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Abstract

We consider time-inhomogeneous ordinary differential equations (ODEs) whose param-
eters are governed by an underlying ergodic Markov process. When this underlying
process is accelerated by a factor ε−1, an averaging phenomenon occurs and the solu-
tion of the ODE converges to a deterministic ODE as ε vanishes. We are interested in
cases where this averaged flow is globally attracted to a point. In that case, the equi-
librium distribution of the solution of the ODE converges to a Dirac mass at this point.
We prove an asymptotic expansion in terms of ε for this convergence, with a somewhat
explicit formula for the first-order term. The results are applied in three contexts: linear
Markov-modulated ODEs, randomized splitting schemes, and Lotka–Volterra models in
a random environment. In particular, as a corollary, we prove the existence of two matri-
ces whose convex combinations are all stable but are such that, for a suitable jump rate,
the top Lyapunov exponent of a Markov-modulated linear ODE switching between these
two matrices is positive.
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1. Introduction

Let M be a d-dimensional compact C∞ manifold. Markov-modulated ODEs on M are
dynamical systems (x(t))t�0 that are solutions to

x′(t) = Fσ (t) (x(t)) , (1.1)

where (σ (t))t�0 is a Markov process on some space S and, for all s ∈ S , Fs is a vector field on
M.

We are interested in the high-frequency regime, namely when σ (t) is replaced in (1.1) by
σ (t/ε) for some small ε. Provided σ is ergodic with respect to some probability measure π ,
the modulated process x(t) is known to converge, as ε vanishes, to the solution of the averaged
ODE

x′(t) = F̄(x(t)), where F̄(x) =
∫
S

Fs(x) π (ds). (1.2)

Received 5 October 2023; accepted 7 November 2024.
∗ Postal address: 4 place Jussieu 75005 Paris, France. Email: pierre.monmarche@sorbonne-universite.fr
∗∗ Postal address: Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France. Email: edouard.strickler@
univ-lorraine.fr

© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust.

1

https://doi.org/10.1017/jpr.2024.107 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.107
https://orcid.org/0000-0002-3356-2646
https://orcid.org/0000-0002-2806-8061
mailto:edouard.strickler@univ-lorraine.fr
mailto:edouard.strickler@univ-lorraine.fr
https://doi.org/10.1017/jpr.2024.107


2 P. MONMARCHÉ AND E. STRICKLER

In the case where this averaged ODE has a unique global attractor x̄, we expect the solution of
(1.1) to be close to x̄ for t large and ε small. In other words, the invariant measure of the Markov
process (x(t), σ (t/ε))t�0 converges, as ε vanishes, to δx̄ ⊗ π . The goal of the present work is to
provide an infinitesimal expansion in terms of ε for this invariant measure. This is obtained by
combining a similar expansion for the law of the process for a fixed t> 0 (following [24]) with
a long-time convergence result for the limit process. The structure of the proof follows [25],
which established a similar expansion for the invariant measure of Euler–Maruyam schemes
for diffusion processes (the averaging estimates for a fixed t> 0 being in that case replaced by
finite-time discretization error expansions).

One of our main motivations is to get the first-order term in the expansion of the top
Lyapunov exponent of systems of switched linear ODEs [5, 9, 17], as detailed in Section 3.1.
Our result also has applications, for instance, in some population models [4, 6, 22] or random
splitting numerical schemes [1], cf. Section 3. More generally, Markov-modulated ODEs form
a flexible class of Markov processes which appear in a variety of models, often to describe
systems evolving in a randomly fluctuating environment, as in finance [13], biology [18] or
reliability [20]. It is related to random ODEs; see, e.g., [2, 10] and references within.

In the specific context of piecewise-deterministic Markov processes (namely, when σ is a
Markov chain on a finite set), the question of fast averaging has been addressed in [14], where
a large-deviation principle is proved; in [24], where the expansion of the law of the process at
fixed time t is given; or in [8], where the convergence of the invariant measure of the Markov
process (x(t), σ (t/ε))t�0 is proved. In the recent paper [16], the authors deal with the case
where σ is not ergodic.

The convergence of the invariant measure of the process in the fast-switching regime has
been studied in some situations where the limit flow has a unique attractive point or cycle
and possibly several unstable equilibria; see, for instance, in [5, 9, 12]. The analysis is then
much more intricate than in our case (simply to get a convergence, without any asymptotic
expansion) as the convergence toward the stable element cannot be uniform over the space.
Some controllability conditions in the vicinity of unstable points are then necessary to ensure
switching Markov process does not get stuck there, leading to some estimates on the exit times
from small balls around these points or to the construction of suitable Lyapunov functions.
Refining these arguments to get an asymptotic expansion in such more general situations is
outside the scope of the present work.

The paper is organized as follows. In the remainder of this introduction we introduce our
general notation and assumptions. Our main result, Theorem 2.1, is stated and proved in
Section 2. Section 3 is devoted to examples of applications. Finally, an appendix gathers the
proofs of some intermediate results.

1.1. Notation and assumptions

To conclude this section, let us clarify our setup. Denote by (Qt)t�0 the semigroup
associated with (σt)t�0, namely Qtf (σ ) =Eσ ( f (σt)), and by Q its infinitesimal generator.

Denote by A the set of bounded measurable functions from M× S to R which are C∞ in
their first variable x and such that all their derivatives in x are bounded over M× S , and which,
moreover, are such that, for all x ∈M and all multi-index α, s �→ ∂αx f (x, s) is in the domain of
Q. We consider on A the norms ||| f |||j =∑|α|�j ‖∂αx f ‖∞.
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Asymptotic expansion of invariant measure 3

Assumption 1.1.

(i) Almost surely, the ODE (1.1) is well-defined for all times, with values in M. Moreover,
the coordinates of (x, s) �→ Fs(x) are in A.

(ii) The semigroup (Qt)t�0 admits a unique invariant probability measure π . Moreover,
there exist C, γ > 0 such that

‖Qt f − π f ‖∞ � Ce−γ t‖ f ‖∞ (1.3)

for all bounded measurable f on S and all t � 0.

The uniform exponential ergodicity (1.3) implies that the operator Q−1 given by

Q−1f :=
∫ ∞

0
Qt (π f − f ) dt (1.4)

is well-defined for all f ∈A, with Q−1f ∈A and |||Q−1f |||j � C/γ ||| f |||j for all j ∈N. Moreover,
using that ∂tQtf = QQtf =QtQf for all t � 0, we get that QQ−1f = Q−1Qf = f − π f for f ∈
A, i.e. Q−1 is the pseudo-inverse of Q.

Example 1.1. A case of interest is given by Qf = π f − f , which corresponds to σ (t) = YNt

where (Nt)t�0 is a standard Poisson process with intensity 1, Y0 = σ (0), and (Yk)k�1 is an
indpendent and identically distributed sequence of random variables distributed according to
π . It is readily checked that, in that case, Qtf = e−tf + (1 − e−t)π f , and then Q−1 = Q.

Example 1.2. We will be particularly concerned with the case when S is a finite state space
and (σt)t�0 is an irreducible continuous-time Markov chain on S , with transition rate matrix
Q. In that case, Q−1 is the group inverse of Q, defined as the unique matrix solution X to

QXQ = Q, XQX = X, XQ = QX. (1.5)

[Such a matrix exists and is unique since Q has index 1, meaning that Q2 and Q have the
same rank, because 0 is a simple eigenvalue of Q; see [3, Chapter 4] for more details.] In the
particular case when the cardinality of S is two, Q can be written as

Q =
(−p p

q −q

)

for some p, q> 0. Moreover, we can easily check, using Q2 = −(p + q)Q, that X =
(1/(p + q)2)Q satisfies (1.5), and therefore Q−1 = (1/(p + q)2)Q.

2. High-frequency expansion

The process (X(t), σ (t/ε))t�0 is a Markov process on M× S with generator L = Lc +
(1/ε)Q, where Q is seen as an operator on functions on M× S acting only on the second
variable, and Lcf (x, s) = Fs(x) · ∇xf (x, s) for all f ∈A. For t � 0, denote by Pεt the associated
Markov semigroup, namely Pεt f (x, s) =Ex,s (f (X(t), σ (t/ε))).

We start by stating an expansion in ε of Pεt for a fixed t (the proof is postponed to the
Appendix). This is essentially the result (and proof) of [24] but written in a dual form and with
more explicit functional settings. Moreover, [24] only considers the case where S is a finite
set, but it allows the jump rates of σ to depend on x.

Proposition 2.1. There exist two families of operators P(k)
t , S(k)

t indexed by t � 0, k ∈N and
acting on A, with the following properties:
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4 P. MONMARCHÉ AND E. STRICKLER

• For all k, j ∈N and T > 0, there exists C> 0 such that, for all f ∈A,

sup
t∈[0,T]

∣∣∣∣∣∣∣∣∣P(k)
t f
∣∣∣∣∣∣∣∣∣

j
� C||| f |||j+2k. (2.1)

• For all k, j ∈N, there exist C, γ > 0 such that, for all t � 0 and all f ∈A,∣∣∣∣∣∣∣∣∣S(k)
t f
∣∣∣∣∣∣∣∣∣

j
� Ce−γ t||| f |||j+2k. (2.2)

• For all n ∈N, T � 0, and j ∈N, there exists C> 0 such that, for all ε > 0 and f ∈A, the
remainder Rεn,tf defined by

Rεn,tf = Pεt f −
n∑

k=0

εkP(k)
t f −

n∑
k=0

εkS(k)
t/ε f (2.3)

satisfies
|||Rεn,t f |||j � Cεn+1||| f |||j+3+2n. (2.4)

• The first operators are given by

P(0)
t f (x, s) = π f (ϕ̄t(x)), (2.5)

S(0)
t f (x, s) =Qtf (x, s) − π f (x),

P(1)
t f (x, s) = b1(t, x, s) +

∫ +∞

0
π (LcS(0)

r f )(x) dr +
∫ t

0
π (Lcb1)(r, ϕ̄t−r(x)) dr,

where
b1(t, x, s) = Q−1(∂tP

(0)
t f − LcP(0)

t f )(x, s). (2.6)

Next, to address the question of the long-time behaviour of the process, we work under the
following condition.

Assumption 2.1. There is a globally attractive x̄ ∈M for the averaged flow F̄ given in (1.2)
and, for all j ∈N, there exist C, a> 0 such that, for all t � 0 and f ∈ C∞(M),

||| f ◦ ϕt − f (x̄)|||j � Ce−at||| f |||j+1,

where ϕ is the flow associated with F̄.

Under Assumption 2.1, μ0 = δx̄ ⊗ π is the unique invariant measure of P(0)
t given in (2.5).

Our main result is the following expansion in terms of ε of any invariant measure of the process
(Pεt )t�0, in the spirit of Talay–Tubaro expansions in terms of the step size for discretization
schemes [25].

Theorem 2.1. Under Assumptions 1.1 and 2.1, for all f ∈A there exist real sequences (ck)k�1
and (Mk)k�1 such that, for all n ∈N and any invariant measure με of (Pεt )t�0,∣∣∣∣∣μεf −μ0f −

n∑
k=1

ckε
k

∣∣∣∣∣� Mnε
n+1. (2.7)
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Moreover,
c1 = πLcQ−1 (Lch − f ) (x̄) (2.8)

where, for (x, s) ∈M× S ,

h(x, s) =
∫ ∞

0
π( f (x̄) − f (ϕr(x))) dr. (2.9)

Remark 2.1. In dimension 1, it is possible to get an alternative expression for the function h
appearing in (2.8). Indeed, for fixed x ∈R, with the change of variables y = ϕr(x) we obtain,
since dϕr(x)/dr = F̄(ϕr(x)),

h(x, s) =
∫ +∞

0
(π f (x̄) − π f (ϕr(x))) dr =

∫ x

x̄

π f (y) − π f (x̄)

F̄(y)
dy.

We will use this expression in Section 3.3.

Proof of Theorem 2.1. The proof is divided into two parts. In the first one we prove (2.7),
and we give an expression for c1 which depends on an arbitrary time t> 0. In the second part,
we obtain the stated expression for c1 by letting t vanish in this first expression.

Step 1. Fix t> 0, f ∈A, and let με be an invariant measure of (Pεs )s�0. By definition of the
flow ϕt,

(P(0)
t )nf (x, i) = π f

(
ϕ◦n

t (x)
)= π f (ϕtn(x)) .

Hence,
∣∣∣∣∣∣∣∣∣(P(0)

t
)n(μ0 f − f )

∣∣∣∣∣∣∣∣∣
j
= |||π f (x̄) − π (f ◦ ϕtn)|||j � Ce−atn||| f |||j+1. As a consequence,

the function 
t given by 
t =∑∞
n=0

(
P(0)

t
)n(μ0f − f ) is well-defined in A and such that, for

all j � 0, |||
t|||j ≤ Cj||| f |||j+1 for some Cj > 0 independent of f . Moreover,

(
P(0)

t − Id
)

t =

∞∑
n=1

(
P(0)

t
)n(μ0 f − f ) −

∞∑
n=0

(
P(0)

t
)n(μ0 f − f ) = f −μ0 f .

Then, using this Poisson equation and that με is invariant for Pεt ,

με f −μ0 f =με
(
P(0)

t − Id
)

t =με

(
P(0)

t − Pεt
)

t.

To get the convergence of μεf to μ0f at zeroth order, we simply bound, thanks to
Proposition 2.1,

|με f −μ0 f |� ∥∥(P(0)
t − Pεt

)

t
∥∥∞ � Cε|||
t|||3.

To get the higher-order expansion, write

με f −μ0 f =με
(
P(0)

t − Pεt
)

t = −με

(
n∑

k=1

εkP(k)
t +

n∑
k=0

εkS(k)
t/ε + Rεn,t

)

t. (2.10)

From Proposition 2.1 and the bounds on |||
t|||j for all j ∈N,∣∣∣∣∣με
(

n∑
k=0

εkS(k)
t/ε + Rεn,t

)

t

∣∣∣∣∣� Cnε
n+1
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for some Cn. Using that, from the convergence at order 0,
∣∣μεP(k)

t 
t −μ0P(k)
t 
t

∣∣� C0,kε for
all k ∈N for some C0,k > 0, we get first with (2.10) at order n = 1 that∣∣με f −μ0 f + εμ0P(1)

t 
t
∣∣� C1,0ε

2 (2.11)

for some C1,0 > 0. We can thus apply this first-order expansion with f replaced by P(k)
t 
t to get∣∣μεP(k)

t 
t − c0,k − c1,kε
∣∣� C1,kε

2 for some c0,k, c1,k,C1,k. Hence, considering the expansion
(2.10) at order n = 2, we get

|με f −μ0 f − εc0,1 − ε2c1,1 − ε2c0,2|� C2,0ε
3

for some C2,0 > 0. Again, this can be used with f replaced by P(k)
t 
t, and a straightforward

induction on n concludes the proof of (2.7). In particular, from (2.11), we see that, for all t> 0,
c1 can be written as c1 = −μ0P(1)

t 
t.
Step 2. The goal is now to let t vanish in this last expression. For a fixed t> 0, denote by

b
1 the function given by (2.6) but with f replaced by 
t. Then

P(1)
t 
t(x, s) = b
1 (t, x, s) + α(x) + β(t, x),

with

α(x) =
∫ +∞

0
π
(
LcS(0)

r 
t
)
(x) dr, β(t, x) =

∫ t

0
π
(
Lcb
1

)
(r, ϕ̄t−r(x)) dr.

First, by definition of Q−1, the average of b
1 with respect to π , hence with respect to μ0, is

zero. At this stage, we have obtained that c1 = −μ0α−μ0β. Recalling that S(0)
r f =Qr( f −

π f ), from


t(x, s) = π f (x̄) − f (x, s) +
∞∑

n=1

π( f (x̄) − f (ϕtn(x))) ,

integrating with respect to π , we get

∇xS(0)
r 
t(x̄, s) = ∇xQr (
t − π
t) (x̄, s) = ∇xQr(π f − f ) (x̄, s).

As a consequence,

μ0(α) = α(x̄) =
∫ ∞

0
πLcS(0)

r 
t(x̄) dr =
∫
S

Fs(x̄) ·
[∫ ∞

0
∇xQr(π f − f ) dr

]
(x̄, s) π (ds)

=
∫
S

Fs(x̄) · ∇xQ−1f (x̄, s) π (ds)

= πLcQ−1f (x̄).

Also,

μ0(β) =
∫ t

0
πLcb
1 (r, x̄) dr = π

[
Lc

∫ t

0
b
1 (r, ·) dr

]
(x̄)

= π

[
Lc

∫ t

0
Q−1

(
∂rP(0)

r 
t − LcP(0)
r 
t

)
dr

]
(x̄)

= −π
[

LcQ−1
∫ t

0
LcP(0)

r 
t dr

]
(x̄),

where we used that ∂rP(0)
r 
t does not depend on s and is thus in the kernel of Q−1. Hence,
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∫ t

0
πLcb
1 (s, x̄) ds = −π

[
LcQ−1 1

t

∫ t

0
LcP(0)

r (t
t) dr

]
(x̄) −→

t→0
−π

[
LcQ−1Lc(πh)

]
(x̄),

where we used that P(0)
0 f = π f and that t
t → h. Indeed, thanks to Assumption 2.1,

t
t(x) = tπ f (x̄) − tf (x, s) + t
∞∑

n=1

π ( f (x̄) − f (ϕtn(x)))

−→
t→0

∫ ∞

0
π ( f (x̄) − f (ϕr(x))) dr = h(x),

and the convergence t
 → h holds in all norms |||·|||j. The proof of (2.8) is concluded by letting
t vanish in the equality c1 = −μ0α−μ0β (since c1 is independent of t). �

3. Applications

3.1. Top Lyapunov exponent for cooperative linear Markov-modulated ODEs

In this section, we consider linear Markov-modulated ODEs on R
d of the form

z′(t) = A (σ (t/ε)) z(t) (3.1)

where, for all σ ∈ S , A(σ ) is a d × d matrix. We work under Assumption 1.1 and write Ā =∫
S A(s) π (ds). Moreover, we focus on the setup of [7], given as the following assumptions.

Assumption 3.1

(i) The Markov process (σ (t))t�0 is Feller.

(ii) For all s ∈ S , A(s) is a cooperative matrix, in the sense that its off-diagonal coefficients
are non-negative.

(iii) The averaged matrix Ā is irreducible in the sense that, for all i, j ∈ [[1, d]] there exists a
path i = i0, . . . , iq = j with Āik−1,ik > 0 for all k ∈ [[1, q]].

The fact that the matrices are cooperative implies that Rd+ is fixed by (3.1) for t � 0 and that
Assumption 2.1 holds. We decompose solutions of (3.1) on R

d+ as z(t) = ρ(t)θ (t), where ρ(t) =
1 · z(t)> 0 with 1= (1, . . . , 1) ∈R

d and θ (t) = z(t)/ρ(t) ∈�= {x ∈R
d+, x1 + · · · + xd = 1}.

The ODE (3.1) is then equivalent to

ρ′(t) = (1 · A (σ (t/ε)) θ (t))ρ(t), θ ′(t) = Fσ (t/ε)(θ (t)), with Fs(θ ) = A(s)θ − (1 · A(s)θ )θ .

It is proved in [7] that, under Assumption 3.1, the Markov process (θ (t), σ (t/ε))t�0 admits a
unique invariant measure με on �× S and that, for all initial conditions z ∈R

d+ \ {0}, almost
surely, limt→∞ ρ(t)/t =�ε, where�ε:=

∫
�×S 1 · A(s)θ με(dθ, ds) is called the top Lyapunov

exponent of the process. Denoting by λmax(Ā) the principal eigenvalue of Ā (i.e. with maximal
real part), [7, Proposition 4] entails that limε→0 �ε = λmax(Ā). From Theorem 2.1 applied to
the function f : (θ, s) �→ 1 · A(s)θ , we get an expansion of �ε for small ε.

Proposition 3.1. Under Assumptions 1.1 and 3.1, there exists a sequence (ck)k�1 of real
numbers such that, for all n � 1,

�ε = λmax(Ā) +
n∑

k=1

ckε
k + o

ε→0
(εn).
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Moreover, denoting by x̄ and ȳ, respectively, the right and left eigenvectors of Ā associated with
λmax(Ā) and such that x̄ ∈� and x̄ · ȳ = 1,

c1 =
∫
S

ȳQ−1(A)(s)
(

x̄ȳ − I
)

A(s)x̄ π (ds).

Proof. First, considering h given by (2.9), we claim that, for all (x, s) ∈�× S ,

h(x, s) = − ln (ȳ · x). (3.2)

Indeed, note that, for all x ∈M,

π f (ϕr(x))= 1 · ĀerĀx

1d · erĀx
= d

dr
ln
(
1 · erĀx

)
.

Therefore, using that x̄ = ϕr(x̄),

∫ ∞

0
(π f (x̄)− π f (ϕr(x))) dr =

∫ ∞

0

d

dr

(
ln

(
1 · erĀx̄

1 · erĀx

))
dr

= lim
r→∞ ln

(
1 · erĀx̄

1 · erĀx

)
= − ln (ȳ · x),

where we have used the Perron–Frobenius theorem. From (3.2), we deduce that Lch(x, s) =
−Fs(x) · (ȳ/(ȳ · x)). Now, since Fs(x) = A(s)x − fs(x)x, we get

Lch(x, s) − f (x, s) = −A(s)x · ȳ

ȳ · x
,

and then

Q−1(Lch − f )(x, s) = −Q−1(A)(s)x · ȳ

ȳ · x
,

from which we deduce that

∇xQ−1(Lch − f )(x̄, s) = Q−1(A)(s)x̄ · ȳ

(ȳ · x̄)2
ȳ − [Q−1(A)(s)]ȳ

ȳ · x̄

= (Q−1(A)(s)x̄ · ȳ)ȳ − [Q−1(A)(s)]ȳ,

where we have used that x̄ · ȳ = 1. As a consequence,

Fs(x̄) · ∇xQ−1(Lch − f )(x̄, s)

= (A(s)x̄ − (1 · A(s)x̄)x̄) ·
(

(Q−1(A)(s)x̄ · ȳ)ȳ − [Q−1(A)(s)]ȳ
)

= (Q−1(A)(s)x̄ · ȳ)A(s)x̄ · ȳ − A(s)x̄ · [Q−1(A)(s)]ȳ

− (1 · A(s)x̄)(Q−1(A)(s)x̄ · ȳ)x̄ · ȳ + (1 · A(s)x̄)x̄ · [Q−1(A)(s)]ȳ.

Since x̄ · ȳ = 1, we see that the last line is equal to

−(1 · A(s)x̄)Q−1(A)(s)x̄ · ȳ + (1 · A(s)x̄)Q−1(A)(s)x̄ · ȳ = 0.
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We end up with

Fs(x̄) · ∇xQ−1(Lch − f )(x̄, s) = (Q−1(A)(s)x̄ · ȳ)A(s)x̄ · ȳ − Q−1(A)(s)A(s)x̄ · ȳ

= ȳQ−1(A)(s)
[
x̄ȳ − I

]
A(s)x̄.

Integrating with respect to π leads to

c1 =
∫
S

ȳQ−1(A)(s)
(

x̄ȳ − I
)

A(s)x̄ π (ds).
�

Example 3.1. If σ is a Markov chain on S = {0, 1} with matrix rates given by

Q =
( −p p

1 − p −(1 − p)

)
, (3.3)

we get the following simple expression for c1:

c1 = p(1 − p)
[
ȳ(A0 − A1)2x̄ − (ȳ(A0 − A1)x̄)2]. (3.4)

Indeed, recalling that Q−1 = Q (see Example 1.2) and using that πsQs,s′ = p(1 − p) if s �= s′ and
−p(1 − p) if s = s′, we get c1 = ȳ(A0PA0 + A1PA1 − A0PA1 − A1PA0)x̄, where P = I − x̄ȳ.
Now,

ȳA0x̄ȳA1x̄ + ȳA1x̄ȳA0x̄ − ȳA0x̄ȳA0x̄ − ȳA1x̄ȳA1x̄ = −(ȳ(A0 − A1)x̄)2

and ȳA0A1x̄ + ȳA1A0x̄ − ȳA0A0x̄ − ȳA1A1x̄ = −ȳ(A0 − A1)2x̄, which induces (3.4).

When considering the switching between matrices (Ai)i∈S , the following natural question
arises: if all the matrices are stable (i.e. λmax(Ai)< 0 for all i ∈ S), is the switched system
(3.1) stable, in the sense that �ε < 0? It is now known that this is not true. In the case of
random switching between two 2 × 2 matrices, examples of stable matrices giving an unstable
system can be founded in [5] and [21]. In the first reference, for p = 1

2 , λmax(Ā)< 0 so that
fast switching leads to an unstable system. In the second reference it is a bit more complicated,
since λmax(Ā)> 0 for all p ∈ (0, 1), meaning that both slow and fast switching lead to a stable
system. However, [21] showed that if switching neither too fast nor too slowly, the system is
unstable. Yet, in [21], the matrices are not cooperative in the sense of Assumption 3.1. This is
not surprising, since it is proved in [17] that switching between cooperative matrices of size
2 × 2 such that every matrix in the convex hull of the given matrices is stable, will always
lead to a stable system. However, it is also shown in [17] that it is possible in some higher
dimensions to construct an example where all the matrices in the convex hull are stable, and
for which there exists a periodic switching such that the linear system explodes. Later, an
explicit example in dimension 3 was given in [15]. Precisely, consider the matrices

A0 =
⎛
⎝−1 0 0

10 −1 0
0 0 −10

⎞
⎠ , A1 =

⎛
⎝−10 0 10

0 −10 0
0 10 −1

⎞
⎠ . (3.5)

It is shown in [15] that every convex combination of A0 and A1 is stable, and yet a switch
of period 1 between A0 and A1 yields an explosion. In [8], the authors asked the question
whether the same system but with Markovian switching can lead to explosion. Using numerical
simulations, they suggest that this is true and the Lyapunov exponent is positive for neither too
fast nor too slow switching. Now, using (3.4), we rigorously prove the following assertion.
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(a) (b)

FIGURE 1. Plots of p from the proof of Proposition 3.2.

Proposition 3.2. There exist two cooperative matrices B0 and B1 such that:

• For all p ∈ [0, 1], λmax((1 − p)B0 + pB1)< 0.

• For some ε > 0 and p ∈ (0, 1), the top Lyapunov exponent �ε of the system (3.1) with σ
generated by Q given in (3.3) is positive.

Proof. To emphasize the dependency on p, we write Ā(p), �ε(p), and c1(p) for the mean
matrix, the top Lyapunov exponent, and the first-order derivative, respectively, when the
switching rates are given by the matrix Q in (3.3), and the matrices are (3.5). We also write
λmax(p) for λmax(Ā(p)). Figure 1(a) shows p �→ λmax(p), and we can see that the maximal
value of this function is attained at some p∗ ∈ [0.3, 0.5] and is worth λ∗

max ∈ [ −0.5,−0.45].
We can see from Figure 1(b), which shows p �→ c1(p), that on the interval [0.3, 0.5] we have
c1(p) � 15, so that, in particular, c1(p∗) � 15> 0.

Let δ > 0 and Aδi = Ai + δI. Replacing Ai by Aδi in (3.1), we can easily check that the
Lyapunov exponent of the system is �δε(p) =�ε(p) + δ. Moreover, f δi (x) = 1 · (Ai + δI)x,
so that Fδi = Fi, and the dynamic of the angular part of (3.1) is independent of δ. Hence,
Proposition 3.1 entails that �δε(p) � λmax(p) + δ + c1(p)ε− M(p)ε2 for some constant M(p)
depending on p. Choosing p = p∗ and ε= c1(p∗)/2M(p∗)> 0 yields

�δε(p
∗) � λmax(p∗) + δ + c1(p∗)2

4M(p∗)
.

Letting δ= −(c1(p∗)2/8M(p∗)) − λmax(p∗) concludes the proof, since

• �δε(p
∗) � c2

1(p∗)/8M(p∗)> 0;

• for all p ∈ [0, 1], λmax(Aδp) ≤ λmax(Aδp∗) = λmax(p∗) + δ = −c2
1(p∗)/8M(p∗)< 0. �

Example 3.2. Assume as in Example 1.1 that Qf = Q−1f = π f − f . Then we have
Q−1(A)(s) = Ā − A(s). Using ȳĀ = λ(Ā)ȳ and ȳx̄ = 1, we get ȳĀ(x̄ȳ − I) = 0, which
yields c1 = ∫S ȳA2(s)x̄ − (ȳA(s)x̄)2 π (ds). Notice that, from Jensen’s inequality,
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∫
S

(ȳA(s)x̄)2 π (ds) �
( ∫

S
ȳA(s)x̄ π (ds)

)2

= λmax(Ā)2,

so that

c1 �
∫
S

ȳA2(s)x̄ π (ds) − λmax(Ā)2 = ȳA2x̄ − λmax(A
2
) = ȳ(A2 − A

2)
x̄.

For further considerations and examples on the monotonicity of Lyapunov exponents in
terms of the switching rate, we refer the interested reader to the follow-up work [23].

3.2. Richardson extrapolation for randomized splitting schemes

In [1], in order to approximate the solution of an ODE of the form

ẏ(t) = F̄(y(t)), (3.6)

the vector field F̄ is split into F̄(x) =∑N
k=1 Fk(x), where each flow ẋ = Fk(x) can be solved

exactly. More precisely, the two main examples of interest in [1] (to which we refer for details
and motivation) are the so-called Lorenz-96 model and a finite-dimensional Galerkin projec-
tion of the vorticity formulation of two-dimensional Navier–Stokes. The trajectory y is then
approximated by a discrete-time scheme of the form

xεn+1 =�1
τ1/ε

◦ · · · ◦�N
τN/ε

(xεn),

where�i
t is the flow associated to Fi at time t and τ1, . . . , τN are independent random variables

distributed according to the standard exponential law. More precisely, for a fixed t> 0, y(t) is
approximated by xεn with nε= t, for a small ε. Notice that this does not enter directly our
framework. However, consider the Markov-modulated ODE ẋε(t) = Fσ (Nt/ε)(xε(t)), where σ is
a cyclic chain on [[1,N]] with rate 1 (i.e. it is a standard Poisson process modulo N). We can
take the times τi to define the jump times of σ , and thus xεn is exactly xε(εSn/N), where Sn is the
(nN)th jump time of σ . In particular, if nε= t, assuming that the vector fields Fk are bounded,

|xε(t) − xεn| = |xε(t) − xε(εSn/N) |� max
k∈[[1,N]]

‖Fk‖∞|εSn/N − t|,
E|(εSn/N) − t|2 = nε2/N = tε/N.

In other words, (xε(t))t�0 (which can be sampled exactly if (xεn)n∈N can) can be seen as an
alternative variation of the scheme of [1].

The convergence of xεn to y(t) as ε→ 0 for a fixed t = nε, or more precisely of the corre-
sponding Markov transition operators, is stated in [1, Theorem 4.1], which is thus similar to our
Proposition 2.1 at order n = 0. Notice that, a priori, the ODE (3.6) is in R

d but [1, Theorem 4.1]
is proved by restricting the study on the orbit of the process, which is assumed to be bounded
(this is [1, Assumption 1]), so that our results apply in this context.

The higher-order expansion in Proposition 2.1 enables the use of a Richardson extrapolation
to get better convergence rates.

Indeed, we get that, for any fixed x0 ∈R
d, t> 0 and f ∈A, setting ct = P(1)

t f (x0), there exists
C> 0 such that, for all ε ∈ (0, 1], |E ( f (ϕt(x0))− f (xε(t)))− ctε|� Cε2. As a consequence,
for any r> 1, taking θ = r/(r − 1) so that θ + (1 − θ )r = 0, we get∣∣f (ϕt(x0))− [θE (f (xε(t)))+ (1 − θ )E (f (xεr(t)))

] ∣∣� (2θ − 1)C‖f ‖3ε
2,
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FIGURE 2. Weak error for the conservative Lorenz-96 model for the basic estimator x̂ε(t) and the
extrapolation ŷε(t).

providing an approximation of f (ϕt(x0)) with a second-order weak error in terms of ε, at a
numerical cost less than twice the simulation of xε(t) (since r> 1, there are on average fewer
jumps for xεr(t)).

As a simple illustration, we consider the conservative Lorenz-96 model from [1], which is
(3.6) with, denoting by ek the kth vector of the canonical basis of Rd,

Fk(x) = (xk+1ek − xkek+1)xk−1,

where the indexes are periodized in the sense that xn+1 = x1, xn = x0, and x−1 = xn−1. Along
the flow ẋ = Fk(x), all coordinates but xk and xk+1 are preserved, and

(
xk(t)

xk+1(t)

)
=
(

cos(xk−1(0)t) sin(xk−1(0)t)
− sin(xk−1(0)t) cos(xk−1(0)t)

)(
xk(0)

xk+1(0)

)
.

We run a trajectory up to time t = 10 starting from x(0) = (1, . . . , 1), which is a fixed point
of F̄ but not of any Fk. We compute x̂ε(t), the average of xε(t) over m = 105 independent
experiments for each value of ε ∈ {( 3

4

)k
, k ∈ [[0, 20]]

}
. Taking r = ( 4

3

)5 � 4.21 and θ = r/(r −
1) we define the extrapolation ŷε(t) = θ x̂ε(t) + (1 − θ )x̂rε(t) for ε ∈ {( 3

4

)k
, k ∈ [[5, 20]]

}
. The

errors |x̂(t) − x(0)| and |ŷ(t) − x(0)| in terms of ε are plotted (in log–log scale) in Figure 2,
where the speed-up of the extrapolation is clear.
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3.3. Species invasion rate in a two-species Lotka–Volterra model in a random
environment

We consider a model of two species in interaction, in a random environment, described by
the following system of Lotka–Volterra equations:⎧⎪⎪⎨

⎪⎪⎩
dX(t)

dt
= X(t)

(
aσ (t)

10 − aσ (t)
11 X(t) + aσ (t)

12 Y(t)
)
,

dY(t)

dt
= Y(t)

(
aσ (t)

20 + aσ (t)
21 X(t) − aσ (t)

22 Y(t)
)
.

(3.7)

We assume that as
11, as

22 > 0 (intraspecific competition); the other parameters can be positive
or negative. The coefficients as

10 and as
20 represent the growth rates of species 1 and 2 respec-

tively, while the coefficients as
12 and as

21 model the interaction between the two species. If, for
example, as

10, as
21 > 0 while as

20, as
12 < 0, we get a prey–predator system (species 1 being the

prey, and species 2 the predator). Assumption 1.1 is also enforced in this whole section.
In the absence of species 2 and after accelerating the dynamics of σ by a factor 1/ε, species

1 evolves according to a logistic equation in a random environment:

dX(t)

dt
= X(t)

(
aσ (t/ε)

10 − aσ (t/ε)
11 X(t)

)
. (3.8)

We prove the following result in the Appendix.

Lemma 3.1. Assume that p0:= infs∈S as
10/a

s
11 > 0, p1:= sups∈S as

10/a
s
11 <+∞, and

infs∈S a11
s > 0. Then the process (X(t), σ (t/ε))t�0 with X given by (3.8) and X(0) �= 0

will ultimately lie in E:= [p0, p1] × S and admits a unique stationary distribution με on E.
Moreover, (X(t), σ (t/ε)) converges in law to με when t goes to infinity.

The stationary distribution με represents the population of species 1 at equilibrium in the
absence of species 2. The invasion growth rate of species 2 when species 1 is at equilibrium is
then given by �y(ε) = ∫M×S (as

20 + as
21x)με(dx, ds). Intuitively, we are interested in the sign

of this quantity, since when the abundance of the second species is close to 0 we have, roughly,

1

t
ln (Y(t)) � 1

t

∫ t

0

[
aσ (u/ε)

20 + aσ (u/ε)
21 X(u)

]
du,

where X solves (3.8) and the right-hand side converges to�y(ε) when t goes to infinity, thanks
to Lemma 3.1 and the ergodic theorem. It is made rigorous in [4] that, indeed, the sign of�y(ε)
gives information on the local behaviour of (3.7) near the boundary {y = 0}. We illustrate this
in Figure 3, considering two cases with two environments (i.e. σ ∈ {1, 2}), with the parame-
ters detailed in Table 1. These parameters are chosen so that �y is increasing in Case 1 and
decreasing in Case 2, and changes sign at some point in both cases.

In Figure 3(a), �y(ε) is estimated by Monte Carlo with a long simulation of (3.8). We see
that the Lyapunov exponent decreases (resp. increases) when the switching rate ε−1 increases
in Case 1 (resp. Case 2). In Figure 3(b), (c), and (d), (3.7) is simulated with initial condition
(X0, Y0) = (1, 10−2). In Case 1 in Figure 3(b), the second species is persistent (i.e. invasion
occurs) for ε= 1 (where �y(ε)> 0), but as the switching rate increases, extinction occurs (for
ε= 10−3, the trajectory is close to the deterministic averaged flow, for which yt vanishes expo-
nentially fast). Conversely, in Figure 3(c) and (d) with the parameters of Case 2, slow switching
(ε ∈ {1, 10}) gives �y(ε)< 0 and extinction, while fast switching leads to persistence/invasion
(as in the deterministic averaged flow, close to the ε= 10−3 case).
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TABLE 1. Values of the parameters of (3.7) in the two cases of Figure 3.

σ aσ10 aσ11 aσ12 aσ20 aσ21 aσ22

Case 1 1 2 1 0 −6 5 1
2 1 1 0 −6 3 1

Case 2 1 3 1 0 −8 2 1
2 2 1 0 −9 5 1

(a) (b)

(c) (d)

FIGURE 3. Simulation of Lotka–Volterra models with the parameters of Table 1.

Denoting by ᾱ = ∫S αs π (ds) the mean with respect to π of a function α defined on S , it is
proved in [6], in the specific case when σ is a two-state Markov chain, that�y(ε) converges as
ε goes to 0 to ā20 + ā21x̄. The following proposition extends this result to the general case of a
process σ satisfying Assumption 1.1 and with a first-order expansion.

Proposition 3.3. Assume that infs∈S as
10 > 0 and sups∈S as

11 <+∞. Then, for any invariant
probability measure με of (Xt, σ (t/ε))t≥0,
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�y(ε) = ā20 + ā21x̄ + ε
ā21ā2

10

ā11

∫
S

(
as

10

ā10
− as

11

ā11

)
Q−1

(
a11

ā11
− a21

ā21

)
(s) π (ds) + o

ε→0
(ε).

Proof. First, note that the unique equilibrium of F̄(x) = x(ā10 − ā11x) is x̄:= ā10/ā11, and
Assumption 2.1 holds (since, thanks to Lemma 3.1, it is sufficient to consider initial conditions
in the compact set [p0, p1]). By Theorem 2.1, and since the marginal of με in s is independent
of ε (so that με(a20) = ā20), we have

�y(ε) = ā20 + ā21x̄ + εc1 + o
ε→0

(ε),

with c1 = πLcQ−1 (Lch − f ) (x̄) for f (x, s) = as
21x. Using the formula for h derived in Remark

2.1, we have

h(x, s) =
∫ x

x̄

f̄ (y) − f̄ (x̄)

F̄(y)
dy =

∫ x

x̄
ā21

y − x̄

y(ā10 − ā11y)
dy = ā21

ā11
ln

(
x̄

x

)
,

which yields Lch(x, s) = −(as
10 − as

11x)ā21/ā11. Then, ∇x(Lch − f ) = a11ā21/ā11 − a21, so that

LcQ−1 (Lch − f ) (x̄, s) = x̄(as
10 − as

11x̄)Q−1
(

ā21

ā11
a11 − a21

)
(s),

and finally, integrating this with respect to π and using that x̄ = ā10/ā11,

c1 = ā21ā2
10

ā11

∫
S

(
as

10

ā10
− as

11

ā11

)
Q−1

(
a11

ā11
− a21

ā21

)
(s) π (ds), (3.9)

which concludes the proof. �

Let us discuss the sign of the expression (3.9) in some particular cases.

• If as
11 = ā11 and as

10 = ā10 for all s, then �′
y(0) = 0. This is expected, since in that case,

the process X that is the solution to (3.8) is deterministic and does not depend on ε,
and με = δā10/ā11 ⊗ π for all ε. More interestingly, if as

11 = ā11 and as
21 = ā21 but a10 is

varying, we still have �′
y(0) = 0.

• If as
10 = ā10 and as

21 = ā21 for all s, using that πQ−1 = Q−11 = 0, we get

c1 = − ā21ā2
10

ā11

∫
S

as
11

ā11
Q−1

(
a11

ā11

)
(s) π (ds)

= − ā21ā2
10

ā3
11

∫
S

(as
11 − ā11)Q−1 (a11 − ā11) (s) π (ds).

https://doi.org/10.1017/jpr.2024.107 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.107


16 P. MONMARCHÉ AND E. STRICKLER

This is always non-negative, as it can be interpreted as an asymptotic variance. Indeed,
considering g ∈A with πg = 0, for t � 0,

tEπ

∣∣∣∣1t
∫ t

0
g(σ (s)) ds

∣∣∣∣
2

= 2

t
Eπ

∫ t

0

∫ t

s
g(σ (u))g(σ (s)) ds du

= 2

t

∫ t

0

∫ t

s
π(gQu−sg) ds du

= 2

t

∫ t

0

∫ t

0
1v<t−sπ (gQvg) ds dv

= 2

t

∫ t

0
(t − v)π (gQvg) dv −→

t→∞ −2π
(

gQ−1g
)
,

where we used that
∫ t

0 Qvg converges to −Q−1g, and∣∣∣∣
∫ t

0
vπ (gQvg) dv

∣∣∣∣�
∫ ∞

0
Cve−γ v‖g‖2∞ dv.

Example 3.3. We consider the case described in Example 1.1, where Qf = Q−1f = π f − f . In
that case, we get

Q−1
(

a11

ā11
− a21

ā21

)
(s) = as

21

ā21
− as

11

ā11
,

which entails

c1 = a10a21

ā10ā21
+ a2

11

(ā11)2
− a10a11

ā10ā11
− a11a21

ā11ā21
.

Example 3.4. We now consider the two-state case, i.e. σ is a Markov chain on S = {0, 1}, with
matrix rates given by

Q =
( −p p

1 − p −(1 − p)

)

for some p ∈ (0, 1). The behaviour of the solutions to (3.7) was studied in [6] through the signs
of the invasion growth rates of species 1 and 2 in the competitive case (i.e. when as

21 and as
12

are negative). That study was complemented by [22], which proposed an alternative formula
for the invasion growth rate that made it possible for them to understand the monotonicity
of ε �→�y(ε). In particular, it is a consequence of the proof of [22, Lemma 4.1] that ε �→
�y(ε) is increasing if A2 > 0 while it is decreasing if A2 < 0, where A2 is the coefficient of the
second-order term of the polynomial

P(x) =
[

a1
20

a1
10

(
1 + a1

21

a1
20

x

)(
1 − a0

11

a0
10

x

)
− a0

20

a0
10

(
1 + a0

21

a0
20

x

)(
1 − a1

11

a1
10

x

)]
a1

11/a
1
10 − a0

11/a
0
10

|a1
11/a

1
10 − a0

11/a
0
10|
,

that is, A2 = (a1
11a0

21 − a0
11a1

21)/(a0
10a1

10), if we assume without loss of generality that a1
11a1

10 �
a0

11a0
10. Let us prove that our results are in accordance with the results of [22] by studying the

sign of the first-order term of the expansion of ε �→�y(ε) when ε→ 0. Using Example 1.2,
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we have π = (1 − p, p), Q−1 = Q, and πsQs,s′ = p(1 − p) if s �= s′ and −p(1 − p) if s = s′, from
which we compute

c1 = ā21ā2
10

ā11

∑
s,s′∈0,1

πsQs,s′
(

as
10

ā10
− as

11

ā11

)(
as′

11

ā11
− as′

21

ā21

)

= ā21ā2
10

ā11
p(1 − p)

[ (
a0

10

ā10
− a0

11

ā11

)(
a1

11

ā11
− a1

21

ā21

)
+
(

a1
10

ā10
− a1

11

ā11

)(
a0

11

ā11
− a0

21

ā21

)

−
(

a0
10

ā10
− a0

11

ā11

)(
a0

11

ā11
− a0

21

ā21

)
−
(

a1
10

ā10
− a1

11

ā11

)(
a1

11

ā11
− a1

21

ā21

) ]

= ā21ā2
10

ā11
p(1 − p)

[
a0

10

ā10
− a0

11

ā11
−
(

a1
10

ā10
− a1

11

ā11

) ][
a1

11

ā11
− a1

21

ā21
−
(

a0
11

ā11
− a0

21

ā21

) ]

= ā21ā2
10

ā11
p(1 − p)

(
a0

10 − a1
10

ā10
− a0

11 − a1
11

ā11

)(
a1

11 − a0
11

ā11
− a1

21 − a0
21

ā21

)

= p(1 − p)a0
10a1

10ā10

(ā11)3

(
a1

11

a1
10

− a0
11

a0
10

)(
a1

11a0
21 − a0

11a1
21

)
.

Since we have assumed that a1
11/a

1
10 � a0

11/a
0
10, the sign of �′

y(0) is indeed the same as that of

a1
11a0

21 − a0
11a1

21.

In Example 3.4 we see that the sign of c1 only depends on the coefficients of the vector
fields, through the sign of a1

11a0
21 − a0

11a1
21. The proof in [22] of the monotonicity of ε �→�y(ε)

relies on an explicit formula for με. Such an explicit formula is, however, in general only
computable in the case of two environments. In contrast, our formula can provide some insights
on the local behaviour of ε �→�y(ε) near 0 for any number of environmental states. We now
give an example where, contrary to the previous situation, the sign of c1 depends also on the
switching rates of σ .

Example 3.5. Let σ be an irreducible Markov chain on S = {1, 2, 3}. We consider two
different rate matrices for σ :

Q =

⎛
⎜⎜⎝

−( 1
2 + δ) 1

2 δ

1
2 −( 1

2 + δ) δ

1
2

1
2 −1

⎞
⎟⎟⎠ , Q′ =

⎛
⎜⎜⎝

−1 1
2

1
2

δ −( 1
2 + δ) 1

2

δ 1
2 −( 1

2 + δ)

⎞
⎟⎟⎠

for some small δ > 0. Intuitively, if the rates matrix is Q, then σ will spend most of the time in
states 1 and 2, while if the rates matrix is Q′, then σ will spend most of the time in states 2 and 3.
Hence, we can expect that in the first case, for small δ, c1 will be close to c1(1, 2), given by

c1(1, 2) = a1
10a2

10ā10

4(ā11)3

(
a2

11

a2
10

− a1
11

a1
10

)(
a2

11a1
21 − a1

11a2
21

)
,

which is the expression derived in Example 3.4 when σ is a Markov chain on {1, 2} with p = 1
2 .

In the second case, c1 should be close to
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c1(2, 3) = a2
10a3

10ā10

4(ā11)3

(
a3

11

a3
10

− a2
11

a2
10

)(
a3

11a2
21 − a2

11a3
21

)
,

the expression when σ is a Markov chain on {2, 3} with p = 1
2 . In particular, we can choose the

coefficients (as
jk)j,k,s in such a way that c1(1, 2)< 0 and c1(2, 3)> 0, meaning that, with the

same environmental states, different switching mechanisms can lead to opposite signs for the
derivative at 0 of the growth rate. In other words, it can be as beneficial as it is detrimental for
species y to increase the switching rates, depending on the switching structure.

Using (3.9) with as
11 = 1 for all s and a1

10 = 3, a2
10 = 2, a3

10 = 1, a1
21 = 2, a2

21 = 5, a3
21 = 3,

and δ = 0.0005, we compute in the first case c1 � −1.871 628 9< 0 and in the second case
c1 � 0.747 377 2> 0. As expected, these two values are respectively close to c1(1, 2) �
−1.874 437 8 and c1(2, 3) � 0.750 374 8.

Notice that, for the two-environment processes, these parameters are those used in Table 1,
and thus we get that the sign of c1 in each case is consistent with the monotonicity displayed
in Figure 3(a).

Appendix A. Proof of Proposition 2.1

Proof. This is essentially the proof from [24], in dual form since we work with Ptf rather
than the law of the process. It is organized in three steps. First, assuming formally that (2.3)
gives an expansion in ε of Pεt , we deduce the expressions for P(k)

t and S(k)
t . With these defini-

tions, in the second step we establish the bounds in (2.1) and (2.2) on P(k)
t and S(k)

t . Finally,
from this, we obtain the bound in (2.4) on Rεn,t.

Step 1. Fix f ∈ C∞(M× S). For all t � 0,

∂tP
ε
t f = LεPεt f . (A.1)

Bearing in mind the ansatz that (2.3) gives an expansion in ε of Pεt f , developing each side of

the above equality in ε, and equating terms of the same order (treating the terms P(k)
t f and S(k)

t f
separately), we end up with the following equations for all k � 0:

QP(0)
t f = 0, (A.2)

∂tP
(k)
t f = Lc

(
P(k)

t f
)+ QP(k+1)

t f , (A.3)

∂tS
(0)
t f = QS(0)

t f , (A.4)

∂tS
(k)
t f = QS(k)

t f + Lc(S(k−1)
t f ). (A.5)

To shorten the notation, for k ∈N we write uk(t, x, s) = P(k)
t f (x, s). Moreover, for a function

g(t, x, s) we use the notation πg(t, x) = ∫S g(t, x, s) π (ds). Equation (A.2) is equivalent to say
that there exists θ0(t, x) such that, for all s ∈ S , u0(t, x, s) = θ0(t, x). Now, if we want (A.3) for
k = 0 to have a solution u1, this will induce a constraint, fixing the value of θ0. Indeed, this
equation can be rewritten as Qu1 = ∂tu0 − Lcu0. The left-hand side averages to 0 with respect
to π (for all fixed x ∈Mt � 0), and thus we have to impose that π (∂tu0 − Lcu0) = 0. This is
equivalent to

∂tθ0(t, x) − F̄(x) · ∇θ0(t, x) = 0, (A.6)
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which is a transport equation with solution given by θ0(t, x) = θ0(0, ϕt(x)). In order to identify
a suitable initial condition θ0(0, x) = πu0(0, x), we formally let ε and then t go to 0 in

πPεt f (x) = π f (x) +
∫ t

0
πLcPεr f (x) dr,

which is obtained by integrating (A.1) and using that πQ = 0. This yields θ0(0, x) = π f (x) and,
as stated,

P(0)
t f (x, s) = u0(t, x, s) = π f (ϕt(x)). (A.7)

Now, reasoning by induction, we assume that for some k � 1 we have constructed uk−1
satisfying π (∂tuk−1 − Lcuk−1) = 0, from which we want to define uk. Recalling the definition
in (1.4) of the pseudo-inverse Q−1, (A.3) is then equivalent to the existence of a function
θk : R+ ×R

d →R such that

uk(t, x, s) = Q−1(∂tuk−1 − Lcuk−1)(t, x, s) + θk(t, x). (A.8)

Once again, to find a suitable θk we use (A.3) at order k + 1, which we rewrite as Quk+1 =
∂tuk − Lcuk. As before, for fixed (t, x), since the left-hand side averages to 0 with respect to π ,
we impose

π (∂tuk − Lcuk)(t, x) = 0. (A.9)

Notice that πQ−1 = 0, so that, averaging (A.8) with respect to π and differentiating with
respect to time,

π∂tuk = ∂tθk. (A.10)

Injecting (A.10) and (A.8) into (A.9) yields

∂tθk(t, x) − F̄(x) · ∇θk(t, x) = πLcbk(t, x), (A.11)

where we set bk = Q−1(∂tuk−1 − Lcuk−1). This is again a transport equation, similar to (A.6),
but with a source term. The solution is given by

θk(t, x) = θk(0, ϕt(x)) +
∫ t

0
πLcbk(r, ϕt−r(x)) dr. (A.12)

For now, by construction, for any choice of the function θk(0, ·), the function uk defined by
(A.8) where θk is given by (A.12) satisfies (A.3) and (A.9). It remains to specify a suitable ini-
tial condition θk(0, x). To do so, we need to first look at the so-called boundary layer correction
terms S(j).

Set vk(t, x, s) = S(k)
t f (x, s). Then, (A.4) and (A.5) read

∂tv0 = Qv0, (A.13)

∂tvk = Qvk + Lcvk−1. (A.14)

Equation (A.13) is simply solved as v0(t, x, s) =Qtv0(0, x, s). Moreover, taking t = 0 and
letting ε→ 0 in (2.3) yields v0(0, x, s) + u0(0, x, s) = f (x, s), and hence we set

v0(t, x, s) =Qtf (x, s) − π f (x), (A.15)

which indeed solves (A.13). Next, assuming by induction that vk−1 has been defined for some
k � 1, we can solve (A.14) to find

vk(t, x, s) =Qtvk(0, x, s) +
∫ t

0
Qt−rLcvk−1(r, x, s) dr.
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It remains to choose a suitable initial condition vk(0, x), which will be determined by the
requirement of the long-time decay (2.2). Indeed, since limt→∞ Qt = π , (2.2) can only
hold if

0 = π

(
vk(0, x) +

∫ ∞

0
QrLcvk−1(r, x) dr

)
,

and therefore

πvk(0, x) = −
∫ ∞

0
πQrLcvk−1(r, x) dr = −

∫ ∞

0
πLcvk−1(r, x) dr. (A.16)

Also, from (2.3) applied with t = 0, we get that vk(0, x, s) + uk(0, x, s) = 0 for all k � 1 and,
integrating (A.8) at t = 0 with respect to π , θk(0, x) = πuk(0, x). Hence, the only choice of
θk(0, ·) that is compatible with (2.2) is

θk(0, x) =
∫ ∞

0
piLcvk−1(r, x) dr.

Finally, vk(0, x, s) = −uk(0, x, s) is determined, again using (A.8) at t = 0. At this point, we
have completely determined a definition of P(k)

t and S(k)
t , which is the one that we use in the

rest of the proof. It is such that (A.2), (A.3), (A.4), and (A.5) hold.
Step 2. We prove that the bounds (2.1) and (2.2) on P(k)

t and S(k)
t hold. We work by

induction on k, starting with k = 0. By compactness, recalling the definition of u0 in (A.7),
it is straightforward that for all T > 0 there exists C0(T, j, p) such that, for all j � 0 and all
f ∈ C∞(M× S),

sup
t∈[0,T]

|||∂p
t u0|||j ≤ C0(T, j, p)|||f |||j+p.

Let j � 0, α ∈ [[1,N]]j, and p ∈N. Then, by (A.15), ∂αx v0 =Qt(∂αx f − π (∂αx f )). Using the
ergodicity condition in (1.3), we get, for all f ∈ C∞, t � 0, and j ∈N, |||v0(t, ·)|||j ≤ Ce−γ t||| f |||j.

For k � 1, reasoning by induction, we assume that there exist constants Ck−1(T, j, p) and
Ck−1(j) such that

sup
t∈[0,T]

|||∂p
t uk−1(t, ·)|||j ≤ Ck−1(T, j, p)||| f |||j+p+2(k−1)

and, for all t � 0,

|||vk−1(t, ·)|||j � Ck−1(j)e−γ t(1 + tk−1)||| f |||j+2(k−1).

Since s, x �→ Fs(x) and its derivatives in x are uniformly bounded over M× S , it is straight-
forward to check that that, for any j, p ∈N and T > 0, there exist C(j) and C(T , j, p) such that,
for any g ∈ C∞(M),

|||Lcg|||j � C(j)|||g|||j+1, sup
t∈[0,T]

|||∂p
t (g ◦ ϕt)|||j � C(T, j, p)|||g|||j+p,

which we use extensively in the rest of this step. In the following, T , p, j, k are fixed, and we
denote by C a constant which may change from line to line and depends only on T , p, j, k.
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First, for all t ≤ T ,

|||∂p
t (θk(0, ·) ◦ ϕt)|||j � C|||θk(0, ·)|||j+p

� C
∫ ∞

0
|||Lcvk−1(r, ·)|||j+p dr

� C
∫ ∞

0
|||vk−1(r, ·)|||j+p+1 dr ≤ C||| f |||j+p+1+2(k−1)

by induction. Next, using that ∂p
t bk = Q−1(∂p+1

t uk−1 − Lc(∂p
t uk−1)), we get that, for all t ≤ T ,

|||∂p
t bk|||j � C

(|||∂p+1
t uk−1|||j + |||Lc(∂p

t uk−1)|||j
)

� C
(|||∂p+1

t uk−1|||j + |||∂p
t uk−1|||j+1

)≤ C||| f |||j+p+1+2(k−1)

by induction. Now, from (A.12), for all t ≤ T ,

|||θk(t, ·)|||j � |||θk(0, ·) ◦ ϕt|||j +
∫ t

0
|||Lcbk(s, ·) ◦ ϕt−s|||j ds

� C|||θk(0, ·)|||j + C
∫ t

0
|||bk(s, ·)|||j+1 ds ≤ C||| f |||j+2+2(k−1).

To bound the derivatives in the time of θk, instead of using (A.12) it is simpler to work with
(A.11), which gives, for p � 1,

|||∂p
t θk(t, ·)|||j � |||πLc∂

p−1
t θk(t, ·)|||j + |||πLc∂

p−1
t bk(t, ·)|||j

� C|||∂p−1
t θk(t, ·)|||j+1 + C|||∂p−1

t bk(t, ·)|||j+1

� C|||∂p−1
t θk(t, ·)|||j+1 + C||| f |||j+p+1+2(k−1).

Reasoning by induction on p yields |||∂p
t θk(t, ·)|||j ≤ C||| f |||j+p+2+2(k−1). Gathering the previous

bounds in (A.8) yields

|||∂p
t uk(t, ·)|||j � |||∂p

t θk(t, ·)|||j,0 + |||∂p
t bk(t, ·)|||j ≤ C||| f |||j+p+2k.

This concludes the study of uk by induction. We now turn to the study of vk. Using (A.16) and
omitting the dependency on x, s to alleviate the notation, we decompose vk as

vk(t) =Qtvk(0) +
∫ t

0
Qt−rLcvk−1(r) dr

=Qt(vk(0) − πvk(0)) +
∫ t

0
Qt−r(Lcvk−1(r) − πLcvk−1(r)) dr −

∫ ∞

t
πLcvk−1(r) dr.

We have |||Qt(vk(0) − πvk(0))|||j ≤ Ce−γ t|||vk(0)|||j ≤ Ce−γ t||| f |||j+2k, where we used that
vk(0) = −uk(0) and the previous bound on uk(0). Similarly,∣∣∣∣

∣∣∣∣
∣∣∣∣
∫ t

0
Qt−r(Lcvk−1(r) − πLcvk−1(r)) dr

∣∣∣∣
∣∣∣∣
∣∣∣∣
j
� C

∫ t

0
e−γ (t−r)|||Lcvk−1(r)|||j dr

� C
∫ t

0
e−γ (t−r)|||vk−1(r)|||j+1 dr

� Ce−γ t(1 + tk)||| f |||j+1+2(k−1),
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where we have used the induction hypothesis on vk−1. Finally,∫ ∞

t
|||Lcvk−1(r)|||j dr ≤ C

∫ ∞

t
|||vk−1(r)|||j+1 dr

≤ C
∫ ∞

t
(1 + rk−1)e−γ r dr||| f |||j+1+2(k−1)

≤ C(1 + tk−1)e−γ t||| f |||j+1+2(k−1).

This proves the desired bounds on vk. In particular, at this stage we have proved (2.1) and (2.2).
Step 3. We now bound the remainder Rεn,t given by (2.3) for a given n � 1. Introducing

ηt = (∂t − Lε)Rεn,tf for a given f ∈ C∞, we see that, thanks to (A.2), (A.3), (A.4), and (A.5), all
the low-order terms in ε vanish (as designed) so that

ηt = (∂t − Lε)

(
Pεt f −

n∑
k=0

εkP(k)
t f +

n∑
k=0

εkS(k)
t/ε f

)
= εn(LcP(n)

t f − ∂tP
(n)
t f + LcS(n)

t/εf
)
.

The bounds obtained in the previous step yield supt∈[0,T]|||ηt|||j ≤ Cεn||| f |||j+1+2n for some C
depending only on T , j, n. Interpreting Rεn,t f as the solution of the equation ∂tRεn,tf = LεRεn,tf +
ηt with Rεn,0 f = 0 yields the Feynman–Kac representation

Rn,tf (x, s) =Ex,s

( ∫ t

0
ηr(X(r), σ (r)) dr

)
,

see [11, Theorem 6.3]. The bounds on ηt immediately yield

sup
t∈[0,T]

‖Rεn,tf ‖∞ ≤ Cεn‖f ‖1+2n

for some C depending only on T , n.
Now, to get similar bounds for the derivatives in space of Rεn,tf , we work by induction on j,

assuming that we have already obtained that

sup
t∈[0,T]

|||Rεn,tf |||j′ ≤ Cεn||| f |||j′+1+2n (A.17)

for all j′ < j for some j � 1 and some C> 0. Indeed, then, considering a multi-index α ∈ [[1, d]]j,
differentiating the equation ∂tRεn,t = LεRεn,tf + ηt yields

∂t∂
α
x Rεn,tf = Lε∂

α
x Rεn,tf + ∂αx ηt +

∑
|α′|≤j

B
α
′∂α

′
x Rεn,tf , (A.18)

where, for all multi-index α′, B
α
′ (x, s) is a matrix whose coefficients are some derivatives in x

of Fs. In other words, considering a vector Gt whose coefficients are all the partial derivatives
in x of Rεn,tf of order j, then Gt solves an equation of the form

∂tGt = LεGt + B′Gt + η′
t, (A.19)

where Lε acts coefficient-wise on Gt, the coefficients of the matrix B′(x, s) are derivatives in
x of Fs, and η′

t gathers ∂αx ηt and all the terms in (A.18) involving derivatives of Rεn,tf of order
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|α′|< j. In particular, thanks to the bounds in (2.1) and (2.2) established in Step 2 and to the
induction assumption, we have supt∈[0,T]|||η′

t|||∞ ≤ Cεn||| f |||j+1+2n for some C> 0 depending
on T , n, j. We again use the Feynman–Kac formula for Gt based on (A.19), which reads

Gt(x, s) =Ex,s

( ∫ t

0
Erη

′
t−r(X(r), σ (r)) dr

)
,

where (Et)t�0 is the solution of the matrix-valued ODE ∂tEt = EtB′(X(t), σ (t)) (for complete-
ness, we provide a proof of this formula in Appendix B). Since B′ is uniformly bounded, so is
Er over r ∈ [0, T], and thus supt∈[0,T]|||Gt|||∞ ≤ Cεn||| f |||j+1+2n for some C> 0 depending on
T , n, j. Since this holds for all α ∈ [[1, d]]j, this concludes the proof by induction of (A.17) for
all j′. To conclude, using that

Rεn,t f = Rεn+1,tf + εn+1P(n+1)
t f + εn+1S(n+1)

t/ε f ,

we get that, for all j � 0,

|||Rεn,t f |||j ≤ |||Rεn+1,t f |||j + εn+1|||P(n+1)
t f |||j + εn+1|||S(n+1)

t/ε f |||j ≤ Cεn+1||| f |||j+3+2n,

where we used (2.1), (2.2), and (A.17) (for n + 1). This concludes the proof of (2.4), and thus
the proof of Proposition 2.1. �

Appendix B. Feynman–Kac formula

Lemma B.1. Let L be a Markov generator on a set S ′. For n � 1, consider ft(z) =
(f1,t(z), . . . , fn,t(z)) ∈R

n for z ∈ S ′, t � 0, a solution of

∂tft(z) = Lft(z) + At(z)ft(z) + ct(z), z ∈ S ′, t � 0,

where (t, z) �→ A is a bounded n × n matrix field, (t, z) �→ c is a bounded vector field, and Lft
is to be understood component-wise. Then, for all t � 0 and z ∈ S ′,

ft(z) =E(Etf0(Zt))+
∫ t

0
E(Erct−r(Zr)) dr,

where (Zt)t�0 is a Markov process associated to L with Z0 = z, and (Er)r∈[0,t] is the solution
of the n × n matrix-valued random ODE ∂rEr = ErAt−r(Zr) with E0 = In, provided this is well-
defined almost surely.

Proof. Fix t> 0, z ∈ S ′. Then (Zr, Er)r�0 given in the statement of the lemma is a time-
inhomogeneous Markov process with generator

Lrg(z, e) = eAt−r(z) · ∇eg(z, e) + Lg(z, e),

and thus, considering the vector-valued function h(r, z, e) = eft−r(z), we end up with

∂rE(Erft−r(Zr))= ∂rE(h(r, Zr, Er))

=E((∂r +Lr) h(r, Zr, Er))

=E(Es(−∂r + At−r + L) ft−r(Zr))

= −E(Erct−r(Zr)) .
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Using that E0 = I, the conclusion follows from

ft(z) =E (E0ft(Z0))=E (Etf0(Zt))−
∫ t

0
∂rE (Erft−r(Zr)) dr. �

Appendix C. Proof of Lemma 3.1

Proof. We can write σε(t) = σ (t/ε), and then drop the superscript ε to alleviate the notation;
in other words, without loss of generality it is sufficient to treat the case ε= 1 (up to replacing
γ by γ /ε in Assumption 1.1).

For s ∈ S , let Fs(x) = x
(
as

10 − as
11x
)
. By the definition of p0 and p1 we have that, for all

s ∈ S , Fs(x)> 0 for x ∈ (0, p0) and Fs(x)< 0 for x> p1, which implies that for all X0 �= 0 there
exists a time T0 such that, for all t � T0, Xt ∈ [p0, p1]. Now, on the state space E = [p0, p1] × S ,
we introduce the metric

d((x, s), (y, s′)) = 1s�=s′ + 1s=s′
|x − y|
p1 − p0

,

and we consider on the space of probability measures on E the associated Wasserstein distance
defined for all μ, ν by

Wd(μ, ν) = inf
�

∫
d((x, s), (y, s′)) d�((x, s), (x, s′)),

where the infimum runs over all the coupling measures of μ and ν. We will show that there
exist C, δ > 0 such that, for all (x, s), (y, s′) ∈ E and all t � 0,

Wd(δ(x,s)Pt, δ(y,s′)Pt) ≤ Ce−δtd((x, s), (y, s′)), (C.1)

where Pt stands for P1
t , the semigroup of (X, σ ) at time t. The above inequality implies

Lemma 3.1 by classical arguments, since the space of probability measures on E endowed
with the Wasserstein metric Wd is complete.

We first prove (C.1) for points (x, s) and (y, s′) such that s′ = s. In that case, a coupling of
δ(x,s)Pt and δ(y,s)Pt is given by the random variables ((Xx,s

t , σ s
t ), (Xy,s

t , σ s
t )) where, for all T � 0,

Xx,s
T = x +

∫ T

0
Fσ s(u)(X

x,s
u ) du, Xx,s

T = y +
∫ T

0
Fσ s(u)(X

y,s
u ) du.

In other words, Xx,s
t and Xy,s

t denote the solution to (3.8) with respective initial conditions x
and y and constructed with the same realisation of the process (σ (u)u�0 starting from s.

Lemma C.1. Almost surely, for all x, y ∈ [p0, p1], s ∈ S , and t � 0,

|Xx,s
t − Xy,s

t | ≤ p1

p0
e−ηt|x − y|, (C.2)

where η= p0 infs∈S as
11 > 0. This immediately yields

Wd(δ(x,s)P
ε
t , δ(y,s)P

ε
t ) ≤ p1

p0
e−ηtd((x, s), (y, s)).
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Proof. Let s ∈ S and write αt = aσ
s(t)

10 , βt = aσ
s(t)

11 . Let ϕt(z) be the solution of the differential
equation

żt = αt − βte
zt , z0 = z. (C.3)

Then, for all z, z′ � ln (p0), and all t � 0, we have

|ϕt(z) − ϕt(z
′)| ≤ exp

{
−p0

∫ t

0
βu du

}
|z − z′|. (C.4)

Indeed, the associated variational equation is

d

dt
(∂zϕt(z)) = −βu(∂zϕt(z))eϕt(z),

and thus

∂zϕt(z) = exp

(
−
∫ t

0
βueϕu(z) du

)
≤ exp

(
−p0

∫ t

0
βu du

)
,

where the inequality comes from the fact that z � ln (p0) implies ϕt(z) � ln (p0) for all t � 0.
Now, consider the differential equation

ẋt = xt(αt − βtxt), x0 = x, (C.5)

and set zt = ln (xt). Then, zt solves (C.3) with initial condition ln(x). Denoting by ψt(x) the
solution to (C.5), using (C.4), we have, for all x, y ∈ [p0, p1] and all t � 0,

|ψt(x) −ψt(y)| = |eϕt( ln (x)) − eϕt( ln (y))| ≤ p1|ϕt(x) − ϕt(y)|
≤ p1 exp

{
−p0

∫ t

0
βu du

}
| ln(x) − ln(y)|

≤ p1

p0
exp

{
−p0

∫ t

0
βu du

}
|x − y|.

This entails the result since Xx,s
t and Xy,s

t solve (C.5) with the respective initial conditions x
and y. �

We now tackle the case where the initial conditions of σ in the two chains are distinct: s �=
s′ ∈ S . Let t> 0. Thanks to Assumption 1.1, there exists a coupling

(
σ s

t/2, σ
s′
t/2

)
of δsQt/2 and

δs′Qt/2 with P
(
σ s

t/2 �= σ s′
t/2

)
� Ce−γ t. Fix x, y ∈ [p0, p1], and let Xx,s

t/2 be such that
(
σ s

t/2, Xx,s
t/2

)
is

distributed according to δx,sPεt/2 (which is possible since the regular version of the conditional

laws exists in Polish spaces; see, e.g., [19, Theorem 5.3]), and similarly for Xy,s′
t/2 . Then, we

define
(
σ s

r , Xx,s
r , σ s′

r , Xy,s′
r
)

r�t/2 as follows: under the event
{
σ s

t/2 = σ s′
t/2

}
, we let (σ s

r )r�t/2 be a

Markov process associated to (Qr)r�0 with initial condition σ s
t/2, and we set σ s′

r = σ s
r for all r �

t/2; otherwise, we define these processes as two independent processes associated to (Qr)r�0

with respective initial conditions σ s
t/2 and σ s′

t/2. In both cases, we define
(
Xx,s

r , Xy,s′
r
)

r�t/2 as
solutions to

Xx,s
r = Xx,s

t/2 +
∫ r

t/2
Fσ s(u)

(
Xx,s

u

)
du, Xy,s′

r = Xy,s′
t/2 +

∫ r

t/2
F
σ s′ (u)

(
Xy,s′

u

)
du.
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Then
(
σ s

t , Xx,s
t , σ s′

t , Xy,s′
t
)

is a coupling of δ(x,s)Pεt and δ(y,s)Pεt with, using (C.2) and that∣∣Xx,s
t/2 − Xx,s

t/2

∣∣� p1 − p0 almost surely,

E
(
d
((

Xx,s
t , σ s

t

)
, (Xy,s′

t , σ s′
t )
))= P

(
σ s

t/2 �= σ s′
t/2

)+E

( |Xx,s
t − Xy,s′

t |
p1 − p0

1
σ s

t/2=σ s′
t/2

)

≤ Ce−γ t/2 + p1

p0
e−ηt/2

≤
(

C + p1

p0

)
e−(γ∧η)t/2d

(
(x, s), (y, s′)

)
.

As a conclusion, we have obtained that (C.1) holds for all (x, s), (y, s′) ∈ [p0, p1] × S for some
constants C, δ > 0, which completes the proof. �
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