with some suitable metric, limn!1 m̂l(u �) ¼ ul

� a.s.
Hence, if n is sufficiently large, then P̂l

n � Pl and u l
jþ1 ¼ m̂l(u �) � ul

� ¼ u l
j, 8l; that

is, u j ¼ u � would be (approximately) a fixed point of the training algorithm.
A weak point of the previous argument is that the alignment in general is not correct

even when the parameters used to find it are (i.e., generally vi = Yi). In particular, this
implies that the empirical measures P̂l

n(u �) are not obtained from an i.i.d. sample
taken from Pl(u �). Hence, we have no reason to believe that P̂l

n(u �)) Pl(u �) a.s.
and limn!1 m̂l(u �) ¼ ul

� a.s. Moreover, we do not even know whether the sequences
of empirical measures fP̂l

n(u �)g and MLE estimators fm̂l(u �)g converge (a.s.) at all.
In [20] we prove the existence of limiting probability measures Ql(u, u �), l [ S, that

depend on u, the parameters used to find the alignment vu(x1, . . . , xn), and on u �, the
true parameters with which the random samples are emitted; namely Ql, l [ S, are
such that for every l,

P̂n
l (u�l ))Ql(u

�; u�) a:s: (5)

Suppose also that the parameter space Ql is equipped with some metric. Then, under
certain consistency assumptions on classes Fl ¼ f fl(.; ul): ul [ Qlg, the convergence

lim
n!1

m̂l(u
�) ¼ ml(u

�; u�) a:s: (6)

can be deduced from (5), where

ml(u; u
�) ¼def

arg max
u 0l [Ql

ð
ln fl(x; u 0l )Ql(dx; u; u�): (7)

We also show that, in general, for the baseline VT Ql(u �, u �) = Pl(u �), implying
ml(u �, u �) = ul

�. In an attempt to reduce the bias ul
� 2 ml(u �, u �), we next

propose the adjusted Viterbi training. Suppose (5) and (6) hold. Based on (7), we
now consider the mapping
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ml(u) ¼ ml(u; u); l ¼ 1; . . . ;K: (8)

Since this function is independent of the sample, we can define the following correc-
tion for the bias:

Dl(u) ¼ ul � ml(u); l ¼ 1; . . . ;K: (9)

VA1: Adjusted Viterbi Training

1. Choose an initial value u 0 ¼ (u 1
0, . . . , u K

0 ).
2. Givenu j, perform the alignment and define K empirical measures P̂l

n(u j) as in (3).
3. For every P̂l

n, find m̂l(u
j) as in (4), and for each l, define ul

jþ1 ¼ m̂l(u
j) þ

Dl(u
j), where Dl is defined 8l [ S in (9).

Note that, as desired, for n sufficiently large, the adjusted training algorithm has u � as
its (approximately) fixed point: Indeed, suppose u j ¼ u �. From (6), m̂l(u

j) ¼
m̂l(u �) � ml(u �) ¼ ml(u

j), for all l [ S. Hence,

u
jþ1

l ¼ m̂l(u
�)þ Dl(u

�) � ml(u
�; u�)þ Dl(u

�) ¼ u�l ¼ u j; l [ S: (10)

3. MIXTURE MODELS

3.1. Known Weights

In general, no closed form for the distribution Ql(u �, u �) in (5) is available. Therefore,
the mapping (8) might be impossible to determine exactly and approximations of Ql

should be used for the adjustments of Viterbi training (Section 2). However, in the
case of the mixture models, the distributions Ql are straightforward to find and
the adjusted Viterbi training can therefore be immediately given. In this model, Y, the
underlying Markov chain, is a sequence of i.i.d. discrete random variables with the
state space S ¼ f1, . . . , Kg of mixture components. Thus, the transition probabilities
are pij¼ pj, i, j [ S, where pj are mixture weights. To each component l [ S there cor-
responds a probability distribution Pl(u �) with density fl ¼ fl(.; ul

�), where ui
� are the true

parameters. Unless explicitly stated otherwise, the mixture weights pl will be assumed to
be known. Such a model produces observations x1, . . . , xn that are regarded as an i.i.d.
sample from the mixture distribution P(u �) with density

XK

i¼1

pi fi ¼
XK

i¼1

pi fi(�; u�i ) ¼ f (�; u�) ¼ f : (11)

For any set of parameters u ¼ (u1, . . . , uK), the alignment vu can be obtained via a
Voronoi partition S(u) ¼ fS1(u), . . . , SK(u)g, where

S1(u) ¼ fx : p1 f1(x; u1) � pj fj(x; uj); 8j [ Sg; (12)
Sl(u) ¼ fx : pl fl(x; ul) � pj fj(x; uj); 8j [ Sgn(S1 < � � �< Sl�1);

l ¼ 2; . . . ;K:
(13)
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Now, the alignment can be defined as follows: vu(x)¼ l if and only if x [ Sl(u). In par-
ticular, given the Voronoi partitionS(u) ¼ fS1, . . . , Slg, the empirical measures P̂l

n (3) are

P̂n
l (A; u) ¼

Pn
i¼1

ISl(u) > A(xi)

Pn
i¼1

ISl(u)(xi)
; A [ B; l [ S: (14)

Thus, given the same partition, m̂l(u) (4), the subsample MLE for component l becomes

m̂l(u) ¼ arg max
u 0l [Ql

ð
Sl(u)

ln fl(x; u 0l )P̂n(dx); (15)

where P̂n is the ordinaryempirical measure associated with the given random sample. The
convergence (5) then follows immediately from (14). Indeed, for any u, by virtue of the
strong law of large numbers, we have

lim
n!1

P̂n
l (A; u) ¼a:s P(A > Sl(u); u�)

P(Sl(u); u�)

¼
Ð

Sl(u) > A f (x; u�) dl(x)Ð
Sl(u) f (x; u�) dl(x)

¼

P
i

pi

Ð
Sl(u) > A fi(x; u�i ) dl(x)P

i
pi

Ð
Sl(u) fi(x; u�i ) dl(x)

:

Since X is separable, it follows that P̂l
n) Ql a.s., where

ql(x; u; u�)/ f (x; u�)ISl(u) ¼
X

i

pi fi(x; u�)

 !
ISl(u); l ¼ 1; . . . ;K;

are the densities of respective Ql(u, u�)s.
Now, it is clear that even when the partition S(u �) is obtained using the true

parameters u �, Ql(u �, u �), the limiting distribution (with density ql(x; u �, u �)),
can be different from Pl(u �), the desired distribution (with density fl(x; u �)).
Likewise, ml(u �) (8) can be different from

u�l ¼ arg max
u 0l [Ql

ð
ln fl(x; u 0l )fl(x; u�l ) dl(x):

In order to see this, note that (7) and (8) in the context of the mixture model
specialize to

ml(u; u
�) ¼ arg max

u 0l [Ql

ð
Sl(u)

ln fl(x; u 0l )f (x; u�) dl(x); (16)
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ml(u) ¼ arg max
u 0l [Ql

ð
Sl(u)

ln fl(x; u 0l )
X

i

pi fi(x; ui)

 !
dl(x); (17)

respectively. We also emphasize that D can be significant, which justifies the adjustment.

Example 3.1: Let

f (x; u�) ¼ 1
K

XK

l¼1

f(x; u�l );

where f(x; ul
�) is the density of the d-variate normal distribution with identity covari-

ance matrix and vector of means ul
� [ Rd ¼ Ql for l ¼ 1, 2, . . . , K. In this case,

for each K-tuple of parameters u ¼ (u1, . . . , uK), the decision rule for the alignment
is essentially as follows (disregarding possible ties): vu(x) ¼ i if and only if
jjx 2 uijj � minjjjx 2 ujjj. Thus, the decision regions in this case correspond to the
Voronoi partition in its original sense, justifying our generalization of this term.
Now, it can be easily seen that for all m ¼ 1, . . . , d,

(ml(u))m ¼

PK
i¼1

Ð
Sl(u) xmf(x; ui) dx1 � � � dxd

PK
i¼1

Ð
Sl(u) f(x; ui) dx1 � � � dxd

: (18)

Although the functions ml are data independent, the exact integration in (18) can
require intensive computations when d and K are large. If this becomes an issue,
one might be interested in approximations of (18). Even when approximated, the
adjustment can still asymptotically reduce the bias provided, of course, that the
approximation error is smaller than Dl. In the context of the above example, one
might think of the following directions of approximating Dl(u) ¼ ul 2 ml(u):

1. Approximate
P

i fðx; uiÞ
� �

ISlðuÞ in (18) by f(x; ul)ISl(u), so

(ml(u))m �
Ð

Sl(u) xmf(x; ul) dx1 � � � dxdÐ
Sl(u) f(x; ul) dx1 � � � dxd

: (19)

This approximation is motivated by the limiting case when the components
are “infinitely” far from each other.

2. If K . d, then some components are fully surrounded by others, and the
partition cells corresponding to such internal components are bounded
(Fig. 1). It is then conceivable that Dls that correspond to the bounded cells
are less significant than the others, in which case one might correct only
the estimators of the outer components. This approach seems to be particularly
appealing for speech recognition. In speech recognition, a phoneme is often
modeled by a mixture of Gaussians or Laplace densities (Ney et al. [26]).
One significant difficulty in the acoustic–phonetic modeling is determining
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the boundaries of the phonemes (in the appropriate feature space). The bound-
aries depend mostly on the outer components. If the mixture parameters are
estimated by VT, then the external components tend to be too far from their
means (see Fig. 1), resulting in less accurate boundaries and an overall impre-
cision of the model estimation. Thus, correcting only the outer components
might improve the entire acoustic–phonetic model.

3. Note that Dl ¼
P

j Dl
j, where

D
j
l(u) ¼

Ð
Sl(u) (ul � x)f(x; uj) dx1 � � � dxdPK

i¼1

Ð
Sl(u) f(x; ui) dx1 � � � dxd

:

It might be reasonable for each l to replace Dl by its “leading component” (i.e.,
Dl

j with largest jjDl
jjj). Alternatively, instead of choosing the leading com-

ponent, a single random component can be taken.

FIGURE 1. An eight-region Voronoi partition. True parameters u � and (hypothetical)
m(u �) are marked with solid and open dots, respectively. For l ¼ 1, Dl

j(u �),
hypothetical individual correction components are indicated to illustrate the ideas
of Approximations 3 and 4. Similarly, for l ¼ 2, a “significant” component of the
correction is indicated. Neglecting the corrections for the estimators corresponding
to the bounded Voronoi regions appears reasonable, as discussed in Approximation 2.
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4. There are several motivations to approximate the denominator of (18) by 1.
First, as in Approximation 1, this is reasonable when all of the centers are
very far apart. Also, note that when K ¼ 2, the denominator of (18) is equal
to 1 exactly. Now, note that every Voronoi cell is determined by several hyper-
planes. Suppose cell l is determined by hyperplanes Hl

q for q in some Il, f1,
. . . , Kg, namely it is the intersection of half-planes HPl

q, q [ Il. Since inte-
grating over Sl(u) is the same as integrating over the entire Rd and subtracting
the integral over Sl

C(u), the complement of Sl(u), we note that Dl � ul 2 (ul 2P
i¼1
K Ð

Sl
C(u) xf(x; ui) dx) ¼

P
i¼1
K Ð

Sl
C(u) xf(x; ui) dx. Suppose the defining

hyperplanes are somehow ordered I l ¼ fq1, . . . , qjIljg and note that Sl
C(u) is

the union of the half-planes O1, . . . , OjIlj opposite HPl
q1, . . . , HPl

qjIl j , respect-
ively. Let us make this union a disjoint one as follows: Sl

C(u) ¼
S

j¼1
jIlj Aj,

where A1 ¼ O1, A2 ¼ O2nO1, . . . , AjIlj ¼ OjIljn
S

j¼1
jIl j21Oj. Therefore, Dl �P

Dl
j, where Dl

j ¼
P

i¼1
K Ð

Aj
xf(x; ui) dx. It then can be sensible to replace Dl

by a single component Dl
j of significant contribution.

5. The integrals (18) are very easy to compute by Monte Carlo (or quasi Monte
Carlo) methods (Ripley [33], Sobol [35]). This leads to the stochastically
adjusted Viterbi training (SAV1) that modifies Step 3 of VA1 as follows:
(a) Generate a sample x1, . . . , xn from

P
l¼1
K pl fl(.; ul

j).
(b) Based on the sample and Voronoi partition S(u j), approximate ml(u

j)
(18) by m̂l

MC(u j), an appropriate Monte Carlo estimate.
(c) Use the following estimate for the correction:

D̂MC
l (u j) ¼ u

j
l � m̂MC

l (u j); l ¼ 1; . . . ;K:

The additional sampling step in SAV1 obviously jeopardizes the compu-
tational attractiveness of VA1. However, there are many ways to control
the Monte Carlo integration in order to keep the overall complexity of
SAV1 lower than that of EM. A great advantage of SAV1 is that it is easy
to implement even in very complex settings (including that of HMM). In
[17], SAV1 is implemented for two-dimensional Gaussian mixtures. The
simulations showed that in terms of precision, SAV1 is comparable with
VA1 and EM and strongly outperforms VT. Moreover, in this two-dimen-
sional setting, SAV1 and VA1 outperform VT even in terms of the
number of iterations.

Remark 3.2: In Example 3.1, the decision regions correspond to the Voronoi par-
tition in its original sense. Moreover, it is easy to see that in this particular case,
VT is none other than the well-known (generalized) Lloyd algorithm designed
for finding vector quantizers, which in this case are also called K-means (see,
e.g., Sabine and Gray [34]). In this case, the estimators obtained by VT are empirical
K-means. These latter estimators enjoy certain desirable properties, and in particu-
lar, they are consistent with respect to the population K-means [29]. However, they
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need not be consistent with respect to u �, our parameters of interest. In the mixture
case, VT can always be regarded as the (generalized) Lloyd algorithm, and the esti-
mators obtained by VT can be regarded as (generalized) empirical K-means [6].
This observation links the study of VT and related algorithms to the theory of
vector quantization.

3.2. Unknown Weights

We consider the case when the mixture weights pl are unknown, which corre-
sponds to the case of the unknown transition parameters P in the general HMM
context.

The Voronoi partition depends on the weight vector p ¼ ( p1, . . . , pK) as well as on u.
Hence, S(u, p) and the vector p should be reestimated at each step along with u. Given a
Voronoi partitionS ¼ fS1, . . . , SKg, the simplest way to estimate the weights pl is to take
pl ¼ P̂n(Sl), the empirical measure of Sl. Hence, all of the algorithms considered so far
can be modified accordingly to include the weight estimation as in (20):

p jþ1
l ¼ P̂n(Sl(u

j; p j)); l ¼ 1; . . . ;K: (20)

Taking into account the asymptotics, it is easy to correct the estimators p jþ1 as well.
Indeed, suppose u j ¼ u � and p j ¼ p [i.e., S(u j, p j) ¼ S(u �, p) ¼ S�]. If n!1, then

P̂n(Sl(u
�; p))!a:s P(Sl(u

�; p)) ¼
ð

Sl(u�;p)
f (x; u�) dl

¼
X

i

pi

ð
Sl(u�;p)

fi(x; u�i ) dl: (21)

In general, the latter differs from pl. The difference is pl 2 P(Sl(u �, p)). Hence, by
analogy with (9), we can define the weight correction D(u, p) ¼ (D1(u, p), . . . , DK(u,
p)) as follows:

Dl(u; p) ¼ pl �
X

i

pi

ð
Sl(u;p)

fi(x; ui) dl; (22)

which is also data independent. We now summarize the above by giving a formal defi-
nition of the adjusted VT with the weight correction. Viterbi training with p unknown
can be defined similarly.

VA1 with the Weight Correction

1. Choose u 0 ¼ (u1
0, . . . , uK

0) and p0 ¼ ( p1
0, . . . , pK

0 ).
2. Given u j ¼ (u1

j, . . . , uK
j ) and p j ¼ ( p1

j, . . . , pK
j ), define the Voronoi partition

S(u j, p j) ¼ fS1, . . . , SKg as in (12) and (13) and the empirical measures
P̂l

n(u j, p j) as in (14).
3. Put u jþ1 ¼ m̂j(u j) þ D(u j), where m̂ j is defined in (17).
4. Put p jþ1 ¼ P̂n(Sl(u

j, p j)) þ D(u j, p j).
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4. VA2: A MORE ADVANCED ADJUSTMENT

The adjusted Viterbi training is designed to asymptotically fix the true parameter u �,
returning approximately the correct solution, given this solution as the initial guess
and given an infinitely large data sample: VA1(u �) � u �. VA2 goes further and
attempts to maximally expand fu: VA1(u) � u �g, the set of parameter values that
are asymptotically mapped to the true ones, to fu: VA2(u) � u �g. Specifically, if
the algorithm ever arrives at S(u �), the Voronoi partition corresponding to the true
parameters u �, then we would like to coerce the adjusted estimates to return u �.
Let us explain these ideas in more detail.

Let S� stand for S(u �), the true Voronoi partition (that also coincides with the
Bayes decision boundary). The mapping u 7! S(u) is generally many-to-one;
hence, the set Q(S�) ¼ fu: S(u) ¼ S�g generally contains more than one element.
(This also means that guessing S� [i.e., guessing any element from Q(S�)], is gener-
ally easier than guessing u �.) We now introduce VA2.

Note first that ml(u, u �) in (16), as well as the estimate m̂l(u) in (15), depends on u

through S(u) only. However, the correction Dl(u) ¼ ul 2 ml(u, u) does depend on u

fully and, hence, would not generally work (in the sense of (10)) for an arbitrary u j

[ Q(S�) unless u j ¼ u �. We now attempt to improve the first type of adjustment
that is based on adding D(u j) to m̂(u j). Namely we propose the following iterative
update for l ¼ 1, . . . , K. First, define ml,Q(S(u0))(u) (as function of u only) to be the
restriction of ml(u

0, u) to Q(S(u0)) and write ml,u0(u) in place of the more cumbersome
ml,Q(S(u0))(u). Let

u
jþ1

l ¼
m�1

l;u j (m̂l(u
j)) if a uniquem�1

l;u j (m̂l(u
j)) exists

m̂l(u
j)þ Dl(u j) otherwise:

(
(23)

For any u j and u �, the event that m̂(u j, u �) belongs to the range ofm(u j, u) as a function
of u [ Q(S(u j)) is of zero probability, as Example 4.1 illustrates. Hence, the introduc-
tion of the individual inverses ml,u j

21, l ¼ 1, . . . , K, is essential, although still not always
effective. Indeed, in some mixture models (a mixture of normal distributions with
unequal weights is one such example), for a fixed l, the event that m̂l(u

j) belongs to
the range of ml(u

j, u) (as a function of u [ Q(S(u j))) need not occur with probability
1 for all u j and u �. This, and the fact that the inverses in general need not have a closed
form, or might require intensive computations, might reduce the attractiveness of the
suggested method. Further discussion of the computational issues related to this
method is outside the scope of this article, except for mentioning the possibility of
various (e.g., linear or quadratic approximations of the above functions ml,u

21).
In order to better understand the meaning of the new adjustment, imagine that u j [

Q(S*). We would then expect that for l ¼ 1, . . . , K,

u
jþ1

l ¼ m�1
l;u j (m̂l(u

j)) ¼ m�1
l;u�(m̂l(u

�)) � m�1
l;u�(ml(u

�; u�)) ¼ u�l :

The above argument, of course, also depends on the regularity of the above inverses at
ml(u �, u �), l ¼ 1, . . . , K, and in this regard, our experiments in Section 5 provide
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encouraging results for an important model similar to the model in the following
example.

Example 4.1: Let f (x; u �) ¼ (1/2)f(x 2 u1
*) þ (1/2)f(x 2 u2

*), where f is the
density of the standard normal distribution. In this case, any Voronoi partition is
specified by a single parameter t ¼ 0.5(u1 þ u2) solving f(t 2 u1) ¼ f(t 2 u2) (ties
are evidently inessential in this context). The true Voronoi partition corresponds to
t � ¼ 0.5(u1

* þ u2
*). Given a Voronoi partition S(t(u)), Q(t) ¼ f(t 2 a), (t þ a): a [

Rþg. Hence, restricted to Q(t), the function mS(t)(u) ¼ (m1,S(t)(u), m2,S(t)(u))
depends on one parameter only. Let a be this parameter and define mS(t)(u(a)) ¼
(m1(a), m2(a)) as follows: m1(a) ¼ 2a(1 22F(2a)) 2 2f(2a) þ t, and m2(a) ¼
2t 2m1(a), where F is the distribution function of the standard normal distribution.
After calculating m̂1 , m̂2 from the data, the inversion equations of (23) become

t � ½a(1� 2F(�a))þ 2f(a)	 ¼ m̂1; t þ ½a(1� 2F(�a))þ 2f(a)	 ¼ m̂2: (24)

Obviously, (24) has a (unique) solution if and only if m̂1 and m̂2 are symmetric with
respect to t and the probability of this latter event is clearly zero under the model.
Thus, as suggested in (23), we consider the equations separately:

a(1� 2F(�a))þ 2f(a) ¼ t � m̂1; (25)
a(1� 2F(�a))þ 2f(a) ¼ m̂2 � t: (26)

It can be shown that (25) and (26) have unique solutions; let us denote the latter by a1

and a2, respectively. The points t 2 a1 and t þ a2 will now be taken as the estimators
of u1

� and u2
� for the next step of iterations.

VA2

1. Choose u 0 ¼ (u1
0, . . . , uK

0).
2. Given u j, find S(u j) and define empirical measures P̂l

n(u j) as in (14).
3. For every P̂l

n, find m̂l(u
j, u �) as in (15).

4. Update u jþ1 in accordance with (23).

VA2 with p unknown can be defined by analogy with Section 3.2.

5. SIMULATION STUDIES

In order to support our theory of adjusted Viterbi training, we simulate 1000 i.i.d.
random samples of size 1000 according to the following mixture:

1ffiffiffiffiffiffi
2p
p pe�(x�u1Þ2=2 þ (1� pÞe�(x�u2Þ2=2

� �
:

The true parameters in our experiments are u � ¼ (22.5, 0) and ( p, 1 2 p) ¼ (0.7,
0.3). The corresponding density is plotted in Figure 2. Note that for all such mixtures
with p . 0.5 and u1 , u2, u2 2 u1 ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=(1� p)

p
(¼2.1602 in our case) implies

that both means fall on one side of the decision boundary, which makes detection
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of the second component particularly difficult, as is already becoming the case in our
setting with u2

� 2 u1
� ¼ 2.5.

Our main goal is to compare the performances of VT, VA1, and EM in terms of the
accuracy, convergence, amount of computations per iteration, and the total amount of
computations. We implement these algorithms in Matlab [38], providing a fair compari-
son of their computational intensities based on their execution times. Our code is available
for the reader’s perusal [18] and is fully optimized for speed in the case of VT and EM.
Consequently, our simulations possibly only overestimate the execution times for VA1.

Additionally, we compare VA2 with the above algorithms by the accuracy and con-
vergence. We use a numerical solver to compute the adjustment function of VA2 and
presently make no effort to replace this by a computationally efficient approximation.
Hence, we do not discuss the computational intensity of VA2 in this work.

In our experiments, the algorithms are instructed to terminate as soon as the L2 dis-
tance between consecutive u updates falls below 0.001. We also provide a high pre-
cision MLE computed with a built-in Matlab optimization function. The cases of
known (Section 3.1) and unknown weights (Section 3.2) are considered in Sections
5.1 and 5.2, respectively. We report the following statistics for each of the algorithms
in the form average+ one standard deviation:

† u ¼ (u1, u2): the estimates of the means
† p: the estimate of the weight of the first component
† jju 2 u �jj1,2: L1- and L2-normed distances between u and the true parameters

FIGURE 2. (1/
ffiffiffiffiffiffiffiffi
2p
p

)(0.7e2(xþ2.5)2/2þ0.3e2x2/2). The dashed vertical lines indicate
the means of the individual components; the dotted line marks the mean of the mixture.
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† n: number of steps used by the algorithm
† T: total time in milliseconds to execute the entire algorithm
† t: time in milliseconds to execute one iteration of the algorithm

5.1. Known Weights

It is often the case in practice (e.g., speech recognition models) that the weights are
assumed known; hence, we start with this case (Section 3.1). First, consider (21,
2) as an “arbitrary” initial guess for u. Table 1 presents the performance statistics
based on the 1000 samples. The baseline Viterbi method terminates quickly (on
average, in 9.04 steps), outperformed only by VA2, but is the least accurate among
the considered methods. As expected, VT also requires the least amount of compu-
tations: 0.2 ms per iteration and 1.85 ms total. Ranked from low to high, the accuracies
of VA1, VA2, and EM appear similar and are about three times superior to that of VT.
In units of the VT execution time, EM compares to VA1 as 16.85 : 6.7 per iteration
and as 20.43 : 7.59 by the total execution times. In order to illustrate the asymptotic
fixed-point property, we intialize the algorithms to (22.5, 0), the true value of the
parameters; see Table 2. In this case, as expected, both VA1 and VA2 take noticeably
fewer steps than VT and EM, are comparable in accuracy to EM, and are about three
times more accurate than VT. Unlike VA1, VA2, or EM, the baseline algorithm, as
predicted, disturbs the correct initial guess, resulting in an appreciable bias. The
times per iteration of VA1 and EM are similar as earlier, and their total times are
(in units of the VT time) 5.71 and 16.03, respectively.

In order to illustrate the idea of the second type of adjustment, we now initialize
the algorithms to (23.1229, 0.8771), which produces the same decision boundary
t ¼20.9111 as u � ¼ (22.5, 0), the true values. Table 3 collects these results. Note
that since VT and VA2 depend on the initial guess only via the decision boundary,
they produce in this case exactly the same results (disregarding a small rounding
error) as in the case of the correct initial guess (Table 2). As expected, VA2 now ter-
minates significantly faster than its competitors, and accuracywise, it is only slightly
superior to VA1 and slightly inferior to EM. The times per iteration of VA1 and EM
are similar as earlier, and their total times are 7.84 and 20.83, respectively.

5.2. Unknown Weights

Assume now that the weights are unknown (Section 3.2) and need to be estimated
along with the means. We use the same data and the same three types of condition
as in the case of known weights. Namely, these are: arbitrary initialization to (21,
2) (Table 4), initialization to the correct values (22.5, 0) (Table 5), and initialization
to (23.1229, 0.8771), the arbitrary point giving rise to the correct intercomponent
boundary (Table 6). The initial weights are equal (i.e., p ¼ 0.5) for all of the exper-
iments. VT and the adjusted algorithms VA1 and VA2 in this case are implemented
with the asymptotic correction (22). (The maximization in the high-precision MLE is
now performed in the three variables.)
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TABLE 1. Arbitrary Initial Guess

VT VA1 VA2 EM MLE

u1 22.4869+ 0.0497 22.4952+0.0500 22.4959+ 0.0498 22.4970+0.0456 22.4973+ 0.0456
u2 0.2880+ 0.0732 0.0099+0.0917 0.0082+ 0.0916 0.0030+0.0757 0.0024+ 0.0757
jju 2 u �jj1 0.3291+ 0.0844 0.1138+0.0681 0.1133+ 0.0678 0.0958+0.0562 0.0958+ 0.0562
jju 2 u �jj2 0.2927+ 0.0727 0.0902+0.0537 0.0899+ 0.0536 0.0761+0.0451 0.0761+ 0.0451
n 9.04+ 1.55 10.49+1.61 7.84+ 1.59 11.20+0.42 N/A
t 0.20+ 0.05 1.34+0.19 39.24+ 1.56 3.37+0.07 N/A
T 1.85+ 0.55 14.04+2.95 308.57+ 68.63 37.79+1.56 N/A
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TABLE 2. Correct Initial Guess

VT VA1 VA2 EM MLE

u1 22.4904+ 0.0495 22.4973+0.0488 22.4973+ 0.0490 22.4973+0.0455 22.4973+ 0.0456
u2 0.2820+ 0.0729 0.0051+0.0880 0.0052+ 0.0892 0.0024+0.0753 0.0024+ 0.0757
jju 2 u �jj1 0.3223+ 0.0829 0.1087+0.0661 0.1102+ 0.0664 0.0953+0.0561 0.0958+ 0.0562
jju 2 u �jj2 0.2867+ 0.0721 0.0861+0.0523 0.0874+ 0.0525 0.0756+0.0450 0.0761+ 0.0451
n 5.56+ 1.72 5.06+1.57 4.73+ 1.55 5.69+1.29 N/A
t 0.22+ 0.02 1.37+0.05 42.23+ 0.94 3.42+0.08 N/A
T 1.21+ 0.31 6.91+2.05 199.52+ 65.67 19.39+4.28 N/A
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TABLE 3. Correct Decision Boundary

VT VA1 VA2 EM MLE

u1 22.4904+ 0.0495 22.4954+0.0497 22.4973+ 0.0490 22.4971+0.0456 22.4973+ 0.0456
u2 0.2820+ 0.0729 0.0094+0.0909 0.0052+ 0.0892 0.0030+0.0757 0.0024+ 0.0757
jju 2 u �jj1 0.3223+ 0.0829 0.1131+0.0668 0.1102+ 0.0664 0.0958+0.0562 0.0958+ 0.0562
jju 2 u �jj2 0.2867+ 0.0721 0.0897+0.0528 0.0874+ 0.0525 0.0761+0.0450 0.0761+ 0.0451
n 5.56+ 1.72 7.09+1.38 4.72+ 1.56 7.44+0.94 N/A
t 0.22+ 0.03 1.35+0.05 42.37+ 1.12 3.42+0.08 N/A
T 1.22+ 0.31 9.56+1.81 200.24+ 66.30 25.41+3.19 N/A
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TABLE 4. Unknown Weights; “Arbitrary” Guess

VT VA1 VA2 EM MLE

p 0.747+ 0.031 0.703+0.028 0.702+ 0.028 0.700+0.024 0.699+ 0.024
u1 22.4299+ 0.0753 22.4919+0.0596 22.4930+ 0.0594 22.4976+0.0531 22.4992+ 0.0532
u2 0.3944+ 0.1178 0.0194+0.1099 0.0173+ 0.1094 0.0070+0.0944 0.0039+ 0.0947
jju 2 u �jj1 0.4775+ 0.1653 0.1382+0.0851 0.1372+ 0.0846 0.1179+0.0708 0.1179+ 0.0710
jju 2 u �jj2 0.4058+ 0.1237 0.1084+0.0657 0.1076+ 0.0653 0.0931+0.0558 0.0931+ 0.0560
n 14.16+ 3.60 13.85+3.25 12.23+ 2.86 24.90+2.60 N/A
t 0.72+ 0.15 1.32+0.09 39.01+ 1.26 3.52+0.35 N/A
T 10.13+ 3.01 18.25+4.27 478.19+ 117.67 87.67+12.98 N/A
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TABLE 5. Unknown Weights; Correct Guess

VT VA1 VA2 EM MLE

p 0.737+ 0.030 0.699+0.026 0.699+ 0.026 0.699+0.023 0.699+ 0.024
u1 22.4526+ 0.0700 22.4987+0.0555 22.4987+ 0.0557 22.4991+0.0522 22.4992+ 0.0532
u2 0.3537+ 0.1114 0.0058+0.1007 0.0060+ 0.1021 0.0038+0.0925 0.0039+ 0.0947
jju 2 u �jj1 0.4212+ 0.1467 0.1244+0.0782 0.1263+ 0.0782 0.1149+0.0701 0.1179+ 0.0710
jju 2 u �jj2 0.3626+ 0.1146 0.0978+0.0607 0.0994+ 0.0607 0.0907+0.0553 0.0931+ 0.0560
n 8.53+ 3.47 6.01+2.44 6.27+ 2.40 11.89+4.24 N/A
t 0.74+ 0.04 1.36+0.05 41.01+ 1.24 3.53+0.06 N/A
T 6.27+ 2.42 8.13+3.19 257.35+ 99.70 41.84+14.81 N/A
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TABLE 6. Unknown Weights; Correct Boundary

VT VA1 VA2 EM MLE

p 0.737+ 0.029 0.702+0.026 0.700+ 0.026 0.700+0.023 0.699+ 0.024
u1 22.4517+ 0.0689 22.4941+0.0573 22.4972+ 0.0556 22.4981+0.0526 22.4992+ 0.0532
u2 0.3549+ 0.1096 0.0148+0.1050 0.0087+ 0.1024 0.0059+0.0930 0.0039+ 0.0947
jju 2 u �jj1 0.4218+ 0.1459 0.1327+0.0779 0.1271+ 0.0780 0.1164+0.0694 0.1179+ 0.0710
jju 2 u �jj2 0.3637+ 0.1132 0.1043+0.0606 0.0999+ 0.0606 0.0919+0.0548 0.0931+ 0.0560
n 8.16+ 3.40 7.74+2.58 6.54+ 2.22 12.98+4.22 N/A
t 0.74+ 0.04 1.34+0.04 41.12+ 1.74 3.52+0.05 N/A
T 5.97+ 2.36 10.32+3.35 268.96+ 91.44 45.59+14.69 N/A
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The adjusted algorithms now take 1.7 (VA1) and 2 (VA2) fewer steps than EM, and,
what is more remarkable, VA1 and VA2 require fewer steps than VT. The per-iteration
times of VA1 and EM compare as approximately 1.8 : 4.8 for all of the initializations, and
the total times as 1.8 : 8.7 (arbitrary guess), 1.3 : 6.67 (true values), and 1.73 : 7.64 (true
boundary); all are in units of the VT time. VA1 and VA2 are again at least three times
more accurate than VT in u estimation and about one standard deviation more accurate
than VT in the weight estimation. They are also comparable in accuracy to EM.

5.3. Summary of the Results

VA1 is consistently close in accuracy to EM, which is always superior to VT.
Specifically, in estimating the means, the gain in accuracy is about threefold, as measured
by L1- and L2-distances, and in estimating the weights, it is about one standard deviation.

VA1 always converges almost as fast as VT and noticeably (by 30% in the case of
unknown weights) faster than EM.

When the weights are known, an iteration of VA1 is about six times longer than that
of VT and is more than twice as fast as that of EM. By total execution, VA1 is at most
eight times slower than VT and is more than two and a half times faster than EM.

When the weights are unknown, VA1 is at most twice slower than VT and more
than two and a half times faster than EM, per iteration. It is also about 50% slower
than VT and more than four times faster than EM in total times.

Accuracy of VA2 is consistently between those of VA1 and EM, and VA2
converges faster than VA1.

6. Conclusion

We have considered the problem of the parameter estimation of the emission distribution in
hidden Markov models using the two most relevant estimation principles: VT and MLE.
We have identified the sources of bias, or inconsistency, in the VT algorithm, contrasting
this with the EM algorithm that is generally used to compute MLE: Trading the EM’s accu-
racy for the VT’s ease of computations, one, in particular, loses the asymptotic fixed-point
property; namely VT no longer fixes the true parameter values, not even asymptotically.
We have proposed to restore this property and, consequently, increase the accuracy of
VT. Specifically, we have proposed two types of analytic adjustment to the baseline VT
algorithm, neither requiring additional pointwise processing of the data. In particular,
our correction functions are independent of the data size. Our first adjustment, VA1,
simply restores the asymptotic fixed-point property, whereas the second one, VA2,
additionally ensures that asymptotically the true parameters are returned as soon as the
algorithm finds the true alignment (i.e., Voronoi partition). To our knowledge, these
kinds of consistency corrections for VT have not been proposed elsewhere in the literature.

This article has also shown that in the case of mixture models (a special and import-
ant case of HMM), the VA1 correction is always available, either in a closed form or
via integration that can be suitably approximated. We have also explained why pro-
viding the VA1 correction in the general HMM case is more challenging, and we
present our general theory [19, 21] elsewhere.
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This work has also presented evidence that, at least in the case of mixture models,
the actual amount of extra computations of VA1 relative to VT can be very reasonable.
For this special case, we have provided simulation studies based on 1000 large
random samples that illustrate the key features of the adjusted algorithms in contrast
with baseline VT and EM. In our simulations, VA1 demonstrates a significant
increase of accuracy (threefold and one standard deviation in estimating the
mixture means and weights, respectively) relative to VT. In fact, the accuracy of
VA1 is already comparable to that of EM. In terms of computation, VA1 in our
studies is still several factors faster than EM.

Due to the more sophisticated nature of the VA2 correction, its computationally
feasible implementations require more work.

Certainly, the final decision as to which algorithm to use remains application
dependent.
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