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Non-real zeros of real differential polynomials
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The main results of the paper determine all real meromorphic functions f of finite
lower order in the plane such that f has finitely many zeros and non-real poles and
such that certain combinations of derivatives of f have few non-real zeros.

1. Introduction

This paper concerns non-real zeros of certain combinations of derivatives of real
meromorphic functions in the plane, that is, meromorphic functions mapping R into
R∪{∞}. Research into the non-real zeros of derivatives of real entire functions has a
long history. Wiman conjectured around 1911 [1,2] that if f is a real entire function
such that f and f ′′ have only real zeros, then f belongs to the Laguerre–Pólya class
LP of entire functions which are locally uniform limits of real polynomials with real
zeros. This was proved in [32] for f of finite order and in [6] for infinite order (see
also [27] for the case of ‘large’ infinite order). It was further shown that, for an entire
function f = Ph, where h is a real entire function with real zeros and P is a real
polynomial, the number of non-real zeros of f (k) is 0 for large k if h ∈ LP [7,8,17,18],
and tends to infinity with k otherwise [5, 23]. These results proved a conjecture of
Pólya [30].

For real meromorphic functions with poles there are less complete results. All
meromorphic functions f in the plane for which all derivatives f (k) (k � 0) have
only real zeros were determined by Hinkkanen [14–16], while functions with real
poles, for which some of the derivatives have only real zeros, were considered in
several papers including [11, 12, 31]. The following theorem was proved in [25] (see
also [24]).

Theorem 1.1 (Langley [25]). Let f be a real meromorphic function in the plane,
not of the form f = SeP with S being a rational function and P being a polynomial.
Let µ and k be integers with 1 � µ < k. Assume that all but finitely many zeros of
f and f (k) are real, and that f (µ) has finitely many zeros. Then µ = 1 and k = 2
and f satisfies

f(z) =
R(z)eicz − 1

AR(z)eicz − Ā
,

where c ∈ (0,∞), A ∈ C \ R, and R is a rational function with |R(x)| = 1 for all
x ∈ R. Moreover, all but finitely many poles of f are real.
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A related result was proved for k = 2 and µ = 1 in [12], but with the reality
of poles of f as a hypothesis rather than a conclusion. The starting point of the
present paper is the analogous problem where f (instead of f (µ)) is assumed to
have finitely many zeros. In particular, the following theorem is a combination of
results of Hellerstein and Williamson [11] and Rossi [31].

Theorem 1.2 (Hellerstein and Williamson [11]; Rossi [31]). Let f be a real mero-
morphic function in the plane with real poles and no zeros, and assume that all
zeros of f ′ are real. If f has infinite order then f ′′ has infinitely many non-real
zeros. The same conclusion holds if f has finite order and infinitely many poles.

For f of finite order, the assumption in theorem 1.2 that f ′ has only real zeros
is not particularly strong. Indeed, if g = 1/f is a real transcendental meromorphic
function of finite lower order in the plane with finitely many poles and non-real
zeros, then g′ has finitely many non-real zeros and so has f ′ (see § 2). The following
theorem will be proved.

Theorem 1.3. Let f be a real meromorphic function of finite lower order in the
plane, with finitely many zeros and non-real poles, and assume that

N0(r) = o(T (r, f ′/f)) as r → ∞, (1.1)

where N0(r) counts the non-real zeros of f ′′. Then f satisfies

f = SeP , with S a rational function and P a polynomial. (1.2)

For example, taking f(z) = exp(−z2) gives f ′′(z) = (4z2 − 2) exp(−z2), which
has real zeros only. Observe that theorem 1.3 certainly applies if N0(r) = O(log r)
as r → ∞ because, in this case, either f ′/f is a rational function or N0(r) =
o(T (r, f ′/f)), and both alternatives lead to (1.2). Theorem 1.3 will be deduced from
a result concerning non-real zeros of ff ′′ − a(f ′)2, for a meromorphic function f
with finitely many zeros and non-real poles, and certain real values of a. Langley [21]
proved a conjecture of Bergweiler [3] by showing that if f is a meromorphic function
in the plane and ff ′′−a(f ′)2 has finitely many zeros, where a ∈ C\{1} and 1/(a−1)
is not a positive integer, then f satisfies (1.2). The methods of [3, 21] involved a
modified Newton function defined via

h =
1

1 − a
, a =

h − 1
h

, F (z) = z − h
f(z)
f ′(z)

, F ′ = h

(
ff ′′

(f ′)2
− a

)
. (1.3)

Several results have been proved [29] establishing the existence of non-real zeros of
ff ′′ − a(f ′)2, when f is a real entire function, including the following theorem.

Theorem 1.4 (Nicks [29]). Let f be a real entire function and let a < 1 be a real
number. If f and ff ′′/(f ′)2 − a have finitely many non-real zeros then f ∈ U∗

2p for
some p � 0, and ff ′′/(f ′)2 − a has at least 2p non-real zeros. If a � 1

2 , f ′/f has
finite lower order and ff ′′/(f ′)2 − a has finitely many non-real zeros, then f ∈ U∗

2p

again for some p.

The class U∗
2p is defined for p � 0 as the set of entire functions f = Ph, where

h ∈ V2p \ V2p−2 and P is a real polynomial with no real zeros. Here V−2 = ∅,
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while V2p for p � 0 consists of all entire functions f(z) = g(z) exp(−az2p+2), where
a � 0 is real and g is a real entire function with real zeros of genus at most
2p + 1 [10, p. 29]. It is well known that V0 = LP. The significance of the conditions
on a in theorem 1.4 lies in the fact that a < 1 implies that h > 0 in (1.3), so
that if z and f ′(z)/f(z) have positive imaginary part, then so has F (z), in analogy
with the method of [32]. Furthermore, if a � 1

2 , then 0 < h � 2 and zeros of f
are attracting or rationally indifferent fixpoints of F : the hypothesis that f ′/f has
finite lower order then facilitates the application of Hinchliffe’s extension to finite
lower order [13] of a theorem of [4] concerning singularities of the inverse function.
The following result will be proved for meromorphic functions and a < 1.

Theorem 1.5. Let f be a real meromorphic function of finite lower order in the
plane, with finitely many zeros and non-real poles. Let a ∈ R satisfy a < 1, and
assume that (1.1) holds, where N0(r) counts the non-real zeros of ff ′′/(f ′)2 − a.
Then f satisfies (1.2).

Theorem 1.3 follows easily from the case a = 0 of theorem 1.5. Writing

g =
1
f

,
gg′′

(g′)2
− a = 2 − a − ff ′′

(f ′)2

leads to the following immediate consequence of theorem 1.5, which complements
theorem 1.4.

Theorem 1.6. Let f be a real meromorphic function of finite lower order in the
plane, with finitely many poles and non-real zeros. Let a ∈ R satisfy a > 1, and
assume that (1.1) holds, where N0(r) counts the non-real zeros of ff ′′/(f ′)2 − a.
Then f satisfies (1.2).

For example, taking f(z) = exp(z2) and a = 2 gives

f(z)f ′′(z)
f ′(z)2

− 2 =
1 − 2z2

2z2 ,

which has only real zeros. The case a = 1 is exceptional: indeed, if f(z) is cos z or
sec z, then ff ′′/(f ′)2 − 1 has no zeros at all [3, 28].

The methods of the present paper are also applicable when f ′′ in theorem 1.3 is
replaced by F = f ′′ + a1f

′ + a0f for certain rational functions aj , albeit with a
stronger hypothesis on the frequency of non-real zeros of F .

Theorem 1.7. Let f be a real meromorphic function of finite lower order in the
plane, such that f has finitely many zeros and non-real poles. Let a1 and a0 be real
rational functions such that a1(z) and za0(z) both vanish at infinity, and assume
that F = f ′′ + a1f

′ + a0f has finitely many non-real zeros. Then f satisfies (1.2).

Theorem 1.7 will be proved by showing that the hypotheses imply that f and F
have finitely many zeros in the plane, so that the conclusion follows at once from
the main result of [19]. Meromorphic functions f in the plane, for which f and
f ′′ + a1f

′ + a0f have finitely many zeros, for arbitrary rational functions a1 and
a0, were classified in [20] by means of representations for f and f ′/f . However,
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these representations in [20] are complicated, and so the investigation of this more
general problem in the context of non-real zeros will be left for future research.

It turns out that results in the direction of theorems 1.3, 1.5 and 1.6 may be
proved for functions of infinite order, but these require completely different methods
and will be presented elsewhere. The case of finite lower order treated here depends
on proposition 3.1, which fails for infinite lower order.

2. The Levin–Ostrovskii factorization

Let g be a real transcendental meromorphic function in the plane with finitely many
poles and non-real zeros. Then the logarithmic derivative has a Levin–Ostrovskii
factorization [26,27]

g′

g
= φ1ψ, (2.1)

in which φ1 and ψ are real meromorphic functions, such that φ1 has finitely many
poles and ψ is constructed as follows. If g has finitely many zeros, set ψ = 1. For
g with infinitely many zeros, denote by αp the distinct real zeros of g, ordered so
that

· · · < αp−1 < αp < αp+1 < · · · .

For |p| � p0, where p0 is large, αp and αp+1 are of the same sign, and there is a
zero βp of g′ in the interval (αp, αp+1). Thus, the product

ψ(z) =
∏

|p|�p0

1 − z/βp

1 − z/αp

converges by the alternating series test, and satisfies

0 <
∑

|p|�p0

arg
1 − z/βp

1 − z/αp
=

∑
|p|�p0

arg
βp − z

αp − z
< π for z ∈ H = {z ∈ C : Im z > 0},

so that ψ(H) ⊆ H, which implies in turn that [26, chapter I.6, theorem 8′]

1
5 |ψ(i)| sin θ

r
< |ψ(reiθ)| < 5|ψ(i)| r

sin θ
for r � 1, θ ∈ (0, π). (2.2)

Regardless of whether or not g has infinitely many zeros, this gives

T (r, φ1) � N(r, φ1) + m

(
r,

g′

g

)
+ m

(
r,

1
ψ

)
� m

(
r,

g′

g

)
+ O(log r)

as r → ∞. It follows at once that if g has finite lower order, then φ1 is a rational
function (and g′ has finitely many non-real zeros as asserted in § 1).

Assume for the remainder of this section that g has infinitely many zeros. Since
the image of H under log ψ contains no disc of radius greater than 1

2π, Bloch’s
theorem implies that

∣∣∣∣ψ
′(reiθ)

ψ(reiθ)

∣∣∣∣ � c0

r sin θ
for r � 1, θ ∈ (0, π), (2.3)
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with c0 a positive absolute constant. Furthermore, ψ has a representation [26]

ψ(z) = Az + B +
∑

Bk

(
1

Ak − z
− 1

Ak

)
,

∑ Bk

A2
k

< ∞, Bk = − Res(ψ, Ak) > 0,

⎫⎪⎪⎬
⎪⎪⎭

(2.4)

where A � 0, B ∈ R and the Ak are the poles of ψ (all of which lie in R \ {0}). In
particular, this gives c1 > 0 such that

ψ′(x) = A +
∑ Bk

(Ak − x)2
�

∑
|Ak|�|x|

Bk

4x2 � c1

x2 as |x| → +∞, x ∈ R. (2.5)

3. Lower bounds for certain differential polynomials

We have the following proposition.

Proposition 3.1. Let f be a real meromorphic function of finite lower order in
the plane, with finitely many zeros and infinitely many poles, all but finitely many
of which are real. Let L = f ′/f , let b be a positive real number, and let c and d be
real rational functions such that c(z) and zd(z) both vanish at infinity. Then there
exists R1 ∈ (0,∞) such that

Q(x) = bL(x)2 + c(x)L(x) + L′(x) + d(x)

is positive or infinite for every real x with |x| � R1.

The case where b = 1, c = d = 0, 1/f ∈ V2p and f ′ has only real zeros is
treated in [11, theorem 2], but the present approach is simpler and more general.
The example

f(z) = exp(sin z),
f ′′(z)
f(z)

= L(z)2 + L′(z) = cos2 z − sin z, b = 1, c = d = 0,

shows that proposition 3.1 is false for infinite lower order.
The proof of proposition 3.1 will occupy the remainder of this section. Let f , b, c,

d and Q be as in the hypotheses, and set g = 1/f . Then g satisfies the hypotheses
of § 2, and has infinitely many zeros. Thus, (2.1) implies the representations

f ′

f
= L = −g′

g
= φψ, Q = bL2+cL+L′+d = bφ2ψ2+cφψ+φ′ψ+φψ′+d, (3.1)

where ψ is as constructed in § 2 and where φ = −φ1 is a real rational function.
Hence, φ satisfies

zφ′(z)
φ(z)

= O(1) as z → ∞. (3.2)

Since b > 0, all but finitely many poles of f are poles of Q. Hence, Q is transcen-
dental, and because f(z) may be replaced by f(−z), it obviously suffices to show
that Q(x) is positive or infinite for large x on the positive real axis R

+. The proof
will now be divided into a number of cases. In each case, let x ∈ R

+ be large, but
not a pole of f .
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Case 1. Suppose that φ(∞) = 0.
Let ε be small and positive. Then (2.2) and (3.1) imply that

L(z) = O(1), log g(z) = O(|z|) as |z| → +∞ with ε � |arg z| � π − ε.

Since g has finite lower order and finitely many poles, it follows, using a standard
application of the Phragmén–Lindelöf principle, that ρ(g) � 1. Hence, L has a
representation

L(z) =
f ′(z)
f(z)

= a +
∞∑

k=1

(
1

dk − z
− 1

dk

)
+

R′(z)
R(z)

,

where a ∈ C, the dk are the poles of f in R\{0}, repeated according to multiplicity,
and R is a rational function. This then implies that

Q(x) = bL(x)2 + c(x)L(x) + L′(x) + d(x)

= bL(x)2 + c(x)L(x) +
∞∑

k=1

1
(dk − x)2

+ O

(
1
x2

)
. (3.3)

Estimating the sum in (3.3) gives

x2
∞∑

k=1

1
(dk − x)2

� x2
∑

|dk|�x

1
(dk − x)2

�
∑

|dk|�x

1
4

→ +∞ and
1
x2 = o(L′(x))

as x → +∞. If |c(x)L(x)| � bL(x)2, it is then obvious from (3.3) that Q(x) > 0,
while the contrary case gives L(x) = O(1/x), and hence c(x)L(x) = o(L′(x)) and
so Q(x) > 0 again. This proves proposition 3.1 in case 1.

Case 2. Suppose that φ(∞) ∈ C \ {0}.
In this case, since f has infinitely many real poles and the residues of ψ are

negative, φ(∞) must be real and positive by (3.1), and φ(x)ψ′(x) > 0 by (2.5).
Furthermore, by (2.4), (3.1) and the fact that

Bkφ(Ak) = − Res(L, Ak) � 1

for large k, the estimate (2.5) may be replaced by

lim
x→+∞

x2ψ′(x) = +∞, (3.4)

so that
d(x) = o(φ(x)ψ′(x)) as x → +∞. (3.5)

It now follows from (3.1) that Q(x) > 0, unless

bφ(x)2ψ(x)2 < |(c(x)φ(x) + φ′(x))ψ(x)|, (3.6)

in which case 0 �= ψ(x) = O(x−1) using (3.2). But in this case,

(c(x)φ(x) + φ′(x))ψ(x) = O(x−2) = o(ψ′(x)) = o(φ(x)ψ′(x)),

using (3.2) and (3.4), and (3.1) and (3.5) give Q(x) > 0 again. This disposes of
case 2.
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Case 3. Suppose that φ(∞) = ∞ and f has infinitely many poles on R
+.

Again it follows from (2.4), (3.1) and a consideration of residues that φ(x) > 0,
and hence that φ(x)ψ′(x) > 0, using (2.5). Again (3.5) is satisfied, which then forces
Q(x) > 0, unless (3.6) holds. But (3.6) implies, this time in view of (3.2) and the
fact that φ(∞) = ∞, that

0 �= b|ψ(x)| <
|c(x)φ(x) + φ′(x)|

φ(x)2
, ψ(x) = O(x−2)

and, using (2.5),

(c(x)φ(x) + φ′(x))ψ(x) = O(x−3)φ(x) = o(φ(x)ψ′(x)),

which gives Q(x) > 0 in (3.1) as in case 2.

Case 4. Suppose that φ(∞) = ∞ and f has finitely many poles on R
+.

In this case, let ε be small and positive. Then the function h(z) = 1/(zψ(z)) is
bounded on the rays arg z = ±ε, by (2.2). But ψ has finitely many positive poles,
and hence finitely many positive zeros, by construction. Since ψ has finite lower
order it follows, using the Phragmén–Lindelöf principle, that h(z) is bounded as
z → ∞ with |arg z| � ε. Similar considerations, starting from (2.3), show that
zψ′(z)/ψ(z) is also bounded as z → ∞ with |arg z| � ε. On recalling (3.2) it now
follows that

1
φ(x)ψ(x)

= O(1)

and
c(x)φ(x)ψ(x) + φ′(x)ψ(x) + φ(x)ψ′(x) + d(x) = o(|φ(x)ψ(x)|),

which implies, using (3.1), that Q(x) > 0.
This completes the proof of proposition 3.1.

4. A consequence of a result of Eremenko

The proofs of theorems 1.3, 1.5 and 1.6 depend on the following result from [22].

Theorem 4.1 (Langley [22]). Suppose that the function F is transcendental and
meromorphic of finite lower order in the plane, with

N1(r, F ) = N(r, F ) − N̄(r, F ) + N(r, 1/F ′) = o(T (r, F )) (4.1)

as r → ∞. Then F has a sequence of fixpoints zk → ∞ with F ′(zk) → ∞.

The function N1(r, F ) counts the multiple points of F [10, chapter 2]. Theo-
rem 4.1 was proved in [22] using Eremenko’s characterization [9] of transcendental
meromorphic functions of finite lower order in the plane that satisfy (4.1).

5. Proof of theorem 1.5

Assume that f and a are as in the hypotheses of theorem 1.5, but that f is not of
the form (1.2). Hence, L = f ′/f is transcendental and f has infinitely many poles,
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all but finitely many of which are real. Define h and F by (1.3), and write

H = (a − 1)L2 − L′ = L2
(

a − ff ′′

(f ′)2

)
=

−L2F ′

h
. (5.1)

If z0 is a pole of f ′/f with residue m, then

F (z0) = z0, F ′(z0) = 1 − h

m
, (5.2)

and so F ′ cannot have a zero at a pole of f , since h > 0. Because a − 1 is negative,
proposition 3.1 implies that H(x) is negative or infinite for all x ∈ R with |x| large.
Since all but finitely many poles of L are poles of f , it now follows from (5.1) that
F ′ has finitely many real zeros, and so

N(r, 1/F ′) = o(T (r, L)) as r → ∞, (5.3)

using (1.1) and the definition of N0(r).
Observe next that a multiple pole of F can only arise from a multiple zero of

L = f ′/f . But g = 1/f satisfies the conditions of § 2, and so g′/g = −L has a
Levin–Ostrovskii factorization (2.1), in which φ1 is a rational function, since g has
finite lower order, and all zeros of ψ are simple by construction. This implies that
all but finitely many zeros of L are simple. These considerations and (5.3) now yield

N1(r, F ) = o(T (r, L)) = o(T (r, F )).

Thus theorem 4.1 implies that F has a sequence of fixpoints zk → ∞ satisfying
F ′(zk) → ∞, which is impossible by (5.2). This contradiction proves theorem 1.5
and, as observed in § 1, theorems 1.3 and 1.6 both follow from theorem 1.5.

6. Proof of theorem 1.7

Assume that f , a1 and a0 are as in the hypotheses of theorem 1.7, but that f
is not of the form (1.2). Hence L = f ′/f is transcendental, and f has infinitely
many poles, all but finitely many of which are real. Proposition 3.1 with b = 1,
c = a1 and d = a0 implies that f ′′/f + a1f

′/f + a0 has finitely many real zeros.
Thus, f and f ′′ + a1f

′ + a0f have finitely many zeros in the plane and, by the main
theorem of [19], the function L is rational. This contradiction completes the proof
of theorem 1.7.
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