
 Robotica (1997) volume 15 , pp 207 – 211 . ÷ 1997 Cambridge University Press

 Implementation of a genetic algorithm for routing an
 autonomous robot
 Peter Wide and Holger Schellwat
 Institute for Technology and Natural Sciences , Uni y ersity College of O ̈ rebro , S - 7 0 1 8 2 O ̈ rebro (Sweden)

 (Received in final form : June 24 , 1996)

 SUMMARY
 A practical implementation of a genetic algorithm for
 routing a real autonomous robot through a changing
 environment is described . Moving around in a produc-
 tion plant the robot collects information about its
 environment and stores it in a temporal map , which is
 virtually a square grid , taking account of changing
 obstacles . The evolutional optimizer continuously
 searches for short paths in this map using string
 representations of paths as chromosomes . The main
 features of the implementation include physical realiza-
 tion , random walk exploration , temporal mapping , and
 dedicated genetic operators .

 KEYWORDS : Genetic algorithm ; Autonomous robot ; Opti-
 mal paths ; Changing environments .

 1 . INTRODUCTION
 In order to widen the application area for robotics and to
 make robots more flexible and independent of
 pre-programming , the use of an adaptive strategy is
 crucial . 1 This is even more important for an autonomous
 robot moving in a changing environment , where an
 adaptive routing strategy is indispensable . But even in a
 fixed environment , pure of f-line planning is not feasible
 for an autonomous robot , since small tracking errors will
 add up and lead to inaccurate information about its
 location . Several learning strategies have been proposed
 (see Van de Velde 2 for an overview) , but only few of
 them have on-line learning capabilities .

 An adaptive learning strategy can be provided by
 genetic algorithms , which have already proved useful in
 many applications . For an introduction to genetic
 algorithms we refer to the book by Goldberg , 3 the
 articles by Austin , 4 Forrest , 5 Holland , 6 and the survey by
 Srinivas and Patnaik . 7 Genetic algorithms are a field of
 intensive theoretical investigations . 8 However , applica-
 tions to autonomous robot routing are less explored . 9 , 1 0

 In Alander , 9 learning robots are simulated in a
 computer , obstacles are fixed , and the objective of the
 evolutional optimization is the enhancement of location
 estimation . De Boer 1 1 presents a practical implementa-
 tion of a real autonomous robot , but restricts the scope
 of investigation to basic behavior , optimizing the
 tactile – actuational interplay in one dimension . The
 approach of Lin et al 1 0 is similar to ours , yet they keep to
 computer experiments and do not use a real robot .

 The purpose of this paper is to show that a genetic
 algorithm in combination with an internal partial map of
 the environment is suitable to provide the flexibility to
 route an autonomous robot through an environment
 containing changing obstacles in a practical application .

 Let us choose the paradigm of a building site . The task
 of the autonomous robot is to serve a moving working
 team on the site by continuously fetching supplies from a
 central store . In shuttling back and forth it will encounter
 obstacles with its sensors , thus it is collecting information
 about its environment which it stores in a map . Thus the
 robot can use the information stored in its temporary
 map to find a short path from the store to the team by
 applying evolutional optimization . Whenever it returns
 from the store finding that the team has moved , the
 robot will scan its neighborhood to find the team again ,
 and update its map . By even considering some paths
 which cross obstacles for optimization , it is able to detect
 the possible removal of obstacles , and keep its map up to
 date .

 In the next section we will define the paradigm , and in
 section 3 we will describe the genetic routing algorithm ,
 followed by a discussion of our results and conclusions .

 2 . THE PARADIGM
 Using a cell decomposition of the environment , we may
 represent it by a square grid , V : 5 (Z n) 2 , where
 Z n 5 h 0 , . . . , n 2 1 j , for some fixed n P Z 1 . These lattice
 points are marked by a mapping q t : V 5 h ? , X , O , T j ,
 where the value O marks the fixed origin of all walks
 (the central tool store) , T the terminus (the location of
 the working team) , the dot ? unobstructed locations , and
 X an obstacle . Moreover , there is only one origin , i . e .
 u q 2

 t (O) u 5 1 , and one terminus , i . e . u q 2
 t (T) u 5 1 , at any

 time , where q 2
 t denotes the pre-image , and we will write

 O P V and T P V for the unique x P V such that
 q t (x) 5 O or q t (x) 5 T , respectively .

 This environment is allowed to change , with the
 exception that the position of the origin is fixed . Viewing
 V as a subset of Z 2 , it is naturally equipped with the
 induced Euclidean metric . However , in order to make
 the metric compatible with the length of a path , we
 rather use the taxicab metric , d ((x , y) , (u , y)) 5 u x 2 u u 1
 u y 2 y u , and we define the neighborhood ­ (x) of the point
 x P V by ­ (x) : 5 h y P V : d (x , y) 5 1 j . This square grid V
 can be viewed naturally as a graph G having vertex set V
 and edge set E : 5 h (x , y) P V 3 V : d (x , y) 5 1 j . We will

https://doi.org/10.1017/S0263574797000222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000222

 208 Genetic algorithm

 call a path (y 1 , . . . , y k) in G admissible at time t if for all
 1 < i < k the condition q t (y i) ? X holds .

 We do not assume that the robot knows the position of
 the target in advance . Rather it will have to explore its
 surroundings in an early phase of its operation until it
 encounters the target for the first time , which we will call
 the exploration phase in the sequel . This strategy of the
 robot is characterized by a mixture of backtracking and
 random walk . More precisely , the robot will turn right
 with a probability a when it runs into an obstacle and
 with the probability 1 2 a it will proceed in a random
 direction . The turn right strategy has the advantage of
 guaranteed escape out of a (connected) maze , but it will
 not explore the interior of the accessible environment ,
 whereas random walks are locally dense , yet they are
 unlikely to lead far from the origin . 1 2 Of course , this
 strategy could be easily improved , but for our purposes it
 works well , as its only intention is to provide the robot
 with some partial information about its environment and
 thus to implement it into the chromosome pool of its
 initial population .

 We will not turn to the two basic mechanisms of the
 robot navigator , the temporary map and the evolutional
 optimizer . Whenever the robot is walking , it maintains a
 string (of maximal length 4 n in our implementation) over
 the alphabet A : 5 h l , r , u , d , p j , describing a path from the
 origin as a sequence of left , right , up , or down moves .
 The asterisk represents a path which terminates due to
 an obstacle or due to finding the target . The length of
 this string needs to be limited , in order to keep the
 length of the chromosomes fixed , and we introduce a rule
 that the robot has to return to the origin if it runs into an
 obstacle , into the target , or if the string length exceeds its
 maximum . This rule is also motivated by its contributing
 to enhancing the map .

 The structure of the robot’s map resembles the
 structure of the environment . At time t , the map is given
 by m t : V 5 h ? , X , O , T , ? j , where the additional value ?
 stands for unexplored terrain . Every attempt to move
 the robot to an unexplored point will result in a map
 value distinct from ? , thus building up knowledge
 of the environment . So far obstacles would have to
 be static . However , by simply forgetting obstacles , i . e .
 replacing the value m t (x) 5 X by the value ? , at some
 constant rate , the robot is able to consider routes via
 former obstacles . Hence , slowly moving obstacles are
 allowed .

 The task of the evolutional optimizer is to find short
 paths from the origin to the target , as soon as the latter is
 found for the first time . It will be discussed in detail in
 the next section , for now we will only describe its
 interplay with the map for the navigator . The
 chromosomes of a population consist of strings over the
 alphabet A described above , having their interpretation
 as descriptions of paths from the origin . The initial
 population consists of the paths traveled during the
 exploration phase searching for the target , comple-
 mented by random chromosomes to make up a
 population of fixed size . The fitness function tests
 chromosomes in their interpretation as paths in the

 momentary map . Chromosomes that lead to the target
 relative to the temporary map get the highest ranking ,
 shorter paths even higher , whereas among the chromo-
 somes which do not lead to the target or run into
 obstacles (in the map) those ones which lead furthest
 away from the origin are favored . This simple mechanism
 prevents the optimizer from trying to run through walls .
 After a fixed number of generations or after the target is
 found in the map , whatever takes longer , the evolutional
 optimizer terminates , and the robot travels a path having
 the best fitness . If this leads to the target , the robot
 travels back to the origin and the process starts anew . If
 the path leads to an obstacle , the robot travels back ,
 updates the map , replaces a weakest chromosome with
 this new path , and the process starts over again . Finally ,
 if the path leads to the map position of the target , but the
 target is not found there due to a move of the target , the
 robot scans its neighborhood until it finds the target
 again , updates the map , travels back , replaces a weakest
 chromosome with this new path , and starts over again .

 This way the robot constantly travels between the
 origin and the target , improving both its map and the
 population . Let us summarize this algorithm in
 pseudo-code :

 procedure Genetic Router
 begin

 begin (Exploration phase)
 perform (quasi) random search until target found
 update map
 build up population

 end (Exploration phase)
 begin (Shuttle phase)

 repeat
 run evolutional optimizer
 travel fittest path
 if obstacle then update map , update population fi
 if not target then search target , update map ,
 update population fi
 travel home

 until forever
 end (Shuttle phase)

 end

 3 . THE GENETIC ROUTING ALGORITHM
 The idea of using probabilistic algorithms to solve

 combinatorial optimization problems is rather natural .
 Genetic algorithms have been applied , just to name two ,
 to the traveling salesman problem by Jog et al . 1 3 and to
 the MAX-SUM function by Park 1 4 . The obvious benefits
 of genetic algorithms in such applications include parallel
 nature , flexibility , and simplicity . However , the question
 arises whether genetic algorithms are superior to
 Dijkstra’s algorithm for graph routing in terms of
 computational complexity . For the related MAX-
 CLIQUE problem the answer is no . 8 But in our
 paradigm the problem to solve in each run of the robot is
 not always a new optimization problem , rather a slightly
 modified problem , since the target is not expected to

https://doi.org/10.1017/S0263574797000222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000222

 Genetic algorithm 209

 move fast , and a good performance of a genetic
 algorithm may well be expected .

 Following the terminology by Goldberg , 3 we are using
 a modified simple genetic algorithm (SGA) . We will now
 describe its features .

 3 . 1 Representation of Chromosomes
 Most of our testing has been done for n 5 8 . We will
 denote implementation constants and parameters in
 typewriter style , and write S i d e L e n g t h 5 8 . As pointed
 out earlier , an individual (chromosome) is a string over
 A of fixed length C h r o m L e n g t h 5 4 n . The factor 4
 works well if we do not expect too many obstacles . We
 keep two populations , the main population , and an
 interim population for breeding , each of them containing
 P o p S i z e chromosomes . Both are continuously sorted
 according to the fitness of their members using the quick
 sort algorithm . Whenever new information about the
 environment is gathered , the corresponding strings are
 merged into the main population , replacing one of the
 weakest individuals . The initial population consists of the
 strings traveled during the exploration phase , but not
 more than the  P o p S i z e / 2  most recent ones , the
 remaining chromosomes are random strings over A .

 3 . 2 Fitness Function
 The fitness function assigns to every chromosome a
 non-negative integral fitness value , and the objective of
 the optimizer is to minimize this value . If a chromosome
 c represents an admissible path of length l (c) in the map
 leading from O to T , then we assign the length of the
 path l (c) to the fitness value . Note that this distance
 function is available to the autonomous robot as it is
 derived from the internal map . If the path does not lead
 to T , but to p P V with m t (p) P h ? , ? j instead , we roll a
 dice . With probability b we assign the value 4 n 1
 2 d (p , t) , favoring chromosomes leading close to the
 target , and with probability 1 2 b we assign the value
 8 n 2 l (c) , favoring longer admissible paths . Finally , if c
 leads into an obstacle or if c would lead outside the
 environment , we assign the lethal fitness value 8 n 1 1 .

 3 . 3 Of fspring production
 We have implemented 3 dif ferent selection schemes for
 of fspring production . By of fspring we mean potential
 children inheriting genetic material from a particular
 parent . All the of fspring chromosomes of the population
 are kept for recombination into the interim population .

 $ Exponential selection . The fittest parent generates
  P o p S i z e / 2  chromosomes , the next but fittest
 generates  P o p S i z e / 4  chromosomes , and so on .

 $ Rank selection with elitism . The  0 . 8 p P o p S i z e 
 fittest individuals generate 1 of fspring chromosome
 each .

 $ Proportionate selection . The [0 . 2 p P o p S i z e  fittest
 individuals are considered for of fspring production .
 Those proportionally allocate from 4 down to 1
 of fspring chromosomes .

 Next , the selected of fspring chromosomes are used for
 recombination .

 3 . 4 Recombination and breeding
 This step forms the interim population . It contains as
 many chromosomes as have been produced previously by
 the of fspring production . For each parent chromosome
 from the of fspring , a partner chromosome is selected at
 random from the of fspring . With the probability
 C r o s s R a t e , the crossover operator described below is
 used to create a chromosome in the interim population .
 If no crossover has to occur , the interim chromosome is a
 copy of a random parent . Now a portion of the interim
 population determined by M u t e R a t e is exposed to
 mutation . For those chromosomes a gene , i . e . character
 in the string , is randomly selected and replaced by a
 random value . The generational cycle is concluded by
 breeding , that is by replacing the weaker chromosomes
 of the main population by the fitter chromosomes of the
 interim population . Now we will describe the other
 genetic operators we use , including crossover .

 3 . 5 Genetic Operators
 We have implemented only the classic crossover
 operators , single point crossover , two point crossover ,
 and uniform crossover . 1 5 With these ingredients the
 modified simple genetic algorithm worked satisfactorily ,
 and we added a mechanism to monitor its performance
 by keeping basic statistics . In particular , we monitored
 the standard deviation of the fitness values of the
 chromosomes of the main population . This revealed that
 once some basic overall fitness is achieved , the standard
 deviation quickly approached zero , indicating a uniform
 population . Increasing the mutation rate , however ,
 slowed down the finding of reasonable solutions . Instead
 we introduced a diversification operator , to be applied
 after breeding . If the standard deviation of the fitness
 values of the newly formed population is less than 1 , then
 a D i v R a t e portion of the population is exposed to
 mutation . The diversification operator improved the
 performance significantly , as we will see in the next
 section .

 4 . RESULTS
 As pointed out earlier , we used an 8 3 8 environment for
 most of our testing , and our testing regards the
 performance of the genetic optimizer in the first case .
 Several tests using dif ferent selection schemes showed
 that rank selection with elitism worked best , so we kept
 to this scheme . First we ran one exploration phase for
 the environment shown in Figure 1 . It took 8 (quasi)
 random walks to find the target T , resulting in 8
 chromosomes for the initial population and the map
 shown in Figure 2 .

 This data was used in all subsequent tests , for which
 we also kept the following parameters constant .

 $ Population size P o p S i z e 5 100 chromosomes ,
 $ Mutation rate M u t e R a t e 5 0 . 08 ,

https://doi.org/10.1017/S0263574797000222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000222

 210 Genetic algorithm

 Fig . 1 . The empty environment with an optimal path .

 $ Crossover rate C r o s s R a t e 5 0 . 99 ,
 $ Mutation rate D e v R a t e 5 0 . 98 for the diversification

 operator ,
 $ Timeout M a x G e n 5 10000 generations ,
 $ Probability of favoring paths leading close to the

 target b 5 0 . 7 ,
 $ Oakenfull mixed congruential random number

 generator , x n 1 1 : 5 16333 x n 1 25887 (mod 2 1 5) .
 The termination condition for the genetic router in all

 tests was finding an optimal path , the length of which we
 entered manually according to the environment . The
 tables below show the average number of generations
 needed to find an optimal path of 10 tests run for each of
 the parameter combinations single point crossover / two
 point crossover , diversification operator / no diversifi-
 cation .

 4 . 1 Test set 1 : No obstacles
 The first set of tests was performed using the same
 environment as in the exploration phase , shown in figure
 1 , where a typical solution is depicted by the dashed line .

 n crossover points diversification generations

 2 no 4 . 3
 2 yes 6 . 1
 1 no 35 . 7
 1 yes 5 . 0

 Fig . 2 . The map .

 In this optimization problem the solution space is
 rather large , so uniformization of the population is less
 likely , and the application of the diversification operator
 does not improve the performance .

 4 . 2 Test set 2 : Wall of obstacles
 The second set of tests was performed using the
 environment shown in Figure 3 , with obstacles at (2 , 5) ,
 (3 , 5) , (4 , 5) , (5 , 5) , (6 , 5) , and at (7 , 5) . Thus a wall had
 been inserted since the exploration phase common for all
 tests . We used the same map that resulted from the
 exploration phase , and merged the same 8 chromosomes
 from it into the initial population for each test of this set .
 For every test we first ran an evolution , which in most
 cases came up with a path running into an obstacle . In
 that case we let the robot travel this fittest path , detect
 the obstacle , merge the resulting admissible path into the
 population , and we looped back to the evolution , until an
 optimal path was found or timeout occured . A shortest
 path has length 11 .

 $ Two point crossover , no diversification operator :
 Four out of ten tests times out . However , a path of
 sub optimal length 13 was found quickly . For the 6
 tests in which an optimal solution was found , the
 average total number of generations was 38 . 5 . This
 parameter combination cannot be regarded as a
 stable solution to the problem , since timeout occurs
 frequently .

 $ One point crossover , no diversification operator :
 Nine out of ten tests resulted in an optimal solution .
 The average total number of generations was 3436 . 8 .
 Again , a path of sub optimal length 13 was found
 quickly . This parameter combination yields no
 practicable result at all , since most tests ran out of
 time .

 $ Two point crossover , diversification operator : All
 ten tests resulted in an optimal solution . The
 average total number of generations was 54 . 3 .

 $ One point crossover , diversification operator : All
 ten tests resulted in an optimal solution . The
 average total number of generations was 57 . 1 .

 These tests clearly show that the diversification

 Fig . 3 . The environment with obstacles and an optimal path .

https://doi.org/10.1017/S0263574797000222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000222

 Genetic algorithm 211

 Fig . 4 . One more obstacle and two solutions .

 operator ensures reliable and fast solutions . Moreover ,
 two point crossover improves the performance only
 slightly .

 4 . 3 Test set 3 : One more obstacle
 From the previous test set we kept the map (updated to
 include the wall) and the chromosomes that resulted
 from finding the obstacles and one chromosome
 representing an optimal solution . All other chromosomes
 were randomized for each test , and for each test we
 inserted one more obstacle at (6 , 7) , shown in Figure 4 .
 Then we let the robot travel the optimal solution path ,
 which revealed the new obstacle , and we merged this
 individual into the population . From this situation we
 started the dif ferent test sets . Two typical solutions are
 depicted in Figure 4 , by the dashed line and the dotted
 line .

 $ Two point crossover , no diversification operator :
 Eight out of ten tests timed out . One solution was
 found after 5236 generations , the other after 5116 .

 $ One point crossover , no diversification operator :
 Nine out of ten tests timed out . One solution was
 found after 58 generations .

 $ Two point crossover , diversification operator : All
 ten tests resulted in an optimal solution . The
 average total number of generations was 3212 . 8 .

 $ One point crossover , diversification operator : Nine
 out of ten tests resulted in an optimal solution ; one
 ran out of time . The average total number of
 generations was 3804 . 8 .

 Again , these tests show that the diversification
 operator ensures reliable and fast solutions .

 5 . CONCLUSION
 We have seen that genetic algorithms are suitable for
 routing an autonomous robot through a changing
 environment in a typical real life application , and that
 the application or rather problem oriented genetical
 operators improve the performance of such an
 evolutional optimizer .

 We believe that a major improvement of the
 performance of the genetic router could be accomplished

 by implementing genetic operators that reflect the
 structure of the problem . For instance , often a
 sub-optimal solution was found where the paths
 contained cycles . This could be avoided by a genetic
 operator searching for substrings representing cycles , like
 for instance lldrru , and cutting them out .

 In an industrial application one might use the
 algorithm at two levels . First , a coarse cell decomposition
 of the environment can be chosen to route the robot
 close to the target . While the robot is approaching the
 target , the algorithm could run using a fine cell
 decomposition of the environment to optimize the path
 near the target .

 6 . ACKNOWLEDGMENTS
 This work has been done at the Laboratory of
 Measurement and Technology , Linko ̈ ping University ,
 and at the Department of Technology and Natural
 Sciences , University of O ̈ rebro . The authors would like
 to thank professor Alexander Lauber for valuable
 discussions . This project is sponsored by the University
 of O ̈ rebro , Sweden , whose support is gratefully
 acknowledged .

 References
 1 . H . F . Durrant-Whyte , Integration , Coordination and

 Control of Multi - sensor Robot Systems (Kluwer Academic
 Publishers , Boston , 1988) .

 2 . W . Van de Velde (ed .) , Toward Learning Robots (MIT
 Press , Cambridge , Massachusetts , 1993) .

 3 . D . E . Goldberg , Genetic Algorithms in Search , Optimiza-
 tion and Machine Learning (Addison-Wesley , Reading ,
 Mass , 1989) .

 4 . S . Austin , ‘‘An Introduction to Genetic Algorithms’’ , AI
 Expert 90 (3) , 49 – 53 (1990) .

 5 . S . Forrest , ‘‘Genetic Algorithms : Principles of Natural
 Selection Applied to Computation’’ , Science 261 , 872 – 878
 (1993) .

 6 . J . H . Holland , ‘‘Genetic Algorithms’’ Scientific American
 267 (1) , 44 – 50 (1992) .

 7 . M . Srinivas and L . M . Patnaik , ‘‘Genetic Algorithms : A
 Survey’’ , IEEE Computer 17 – 26 (June , 1994) .

 8 . K . Park and B . Carter , ‘‘On the Ef fectiveness of Genetic
 Search in Combinatorial Optimization’’ Proceedings of the
 1 0 th ACM Symposium on Applied Computing (1995) pp .
 329 – 336 .

 9 . J . T . Alander , ‘‘On Robot Navigation Using a Genetic
 Algorithm’’ , Artificial Neural Nets and Genetic Algorithms
 International Conference (1993) pp . 471 – 478 .

 10 . H . S . Lin , J . Xiao and Z . Michalewicz , ‘‘Evolutionary
 Navigator for a Mobile Robot’’ , Proceedings 1 9 9 4 IEEE
 International Conference on Robotics and Automation
 (1994) pp . 2100 – 2204 .

 11 . B . G . de Boer , ‘‘An Autonomous Robot Learning Basic
 Behaviours’’ , Tech . Report (Leiden University , 1994) .

 12 . J . Rudnick and G . Gaspari , ‘‘The Shapes of Random
 Walks’’ , Science 237 , 384 – 389 (1987) .

 13 . P . Jog , J . Suh and D . Gucht , ‘‘Parallel Genetic Algorithms
 Applied to the Travelling Salesman Problem’’ , SIAM
 Journal on Optimization 27 (2) , 515 – 529 (1991) .

 14 . K . Park , ‘‘A Lower-bound Result on the Power of a
 Genetic Algorithm’’ , Proc . 5 th International Conference on
 Genetic Algorithms (1993) p . 651 .

 15 . M . Mitchell , ‘‘Genetic Algorithms : Theory and Applica-
 tions’’ , Course material , Short Course , 1 9 9 4 World
 Congress on Neural Networks , San Diego (June 1994) .

https://doi.org/10.1017/S0263574797000222 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000222

