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On the skin friction due to turbulence in ducts
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We consider fully developed turbulence in straight ducts of non-circular cross-sectional
shape, for instance a square. A global friction velocity uτ is defined from the
streamwise pressure gradient |dp/dx| and a single characteristic length h, half the
hydraulic diameter (shapes with disparate length scales, due to high aspect ratio, are
excluded). We reason that as the Reynolds number Re reaches high values, outside
the viscous region the streamwise velocity differences and the secondary motion
scale with uτ and the Reynolds stresses with u2

τ . This extends the classical defect-law
argument, associated with Townsend and many others, and is successful in channel
and pipe flows. We then posit matched asymptotic expansions with overlap of the
law of the wall and the behaviour we assumed in the core region. The wall may be
smooth, or have a Nikuradse roughness kS (such that it is fully rough, with k+S � 1).
The consequences include the familiar logarithmic behaviour of the velocity profile,
but also the surprising prediction that the skin friction tends to uniformity all around
the duct, except near possible corners, asymptotically as Re→∞ or kS/h→ 0. This is
confirmed by numerical solutions for a square and two ellipses, using a conventional
turbulence model, albeit the trend with Reynolds number is slow. The magnitude
of the secondary motion also scales as expected, and the skin-friction coefficient
follows the logarithm of the appropriate Reynolds number. This is a validation of the
mathematical reasoning, but is by no means independent physical evidence, because
the turbulence models embody the same assumptions as the theory. The uniformity
of the skin friction appears to be a new and falsifiable deduction from turbulence
theory, and a candidate for high-Reynolds-number experiments.

Key words: turbulent flows, turbulence theory

1. Introduction
Non-circular ducts are of interest as they generate secondary flows of the

second kind according to Prandtl’s definition (Bradshaw 1987), which reveal the
rich effects of turbulence, and have a definite practical importance particularly in
convex corner flows. They expose the weakness of the Boussinesq approximation
used in the widespread linear eddy-viscosity models, thus providing a helpful
starting point for nonlinear models (Spalart 2000). The straight duct with a square

† Email address for correspondence: philippe.r.spalart@boeing.com
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cross-sectional shape has been prevalent (Raiesi, Piomelli & Pollard 2011; Pirozzoli
et al. 2017). The complexity of the physics naturally leads one to expect non-trivial
and shape-dependent quantitative behaviour for the primary measure of this flow,
namely the skin friction, which makes the simple prediction discussed in this note
somewhat remarkable. While there is much practical interest in developing flows,
the work here concerns only fully developed flows, independent of the streamwise
coordinate x, other than the gradual pressure drop of course. Also of interest is the
scaling (as the Reynolds number varies) of the secondary flow velocities and the
Reynolds stresses, possibly proportional to a single velocity scale uτ with the nature
of a friction velocity. Such a scaling is somewhat established for the core regions
of two-dimensional channels and circular pipes, but controversies remain active in
particular over the existence of plateaus on the stress profiles, and the imperfect
universality near the wall. See, among others, Hultmark et al. (2013) for both smooth
and rough walls in pipes. Conveniently, in fully developed channel and pipe flows
the Reynolds stresses which suffer from controversies do not enter the momentum
equation, so that universal behaviour of the velocity profile is possible even with
these questions unanswered.

The present note can be considered as the extension to more general ducts of the
work of Pullin, Inoue & Saito (2013) in channels, pipes and boundary layers; we note
their term ‘gigantic’ for the Reynolds number and the requirement that log(Re)� 1.
We also note their words ‘the asymptotic state of the wall layer is a slip-flow bounded
by a vortex sheet at the wall with weakly nonlinear internal structure’, which are fully
consistent with our findings.

As mentioned above, after the presentation of the theory we use solutions
with conventional Reynolds-averaged Navier–Stokes (RANS) turbulence models to
verify the assumed scaling over a wide Reynolds-number range, and check that it
spontaneously appears. We consider that essentially all current models will have the
same qualitative behaviour. However, these findings do not constitute independent
physical evidence, because the models interact with the mean flow field in precisely
the same framework that the theory is built on: the momentum equation, and the
control of the turbulence-model equations by production terms based on the mean
deformation tensor. In addition, the Spalart–Allmaras model (Spalart & Allmaras
1994) contains an explicit term that depends on the distance to the wall, which is
very consistent with the present theory. A rigorous independent validation could come
from direct numerical simulation, but of course large Reynolds numbers are out of the
question for direct numerical simulation (DNS), and much judgment will be needed
to extract indications from DNS (Pirozzoli et al. 2017). Wall-modelled large-eddy
simulation can be used, but it is not at all free of near-wall assumptions which again
communicate with the theory. Very high Reynolds numbers have been reached in
experiments in circular pipe flow and could be reached in a non-circular duct, at the
expense of building a new duct or insert (which could be a simple floor).

The note proceeds with basic definitions in § 2, the approximations in § 3,
turbulence-model studies in § 4 and a discussion in § 5.

2. Definitions

Let dp/dx be the mean streamwise pressure gradient and h the characteristic
dimension, for which a helpful specific definition is h ≡ 2A/P, where A is the area
of the cross-section and P its perimeter (it gives the half-width for a square, and the
radius for a circle). Thus, 2h is the hydraulic diameter. As mentioned in the abstract,
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Skin friction in ducts 371

a geometry with two disparate characteristic dimensions, say a rectangle with h1� h2,
would not qualify as h1 would dominate; an elongated triangle would be an even
worse proposition. We define a global average friction velocity, uτ ≡

√
A|dp/dx|/(ρP).

Velocities in these wall units will be denoted with a bar also: U+ ≡ U/uτ . Finally,
Reτ ≡ huτ/ν is the friction Reynolds number. There are other Reynolds numbers, but
they are all functions of each other for a given shape.

We use both the (y, z) Cartesian coordinate system and a curvilinear (s, n) system
along the wall, in which s ∈ [0, P], n= 0 at the wall, and n� h in the region where
the overlap argument is made. At corners, the (s, n) system becomes ambiguous, and
the argument fails for physical reasons. These regions shrink as the Reynolds number
rises, so that the asymptotic result holds over more and more of the perimeter.

The basic assumption about the fully developed turbulent flow is that for each
shape, there exist the following unique functions: U+(y/h, z/h,Reτ ), V+(y/h, z/h,Reτ ),
W+(y/h, z/h, Reτ ) and the equivalent for the Reynolds stresses and pressure field.
These give, for each shape, unique functions for integral quantities, for instance the
bulk velocity U+b is a function of Reτ .

3. Approximations and their consequences

Here, approximations based on the Reynolds number being high, Reτ→∞, or the
roughness small, kS/h→ 0, are introduced.

3.1. Core region
For the core region, we can consider deviations from the bulk velocity Ub or from the
centreline (or peak) velocity Umax, but to leading order, the difference between them
is proportional to uτ , so that the approximations are equivalent. We use the symbol
f (·) to mean ‘is a function of’.

We posit, after Townsend (1961) and others that, exactly as in channel and pipe
flows, outside the viscous or roughness-influenced regions (i.e. for n+� 1 or n/kS�

1):

U+ −U+b = fuc

( y
h
,

z
h

)
, V+ = fvc

( y
h
,

z
h

)
, W+ = fwc

( y
h
,

z
h

)
, (3.1a−c)

where ‘uc’ stands for ‘U in the core’ with similar notations for turbulence quantities

〈uiuj〉
+

= fijc

( y
h
,

z
h

)
. (3.2)

The same scaling applies to the pressure. As usual, capitals denote averaged quantities,
and lower-case letters fluctuating quantities. The terms in the continuity equation are
proportional to uτ/h. All the terms except the viscous term in the momentum equation
are proportional to u2

τ/h and therefore balance is possible to leading order, with the
neglected viscous term being of relative order 1/Reτ .

3.2. Wall regions
These satisfy n� h. The local skin friction gives a local-friction velocity uτ (s/h). To
leading order, it can be based either on the wall shear stress in the x direction or on
the magnitude in the (x, s) plane, since the flow angle tends to 0 as Reτ increases.
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We expect a unique local-friction function uτ (s/h)/uτ = flf (s/h); this is a further
assumption, of the same nature as those made in the core region.

The primary approximation here is that for a smooth wall, with n+ ≡ nuτ/ν

U
uτ
= fSW(n+). (3.3)

This is the ‘law of the wall’. It is based on the local friction velocity.
The approximation for a fully rough wall with a local roughness kS(s/h) (and

therefore k+S � 1) is
U
uτ
= fRW

(
n
kS

)
. (3.4)

It is also based on the local friction velocity. We assume that the local roughness
at different s locations tends to zero at the same rate, that is, we have kS(s/h) =
flr(s/h)kS0, and flr is fixed while kS0/h→ 0. In simple cases, flr = 1.

3.3. Overlap region, smooth wall
The key identity in the band which satisfies both n� h and n+� 1 (which is possible
only for large Reynolds number) is the overlap between (3.3) on the left-hand side and
equation (3.1a) on the right-hand side, inserting the relationship n+= flf (s/h)[n/h]Reτ :

flf

( s
h

)
fSW

(
flf

( s
h

) n
h

Reτ
)
=U+ =U+b + fuc

( s
h
,

n
h

)
, (3.5)

where the function fuc was mapped from (y/h, z/h) to (s/h, n/h).
This overlap argument is most closely associated with Millikan’s (1938) paper.

However we believe, first, that the physical content is equivalent to that of von
Kármán in the 1920s and many other treatises and, second, that the mathematical
steps can be taken in a number of different orders without altering the conclusion.
Our choice is to bring out the consequences of (3.5) by differentiating it or exploiting
dependencies with respect to Reτ , then to n, then to s.

The derivative of (3.5) with respect to Reτ at fixed (s/h, n/h) is

f 2
lf

( s
h

) n
h

f ′SW

(
flf

( s
h

) n
h

Reτ
)
=

dU+b
dReτ

, (3.6)

where the prime denotes a derivative. We now exploit the dependence on n/h. The
only factors that vary with n/h are n/h itself or equivalently n+ and f ′SW(n

+), therefore
n+f ′SW must be a constant denoted by 1/κ , which leads to the log law for velocity,
namely, U+≡U/uτ (s/h)= log(n+)/κ +C. Assuming a universal von Kármán constant
κ and intercept C as implied by (3.3), (3.6) becomes

flf

( s
h

) 1
κReτ

=
dU+b
dReτ

. (3.7)

The right-hand side is independent of s, which means flf is uniform. The average of its
square being 1, flf can only equal 1. This is our key new prediction: the skin friction
is independent of s.
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This equation then gives the skin-friction law

U+b =
1
κ

log Reτ +C′SW . (3.8)

The constant C′SW depends only on the shape of the cross-section. This is very
consistent with the findings of Pirozzoli et al. (2017), although in other respects they
do not agree with the present theory, as discussed in § 5.

3.4. Overlap region, rough wall
The key identity is now the overlap between (3.4) on the left-hand side and
equation (3.1a) on the right-hand side, with kS� n� h, in

flf

( s
h

)
fRW

(
n

flr(s/h)kS0

)
=U+ =U+b + fuc

( s
h
,

n
h

)
. (3.9)

Again, we arrive at the consequences of (3.9) by differentiating it or exploiting
dependencies with respect to kS0/h, then to n, then to s. The derivative of (3.9) with
respect to kS0/h at fixed (s/h, n/h) is

− flf

( s
h

) nh
flr(s/h)k2

S0
f ′RW

(
n

flr(s/h)kS0

)
=

dU+b
d(kS0/h)

. (3.10)

We now exploit the dependence on n. The only factors that vary with n/h are n/h
itself and f ′RW , therefore (n/kS)f ′RW must be a constant giving a log law, and

− flf

( s
h

) h
kS0

1
κ
=

dU+b
d(kS0/h)

. (3.11)

The right-hand side is independent of s, which means flf is uniform and equals 1.
Again, the skin friction is independent of s, even if the roughness is not uniform (but
scales at the same rate independent of s).

This equation then gives the skin-friction law

U+b =−
1
κ

log
(

kS0

h

)
+C′RW . (3.12)

The constant C′RW depends on the shape of the cross-section, and the flr function.

4. Turbulence-model studies
The RANS models used are as follows. The Spalart–Allmaras (SA) model, aimed

at aerodynamic flows (Spalart & Allmaras 1994) relies on a single empirical equation
to produce an eddy viscosity, and was calibrated on a few thin shear flows. It has
eight primary adjustable constants. The QCR or quadratic constitutive relation (Spalart
2000) uses the eddy viscosity from any chosen model (i.e. it is not limited to SA),
but instead of using the straightforward Boussinesq constitutive relation, the Reynolds
stresses also contain terms proportional to the product of the rotation tensor and the
strain tensor. This improves the anisotropy of the stresses, and allows eddy-viscosity
models to capture turbulent secondary flows of the second kind (the linear SA model
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FIGURE 1. (Colour online) Streamwise and secondary velocities in square and elliptical
ducts, as predicted by the Spalart–Allmaras QCR (SAQCR) model.

would not reproduce the y–z motion in non-circular ducts, as predicted by Speziale
1982). The QCR here depends only on one additional constant.

The grids obeyed standard guidelines for the value of the first n+ spacing and the
stretching ratio in n; in the ellipses the wall-to-centre grid count ranged from 124
at the lowest Reynolds number to 256 at the highest Reτ . The distribution versus s
was tested with different levels of resolution; the 4-to-1 ellipse required rather strong
refinement near the tight concave region, leading to 532 nodes for the entire perimeter.

4.1. Square duct
Figure 1 provides a perspective of the secondary flows, as predicted by a nonlinear
RANS model. They are in good qualitative agreement with DNS (Nikitin & Yakhot
2005; Pirozzoli et al. 2017). The different symmetries of the two geometries result
in eight vortices in the square and only four in the ellipse; it appears the turbulence
‘maximizes’ the size of the vortices, and consistently directs the secondary flow
towards the tighter concave regions, which happens to promote uniformity. The
secondary motion is not strong (less than 1 % of the bulk velocity), but it is sufficient
to very noticeably alter the skin friction along the wall, as confirmed in figure 2 by
results from the linear SA model (which fails to generate secondary flow) and the
nonlinear SAQCR model (which does generate secondary flow). As usual, evidence
from turbulence models is to be treated with caution, but is not meaningless. It
appears likely that all the models in this general class will miss the surge in
skin friction revealed by the DNS near the corner; results from two-equation and
Reynolds stress transport models, not shown, are very consistent with this prediction.
This surge moves closer to the corner as Re increases (Pirozzoli et al. 2017). The
existing nonlinear models appear to capture the gross corner effect, but not the subtler,
localized one.

Figure 3 strongly supports the idea that the secondary motion at the point in the
centre of each quadrant is proportional to the global friction velocity, in agreement
with the tentative theory (3.1), rather than the bulk velocity (as is predicted by
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FIGURE 2. (Colour online) Skin friction in square duct, from DNS (Raiesi et al. 2011;
Pirozzoli et al. 2017) and from two models.
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FIGURE 3. (Colour online) Secondary velocities at (y, z)= (h/2, h/2) in square duct of
side 2h, for different Re, as predicted by the SAQCR model.

Pirozzoli et al. 2017, but note that the trend we are referring to is not yet established
for the Reynolds numbers of their simulations). Finally, figure 4 gives strong support
to the prediction of uniform skin friction along the sides of the square duct, excepting
the corners. The trend towards uniformity versus s as the Reynolds number is raised
is very convincing. For the corner regions, the condition n+ � 1 is not satisfied if
n is measured from the other wall which intersects the wall on which skin friction
is examined. The skin friction must fall to zero at the corner, but that happens
increasingly steeply for higher Reynolds number.

4.2. Elliptical duct
The results in an ellipse with 2-to-1 ratio of its axes are even more favourable
than those in the square. Here, h is approximately 0.65a where a is the major axis.
Figure 5(a) shows that the flf variations are of the order of ±1 % at the lowest
Reynolds number (whereas the range for laminar flow is from 0.78 to 1.11), and then
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FIGURE 4. (Colour online) Skin friction in square duct, for different Re, as predicted by
the SAQCR model.
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FIGURE 5. (Colour online) Skin friction around elliptical duct, as predicted by the
SAQCR model. (a) The 2-to-1 shape; (b) the 4-to-1 shape. Notice the very different scales.

steadily decrease as the Reynolds number is repeatedly multiplied by 100. Admittedly,
the evolution is slow: a factor-of-106 increase fails to make the variation vanish. This
means that, at manageable Reynolds numbers, the residual non-uniformity of the skin
friction (of order uτ/Ub) will provide a test of a turbulence model of some interest,
similar to the comparison with DNS in figure 2. The 4-to-1 ellipse in figure 5(b)
admits much larger variations, although it is not truly a geometry with ‘h1� h2’, but
the trend versus Reτ is similar. Finally, figure 6 verifies the skin-friction law (3.8),
confirming the prediction that the maximum velocity differs from the bulk velocity
by a constant multiple of uτ and also making the point that the bulk velocity in
wall units is very close between the two ellipses; this happens because almost all the
velocity rise occurs inside the wall layer (Pullin et al. 2013).

We attempted to exhibit a linear dependency of the maximum skin-friction deviation
on 1/ log(Reτ ) (it being amply clear from figure 5 that scaling with 1/Reτ is ruled
out). The problem with such an exercise is that the function is really 1/ log(Reτ/Reτ0)
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FIGURE 6. (Colour online) Skin-friction law for elliptical ducts, as predicted by the
SAQCR model.

where Reτ0 is arbitrary, so that the curvature of the line can be altered at will (this
was not an issue in figure 6 since altering Reτ0 simply moves the curves up or down).
This greatly weakens any conclusions.

5. Discussion

A simple theory of fully developed turbulence in straight ducts with non-circular
cross-section was presented, and found to be consistent with conventional turbulence
models. In short, it generalizes the defect law from one-dimensional to two-
dimensional fields, containing secondary turbulent flows of the second kind. It is
limited to shapes of moderate aspect ratio, well characterized by a single length
scale. Its prediction that the skin friction around the duct will be uniform away from
corners in the limit of large Reynolds number was a surprise to us, and has the merit
of amounting to a simple fact and being testable. If it stands the test of time, it will
represent a small but non-trivial addition to turbulence theory.

The DNS results of Pirozzoli et al. in a square duct are unfortunately not supportive
of the theory; in particular, an ‘educated guess’ based in their skin-friction figure
would probably predict that the high-Reynolds-number asymptote curves down for
roughly z/h< 0.3. It is fair to write that the DNS results do not ‘suggest’ a uniform
skin-friction distribution. The scaling of the secondary velocity with uτ is no more
convincing, as they favour a scaling with Ub (their figures 4 and 7 and S. Pirozzoli,
personal communication 2017). One should not blame ‘low-Reynolds-number effects’
for every disappointing comparison but we note that in channel flow, with Reτ values
five times larger, DNS is still not decisively confirming the logarithmic law. The gap
from DNS Reynolds numbers to those that fully enable the theory remains wide.

The results of Nikitin & Yakhot (2005) for elliptical ducts were limited to lower
Reynolds than those of Pirozzoli et al. in the square duct, but the trend in their
figure 8 is qualitatively very favourable in our opinion: namely, the skin friction is
far closer to uniform for the turbulent than for the laminar flow. This is also true for
results of turbulence modelling, in both the square and elliptical geometries.
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