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Abstract

We consider the �(i)/G/1 queue, in which a total of n customers join a single-server
queue for service. Customers join the queue independently after exponential times. We
consider heavy-tailed service-time distributions with tails decaying as x−α , α ∈ (1, 2).
We consider the asymptotic regime in which the population size grows to ∞ and establish
that the scaled queue-length process converges to an α-stable process with a negative
quadratic drift. We leverage this asymptotic result to characterize the head start that is
needed to create a long period of uninterrupted activity (a busy period). The heavy-tailed
service times should be contrasted with the case of light-tailed service times, for which a
similar scaling limit arises (Bet et al. (2015)), but then with a Brownian motion instead
of an α-stable process.
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1. Introduction

In this paper we are concerned with the�(i)/G/1 queue, designed to model a service system
to which only a finite pool of n customers can arrive. The n potential customers in the pool
each have an independent and identically distributed (i.i.d.) exponential clock and join the queue
when their clock rings. Each customer joins the queue only once, and at the system level, this
creates an arrival process governed by the order statistics of the clock times. The �(i)/G/1
queue, in the precise form as studied in this paper, was introduced in [15] and [16], and belongs
to the branch of queueing theory that deals with time-dependent or transient conditions [24]–
[27], [39], [40]. Indeed, with time, the pool of potential customers (those who have not joined
the queue yet) becomes smaller, and the influx of customers loses intensity.

The�(i)/G/1 queue can be studied in many operating regimes; see, e.g. [16] and [23] where
the focus was on overloaded regimes and [4] for a detailed overview. In [4] we introduced a
new heavy-traffic regime defined by two features: the customer pool grows to ∞ and the initial
(at time zero) rate of newly arriving customers is such that, on average, one new customer is
expected to arrive during one service time. This gives rise to a large-scale system that (initially)
operates close to full utilization, and is expected to utilize its resources efficiently. By this we
mean that the server is typically busy, and that idle times are negligible. In fact, this defines our
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922 G. BET ET AL.

main goal in this paper: to characterize the conditions under which sufficiently many customers
will join the queue to guarantee that the system will have a substantial backlog of customers.
We focus on the first busy period, and show how to set the initial number of customers already
present in the queue at time t = 0, referred to as the head start, to create a considerable first
busy period during which the server can work continuously.

In [4] we have studied this heavy-traffic regime under the assumption that the variance of
the service-time distribution is finite, and have shown that the queue-length process converges
to a reflected Brownian motion with negative quadratic drift. The negative drift captures the
effect of a pool of potential customers that diminishes with time: after some time, the activity
in the queue inevitably becomes negligible. However, in the early phases, the rate of arriving
customers can be high. Say you want to start a business and you estimate that a population
of n persons might become customers. Then the head start can be interpreted as the persons
that signed up (already) as a customer. In [4] we have shown that in our heavy-traffic regime,
once the head start is of order n1/3, and you would decide to start your business, the number
of customers you will serve consecutively is of the order n2/3. With this mental picture, our
heavy-traffic regime gives insight into dimensioning rules about how large the pool n should be
in comparison to the head start, how to choose the service capacity as a function of the pool size
to achieve full system utilization, and how to control the first busy period, which essentially is
the relevant time of operation of the system.

In the present paper we drop the finite-variance condition and study the queue-length process
under the additional assumption that the service times are heavy tailed. More precisely, we
assume that the service times follow a power-law distribution with power-law exponent α ∈
(1, 2). Under these assumptions, our model is the finite-pool analogue of the classical heavy-
tailed M/G/1 queue; see below for a discussion. We establish that, in a similar heavy-traffic
regime as in [4], the rescaled queue-length process converges to an α-stable process with
negative quadratic drift. As in the finite-variance case, the diminishing pool effect is still there
in the form of the drift term, but the oscillations of the limiting queue length are much wilder.
We will also show that, as a consequence of the larger fluctuations, the desired head start
and canonical busy period should scale with n, in a specific way that vitally depends on the
exponent α and other more refined properties of the service-time distribution.

2. Description of the model

We now describe the �(i)/G/1 model with exponential arrivals in detail. We consider a
population of n potential customers that are to be served by a single server. Each customer
i ∈ {1, . . . , n} =: [n] is assigned a random variable Ti , representing its arrival time. We assume
(Ti)

n
i=1 to be a sequence of i.i.d. exponential random variables with mean 1/λ. We denote the

distribution function of T1 by FT (·). When the clock Ti rings, customer i joins the queue and
customers in the queue are served in a first-come–first-served manner. The arrival times are
then given by the order statistics of (Ti)ni=1. The service requirements of customers are given
by a sequence (S̄i)ni=1 of i.i.d. random variables. The server works with speed cn, so that the
service time of customer i is Si := S̄i/cn. We let the server speed depend on the number
of customers in the population, and study how the performance of the system is affected by
different choices of cn. We denote the distribution function of S̄1 by FS̄(·). We say a function
�(·) is slowly varying when limt→∞ �(tc)/�(t) = 1 for all c > 0. The service-time distribution
is assumed to be in the domain of attraction of an α-stable law i.e. its tail decays as

P(S̄ > t) = 1 − FS̄(t) = t−α�(t), α ∈ (1, 2), (1)
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for a slowly varying function �(·). Assumption (1) implies, in particular, that E[S̄k] = ∞ for
k > α, and E[S̄k] < ∞ for k < α. We further assume that the queue obeys the heavy-traffic
condition

max
t≥0

fT (t)E[S̄] = max
t≥0

fT (t)E[S]cn = 1, (2)

where fT (·) is the density of the arrival time distribution. For exponential arrival times with
rate λ, condition (2) simplifies to

λE[S̄] = λE[S]cn = 1. (3)

We will assume that the speed cn can be expressed as cn = 1+εn, with εn � 1. Assumption (3)
can then be interpreted as a ‘critical window’: the system is near the critical point λE[S] = 1
and the distance from criticality is tuned by a parameter β such that εn = βn−η, for some η > 0
to be identified later, so that the queue remains asymptotically critical.

For n → ∞, this gives the critical point λE[S] = 1, which can be understood as follows.
Since λ represents the instantaneous (close to time t = 0) arrival rate of customers, (3) amounts
to assuming that on average, during one service time, one customer joins the queue. We study
the queue after Nn(0) customers have already joined, where the head start Nn(0) may depend
on n and Nn(0) → ∞. Since in our setting Nn(0) � n, without loss of generality we can
assume there are (still) n customers in the pool. Before stating our main results, let us introduce
some notation.

Denote the number of customers who arrive in the interval [0, t] by A(t) = ∑n
i=1 1{Ti≤t}.

Let

σ(t) = max

{
k ≥ 0

∣∣∣∣
k∑
i=1

Si ≤ t

}
(4)

be the renewal process associated with the service times and define the net input process as

X(t) =
A(t)∑
i=1

Si − t. (5)

The process Xn(·) is useful in defining the cumulative busy-time process as

B(t) = t − I (t) = t − inf
0≤s≤t(X(s)

−),

where f (x)− = min{0, f (x)} (respectively, f (x)+ = max{0, f (x)}), and In(·) is the cumula-
tive idle time.

Let D := D([0,∞)) denote the space of càdlàg functions that are continuous from the right
and admit a limit from the left at every point. All the functions that we consider are elements
of D . Let φ(·) : D 	→ D be the reflection mapping, defined as

φ(f )(x) = f (x)+ ψ(f )(x), (6)

where ψ(·) : D 	→ D is given by

ψ(f )(x) = − inf
0≤y≤x(f (y)

−). (7)

The queue-length process Q(t) is given by

Q(t) = Nn(0)+ A(t)− σ(B(t)),

whereNn(0) denotes the number of customers already in the queue at the beginning of the first
service.
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For our limit result, we rescale the arrival process as An(t) := A(t/n) so that we expect
order 1 customers to arrive in a time window of length 1. Accordingly, consider the process

Qn(t) = Nn(0)+ An(t)− σ(Bn(t)), (8)

where

Bn(t) = t − inf
0≤s≤t

(An(t)∑
i=1

Si − t

)−
.

The time change t 	→ Bn(t) depends both on (Ti)∞i=1 and (Si)∞i=1 and as such makes the analysis
of Qn(t) challenging. An approach pioneered by Iglehart and Whitt [17] consists in studying
a related queue in which the server never idles, but rather continues working according to the
renewal process associated with (Si)∞i=1 even when the queue is empty. This is often referred to
as the queue with autonomous service or the Borovkov modified system; see [38, Chapter 10.2].
It turns out that, under mild assumptions, the original queue and the Borovkov modified system
are asymptotically equivalent in heavy traffic [38, Theorem 10.2.2], in the sense that the distance
between the two queue-length processes converges to 0. However, for this approach to work,
the service-time limit process needs to be continuous. Indeed, the distance between the two
processes is bounded from above by the (scaled) maximum service time, or, equivalently, the
maximum jump functional applied to the service-time process. If the service-time limit process
is continuous then the maximum jump functional converges to 0. If, on the other hand, the
service-time limit process is discontinuous, then the distance between the two queues cannot
be shown to converge to 0.

Instead, here we adopt a different approach that allows us to deal with a discontinuous
service-time limit process. This consists in expressingQn(·) as the reflection of an appropriate
free process Nn(·). Since, after rescaling, Nn(·) converges and the reflection mapping is
continuous almost surely in the limit point, the processQn(·) also converges by the continuous
mapping theorem. The free process Nn(·) has the following interpretation: when the server
is working, Nn(·) follows Qn(·). When the queue is empty, Nn(·) decreases linearly at a rate
equal to the service rate. Therefore, while in the Borovkov modified system, the server works
continuously according to the service-time renewal process, and in the process Nn(·) when
there are no customers in the system, the server provides instantaneous work with rate 1/E[S].
Consequently, the process Nn(·) can be seen as a fluid version of the Borovkov modified
system. In Figure 1 we plot a sample path of the process Nn(·). The processQn(·) can then be
represented as follows.

Proposition 1. (Key reformulation for the queue length.) The queue-length process (Qn(t))t≥0
can be represented as

Qn(t) = φ(Nn)(t), t ≥ 0, (9)

where Nn(·) is given by

Nn(t) = Nn(0)+ An(t)− σ(Bn(t))− t − Bn(t)

E[S] . (10)

Proof. Start from (8) and add and subtract (t − Bn(t))/E[S] to obtain

Qn(t) = Nn(0)+ An(t)− σ(Bn(t))− t − Bn(t)

E[S] + t − Bn(t)

E[S] .

Representation (9) will follow as the solution of the so-called Skorokhod problem.

https://doi.org/10.1017/jpr.2017.42 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.42


Heavy-tailed finite-pool queueing 925

Nn( )t

t

Figure 1: A sample path of the process Nn(·).

Lemma 1. (The Skorokhod problem [3, Proposition 2.2, p. 251].) Let X(·) be a real-valued
stochastic process such that X(0) = 0. Assume that R(·) is a nondecreasing right-continuous
process such that the processQ(·) given byQ(0) = q andQ(t) = X(t)+R(t) is nonnegative
for all t , and

∫ ∞
0 Q(t) dR(t) = 0. Then

R(t) = ψ(q +X(·))(t) and Q(t) = φ(q +X(·))(t),
where ψ(·) and φ(·) are defined in (6) and (7), respectively.

To prove Proposition 1, we apply Lemma 1 with the choices

R(t) = Nn(0)+ t − Bn(t)

E[S] , Q(t) = Qn(t),

X(t) = An(t)− σ(Bn(t))− t − Bn(t)

E[S] .

(11)

Note that R(t) = Nn(0)+ In(t)/E[S], where we recall that t 	→ In(t) is the idle-time process.
In particular, t 	→ R(t) is nondecreasing. This, together with the fact that R(t) ≥ 0, implies
that t 	→ R(t) is of bounded variation. Moreover, R(t) = Nn(0)+ In(t)/E[S] increases if and
only if Q(t) = 0, that is,

∫ ∞
0 Q(t) dR(t) = 0. Therefore, Lemma 1 implies that

Q(t) = Nn(0)+X(t)− inf
0≤s≤t(Nn(0)+X(t))− = φ(Nn)(t),

R(t) = − inf
0≤s≤t(Nn(0)+X(t))− = ψ(Nn)(t),

where we use the definition of Nn(t) in (10) as well as (11). This completes the proof. �
We will consider the scaled versions of the processes of interest given by

Qn(t) = φ(Nn)(t), τn(t) = tnα/(2α−1)�1(n),

Nn(t) = n−1/(2α−1)�2(n)Nn(τn(t)), (12)

where �1(·) and �2(·) are slowly varying functions that depend on �(·). Using basic properties of
slowly varying functions (see, e.g. [8, Proposition 1.3.6]), the scaling constants can be written
as

nα/(2α−1)�1(n) = n(1+o(1))α/(2α−1), n−1/(2α−1)�2(n) = n−(1+o(1))/(2α−1).

In particular, for α = 2, the scaling exponents are (asymptotically) the same as in the finite-
variance case [4]. We can now state our main result.
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Figure 2: Sample paths of the process φ(N )(t) for β = 2 and β = 4. The dashed line is the plot of the
functions t 	→ q0 + λβt − λ2/2t . In all plots, q0 = 4, α = 1.8, λ = sα = 1.

Theorem 1. (Scaling limit for the queue-length process.) Assume that Nn(0) = q0n
1/(2α−1)

× �−1
2 (n) for some q0 ≥ 0. Assume further that cn = 1 − βn−(α−1)/(2α−1), where β ∈

(−∞,∞). Then

Nn(·) d−→ N (·) in (D,M1),

where

N (t) = q0 + βλt − λ2

2
t2 + sαSα(t), (13)

with sα = 1/E[S]1+1/α and where Sα(·) is a spectrally positive α-stable process. Moreover,

Qn(·) d−→ φ(N )(·) in (D,M1). (14)

Convergence in (D,M1) is a shorthand notation for convergence in distribution in the space
of càdlàg functions D endowed with the M1 topology. We elaborate on this later on. In
Figure 2 we present the first passage time as a function of the linear drift β, for fixed α and q0,
and different values of the linear drift parameter β. We see that a larger β (slower server speed)
corresponds to a larger busy period, as expected.

Define the first hitting time of x for a function f (·) as

Hf (x) = inf{t > 0 : f (t) ≤ x}.
Then HNn(0) represents the first busy period of the �(i)/G/1 queue. The following corollary
of Theorem 1 characterizes the limiting distribution of HNn(0).

Corollary 1. (Busy period convergence.) Under the assumptions of Theorem 1, as n → ∞,

n−α/(2α−1)�1(n)
−1HNn(0) = HNn(0)

d−→ HN (0).

Proof. By [19, Chapter VI, Proposition 2.11], the functional f 	→ Hf (0) is continuous
in N with probability 1 when D is endowed with theM1 topology. Note that [19, Chapter VI,
Proposition 2.11] holds for the J1 topology, but the proof is readily adapted to theM1 topology.
See also [38, Theorem 13.6.5]. The conclusion follows by an application of the continuous
mapping theorem. �
Remark 1. (Approximation ofHN (0).) The plots in Figures 2 and 3 suggest that the quadratic
drift given by

dq0,β(t) := q0 + βλt − λ2

2
t2

https://doi.org/10.1017/jpr.2017.42 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.42


Heavy-tailed finite-pool queueing 927

102101100

10−2

10−4

10−6

10−8

α = 1.1
α = 1.4
α = 1.9

Figure 3: A log-log scale plot of the empirical tail distribution P(HN (0) > t) of the first busy period
of Qn(·) for different values of α ∈ (1, 2). The solid lines represent the asymptotic approximation (15).

In all plots, n = 1000 and q0 = β = λ = sα = 1.

yields a first-order approximation ofHN (0). In particular, the hitting timeHdq0,β (·)(0) is simply
given by the solution of a quadratic equation, and is equal to

Hdq0,β (·)(0) = −β + √
β2 + 2q0

λ
,

where we have assumed that q0 ≥ 0. Note that the hitting time of zero of Sα(·) is distributed
as a (1/α)-stable random variable by [32, Theorem 46.3]; see also [33].

Remark 2. (Tail probabilities.) Corollary 1 allows us to estimate the tail probability for the
length of the first busy period. In fact, we have the exact upper bound

P(HN (0) > t) ≤ P

(
sαSα(t) > −q0 − βλt + λ2

2
t2

)
,

where we have used the trivial inclusion of events {HN (0) > t} ⊆ {N (t) > 0}. By basic
properties of stable laws, we have the asymptotic relation (see [31, pp. 16–17])

P

(
Xα >

1

sα
(−q0t

−1/α − βλt1−1/α + λ2

2
t2−1/α)

)

∼ Cαs
α
α

(−q0t−1/α − βλt(α−1)/α + λ2t (2α−1)/α/2)α

∼ 2αCαsαα
λ2α

1

t2α−1 , (15)

whereXα is distributed as a standardα-stable law,Cα = (1−α)/(2−α) cos(πα/2) forα �= 1,
and t 	→ (t) is the standard gamma function. On the other hand, due to the strong negative
drift of N (·), it is natural to conjecture that the two events {HN (0) > t} and {N (t) > 0} are
of comparable measure when t is large. In Figure 3 we show that the tails of the empirical
distribution of the first busy period behave like the upper bound (15) (see [1] and [36], where
this was proven when Sα(·) is replaced by a more complicated thinned Lévy process). However,
the approximation becomes less effective as α ↗ 2, and for α = 2, (15) is not theoretically
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justified. In fact, for this finite-variance case, Pittel [28] (see also [29] and [30]) showed that
the tail asymptotically behaves as

P(HN (0) > t) = 1√
9π/8t3/2

exp

(
t (t − 2β)2

8

)
(1 + o(1)), t → ∞.

Relation with the existing literature. The�(i)/G/1 queue was introduced in [16] as a model
for queueing systems serving only a finite pool of customers. In [15], the authors showed that
the �(i)/G/1 queue can be regarded as the canonical model for the study of such systems, in
the sense that, under mild assumptions, every other transitory queueing model has the same
asymptotic behavior. In [16], the authors assumed that E[S2] < ∞ and, further assuming
that at some instant t the queue is overloaded, proved a functional law of large numbers and
a functional central limit theorem (FCLT) for the �(i)/G/1 queue. The latter turns out to be
highly nontrivial. The limit process is a diffusion that switches between three regimes: a free
Brownian motion, a reflected Brownian motion, and the zero process. Therefore, the results
in [16] can be seen as the equivalent of the standard FCLT for light-tailed GI/G/1 queues
[17], [18] in a transitory setting. However, time-varying queues exhibit a richer behavior than
their ergodic counterparts. In particular, when ρ = 1 (where ρ is a model-dependent traffic
intensity parameter) and under appropriate scaling, the queue-length process has a polynomial
drift, see [24] for the Mt /Mt /1 queue and [39] for the Gt /G/1 queue.

A common assumption in queueing theory is that the arrival process of customers is a
renewal process, a Poisson process being the classical choice. In this paper we relax this
Poisson assumption and instead assume that with time more customers have passed the queue,
and, hence, fewer customers can potentially join it. This is the only assumption that deviates
from the classical setting and that changes an M/G/1 queue with a Poisson arrival process
into the�(i)/G/1 queue with thinned Poisson arrivals. For both the M/G/1 and the�(i)/G/1
queues it is clear that the queue-length process is strongly influenced by the service times,
and, in particular, depends on whether or not the service-time distribution is heavy tailed. For
the M/G/1 queue, several heavy-traffic limit theorems have been established for heavy-tailed
service-time distributions with infinite variance; see [3], [9], and [38] and the references therein.
In this paper we pursue similar limit theorems for the heavy-tailed �(i)/G/1 queue, although
the thinned arrival process leads to vastly different results. A connection, however, with the
classical work on theM/G/1 queue [3], [9], [38] is that also in the case of the�(i)/G/1 queue
stable laws play a crucial role. For the M/G/1 queue, and in queueing theory in general,
one typically distinguishes between light-tailed and heavy-tailed service-time distributions.
As such, this paper should be regarded as the heavy-tailed extension of the light-tailed setting
studied in [4, Theorem 1].

Remark 3. (Exponential arrival times.) In this paper we restrict ourselves to exponentially
distributed arrival times (Ti)∞i=1. However, in [4, Theorem 6] it was shown that, in the finite-
variance case, when the density function has its maximum in t̄ = 0 and is sufficiently smooth
around t̄ , the first excursion of the limit process only depends on the value of the density function
of the arrival epochs, and of its first nonzero derivative in t̄ , and, thus, is essentially independent
from the distribution of T . This insensitivity is further supported by the relation

Ti
d= F−1

T (1 − exp(−Ei)),
where ‘

d=’denotes equality in distribution. This suggests that results for the exponential arrivals
(Ei)

∞
i=1 can be extended to general arrival times (Ti)∞i=1 by application of an appropriate

functional. Indeed, this is how [4, Theorem 6] was proven.
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Remark 4. (Limiting processes with quadratic drift.) Our previous work [4] exploited previous
results on Brownian motion with quadratic drift to give asymptotically exact approximation
formulas for the first passage time density and the tail of the busy period. In fact, the process
W(t) = B(t) − ct2, where B(·) is the standard Brownian motion and c > 0 a constant, has
been studied by several authors. In [13], [14], and [20], analytic expressions were derived for
the joint density of the maximum and location of the maximum of t 	→ W(t), and tail estimates
were derived in [35]. In [2] it was shown that the length of the excursions of t 	→ W(t) above its
past minima can be ordered. To the best of the authors’ knowledge, similar results for α-stable
processes for α ∈ (0, 2) with quadratic drift as in (13) are not known.

Remark 5. (Connections with random graphs.) There is an interesting connection between
the�(i)/G/1 queue and a class of random graphs. Indeed, we can associate a (rooted) random
forest to the queueing process, as follows. Customers are the vertices, the first customer in the
system is the root, and when customer i joins the queue during the service of customer j , an
edge is placed between i and j . The queue-length process then corresponds to the exploration
of the random tree constructed this way. The exploration process encodes useful information
on the underlying random graph. For example, excursions above past minima are the sizes of
the connected components. Therefore, Theorem 1 should be compared with analogous results
for other random graph models; see [5], [6], [11], [12], [21], and [37].

Outline. In Section 3 we give some background on α-stable laws and a derivation of
the scaling constants in (12). In Section 4 we provide the proof of Theorem 1. We prove,
separately, the convergence to the stable motion, which follows from classical arguments, and
the convergence to the parabolic drift, which is achieved through a novel coupling argument.
Finally, in Section 5 we present some conclusions and open problems.

Notation. A common topology on D , which extends the uniform topology U , is the so-
called J1 topology, defined by Skorokhod [34]. However, when dealing with limit processes
with unmatched jumps, the coarser M1 topology is needed. When dealing with vector-valued
functions (taking values, say, in R

k), we make use of the weak M1 topology MW
1 , which

coincides with the product topology on D × D × · · · × D = Dk . For an in-depth discussion
on the various Skorokhod topologies, see [38]. For most results in this paper, convergence of
processes means convergence in distribution in the space D endowed with the M1 topology.
Recall that convergenceXn(·) d−→ X(·) in D([0,∞)) is equivalent to convergence in D([0, T ])
for all T that are continuity points of X(·). For a sequence of real-valued random variables
(Xn)

∞
n=1, we say that Xn converges to X in probability, and denote it by Xn

P−→ X, if, for each
ε > 0,

P(|Xn −X| ≥ ε) → 0 as n → ∞.

With Xn = oP(Yn) we mean that Xn/Yn
P−→ 0 as n → ∞. Given two functions f (·) and g(·)

(either on the real numbers or on the integers), the notation f ∼ gmeans limx→∞ f (x)/g(x) =
1, where x ∈ R or x ∈ N.

3. Preliminaries

In this section we introduce some results that will be useful for the proof of Theorem 1. In
Section 3.1 we present an FCLT for the service-time process σ(·). In Section 3.2 we derive
an alternative characterization of the arrival process of the �(i)/G/1 queue which reveals a
connection with the Poisson process. Finally, in Section 3.3 we give a heuristic argument that
motivates the scaling constants appearing in Theorem 1.
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3.1. FCLT for a renewal process

We will present an FCLT for the renewal process σ(·) in (4). To do so we exploit the well-
known equivalence between the FCLT for partial sums and counting processes. Let (Si)ni=1 be
a sequence of nonnegative random variables and let

�n(t) = ��nt� − E[S]nt
cn

(16)

be its rescaled partial sum, where�k = S1 +· · ·+Sk and (cn)∞n=1 will be chosen appropriately.
Hence, σ(t) = max{k ≥ 0 | �k ≤ t}. Let σn(·) denote the corresponding rescaled process

σn(t) = σ(nt)− E[S]−1nt

cn
. (17)

The relation between the scaling limits of �n(·) and σn(·) is described in the following
theorem.

Theorem 2. (FCLT equivalence [38, Theorem 7.3.2].) Assume that (Si)i≥1 is a sequence of
nonnegative random variables, and (cn)n≥1 is such that cn → ∞, n/cn → ∞. Then

�n(·) d−→ Sα(·) in (D,M1) (18)

for some process Sα(·) if and only if

σn(·) d−→ −E[S]−1Sα ◦ E[S]−1 id(·) in (D,M1), (19)

where id(·) is the identity function.

The topology M1 plays a crucial role in Theorem 2. Indeed, it can be seen that while (18)
holds in most cases in the J1 topology, the convergence (19) can only take place in the M1
topology when the limit process has positive jumps; see [38, Chapter 7.3.2] for a more detailed
explanation. By assumption (1), the sequence (Si)i≥1 is in the domain of attraction of an α-
stable motion, that is, (18) holds, and Sα(·) is a centered, spectrally positive α-stable motion.
By Theorem 2, the process σn(·) is then also in the domain of attraction of an α-stable motion.
Note that the space scaling constants cn in (16) and (17) are the same.

3.2. Poissonian representation of the arrival process

In order to further simplify the representation of Qn(t), we now introduce an alternative
characterization of the arrival process as a thinned, marked Poisson process. It is constructed
as follows. Given �(t), a rate λ homogeneous Poisson process, assign to each of its points a
mark chosen uniformly in [n] := {1, . . . , n}. We then discard a point if it has a mark that has
already been observed in the past. Therefore, conditioned on the marks M1, . . . ,Mk−1, the
next point of �(t) will be accepted with probability (n − |{M1, . . . ,Mk−1}|)/n. We denote
this thinned process as Amn (t). Then Amn (t) can be represented as

Amn (t) = �(t)− Rn(t), (20)

where Rn(t) counts the number of repeated marks. We emphasize that �(·) and Rn(·) are not
independent. The arrival process just defined is closely related with the i.i.d. sampling in the
�(i)/G/1 queue, as we discuss now.
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In the �(i)/G/1 queue, arrivals are given by an i.i.d. sequence of arrival clocks (Ti)ni=1,
where it is assumed that customer i ∈ [n] joins the queue at time Ti . This definition departs
from the usual queueing assumption of a renewal process, which entails i.i.d. inter-arrival
times rather than arrival times. However, the above characterization as a marked Poisson
process, which holds when the arrival clocks are exponentially distributed, is closer to the usual
renewal setting. In what follows we show that the two are equivalent. First, let us introduce
some preliminary notation and results. Given a sequence of random variables (Xi)ni=1, let
X(1) ≤ X(2) ≤ · · · ≤ X(n) denote their order statistics. When (Xi)ni=1 are i.i.d. exponential
random variables, the distribution of the order statistics are well known.

Lemma 2. (Order statistics of exponentials.) Let E1, . . . , En be independent exponentially
distributed random variables with mean 1. Then

(E(j))
n
j=1

d=
( j∑
s=1

Es

n− s + 1

)n
j=1

.

See, e.g. [10, Section 2.5] for a proof. Lemma 2 allows us to relate the process Amn (·) we
have just defined to the arrival process in the �(i)/G/1 queue.

Lemma 3. For all t ≥ 0,
Amn (t)

d= An(t). (21)

Proof. The (ordered) arrival times in the�(i)/G/1 queue are precisely the order statistics of
(Ti)

n
i=1 and the interarrival times are the differences between the order statistics. By Lemma 2,

the distributions of the interarrival times are

1

λ
(E(k) − E(k−1))

d= Ek/λ

n− k + 1
, k ≥ 1,

where we setE(0) = 0 for convenience. Multiplying both sides by n, and noting thatEi/λ = Ti ,
yields

n(T(k) − T(k−1))
d= Ek

1 − (k − 1)/n

1

λ
. (22)

Now consider the arrival process defined in (20). Conditioned on the process up to the arrival
k − 1, the next point of �(·) is accepted with probability 1 − (k − 1)/n, where k − 1 is also
equal to the number of distinct marks. Then, since �(·) is a rate λ Poisson process, the time
at which the next point of Amn (·) occurs is distributed as an exponential random variable with
rate λ(1 − (k − 1)/n). Equation (22) then implies that the interarrival times in the process
t 	→ Amn (t) are equal (in distribution) to the interarrival times of An(t) = A(t/n). �

Representation (21) motivates us to consider the rescaled arrival process An(t) = A(t/n).
As we show below, the limit result is not influenced by this time rescaling, as long as the scaling
constants are defined appropriately.

3.3. Determining the scaling constants

We now derive the space and time scaling that allows us to obtain the limit process N (·)
in (13). We first derive the scaling of time denoted by k = k(n). It is well known that, whenever
the limit Sα(·) in (18) is an α-stable motion, the fluctuations of

∑�kt�
i=1 Si around its mean are

of the order ck = �0(k)k
1/α (see, e.g. [38, Theorem 4.5.1]), where �0(·) is a slowly varying

function that is a priori different from �(·) in (1) (but can be determined from it). Moreover,
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in (36) below we show that the highest-order contribution to the drift component Rn(kt) is
�(kt)2/(2n) = OP(k

2/n), all the other terms being negligible. In the process N (·) both a
drift and a random component appear, so that we must have

�0(k)k
1/α = k2

n
. (23)

Equivalently,
�0(k)

−α/(2α−1)k = nα/(2α−1), (24)

where �0(·)−α/(2α−1) is, by basic properties of slowly varying functions, again slowly varying.
On the left-hand side of (24), we recognize a regularly varying function with index 1. By [8,
Theorem 1.5.12], each regularly varying function with index γ admits an (asymptotic) inverse
that is itself regularly varying, with index 1/γ . Therefore, there exists a slowly varying function
ρ(·) so that we must have

k = nα/(2α−1)ρ(nα/(2α−1)). (25)

Any sequence (k(n))n≥1 that satisfies condition (25) is suitable for our purposes, so that we
simply take k(n) = nα/(2α−1)�1(n), where �1(n) = ρ(nα/(2α−1)). Note that n 	→ �1(n) is
again slowly varying. Therefore, the rescaled time parameter is defined as

τn(t) := tnα/(2α−1)�1(n). (26)

We shall denote the time scaling factor by τn(1) = nα/(2α−1)�1(n). In order to obtain the
space-scaling sequence (sn)n≥1, it is enough to insert k = nα/(2α−1)�1(n) into f (k) := k2/n.
Therefore, we define sn as

sn =
(
(nα/(2α−1)�1(n))

2

n

)−1

= �1(n)
−2n−1/(2α−1) =: �2(n)n

−1/(2α−1), (27)

where �2(n) = �1(n)
−2 is again slowly varying.

4. Proof of Theorem 1

In this section we carry out the proof of Theorem 1. We first prove Theorem 1 for β = 0,
and later show how to extend it to the general β �= 0 case. Rewriting (10) using (20) yields

Nn(t)
d= Nn(0)+

(
Amn (t)− t

E[S]
)

+
(
Bn(t)

E[S] − σ(Bn(t))

)

= Nn(0)+
(
�(t)− t

E[S]
)

+
(
Bn(t)

E[S] − σ(Bn(t))

)
− Rn(t). (28)

For simplicity, we introduce the scaled version of the arrival and service processes, and of the
busy time, as

�n(t) = n−1/(2α−1)�2(n)

(
�(τn(t))− τn(t)

E[S]
)
,

Rn(t) = n−1/(2α−1)�2(n)Rn(τn(t)),

σn(t) = n−1/(2α−1)�2(n)

(
τn(t)

E[S] − σ(τn(t))

)
,

B̂n(t) = Bn(τn(t))

τn(1)
.
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Assume that Nn(0) = q0n
1/(2α−1)�1(n) for some q0 ≥ 0. After rescaling, (28) becomes

Nn(τn(t)) = q0 + �n(t)+ σn(B̂n(t))− Rn(t). (29)

The proof of Theorem 1 proceeds as follows. First, the term �n(·) is shown to be negligible in
the limit. Second, σn(·) converges to an α-stable motion by (1) and Theorem 2. Third, Rn(·)
is shown to converge to the parabolic drift −λ2/2t2 in Section 4.2. Finally, B̂n(·) is shown
to converge to the identity function. All these results are then pieced together in Section 4.3.
Convergence of the above processes is proven in D([0, T ]) for a fixed T > 0. Since T is
arbitrary, this implies convergence in D([0,∞]) by [7, Lemma 3, p. 174].

4.1. Stable limit

We start by showing that the process �(·) vanishes in the limit.

Lemma 4. As n → ∞,
sup
t≤T

|�(τn(t))| P−→ 0.

Proof. By the FCLT for the Poisson process,

�(τn(·))− τn(·)λ√
τn(1)

d−→ B(·) in (D, U),

where B(·) is a standard Brownian motion, since 1/E[S] = λ by the heavy-traffic assumption.
By the Skorokhod representation theorem, this implies that we can couple �(τn(·)) and B(·)
such that

sup
t≤T

∣∣∣∣�(τn(t))− τn(·)/E[S]√
τn(1)

− B(t)

∣∣∣∣ P−→ 0.

Moreover, for any C > 0 and large enough n,

C
√
τn(1) = Cnα/2(2α−1)�1(n)

1/2 ≤ n1/(2α−1)�2(n)
−1,

so that kn := n1/(2α−1)�2(n)/
√
τn → ∞ and

sup
t≤T

∣∣∣∣�(τn(t))− τn(·)/E[S]
n1/(2α−1)�2(n)−1

∣∣∣∣ ≤ 1

kn
sup
t≤T

∣∣∣∣�(τn(t))− τn(t)/E[S]√
τn(1)

− B(t)

∣∣∣∣ + sup
t≤T

∣∣∣∣B(t)kn
∣∣∣∣. (30)

Since the right-hand side of (30) converges in probability to 0 as n → ∞, the stated claim
follows. �

Next, we show convergence of the rescaled service process σ(·) to an α-stable motion.

Lemma 5. (Stable limit.) As n → ∞,

σn(·) d−→ sαSα(·) in (D,M1), (31)

where sα = E[S]−(α+1)/α and Sα(·) is a spectrally positive α-stable motion.

Proof. By classical results, the rescaled partial sums of (Si)i≥1 converge to a spectrally
positive α-stable motion; see, e.g. [19] and [38, Theorem 4.5.3]. In particular, (18) is satisfied.
Theorem 2 implies (19), that is,

σn(·) d−→ 1

E[S]Sα
( ·

E[S]
)

in (D,M1).

By the standard properties of stable motion, (Sα(ct))t≥0
d=(c1/αSα(t))t≥0 for c > 0 and so the

claim follows. �
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Remark 6. Although our results do not directly hold for α = 2 (finite-variance case), it is still
possible to substitute α = 2 in the formulas that we obtain, and what is obtained should be
consistent with the previously found results for the finite-variance case. This is true, e.g. for
the coefficient of the stable motion in (31). Indeed, in [4, Theorem 1] it was proven that if
E[S2] = 1, the standard deviation of the limiting Brownian motion is λ3/2 = E[S]−3/2.

4.2. Drift limit

The most difficult task in proving Theorem 1 is to deal with the complicated drift Rn(·)
in (29). We will prove the following result.

Proposition 2. (Drift limit.) Under the same assumptions as in Theorem 1, as n → ∞ and
for any T > 0,

sup
t≤T

∣∣∣∣Rn(t)− λ2

2
t2

∣∣∣∣ P−→ 0.

The proof will use upper and lower bounds for a distributionally equivalent characterization
of Rn(·). First, note that the probability of extracting a mark that has already appeared at time
i ≥ 1 is Dn(i − 1)/n, where Dn(i) denotes the number of different marks seen up to the ith
arrival epoch in �(·). Therefore, conditionally on Dn(i − 1), the thinning procedure can be
represented by a Bernoulli random variable with parameterDn(i − 1)/n. Since at time t there
have been a total of �(t) points, we have

Rn(t)
d=

∑
i≤�(t)

1{Ui≤Dn(i−1)/n},

where (Ui)i≥1 are uniformly distributed (on [0, 1]) random variables, independent of all other
randomness, and 1{Ui≤x} is distributed as a Bernoulli random variable with parameter x.
Moreover, Dn(i) can be written as

Dn(i) = i − Zn(i),

where Zn(i) is the number of repeated marks seen up to the time of the ith arrival. In other
words, we have the crucial relation

Dn(i)
d= i − Rn(�

−1(i)),

where �−1(i) is the arrival time of the ith customer; see Figure 4.
Exploiting these ideas, we can recursively construct a process (R̃n(k))k≥0 with R̃n(0) := 0

and
R̃n(k) := R̃n(k − 1)+ 1{Uk≤(k−1−R̃n(k−1))/n}, k ≥ 1.

Unraveling the recursion, we obtain

R̃n(k) :=
k∑
i=1

1{Ui≤(i−1−R̃n(i−1))/n}, k ≥ 1.

Then
Rn(t)

d= R̃n(�(t)). (32)

As already mentioned, the processes Rn(·) and �(·) are not independent. The distributional
equality (32) reveals the dependency of Rn(·) on the process �(·).
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Figure 4: A sample path of the process �(·).

The next step is to construct an upper and a lower bound on R̃n(k). Since R̃n(k) ≥ 0, the
upper bound is trivially

1{Ui≤(i−1−R̃n(i−1))/n} ≤ 1{Ui≤(i−1)/n},

so that, almost surely,

R̃n(k) ≤ R̃
(up)
n (k) :=

k∑
i=1

1{Ui≤(i−1)/n}. (33)

The lower bound is more involved. By (33),

1{Ui≤(i−1−R̃n(i−1))/n} ≥ 1{Ui≤(i−1−R̃(up)
n (i−1))/n},

so that

R̃n(k) ≥ R̃(low)
n (k) :=

k∑
i=1

1{Ui≤(i−1−R̃(up)
n (i−1))/n}.

Note that Ui is independent of R̃(up)
n (i− 1). We have then constructed a coupling such that, for

all t ≥ 0, almost surely,
R(low)
n (t) ≤ Rn(t) ≤ R

(up)
n (t), (34)

where R(low)
n (t) := R̃

(low)
n (�(t)) and R(up)

n (t) := R̃
(up)
n (�(t)). For the next and final step we

now prove uniform convergence of the upper and lower bounds to the same limit.

4.2.1. Upper bound. Define the quantity to be estimated as

Un(T ) := sup
t≤T

∣∣∣∣n−1/(2α−1)�2(n)R
(up)
n (τn(t))− λ2

2
t2

∣∣∣∣. (35)

We will prove the following.

Lemma 6. (Upper bound converges to 0.) Under the assumptions of Theorem 1, as n → ∞,

Un(T )
P−→ 0 for every fixed T > 0.
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Proof. The absolute value in (35) can be split as

Un(T ) ≤
∣∣∣∣n−1/(2α−1)�2(n)

∑
i≤�(τn(t))

(
1{Ui≤(i−1)/n} − i − 1

n

)∣∣∣∣

+
∣∣∣∣n−1/(2α−1)�2(n)

∑
i≤�(τn(t))

(
i − 1

n

)
− λ2

2
t2

∣∣∣∣
≤

∣∣∣∣n−1/(2α−1)�2(n)
∑

i≤�(τn(t))

(
1{Ui≤(i−1)/n} − i − 1

n

)∣∣∣∣

+
∣∣∣∣ �(τn(t))

2

2n2α/(2α−1)�−1
2 (n)

− λ2

2
t2

∣∣∣∣ + εn, (36)

where εn = |�(τn(t))/2n| is an error term. By the functional strong law of large numbers
(LLN) for the Poisson process,

�(tnα/(2α−1)�1(n))

nα/(2α−1)�2(n)−1/2
a.s.→ λt in (D, U). (37)

It is worth noting that we have made explicit use of the specific form of the scaling functions �1(·)
and �2(·) as determined above in (23)–(27). More specifically, by definition �1(n)

−2 = �2(n).
Moreover, the functional x 	→ x2 from D([0, T ]) to itself is almost surely continuous in
f (t) = λt in the uniform topology. This implies that the second and third terms in (36)
converge to 0 uniformly for t ≤ T as n → ∞.

By the LLN for the Poisson process, we have �(s) ≤ (λ + ε)s with high probability
for s = O(nα/(2α−1)). The sum in the first term in (36) can then be bounded on the event
{�(s) ≤ (λ+ ε)s} as

sup
s≤τn(T )

∣∣∣∣
∑
i≤�(s)

(
1{Ui≤(i−1)/n} − i − 1

n

)∣∣∣∣ ≤ sup
s≤(λ+ε)τn(T )

∣∣∣∣
∑
i≤�s�

(
1{Ui≤(i−1)/n} − i − 1

n

)∣∣∣∣. (38)

This can be recognized as the supremum of a martingale. In the following and future computa-
tions, we shall denote T̄ := T (λ+ ε). Then, an application of Doob’s L2 martingale inequality
[22, Theorem 11.2] yields

P

(
sup

s≤T̄ nα/(2α−1)�1(n)

∣∣∣∣
∑
i≤�s�

(
1{Ui≤(i−1)/n} − i − 1

n

)∣∣∣∣ ≥ εn1/(2α−1)�−1
2 (n)

)

≤
∑

i≤T̄ nα/(2α−1)�1(n)

E[(1{Ui≤(i−1)/n} − (i − 1)/n)2]
ε2n2/(2α−1)�−2

2 (n)

= 1

ε2n2/(2α−1)�−2
2 (n)

∑
i≤T̄ nα/(2α−1)�1(n)−1

(
i

n
− i2

n2

)

≤ T̄ 2n2α/(2α−1)�2
1(n)

ε2n(2α+1)/(2α−1)�−2
2 (n)

= O(n−1/(2α−1)�2(n)),

and this implies that the right-hand side of (38) is oP(n
1/(2α−1)�−1

2 (n)). �
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4.2.2. Lower bound. By (34), we also have

Rn(t) � R(low)
n =

∑
i≤�(t)

1{Ui≤(i−1−R̃(up)
n (i−1))/n}.

Consequently, we now estimate

Ln(T ) := sup
t≤T

∣∣∣∣n−1/(2α−1)�2(n)R
(low)
n (τn(t))− λ2

2
t2

∣∣∣∣.
Lemma 7. (Lower bound converges to 0.) Under the assumptions of Theorem 1, as n → ∞,

Ln(T )
P−→ 0 for every fixed T > 0.

Proof. Similarly as before, conditioned on the event {�(s) ≤ (λ+ ε)s},

Ln(T ) ≤ sup
s≤τn(T̄ )

∣∣∣∣n−1/(2α−1)�2(n)
∑
i≤�s�

(
1{Ui≤(i−1−R̃(up)

n (i−1))/n} − i − 1 − R̃
(up)
n (i − 1)

n

)∣∣∣∣

+ sup
t≤T

∣∣∣∣n−1/(2α−1)�2(n)
∑

i≤�(τn(t))

i − 1

n
− λ2

2
t2

∣∣∣∣

+ sup
s≤τn(T̄ )

∣∣∣∣n−1/(2α−1)�2(n)
∑
i≤�s�

R̃
(up)
n (i − 1)

n

∣∣∣∣. (39)

The first term in (39) can also be bounded as before, since it is again the supremum of
a martingale. Denote Yn(i) := (i − 1 − R̃

(up)
n (i − 1))/n for convenience. By Doob’s L2

martingale inequality,

ε2n2/(2α−1)�−2
2 (n)P

(
sup

s≤τn(T̄ )

∣∣∣∣
∑
i≤�s�

(1{Ui≤Yn(i)} − Yn(i))

∣∣∣∣ ≥ εn1/(2α−1)�−1
2 (n)

)

≤ E

[( ∑
i≤τn(T̄ )

1{Ui≤Yn(i)} − Yn(i)

)2]

=
∑

i≤τn(T̄ )
E[(1{Ui≤Yn(i)} − Yn(i)

)2].

Since the variance of a Bernoulli random variable with parameter p is p(1 − p), we obtain

E[(1{Ui≤Yn(i)} − Yn(i))
2] = E[Yn(i)− Yn(i)

2] ≤ E[Yn(i)] ≤ i

n
.

This implies that

sup
i≤T̄ nα/(2α−1)�1(n)

E[(1{Ui≤Yn(i)} − Yn(i))
2] ≤ T̄ n(1−α)/(2α−1)�1(n).

In particular, ∑
i≤τn(T̄ )

E[(1{Ui≤Yn(i)} − Yn(i))
2] ≤ τn(T̄ )T̄ n

(1−α)/(2α−1)�2
1(n)

= T̄ 2n1/(2α−1)�2
1(n)

= o(n2/(2α−1)).
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The second term in (39) has been shown to converge in (36) and (37). The third term can be
bounded, using the fact that t 	→ R̃

(up)
n (t) is nondecreasing, as

sup
s≤τn(T̄ )

∣∣∣∣
∑
i≤�s�

R̃
(up)
n (i − 1)

n

∣∣∣∣ ≤ T̄ n(1−α)/(2α−1)�1(n)R̃
(up)
n (τn(T̄ )).

Note that T̄ n(1−α)/(2α−1)�1(n) → 0 as n → ∞. Since n−1/(2α−1)�2(n)R̃
(up)
n (τn(T̄ ))

P−→0 by
Lemma 6,

n−1/(2α−1)�2(n) sup
s≤τn(T̄ )

∣∣∣∣
∑
i≤�s�

R̃
(up)
n (i − 1)

n

∣∣∣∣
≤ (T̄ n(1−α)/(2α−1)�1(n))n

−1/(2α−1)�2(n)R̃
(up)
n (τn(T̄ ))

P−→ 0 as n → ∞.

This concludes the proof of Lemma 7. �

Proof of Proposition 2. Since

sup
t≤T

∣∣n−1/(2α−1)�2(n)Rn(tn
α/(2α−1)�1(n))− 1

2 t
2
∣∣

= sup
t≤T

(
n−1/(2α−1)�2(n)Rn(tn

α/(2α−1)�1(n))− 1
2 t

2)+

+ sup
t≤T

(
n−1/(2α−1)�2(n)Rn(tn

α/(2α−1)�1(n))− 1
2 t

2)−
,

we obtain

sup
t≤T

∣∣n−1/(2α−1)�2(n)Rn(tn
α/(2α−1)�1(n))− 1

2 t
2
∣∣ ≤ Un(T ) ∨ Ln(T ),

and both Un(T ) and Ln(T ) converge in probability to 0 by Lemmas 6 and 7. This completes
the proof of Proposition 2. �

4.3. Busy-time process limit

For the final step, we prove that the cumulative busy-time process converges to the identity
function.

Lemma 8. (Cumulative idle time is negligible.) As n → ∞,

B̂n(t)
d−→ id(·) in (D, U).

where id(·) · R
+ 	→ R

+ is the identity function.

Proof. Since Bn(t) = t − In(t), we equivalently prove that In(t) = inf0≤s≤t (Xn(s)−)
converges uniformly to 0, whereXn(t) is the net-input process defined in (5). By continuity of
the map ψ given by ψ : f (·) → inf0≤s≤·(f (s)−), it is sufficient to prove that Xn(·) converges
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uniformly to 0, when appropriately rescaled. By manipulating (5), we immediately obtain

1

τn(1)
sup
t≤T

|Xn(τn(t))|

= sup
t≤T

∣∣∣∣An(τn(t))τn(1)

1

An(τn(t))

An(τn(t))∑
i=1

Si − 1

∣∣∣∣

≤ sup
t≤T

∣∣∣∣An(τn(t))τn(1)
− 1

E[S]
∣∣∣∣ 1

An(τn(t))

An(τn(t))∑
i=1

Si + sup
t≤T

∣∣∣∣ 1

E[S]
1

An(τn(t))

An(τn(t))∑
i=1

Si − 1

∣∣∣∣.
Note that τn(t) → ∞ and An(τn(t))

P−→∞ as n → ∞. Then the second term converges to 0 in
probability by the LLN and the first one converges to 0 by the LLN for the Poisson process.
Indeed, An(τn(t)) = �(τn(t))− Rn(τn(t)), so that

sup
t≤T

∣∣∣∣An(τn(t))τn(1)
− 1

E[S]
∣∣∣∣

≤ sup
t≤T

∣∣∣∣�(τn(t))τn(1)
− 1

E[S]
∣∣∣∣ + 1

τn(1)
sup
t≤T

|Rn(τn(t))|

= sup
t≤T

∣∣∣∣�(τn(t))τn(1)
− 1

E[S]
∣∣∣∣ + n1/(2α−1)�n(n)

−1

τn(1)
sup
t≤T

|Rn(τn(t))|
n1/(2α−1)�n(n)−1

. (40)

As shown above in Proposition 2, n−1/(2α−1)�2(n)Rn(τn(t)) converges uniformly to −λ2/2t2,
and since n1/(2α−1)�2(n)

−1/τn(1) → 0, the second term in (40) is negligible. By the heavy-
traffic assumption (3) and the LLN for the Poisson process, the first term also converges to 0,
completing the proof. �
4.4. Proof of Theorem 1

We now conclude the proof of Theorem 1 by collecting various results from the previous
sections. First, we split the process Nn(·) in its martingale and drift components as in (29) to
obtain

Nn(t) = q0 + �n(t)+ σn(B̂n(t))− Rn(t).

Since �n(·) and σn(·) are independent, and B̂n(·) and Rn(·) converge to deterministic limits
in D , we have

(�n(·), σn(·), B̂n(·),Rn(·)) d−→
(

0, sαSα(·), id(·), λ
2

2
t2

)
in (D4,MW

1 ).

This, together with a time-change theorem for processes with discontinuous sample paths (see,
e.g. [38, Theorem 13.2.3]) implies that

(�n(·), σn(B̂n(·)),Rn(·)) d−→
(

0, sαSα(·), λ
2

2
t2

)
in (D3,MW

1 ). (41)

Note that [38, Theorem 13.2.3] does not hold in general in the finer J1 topology. Since the
three limit processes in (41) do not have common discontinuity points, it follows that addition
is continuous in (0, 1/E[S](α+1)/αSα(·), λ2/2t2) in the M1 topology, so that

Nn(t)
d−→ q0 + sαSα(·)− λ2

2
t2 in (D,M1).
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The second claim (14) follows immediately from the continuous mapping theorem, since the
reflection map is Lipschitz continuous in the M1 topology by [38, Theorem 13.5.1]. �

Extension to general initial drift. Now assume that cn = 1 +βn−(α−1)/(2α−1)�2(n)
−1, with

β �= 0. Write (28) as

Nn(t)
d= Nn(0)+

(
�(t)− t

E[S]
)

+
(
Bn(t)

E[S] − σ(Bn(t))

)
− Rn(t)

= Nn(0)+ (�(t)− λcnt)+
(
Bn(t)

E[S] − σ(Bn(t))

)
− Rn(t)

= Nn(0)+ λβn−(α−1)/(2α−1)t + (�(t)− λt)+
(
Bn(t)

E[S] − σ(Bn(t))

)
− Rn(t).

In the first equality we have used assumption (3) and in the second cn = 1 − βn−(α−1)/(2α−1)

× �2(n)
−1. By rescaling the process as in (29), we obtain

Nn(t) = q0 + λβt + �n(t)+ σn(B̂n(t))− Rn(t).

Since cn → 1 as n → ∞, the rescaled partial sums of the double sequence (S̄i/cn)i≥1 converge
to the α-stable motion Sα(·) since cn is deterministic and cn → 1 as n → ∞, hence, Theorem 2
holds and σn(·) → sαSα(·). Moreover, �n(·), B̂n(·), and Rn(·) can be shown to converge as
before, and, thus, the vector of functions (�n(·), σn(B̂n(·)),Rn(·)) converges as in (41). We
again conclude that

Nn(t)
d−→ q0 + λβt + sαSα(·)− λ2

2
t2 in (D,M1),

as desired. �

5. Discussion

We have considered a queueing model in which only a finite number of customers can
potentially join the system, also referred to as the �(i)/G/1 model [15]. For this model,
we have defined a suitable heavy-traffic condition, in which the instantaneous arrival rate is
assumed to be equal to the service rate. We have shown that, under the additional assumption
that the service times obey a power-law with parameter α ∈ (1, 2), the queue-length process
converges to an α-stable process with negative parabolic drift. To prove this, we have given a
novel definition of the arrival process that enables us to obtain explicit bounds on the limiting
drift. Using continuity arguments, we have proved that this implies that the length of the first
busy period converges in distribution to the first excursion of the stable motion with negative
drift. In this paper we have focused on heavy-tailed service times. Thus, Theorem 1 should be
compared to the finite-variance case, where the rescaled queue-length process converges to a
(reflected) Brownian motion with parabolic drift [4].

Little is known about the (reflected) α-stable motion with negative quadratic drift. In
particular, there are no explicit formulas for the maximum of the free process, and it is not
known whether the excursions above past minima can be ordered. A striking property of the
limiting process that we obtain is that supt≥0 φ(a+ bSα(t)− ct2) = ∞ almost surely. Indeed,
it is well known that, for any Lévy process X(·) with unbounded Lévy measure,

P(for all N ∈ N for all T > 0 there exists t ≥ T : �X(t) ≥ N) = 1,
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where �X(t) := X(t) − lims→t− X(s). However, due to the parabolic drift, the excursions
of φ(N )(·) containing a large jump become smaller as time passes. This suggests that the
excursions of φ(N )(·) can be ordered by their time duration and the largest one is finite.
In particular, it should be possible to analytically prove that, for q0 > 0 large enough, the
probability that the first busy period is (one of) the largest ones is close to 1. This presents an
interesting direction for future research.
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