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Abstract

In complex reasoning tasks, as expressible by Answer Set Programming (ASP), problems often

permit for multiple solutions. In dynamic environments, where knowledge is continuously

changing, the question arises how a given model can be incrementally adjusted relative to new

and outdated information. This paper introduces Ticker, a prototypical engine for well-defined

logical reasoning over streaming data. Ticker builds on a practical fragment of the recent

rule-based language LARS, which extends ASP for streams by providing flexible expiration

control and temporal modalities. We discuss Ticker’s reasoning strategies: first, the repeated

one-shot solving mode calls Clingo on an ASP encoding. We show how this translation can

be incrementally updated when new data is streaming in or time passes by. Based on this,

we build on Doyle’s classic justification-based truth-maintenance system to update models of

non-stratified programs. Finally, we empirically compare the obtained evaluation mechanisms.

KEYWORDS: Stream reasoning, Answer set programming, Non-monotonic reasoning.

1 Introduction

Stream reasoning (Della Valle et al. 2009) as research field emerged from data

processing (Babu and Widom 2001), i.e., the handling of continuous queries in a

frequently changing database. Work in Knowledge Representation & Reasoning,

e.g., Ren and Pan (2011), Gebser et al. (2015), shifts the focus from high throughput

to high expressiveness of declarative queries and programs. In particular, the logic-

based framework LARS (Beck et al. 2015) was defined as an extension of Answer

Set Programming (ASP) with window operators for deliberately dropping data, e.g.,

based on time or counting atoms, and controlling the temporal modality in the

resulting windows.

When dealing with complex reasoning tasks in stream settings, one may in general

not afford to recompute models fromscratch every time new data comes in or when

� This research has been supported by the Austrian Science Fund (FWF) projects P26471 and W1255-
N23.
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older portions of data become outdated. Besides the pragmatic need for efficient

computation, there is also a semantic issue: while aspects of a solution might have

to change dynamically and potentially quickly, typically not everything should be

reconstructed from scratch, but adapted to fit the current data.

Recently, many stream-processing tools and reasoning features have been pro-

posed, e.g., Barbieri et al. (2010), Phuoc et al. (2011) and Gebser et al. (2014).

However, an ASP-based stream reasoning engine that supports window operators

and has an incremental model update mechanism is lacking to date. This may be

explained by the fact that non-monotonic negation, beyond recursion, makes efficient

incremental update non-trivial; combined with temporal reasoning modalities over

data windows, this becomes even more challenging.

Contributions. We tackle this issue and make the following contributions.

(1) We present a notion of tick streams to formally represent the sequential steps of

a fully incremental stream reasoning system.

(2) Based on this, we give an intuitive translation of a practical fragment of LARS

programs, plain LARS, to ASP suitable for standard one-shot solving, and in

particular, stratified programs.

(3) Next, we develop an ASP encoding that can be incrementally updated when

time passes by or when new input arrives.

(4) We then present Ticker, our prototype reasoning engine that comes with two

reasoning strategies. One utilizes Clingo (Gebser et al. 2014) with a static ASP

encoding, the other truth maintenance techniques (Doyle 1979) to adjust models

based on the incremental encoding.

(5) Finally, we experimentally compare the two reasoning modes in application

scenarios. The results demonstrate the performance benefits that arise from

incremental evaluation.

In summary, we provide a novel technique for adjusting an ASP-based stream

reasoning program by time and data streaming in. In particular, the update technique

of the program is independent of the model update technique used to process the

program change. Supplementary material accompanying the paper can be found at

the TPLP archive.

2 Stream reasoning in LARS

We will gradually introduce the central concepts of LARS (Beck et al. 2015) tailored

to the considered fragment. If appropriate, we give only informal descriptions.

Throughout, we distinguish extensional atoms AE for input data and intensional

atoms AI for derived information. By A = AE ∪ AI , we denote the set of atoms.

Definition 1 (Stream)

A stream S = (T , υ) consists of a timeline T , which is a closed non-empty interval in

�, and an evaluation function υ : � �→ 2A. The elements t ∈ T are called time points.

Intuitively, a stream S associates with each time point a set of atoms. We call S

a data stream, if it contains only extensional atoms. To cope with the amount of
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Fig. 1. Temporal extent of a sliding tuple-based window of size 3 (or 2) at t = 40.

data, one usually considers only recent atoms. Let S = (T , υ) and S ′ = (T ′, υ′) be

two streams such that S ′ ⊆ S , i.e., T ′ ⊆ T and υ′(t′) ⊆ υ(t′) for all t′ ∈ T ′. Then, S ′

is called a window of S .

Definition 2 (Window function)

Any (computable) function w that returns, given a stream S = (T , υ) and a time

point t ∈ �, a window S ′ of S is called a window function.

Time-based window functions, which select all atoms appearing in last n time points,

and tuple-based window functions, which select a fixed number of latest tuples are

widely used. To this end, we define the tuple size |S | of a stream S = (T , υ) as

|{(a, t) | t ∈ T , a ∈ υ(t)}|.

Definition 3 (Sliding time-based and tuple-based window )

Let S = (T , υ) be a stream, t ∈ T = [t1, tm] and let n ∈ � ∪ {∞}. Then,

(i) the sliding time-based window function τn (for size n) is τn(S, t) = (T ′, υ|T ′ ), where

T ′ = [t′, t] and t′ = max{t1, t− n};
(ii) the sliding tuple-based window function #n (for size n) is

#n(S, t) =

{
τt−t′ (S, t) if |τt−t′ (S, t)| � n,

S ′ else,

where t′ = max({u ∈ T | |τt−u(S, t)| � n} ∪ {t1}) and S ′ = ([t′, t], υ′) has tuple size

|S ′| = n such that υ′(u) = υ(u) for all u ∈ [t′ + 1, t] and υ′(t′) ⊆ υ(t′).

Note that, in general, multiple options exist for defining υ′ at t′ in the tuple-

based window. However, we assume a deterministic choice as specified by the

implementation of the function. In particular, we will later consider that atoms are

streaming in an order, which leads to a natural, unique cut-off position based on

counting.

Example 1

Figure 1 window depicts at partial stream S = ([35, 41], υ), where υ = {35 �→ {a(x)},
37 �→ {a(y), a(z)}, 39 �→ {a(x)}}, and a time window of length 3 at time t = 40, which

corresponds to a tuple window of size 3 there. Notably, there are two options for a

tuple window of size 2, both of which select timeline [37, 40], but only one of the

atoms at time 37, respectively.

We also use window functions with streams as single argument, applied implicitly

at the end of the timeline, i.e., if S = ([t0, t], υ), then τn(S) abbreviates τn(S, t) and

#n(S) stands for #n(S, t).

Window operators �w . A window function w can be accessed in rules by window

operators. That is to say, an expression �wα has the effect that α is evaluated on
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the “snapshot” of the data stream delivered by its associated window function w.

Within the selected snapshot, LARS allows for controlling the temporal semantics

with further modalities.

Temporal modalities. Let S = (T , υ) be a stream, a ∈ A and B ⊆ A static background

data. Then, at time point t ∈ T ,

• a holds, if a ∈ υ(t) or a ∈ B;
• �a holds, if a holds at some time point t′ ∈ T ;
• �a holds, if a holds at all time points t′ ∈ T ; and
• @t′a holds, where t′ ∈ �, if t′ ∈ T and a holds at t′.

The set A+ of extended atoms e is given by the grammar e ::= a | @ta | �w@ta |
�w�a | �w�a , where a ∈ A and t is any time point. The expressions @ta are

called @-atoms; �w � a, where � ∈ {@t,�,�} are window atoms. We write �n for

�τn , which is not to be confused with �#n.

Example 2 (cont’d )

At t = 40, �3�a(x) and �3@37a(y) hold, as does �#1�a(x) at t = 35, 39.

2.1 Plain LARS programs

We use a fragment of the formalism in Beck et al. (2015), called plain LARS

programs.

Syntax. A (ground plain LARS) program P is a set of rules of the form

α← β1, . . . , βj , not βj+1, . . . , not βn , (1)

where the head α is of form a or @ta, a ∈ AI , and in the body β(r) = β1, . . . , βj , not

βj+1, . . . , not βn each βi is an extended atom. We let H(r) = α and B (r) = B+(r) ∪
B−(r), where B+(r) = {β1, . . . , βj} and B−(r) = {βj+1, . . . , βn} are the the positive,

resp. negative body atoms of r.

Semantics. For a data stream D = (TD, υD), any stream I = (T , υ) ⊇ D that coincides

with D on AE , i.e., a∈ υ(t) ∩ AE iff a∈ υD(t), is an interpretation stream for D. A

tuple M = 〈I,W ,B〉, where W is a set of window functions and B is the background

knowledge, is then an interpretation for D. Throughout, we assume W = {τk,#n |
k, n ∈ �} and B are fixed and also omit them.

Satisfaction by M at t ∈ T is as follows: M, t |= α for α ∈ A+, if α holds in (T , υ)

at time t; M, t |= r for rule r, if M, t |= β(r) implies M, t |= H(r), where M, t |= β(r),

if (i) M, t |= βi for all i ∈ {1, . . . , j} and (ii) M, t �|= βi for all i ∈ {j+1, . . . , n}; and

M, t |= P for program P , i.e., M is a model of P (for D) at t, if M, t |= r for all

r ∈ P . Moreover, M is minimal, if in addition no model M ′ = 〈S ′,W ,B〉 �= M of P

exists such that S ′ = (T , υ′) and υ′ ⊆ υ.

Definition 4 (Answer Stream)

An interpretation stream I is an answer stream of program P for the data stream

D ⊆ I at time t, if M = 〈I,W ,B〉 is a minimal model of the reduct PM,t = {r ∈ P |
M, t |= β(r)}. By AS(P ,D, t), we denote the set of all such answer streams I .
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Example 3 (cont’d )

Consider D from Figure 1 and P = {b(x)← �3�a(x)}. Then, for all t ∈ [35, 41], the

answer stream I at t is unique and adds to D the mapping t �→ {b(x)}.

Non-ground programs. The semantics for LARS is formally defined for ground

programs but extends naturally for the non-ground case by considering the respective

ground instantiations.

Windows on intensional/extensional atoms. For practical reasons, we consider tuple

windows only on extensional data. Their intended use is counting input data, not

inferences; using them on intensional data is conceptually questionable.

Example 4

Consider the rule r = b ← �#1�a and the stream S = ([0, 1], {0 �→ {a}}), which

is not a model for r, since the rule fires and we thus must have b at time 1.

However, in this interpretation, �#1�a does not hold any more, if we also take

into account the inference b. Thus, the interpretation would not be minimal.

Moreover, further inferences would not be founded. Hence, program {r} has no

model.

In contrast to tuple windows, time windows are useful and allowed on arbitrary

data, as long as no cyclic positive dependencies through time-based window atoms

�n�a occur.

Example 5

Assume a range of values V = 0, . . . , 30, among which V � 18 are considered “high.”

To test whether the predicate alpha always had a high value during the last n time

points, we first abstract by @Thigh ← �n@Talpha(V ), V � 18 for and then test

yes ← �n�high .

3 Static ASP encoding

In this section, we will first give a translation of LARS programs P to an ASP

program P̂ . Toward incremental evaluation of P , we will then show how P̂ can be

adjusted to accommodate new input signals and account for expiring information

as specified by window operators.

Definition 5 (Tick )

A pair k = (t, c), where t, c ∈ �, is called a tick, with t the (tick) time and c the

(tick) count; (t + 1, c) is called the time increment and (t, c + 1) the count increment

of k. A sequence K = 〈k1, . . . , km〉, m � 1, of ticks is a tick pattern, if every tick ki+1

is either a time increment or a count increment of ki.

Intuitively, a tick pattern captures the incremental development of a stream in terms

of time and tuple count, where at each step exactly one dimension increases by 1.

For a set of ticks, at most one linear ordering yields a tick pattern. Thus, we can

view a tick pattern K also as set.
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Definition 6 (Tick stream)

A tick stream is a pair Ṡ = (K, v) of a tick pattern K and an evaluation function v

s.t. v(ki+1) = {a} for some a ∈ A, if ki+1 is a count increment of ki, else v(ki+1) = ∅.

We say that a tick stream Ṡ = (K, v) with K = 〈(t1, c1), . . . , (tm, cm)〉 is at tick (tm, cm).

By default, we assume (t1, c1) = (0, 0), and thus cm is the total number of atoms. We

also write v(t, c) instead of v((t, c)). Naturally, a (tick) substream Ṡ ′ ⊆ Ṡ is a tick

stream (K ′, v′), where K ′ is a subsequence of K and v′ is the restriction v|K ′ of v to

K ′, i.e., v′(t, c) = v(t, c) if (t, c) ∈ K ′, else v′(t, c) = ∅.

Example 6

The sequence K = 〈(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (3, 2), (4, 2)〉 is a “canonical” tick

pattern starting at (0, 0), where (3, 1) and (3, 2) are the only count increments.

Employing an evaluation v(3, 1) = {a} and v(3, 2) = {b}, we get a tick stream

Ṡ = (K, v) which is at tick (4, 2).

Definition 7 (Ordering)

Let Ṡ = (K, v) be a tick stream, where K = 〈(t1, c1), . . . , (tm, cm)〉, and let S = (T , υ)

be a stream such that T = [t1, tm] and υ(t) =
⋃
{v(t, c) | (t, c) ∈ K} for all t ∈ T .

Then, we say Ṡ is an ordering of S , and S underlies Ṡ .

Note that, in general, a stream S has multiple orderings, but every tick stream Ṡ has

a unique underlying stream. All orderings of a stream have the same tick pattern.

Example 7 (cont’d )

Stream S = ([0, 4], υ), where υ = {3 �→ {a, b}}, is the underlying stream of Ṡ of

Example 6. A further ordering of S is Ṡ ′ = (K, v′), where v′ = {(3, 1) �→ {b}, (3, 2) �→
{a}}.

Sliding windows, as in Definition 3, carry over naturally for tick streams. There are

two central differences. First, ticks replace time points as positions in a stream, and

thus as second argument of the window functions. Second, tuple-based windows are

now always unique.

Definition 8 (Sliding windows over tick streams)

Let Ṡ = (K, v) be a tick stream, where K = 〈(t1, c1), . . . , (tm, cm)〉 and (t, c) ∈ K .

Then, the time window function τn, n � 0, is defined by τn(Ṡ , (t, c)) = (K ′, v|K ′ ), where

K ′ = {(t′, c′) ∈ K | max{t1, t− n} � t′ � t}, and the tuple window function #n, n � 1,

by #n(Ṡ , (t, c))=(K ′, v|K ′ ), where K ′={(t′, c′) ∈ K |max{c1, c− n + 1}� c′� c}.

As for Definition 3, we consider windows over tick streams also implicitly at the

end of the timeline.

Lemma 1

If stream S underlies tick stream Ṡ , then τn(S) underlies τn(Ṡ).

Example 8 (cont’d )

Given Ṡ and S from Example 7, we have τ1(Ṡ , 4) = (〈(3, 0), (3, 1), (3, 2), (4, 2)〉, v) with

underlying stream τ1(S, 4) = ([3, 4], υ).
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Correspondence for tuple windows is more subtle due to the different options to

realize them.

Lemma 2

Let stream S underlie tick stream Ṡ and assume the tuple window #n(S) is based on

the order in which atoms appeared in S . Then, #n(S) underlies #n(Ṡ).

Example 9 (cont’d )

Stream S has two tuple windows of size 1: Sa = ([3, 4], {3 �→ {a}}) and Sb =

([3, 4], {3 �→ {b}}); the latter underlies #1(Ṡ) = (〈(3, 2), (4, 2)〉, (3, 2) �→ {b}).

We can represent a stream S = (T , υ) alternatively by T and a set of time-pinned

atoms, i.e., the set {a@(x, t) | a(x) ∈ υ(t), t ∈ T }. Similarly, tick streams can be

modeled by tick-pinned atoms of form a#(x, t, c), where c increases by 1 for every

incoming signal.

Example 10 (cont’d )

Given extra knowledge about the time t = 4, stream S is fully represented by

{a@(3), b@(3)}, whereas tick stream Ṡ can be encoded by the set {a#(3, 1), b#(3, 2)}.

The notions of data/interpretation stream readily carry over to their tick analogs.

Moreover, we say a tick interpretation stream I is an answer stream of program P

(for tick data stream D at t), if the underlying stream I ′ of I is an answer stream of

P (for the underlying data stream D′ at t).

LARS to ASP (Algorithm 1). Plain LARS programs extend normal logic programs

by allowing extended atoms in rule bodies, and also @-atoms in rule heads. Thus,

if we restrict α and βi in (1) to atoms, we obtain a normal rule. This observation is

used for the translation of LARS to ASP as shown in Algorithm 1. The encoding

has to take care of two central aspects. First, each extended atoms e is encoded by

an (ordinary) atom a that holds iff e holds. Second, entailment in LARS is defined

with respect to some data stream D and background data B at some time t. Stream

signals and background data are encoded as facts, and temporal information by

adding a time argument to atoms. The central ideas of the encoding are illustrated

by the following example.

Example 11

Consider the LARS program P comprising the single rule r = b(X) ← �2�a(X).

Assume we are at time t = 7. We replace the window atom in the body by a fresh

atom ω(X), which must hold if a(X) holds at 7, 6 or 5. Thus, we can encode r in ASP

by the following rules: b(X) ← ω(X);ω(X) ← a@(X, 7);ω(X) ← a@(X, 6);ω(X) ←
a@(X, 5). Assume an atom a(y) was streaming in at time 5; modeled as time-pinned

fact a@(y, 5), we derive ω(y) and thus b(y). That is, b(y) holds at time 7, since signal

a(y) at 5 is still within the window.

Conceptually, the translation of a LARS program P to an ASP program P̂ is such

that if atom a(x) (where x = x1, . . . , xn) is in an answer set A of P̂ , then a(x) holds

now. If the current time point is t, this is encoded in two ways, viz. by a(x) ∈ A and

the time-pinned atom a@(x, t) ∈ A. This auxiliary atom corresponds to the LARS
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Algorithm 1: Plain LARS program to ASP LarsToAsp(P , t)

Input: A (potentially non-ground) plain LARS program P , and the evaluation time

point t

Output: ASP encoding P̂ , i.e., a set of normal logic rules

1 Q := { a(X)← now (Ṅ), a@(X, Ṅ); a@(X, Ṅ)← now (Ṅ), a(X) | a is a predicate in P }
2 R :=

⋃
r∈P larsToAspRules(r)

3 return Q ∪ R ∪ {now (t)}

4 defn larsToAspRules(r) = {baseRule(r)} ∪
⋃m

i=1 windowRules(ei)

5 defn baseRule(h← e1, . . . , en, not en+1, . . . ,not em) =

6 atm(h)← atm(e1), . . . , atm(en), not atm(en+1), . . . , not atm(em)

7 defn atm(e) = match e

8 case a(X) ⇒ a(X)

9 case @T a(X) ⇒ a@(X, T )

10 case �w@T a(X) ⇒ ωe(X, T ) //ωe is a fresh predicate associated with e

11 case �w�a(X) ⇒ ωe(X)

12 case �w�a(X) ⇒ ωe(X)

13 defn windowRules(e) = match e

14 case �n@T a(X) ⇒ {ωe(X, T )← now (Ṅ), a@(X, T ), T = Ṅ − i | i = 0, . . . , n }
15 case �n�a(X) ⇒ {ωe(X)← now (Ṅ), a@(X, T ), T = Ṅ − i | i = 0, . . . , n }
16 case �n�a(X) ⇒ {ωe(X)← a(X), not spoil e(X) }∪
17 { spoil e(X)← a(X), now (Ṅ), not a@(X, T ), T = Ṅ − i | i = 1, . . . , n }
18 case �#n@T a(X) ⇒ {ωe(X, T )← cnt(Ċ), a#(X, T , D), D = Ċ − j | j = 0, . . . , n− 1 }
19 case �#n�a(X) ⇒ {ωe(X)← cnt(Ċ), a#(X, T , D), D = Ċ − j | j = 0, . . . , n− 1 }
20 case �#n�a(X) ⇒ {ωe(X)← a(X), not spoil e(X) } ∪
21 { spoil e(X)← a(X), cnt(Ċ), tick (T ,D), Ċ − n + 1 � D � Ċ, not a@(X, T ) } ∪
22 { spoil e(X)← a(X), cnt(Ċ), tick (T ,D), D = Ċ − n + 1, a#(X, T , D′), D′ < D }
23 else ∅

@-atom @ta(x), which then also holds now. In general for any t′ ∈ �, if @t′a(x)

holds in an answer stream S now, then a@(x, t′) is in the corresponding answer set Ŝ ,

but a(x) is included only for t′ = t. The resulting equivalence is stated by the rules Q

in Algorithm 1, Line 1. To single out the current time point, we use an auxiliary

predicate now .

The ASP encoding P̂ for P at t is then obtained by Q, {now (t)} and rule

encodings R as computed by larsToAspRules . Given a LARS rule r of form (1),

we replace every non-ordinary extended atom by a new auxiliary atom atm(e)

(Lines 8–12). Accordingly, for e of form @Ta(X), we use a@(X, T ) (where T and

X can be non-ground). For a window atom e, we use a new predicate ωe for

an encoded window atom. If e has the form �w � a(X), � ∈ {�,�} , we use a

new atom ωe(X), while for e of form �w@Ta(X), we use ωe(X, T ) with a time

argument.

Window encoding. Predicate ωe has to hold in an answer set Ŝ of P̂ iff e holds

in a corresponding answer stream S of P at t. We use the function windowRules ,

which returns a set of rules to derive ωe depending on the window (Lines 14–23).

In case e = �n@Ta(X), we have to test whether a@(X, T ) holds for some time T
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within the last n time points. For �n�a(X), we omit T in the rule head. Dually, if

�n�a(X) holds for the same substitution x of X for all previous n time points, then

in particular it holds now. So we derive ωe(x) by the rule in Line 16 if a(x) holds

now and there is no spoiler i.e., a time point among t− 1, dots, t− n where a(x) does

not hold. This is established by the rule in Line 17. (We assume the window does

not exceed the timeline and thus do not check T − i � 0.) Adding a(X) to the body

ensures safety of X in a@(X, T ).

For �#n@Ta(X), we match every atom a(x) with the time it occurs in the window

of the last n tuples. Accordingly, we track the relation between arguments x, the

time t of occurrence in the stream, and the count c. To this end, we assume

any input signal a(x) is provided as {a@(x, t), a#(x, t, c)}. Furthermore, the rules

in Line 18 employ a predicate cnt that specifies the current tick count (as does

now for the time tick). Based on this, the window is created analogously to

a time-based window but counting back n − 1 tuples instead of n time points.

The case �#n�a(X) is again analogous, but variable T is not included in the

head.

For �#n�a(X), Line 20 is as in the time-based analog (Line 16); a(X) must hold

now and there must not exist a spoiler. First, Line 21 ensures that a(X) holds at

every time point T in the window’s range, determined by reaching back n − 1 tick

counts to count D. To do so, we add to the input stream an auxiliary atom of

form tick (t, c) for every tick (t, c) of the stream. Second, Line 22 accounts for the

cut-off position within a time point, ensuring a is within the selected range of counts.

Finally, windowRules(e) = ∅ if e is an atom or an @-atom, as they do not need extra

rules for their derivation.

Example 12

Consider a stream Ṡ ′, which adds to Ṡ from Example 6 tick (4, 3) with evaluation

v(4, 3) = {a}. We evaluate �#2�a. The tick-pinned atoms are a#(3, 1), b#(3, 2) and

a#(4, 3); the window selects the last two, i.e., atoms with counts D � 2. It thus covers

time points 3 and 4. While atom a occurs at time 3, it is not included in the window

anymore, since its count is 1 < D.

Stream encoding. Let O = (K, v) be a tick stream at tick (tm, cm). We define its

encoding Ô as {a@(x, t) | a(x) ∈ v(t, c), (t, c) ∈ K}∪{a#(x, t, c) | a(x) ∈ v(t, c), (t, c) ∈ K,

a(x) ∈ AE} ∪ {cnt(cm)} ∪ {tick (t, c) | (t, c) ∈ K}. We may assume that rules access

background data B only by atoms (and not with @-atoms or window atoms).

Viewing B as facts in the program, we skip further discussion. The following

implicitly disregards auxiliary atoms in the encoding.

Proposition 1

Let P be a LARS program, D = (K, v) be a tick data stream at tick (t, c) and let

P̂ = LarsToAsp(P , t). Then, S is an answer stream of P for D at t iff Ŝ is an answer

set of P̂ ∪ D̂.

https://doi.org/10.1017/S1471068417000370 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000370


Theory and Practice of Logic Programming 753

Example 13
We consider program P of Example 11, i.e., the rule r = b(X) ← �2�a(X). The

translation P̂ = LarsToAsp(P , 7) is given by the following rules, where ω = ω�2�a(X):

r0 : b(X) ← ω(X)

r1 : ω(X) ← now (Ṅ), a@(X,T ), T = Ṅ − 0

r2 : ω(X) ← now (Ṅ), a@(X,T ), T = Ṅ − 1

r3 : ω(X) ← now (Ṅ), a@(X,T ), T = Ṅ − 2

rn : now(7) ←

q1 : a(X) ← now (Ṅ), a@(X, Ṅ)

q2 : a@(X, Ṅ) ← now (Ṅ), a(X)

q3 : b(X) ← now (Ṅ), b@(X, Ṅ)

q4 : b@(X, Ṅ) ← now (Ṅ), b(X)

The single answer stream of P for D at 7 is I = ([0, 7], {5 �→ {a(y)}, 7 �→ {b(y)}}),
which corresponds to the set {a@(y, 5), b@(y, 7), b(y)}. In addition, the answer set Ŝ

of P̂ ∪ D̂ contains auxiliary variables now (7), cnt(1), a#(y, 5, 1) and ω(7) (and tick

atoms).

4 Incremental ASP encoding

In this section, we present an incremental evaluation technique by adjusting an

incremental variant of the given ASP encoding. We illustrate the central ideas in the

following example.

Example 14 (cont’d )
Consider the following rules Π similar to P̂ of Example 13, where predicate now
is removed. Furthermore, we instantiate the tick time variable Ṅ with 7 to obtain
so-called pinned rules. (Later, pinning also includes grounding the tick count variable
Ċ with the tick count.)

r′0 : b(X) ← ω(X) q′1 : a(X) ← a@(X, 7)

r′1 : ω(X) ← a@(X, 7) q′2 : a@(X, 7) ← a(X)

r′2 : ω(X) ← a@(X, 6) q′3 : b(X) ← b@(X, 7)

r′3 : ω(X) ← a@(X, 5) q′4 : b@(X, 7) ← b(X)

Based on the stream, encoded by D̂ = {a@(y, 5), a#(y, 5, 1)} (we omit tick atoms),

we obtain a ground program P̂D,(7,1) from Π by replacing X with y; the answer set

is D̂ ∪ {ω(y), b(y), b@(y, 7)}.
Assume now that time moves on to t′ = 8, i.e., a stream D′ at tick (8, 1). We

observe that rules q′1, . . . , q
′
4 must be replaced by q′′1 , . . . , q

′′
4 , which replace time pin

7 by 8. Rule r′0 can be maintained since it does not contain values from ticks. The

time window covers time points 6, 7, 8. This is reflected by removing r′3 and instead

adding ω(X)← a@(X, 8).

That is, based on the time increment from (7, 1) to (8, 1), rules E− = {q′1, . . . , q′4, r′3}
and their groundings G− (with X �→ y) expire, and new rules E+ = {q′′1 , . . . , q′′4 , ω(X)←
a@(X, 8)} have to be grounded based on the remaining rules (and the data stream),

yielding new ground rules G+. We thus incrementally obtain a ground program

P̂D′ ,(8,1) = (P̂D,(7,1) \ G−) ∪ G+, which encodes the program P for evaluation at tick

(8, 1).

Before we formalize the illustrated incremental evaluation, we present its ingredients.

Algorithm 2: Incremental rule generation. Algorithm 2 shows the procedure

IncrementalRules that obtains incremental rules based on a tick time t, a tick
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Algorithm 2: Incremental rules IncrementalRules(t, c, Sig)

Input: Tick time t, tick count c, signal set Sig with at most one input signal, which is

empty iff (t, c) is a time increment. (The LARS program P is global.)

Output: Pinned incremental rules annotated with duration until expiration

1 F := {〈(∞,∞), tick (t, c)←〉}
2 foreach a(x) ∈ Sig : F := F ∪ {〈(∞,∞), a@(x, t)←〉, 〈(∞,∞), a#(x, t, c)←〉}
3 Q := { 〈(1,∞), a(X)← a@(X, t)〉, 〈(1,∞), a@(X, t)← a(X)〉 | a is a predicate in P }
4 R := ∅
5 foreach r ∈ P

6 r̂ := baseRule(r) // as defined in Algorithm 1

7 I :=
⋃

e∈B(r) incrementalWindowRules(e, t , c)

8 R := R ∪ I ∪ {〈(∞,∞), r̂〉}
9 return F ∪ Q ∪ R

10 defn incrementalWindowRules(e, t, c) = match e

11 case �n@T a(X) ⇒ { 〈(n + 1,∞), ωe(X, t)← a@(X, t)〉 }
12 case �n�a(X) ⇒ { 〈(n + 1,∞), ωe(X)← a@(X, t)〉 }
13 case �n�a(X) ⇒ { 〈(∞,∞), ωe(X)← a(X), not spoil e(X)〉 } ∪
14 { 〈(n,∞), spoil e(X)← a(X), not a@(X, t− 1)〉 } // only if n � 1

15 case �#n@T a(X) ⇒ { 〈(∞, n), ωe(X, t)← a#(X, t, c)〉 }
16 case �#n�a(X) ⇒ { 〈(∞, n), ωe(X)← a#(X, t, c)〉 }
17 case �#n�a(X) ⇒ { 〈(∞,∞), ωe(X)← a(X), not spoil e(X)〉 } ∪
18 { 〈(∞, n), spoil e(X)← a(X), tick (t, c), coversτe(t), not a@(X, t)〉 } ∪
19 { 〈(∞, n), spoil e(X)← a#(X, t, c), coversτe(t), not covers#

e (c)〉 } ∪
20 { 〈(∞, n), coversτe(t)← tick (t, c)〉 , 〈(∞, n), covers#

e (c)← tick (t, c)〉 }
21 else ∅

count c and the signal set Sig = v(t, c), where Sig = ∅, if (t, c) is a time increment of

k. The resulting rules of Algorithm 2 are annotated with a tick that indicates how

long the ground instances of these rules are applicable before they expire.

Definition 9 (Annotated rule)

Let (t, c) be a tick, where t, c ∈ � ∪ {∞}, and r be a rule. Then, the pair 〈(t, c), r〉 is

called an annotated rule, and (t, c) the annotation of r.

Annotations serve two purposes. First, in Algorithm 2, they express a duration how

long a generated rule is applicable. Then, in Algorithm 3 below, this duration will

be added to the current tick to obtain the expiration tick (annotation) of a rule. If a

rule expires at tick (t, c), i.e., if its expiration tick (t′, c′) fulfills t′ � t or c′ � c, then

it has to be deleted from the encoding.

Example 15 (cont’d )

Each rule q′i , 1 � i � 4, has duration (1,∞). That is, after 1 time point, the rule will

expire, regardless of how many atoms appear at the current time point. Hence, the

time duration is 1, and the count duration is infinite, since these rules cannot expire

based on arrival of atoms. Similarly, rules r′i , 1 � i � 3, have duration (2,∞) due to

the time window length 2.

We will discuss expiration ticks based on these durations below. Algorithm 2 is

concerned with generating the incremental rules and their durations. In the first two
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Algorithm 3: Single tick increment IncrementTick (Π, G, t, c, Sig)

Input: Set of annotated, cumulative incremental rules Π ⊇ D̂ collected until previous

tick; its annotated groundings G =
⋃
〈(t′ ,c′),r〉∈Π ground (Π, r), tick time t, tick

count c and signal set Sig

Result: Updated Π and G

1 I := IncrementalRules(t, c, Sig)

2 E+ := {〈(t + tΔ, c + cΔ), r〉 | 〈(tΔ, cΔ), r〉 ∈ I} // determine expiration for new rules

3 E− := {〈(t′, c′), r〉 ∈ Π | t′ � t or c′ � c} // expired incremental rules

4 Π′ := (Π \ E−) ∪ E+

5 G+ := {〈(t′, c′), r′〉 | 〈(t′, c′), r〉 ∈ E+, r′ ∈ ground (Π′, r)} // new ground rules with expiration

6 G− := {〈(t′, c′), r〉 ∈ G | t′ � t or c′ � c} // expired ground rules with expiration annotation

7 G′ := (G \ G−) ∪ G+

8 return 〈Π′, G′〉

lines, auxiliary facts, as discussed earlier, are added to a fresh set F . These facts

expire neither based on time nor count, hence the duration annotation (∞,∞). As

illustrated in Example 15, we collect in set Q the incremental analogue of Q in

Algorithm 1. These rules expire after 1 time point, hence the annotation (1,∞).

Within the loop, we collect for every LARS rule r a base rule r̂ (as in Algorithm 1),

together with incremental window rules, computed by incrementalWindowRules

(Lines 10–21). We assign an infinite duration (∞,∞) to the base rule r̂ since it

never needs to expire, i.e., it suffices to ensure that encoded window atoms ωe expire

correctly. An optimized version may expire also r̂ due to the durations of atoms ωe

from the incremental windows that derive them.

Incremental window encoding. We already gave the intuition for atoms �n�a(X).

The case of �n@Ta(X) is similar. Like in the static translation, we additionally

have to use the time information in the head. Similarly, �#n�a(X) and �#n@Ta(X)

expire after n new incoming atoms, instead of n time points. For �n�a(X), we add

a spoiler rule for the previous time point t− 1, which will be considered for the next

n time points.

For e = �#n�a(X), we maintain two spoiler rules as in the static case that

ensure a(X) occurs at all time points in the coverage of the window, and the

occurrence of a(X) at the leftmost time point is also covered by the tick count.

At tick (t, c), we have a guarantee for the next n atoms that tick time t will be

covered within the window. This is expressed by a rule coversτe(t) ← tick (t, c) with

duration (∞, n). Likewise, covers#
e (c) ← tick (t, c) will select tick count c within

duration (∞, n). Notably, coverage for time increments (t+k, c) may extend the tuple

window arbitrarily long if no atoms appear. As the spoiler rules are based on these

cover atoms, their expiration is optional, i.e., keeping them does not yield incorrect

inferences. However, we can also expire them when they become redundant, i.e.,

after n atoms. Finally, IncrementalRules returns the F ∪Q ∪ R, where R contains all

base rules and incremental window rules.

Algorithm 3: Incremental evaluation. Algorithm 3 gives the high-level procedure

IncrementTick to incrementally adjust a program encoding. We assume the function

ground (Π, r) returns all possible ground instances of a rule r ∈ Π (due to constants
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in Π). In fact, IncrementTick maintains a program Π that contains the encoded

data stream D̂ and non-expired incremental rules as obtained by consecutive calls

to IncrementalRules , tick by tick. Moreover, it maintains a grounding G of Π, i.e.,

the incremental encoding for the previous tick plus expiration annotations.

The procedure starts by generating the new incremental rules I based on Algo-

rithm 2 described above. Next, we add for each rule the current tick (t, c) to its

duration (tΔ, cΔ) (componentwise). This way, we obtain new incremental rules E+

with expiration tick annotations. Dually, we collect in E− previous incremental

rules that expire now, i.e., when the current tick reaches the expiration tick time t′

or count c′. The new cumulative program Π results by removing E− from Π

and adding E+. Based on Π′, we obtain in Line 5 the new (annotated) ground

rules G+ based on E+. As in Line 3, we determine in Line 6 the set G− of expired

(annotated) ground rules. After assigning G′ the updated annotated grounding in

Line 7, we return the new incremental evaluation state 〈Π′, G′〉, from which the

current incremental program is derived as follows.

Definition 10 (Incremental Program)

Let P be a LARS program and D = (K, v) be a tick stream, where K =

〈(t1, c1), . . . , (tm, cm)〉. The incremental program P̂D,k of P for D at tick (tk, ck), 1 �
k � m, is defined by P̂D,k = {r | 〈(t′, c′), r〉 ∈ Gk}, where

〈Πk, Gk〉 =
{

IncrementTick (∅, ∅, t1, c1, ∅) if k = 1,

IncrementTick (Πk−1, Gk−1, tk, ck, v(tk, ck)) else.

In the following, body occurrences of form @ta(X) are viewed as shortcuts for

�∞@ta(X). The next proposition states that to faithfully compute an incremental

program from scratch, it suffices to start iterating IncrementalTick from the oldest

tick that is covered from any window in the considered program. In the subsequent

results, we disregard auxiliary atoms like tick(t, c), coversτe(t), etc. Let ASI (P̂ ) denote

the answer sets of P̂ , projected to intensional atoms.

Proposition 2

Let D = (K, v) and D′ = (K ′, v′) be two data streams such that (i) D′ ⊆ D, (ii)

K = 〈(t1, c1), . . . , (tm, cm)〉 and (iii) K ′ = 〈(tk, ck), . . . , (tm, cm)〉, 1 � k � m. Moreover,

let P be a LARS program and nτ (resp. n#) be the maximal window length for all

time (resp. tuple) windows, or ∞ if none exists. If tk � tm − nτ and ck � cm − n# + 1,

then ASI (P̂D,m) = ASI (P̂D′ ,m).

The result stems from the fact that in the incremental program P̂D,m no rule

can fire based on outdated information, i.e., atoms that are not covered by any

window anymore. In order to obtain an equivalence between P̂D,m and P̂D′ ,m on

extensional atoms, we would have to drop all atoms of the stream encoding D̂

during IncrementalTick , as soon as no window can access them anymore.

The following states the correspondence between the static and the incremental

encoding.
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Proposition 3

Let P be a LARS program and D be a tick data stream at tick m = (t, c).

Furthermore, let P̂ = LarsToAsp(P , t) and P̂D,m be the incremental program at tick

m. Then, S ∪ {now (t), cnt(c)} is an answer set of P̂ ∪ D̂ iff S is an answer set of P̂D,m

(modulo aux. atoms).

In conclusion, we obtain from Propositions 1 and 3 the desired correctness of the

incremental encoding.

Theorem 1

Let P be a LARS program and D = (K, v) be a tick data stream at tick m = (t, c).

Then, S is an answer stream of P for D at t iff Ŝ is an answer set of P̂D,m (modulo

aux. atoms).

5 Implementation

We now present Ticker, our stream reasoning engine which is written in Scala

(source code available at https://github.com/hbeck/ticker). It has two high-

level processing methods for a given time point: append is adding input signals,

and evaluate returns the model. Two implementations of this interface are provided,

based on two evaluation strategies discussed next.

One-shot solving by using Clingo. The ASP solver Clingo (Gebser et al. 2014) is a

practical choice for stratified programs, where no ambiguity arises which model to

compute. At every time point, respectively, at the arrival of a new atom, the static

LARS encoding P̂ (of Algorithm 1) is streamed to the solver and results are parsed

as soon as Clingo reports a model. In case of multiple models, we take the first

one. Apart from this so-called push-based mode, where a model is prepared after

every append call, we also provide a pull-based mode, where only evaluate triggers

model computation. Clingo’s reactive features are not applicable (see supplementary

material).

Incremental evaluation by TMS. In this strategy, the model is maintained con-

tinuously using our own implementation of the truth-maintenance system (TMS)

by Doyle (1979). A TMS network can be seen as logic program P and data

structures that reflect a so-called admissible model M for P . Given a rule r, the

network is updated such that it represents an admissible model M ′ for P ∪ {r},
thereby reconsidering the truth value of atoms in M only if they may change due to

the network. Ticker analogously allows for rule removals, i.e., obtaining an admissible

model M ′ for P \ {r}. We exploit the following correspondence of admissible models

and answer sets.

Theorem 2 (cf. Elkan (1990))

(i) A model M is admissible for program P iff it is an answer set of P . (ii) Deciding

whether P has an admissible model is NP-complete.

Notably, this correspondence holds only in the absence of constraints, or more

generally, odd loops (Elkan 1990). In case such programs are used, neither a correct
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output nor termination are guaranteed. Elkan points out that also incremental

reasoning is NP-complete, i.e., given an admissible model M for P , deciding for a

rule r whether P ∪ {r} has an admissible model. No further knowledge about TMS

is required for our purpose. A detailed, formal review can be found in Beck (2017),

supplementing the textual presentation in Doyle (1979).

When new data is streaming in, we compute the incremental rules G+ as defined

in Algorithm 2, add them to the TMS network and remove expired ones G−, which

results in an immediate model update. The incremental TMS strategy is, due to its

maintenance outset, more amenable to keep the latest model by inertia, which may

be desirable in some applications.

Pre-grounding. In Algorithm 3, we assume a grounder that instantiates pinned rules

from Algorithm 2. To provide according efficient techniques is a topic on its own;

we restrict grounding to the pinning process in Algorithm 2. To this end, we add to

each rule for every variable X in the scope of a window atom an additional guard

atom that includes X. The guard is either background data or intensional. Based

on this, the incremental rules in Algorithm 2 can be grounded upfront, apart from

the tick variables Ṅ and Ċ and time variables in @-atoms. We call such programs

pre-grounded. A LARS program P is first translated into an encoding P̂ with several

data structures that differentiate Q, base rules R, and window rules W . During the

initialization process, pre-groundings are prepared, where arithmetic expressions are

represented by auxiliary atoms. During grounding, they are removed if they hold,

otherwise the entire ground rule is removed.

Example 16

For rule r = @Thigh ← value(V ),�n@Talpha(V ), V � 18 of Example 5, where

value(V ) was added as guard, we get a base rule r̂ = high@(T )← value(V ), ωe(V ,T ),

Geq(V , 18), where e = �n@Talpha(V ). Given facts {value(0), . . . , value(30)} (from

background data or potential derivations), we obtain the pre-grounding {high@(T )←
value(x), ωe(x, T ) | x ∈ {18, . . . , 30}}.
We then use pre-groundings in Algorithm 2 such that when Algorithm 3 receives

its result I , all rules are already ground. Thus, the implementation has no further

grounding in Algorithm 3 and only concerns handling durations and expirations,

which is realized based on efficient lookups.

6 Evaluation

For an experimental evaluation, we consider two scenarios in the context of

content-centric network management, where smart routers need to manage packages

dynamically (Beck et al. 2017).

Scenario A: Caching Strategy. Figure 2 shows a program to dynamically select

one of several strategies (fifo, lfu , lru , random) how to replace content items (video

chunks) in a local cache. A user request parameter α, signaled as atom alpha(V ), is

monitored and abstracted to a qualitative level (r1–r3) using tuple-based windows.

At this level, time-based windows are used to decide among fifo, lfu and lru (r4–r6);

the default policy is random (r7–r10).
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r1 : @T high ← value(V ), #n@T alpha(V ), 18 ≤V r6 : fifo ← n low
r2 : @T mid ← value(V ), #n@T alpha(V ), 12 ≤V < 18 r7 : done ← lfu
r3 : @T low ← value(V ), #n@T alpha(V ), V < 12 r8 : done ← lru
r4 : lfu ← n high r9 : done ← fifo
r5 : lru ← n mid r10 : random ← not done

Fig. 2. Program for scenario A, setup A2. Setup A1 uses �n in r1 − r3 instead of �#n.

r1 : need(I,N) ← item(I), node(N), n req(I,N)
r2 : avail(I,N) ← item(I), node(N), n cache(I,N)
r3 : get(I,N,M) ← source(I,N,M), not nGet(I,N,M)
r4 : nGet(I,N,M) ← node(M), get(I,N,M ), M = M
r5 : nGet(I,N,M) ← source(I,N,M), source(I,N,M ), M = M , qual(M,L), qual(M ,L ), L < L
r6 : source(I,N,M) ← need(I,N), not avail(I,N), avail(I,M), reach(N,M)
r7 : reach(N,M) ← conn(N,M)
r8 : reach(N,M) ← reach(N,M ), conn(M ,M), M = M, N = M
r9 : conn(N,M) ← edge(N,M), not n down(M)
r10 : qual(N,L) ← node(N), lev(L), lev(L ), L < L, n qLev(N,L), not n qLev(N,L )

Fig. 3. Program for scenario B.

Setup A1 replaces tuple windows in rules r1–r3 by time windows [as in Beck

et al. (2017)]; setup A2 uses the program as shown. The input signals alpha(V ) are

generated such that a random mode high, medium or low is repeatedly chosen and

kept for twice the window size.

Scenario B: Content Retrieval. Figure 3 depicts the second program, which, in con-

trast to the former, may have multiple models and includes recursive computation,

instead of straightforward chaining. In a network, items can be cached and requested

at every node. If a user recently requested item I at node N (rule r1), it is either

available at N (r2) or has to be retrieved from some other node M (r3, r6). A single

node is selected (r3) that provides the best quality level (e.g., connection speed) among

all reachable nodes having I (r5). Connecting paths (r7, r8) work unless the end node

of an edge was down during the last n time points (r9). Finally, nodes repeatedly

report their quality level, among which the best recent value is selected (r10). We take

the classic Abilene network (Spring et al. 2004), i.e., the set of edges {(x, y), (y, x) |
(x, y) ∈ E}, where E = {(0, 1), (1, 2), . . . , (9, 10), (0, 10), (1, 10), (2, 8), (3, 7)}. We use

three quality levels {0, 1, 2} and two items. In setup B1, at every time point, with

respective probability p = 0.1, each item is requested at a random node, one random

item is cached at a random node and one random node is signaled as down. Further,

the quality level of each node changes with p = 3/n, where n is the window size.

Setup B2 requests each item with p = 0.5 at 1–3 random nodes, always signals 1–3

random cache entries and a quality level for every node with p = 0.25, which is then

with p = 0.9 the previous one. With p = 1/n, a random node will be down for 1.5 · n
time points.

Evaluations. For each scenario and setup, we ran two evaluation modes. The first

one fixes the number tp of time points and increases the window size n stepwise;

the second setup does vice versa.
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Fig. 4. Runtime evaluation for increasing window size. (a) Scenario A (caching strategy).

(b) Scenario B (content retrieval).

In each evaluation mode, we measure

(i) the time tinit needed to initialize the engine before input signals are streamed

(in case of the incremental mode, this includes pre-grounding),

(ii) the average time ttick per tick, i.e., a time or count increment and

(iii) the total time ttotal of a single run, resulting from tinit and ttick for all timepoints

and atoms.

(Note that a tick increment may involve both adding and removing rules.) Each

evaluation includes runtimes for both reasoning strategies, i.e., based on Clingo

(Vers. 5.1.0) and based on the incremental approach with Doyle’s TMS. For a

fair comparison with TMS, we use Clingo in a push-based mode, i.e., a model is

computed whenever a signal streams in. To obtain robust results, we first run each

instance twice without recording time, and then build the average over the next five

runs for tinit , ttotal and ttick , respectively. The first two runs serve as warm-up for

the environment, ensuring that potential optimizations by the Java-Virtual-Machine

do not distort the measurements. All evaluations were executed on a laptop with

an Intel i7 CPU at 2.7 GHz and 16 GB RAM running the Java-Virtual-Machine

version 1.8.0 112. They can be run via class LarsEvaluation.

Results. We report here on findings regarding the total execution times ttotal , shown

in Figures 4 and 5.

Detailed runtimes for ttotal , tinit and ttick can be found in Tables C1–C8 in the

supplementary material.

Figure 4 shows the effect on the runtime when the window size is increased.

We observe that for both scenarios the total execution time ttotal is proportionally

growing using Clingo, while for the incremental implementation (TMS), ttotal remains

nearly constant. For Clingo, this is explained by the full recomputation of the model

with all previous input data, while TMS benefits from prior model computations

and is thus significantly faster for larger window sizes. Dually, Figure 5 show the

runtime evaluation for increasing number of timepoints. For both scenarios, the

total run time ttotal of both Clingo and TMS increases linearly, and incremental

is significantly faster than repeated one-shot solving. For both evaluations (Figs. 4

and 5), using different windows (A1 versus A2 ) has no influence on the execution
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Fig. 5. Runtime evaluation for increasing timepoints. (a) Scenario A (caching strategy).

(b) Scenario B (content retrieval).

time, for both Clingo and TMS, and different input patterns (B1 versus B2 ) seem

to influence TMS less than Clingo.

In conclusion, the experiments indicate that incremental model update may

computationally pay off in comparison to repeated recomputing from scratch, in

particular when using large windows. Furthermore, maintenance aims at keeping a

model by inertia, which, however, we have not assessed in the experiments.

7 Related work and conclusion

In Beck et al. (2015), TMS techniques have been extended and applied for (plain)

LARS, instead of reducing LARS to ASP. In contrast, the present approach does

not primarily focus on model update, but incremental program update. Apart from

work on Clingo mentioned earlier, alternatives to one-shot ASP were also considered

by Alviano et al. (2014). The ASP approach of Do et al. (2011) for stream reasoning

calls the dlvhex solver; it has no incremental reasoning and cannot handle heavy

data load. ETALIS (Anicic et al. 2012) is a prominent rule formalism for complex

event processing to reason about intervals for atomic events with a peculiar minimal

model semantics. ETALIS is monotonic for a growing timeline (as such trivially

incremental), and does not feature window mechanisms. StreamLog (Zaniolo 2012)

extends Datalog for single-model stream reasoning, where rules concluding about

the past are excluded; neither windows nor incremental evaluation were considered.

The DRed algorithm (Gupta et al. 1993) for incremental Datalog update deletes all

consequences of deleted facts and then adds all rederivable ones from the rest. It was

adapted to RDF streams by Barbieri et al. (2010), where tuples are tagged with an

expiration time. Ren and Pan (2011) explored TMS techniques for ontology streams.

However, windows and time reference were not considered in their monotonic setting.

Toward incremental grounding, techniques as in Lefèvre and Nicolas (2009), Palù

et al. (2009) and Dao-Tran et al. (2012) might be considered.

Outlook. The algorithms we have presented center around the idea of incremen-

tally adapting a model based on an incremental adjustment of a program. Our

implementation indicates performance benefits arising from incremental evaluation.

Developing techniques for full grounding on-the-fly in this context remains to be
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done. On the semantic side, notions of closeness between consecutive models and

guarantees to obtain them are intriguing issues for future work.

Acknowledgements

We thank Roland Kaminski for providing guidance on the use of Clingo.

Supplementary materials

To view supplementary material for this article, please visit https://doi.org/

10.1017/S1471068417000370

References

Alviano, M., Dodaro, C. and Ricca, F. 2014. Anytime computation of cautious consequences

in answer set programming. Theory and Practice of Logic Programming 14, 4–5, 755–770.

Anicic, D., Rudolph, S., Fodor, P. and Stojanovic, N. 2012. Stream reasoning and complex

event processing in ETALIS. Semantic Web 3, 4, 397–407.

Babu, S. and Widom, J. 2001. Continuous queries over data streams. SIGMOD Record 3, 30,

109–120.

Barbieri, D. F., Braga, D., Ceri, S., Valle, E. D. and Grossniklaus, M. 2010. Incremental

reasoning on streams and rich background knowledge. In Proc. of Semantic Web: Research

and Applications, 7th Extended Semantic Web Conference, ESWC 2010, Part I, Heraklion,

Crete, Greece, May 30–June 3, 2010, L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije,

H. Stuckenschmidt, L. Cabral, and T. Tudorache, Eds. Lecture Notes in Computer Science,

vol. 6088. Springer, 1–15.

Beck, H. 2017. Reviewing Justification-based Truth Maintenance Systems from a Logic

Programming Perspective. Tech. Rep. INFSYS RR-1843-17-02, Institute of Information

Systems, TU Vienna.

Beck, H., Bierbaumer, B., Dao-Tran, M., Eiter, T., Hellwagner, H. and Schekotihin, K.

2017. Stream reasoning-Based control of caching strategies in CCN routers. In Proc. of the

IEEE International Conference on Communications, May 21–25, 2017, Paris, France, 1–6.

Beck, H., Dao-Tran, M. and Eiter, T. 2015. Answer update for rule-based stream reasoning.

In Proc. of the 24th International Joint Conference on Artificial Intelligence (IJCAI-15),

July 25–31, 2015, Buenos Aires, Argentina, Q. Yang and M. Wooldridge, Eds. AAAI

Press/IJCAI, 2741–2747.

Beck, H., Dao-Tran, M., Eiter, T. and Fink, M. 2015. LARS: A logic-based framework

for analyzing reasoning over streams. In Proc. of 29th Conference on Artificial Intelligence

(AAAI’15), January 25–30, 2015, Austin, Texas, USA, B. Bonet and S. Koenig, Eds. AAAI

Press, 1431–1438.

Dao-Tran, M., Eiter, T., Fink, M., Weidinger, G. and Weinzierl, A. 2012. Omiga: An open

minded grounding on-the-fly answer set solver. In Proc. of Logics in Artificial Intelligence

- 13th European Conference, JELIA 2012, Toulouse, France, September 26–28, 2012, L. F.

del Cerro, A. Herzig, and J. Mengin, Eds. Lecture Notes in Computer Science, vol. 7519.

Springer, 480–483.

Della Valle, E., Ceri, S., van Harmelen, F. and Fensel, D. 2009. It’s a streaming world!

Reasoning upon rapidly changing information. IEEE Intelligent Systems 24, 83–89.

https://doi.org/10.1017/S1471068417000370 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000370


Theory and Practice of Logic Programming 763

Do, T. M., Loke, S. W. and Liu, F. 2011. Answer set programming for stream reasoning.

In Proc. of Advances in Artificial Intelligence - 24th Canadian Conference on Artificial

Intelligence, Canadian AI 2011, St. John’s, Canada, May 25–27, 2011, C. J. Butz and

P. Lingras, Eds. Lecture Notes in Computer Science, vol. 6657. Springer, 104–109.

Doyle, J. 1979. A truth maintenance system. Artificial Intelligence 12, 3, 231–272.

Elkan, C. 1990. A rational reconstruction of nonmonotonic truth maintenance systems.

Artificial Intelligence 43 2, 219–234.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2014. Clingo = ASP +

control: Preliminary report. In Proc. of Technical Communications of the 30th International

Conference on Logic Programming (ICLP’14), M. Leuschel and T. Schrijvers, Eds. Theory

and Practice of Logic Programming, Online Supplement.

Gebser, M., Kaminski, R., Obermeier, P. and Schaub, T. 2015. Ricochet robots reloaded:

A case-study in multi-shot ASP solving. In Proc. of Advances in Knowledge Representation,

Logic Programming, and Abstract Argumentation - Essays Dedicated to Gerhard Brewka on

the Occasion of His 60th Birthday, T. Eiter, H. Strass, M. Truszczynski and S. Woltran, Eds.

Lecture Notes in Computer Science, vol. 9060. Springer, 17–32.

Gupta, A., Mumick, I. S. and Subrahmanian, V. S. 1993. Maintaining views incrementally.

In Proc. of ACM SIGMOD International Conference on Management of Data , 157–166.
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