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We investigate a model of thin layer turbulence that follows the evolution of
the two-dimensional motions u2D(x, y) along the horizontal directions (x, y)
coupled to a single Fourier mode along the vertical direction (z) of the form
uq(x, y, z) = [vx(x, y) sin(qz), vy(x, y) sin(qz), vz(x, y) cos(qz)], reducing thus the
system to two coupled, two-dimensional equations. The model, despite its simplicity
and ad hoc construction, displays a rich behaviour. Its reduced dimensionality allows
a thorough investigation of the transition from a forward to an inverse cascade of
energy as the thickness of the layer H=π/q is varied. Starting from a thick layer and
reducing its thickness it is shown that two critical heights are met: (i) one for which
the forward unidirectional cascade (similar to three-dimensional turbulence) transitions
to a bidirectional cascade transferring energy to both small and large scales and (ii)
one for which the bidirectional cascade transitions to a unidirectional inverse cascade
when the layer becomes very thin (similar to two-dimensional turbulence). The two
critical heights are shown to have different properties close to criticality that we are
able to analyse with numerical simulations for a wide range of Reynolds numbers
and aspect ratios.

Key words: atmospheric flows, turbulent flows, turbulent transition

1. Introduction

Turbulence prevails in the Universe, and its multi-scale properties affect the
global dynamics of geophysical, astrophysical and industrial flows. Typically, in
a turbulent flow, energy is supplied at some scale and is redistributed among scales
due to nonlinear interactions between eddies of similar size. This mechanism of
energy transfer from large to small scales or vice versa is known as a forward or
inverse cascade, respectively. A prominent example of a forward cascade is met in
three-dimensional (3-D) hydrodynamic turbulence (Frisch 1995). The turbulent cascade
in this case transports the energy from the large (possibly coherent) structures to small
‘incoherent’ scales. An example of an inverse cascade is given by 2-D hydrodynamic
turbulence that cascades energy to the large scales (Boffetta & Ecke 2012). There are
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some examples, however, that have a mixed behaviour, such as rapidly rotating fluids,
conducting fluids in the presence of strong magnetic fields, flows in a constrained
geometry and others. In these examples the injected energy cascades both forward
and inversely in fractions that depend on the value of a control parameter (rotation
rate/magnetic field/aspect ratio/etc.). These system thus exhibit a bidirectional cascade:
coexistence of a forward and an inverse cascade of energy whose relative amplitudes
depend on parameters of the system.

Bidirectional cascades have been observed in different physical situations both in
numerical simulations (Smith, Chasnov & Waleffe 1996; Smith & Waleffe 1999;
Celani, Musacchio & Vincenzi 2010; Alexakis 2011; Sen et al. 2012; Marino et al.
2013; Pouquet & Marino 2013; Deusebio et al. 2014; Seshasayanan, Benavides &
Alexakis 2014; Marino, Pouquet & Rosenberg 2015; Rosenberg et al. 2015; Sozza
et al. 2015; Seshasayanan & Alexakis 2016) and in laboratory experiments (Shats,
Byrne & Xia 2010; Byrne, Xia & Shats 2011; Xia et al. 2011; Yarom, Vardi &
Sharon 2013; Campagne et al. 2014). They are relevant in atmospheric physics
where, at large scales, the atmosphere cascades energy inversely due to the combined
effect of rotation, stratification and vertical confinement similar to a two-dimensional
flow, while at the same time at small scales it cascades energy to even smaller scales,
like a three-dimensional (3-D) flow. These coexisting forward and inverse cascades
have been quantified with in situ aircraft measurements in the hurricane boundary
layer (Byrne & Zhang 2013). Similar behaviour has been claimed in astrophysical
flows (such as the atmosphere of Venus (Izakov 2013) and accretion discs (Lesur &
Longaretti 2011)) and industrial applications (such as tokamak plasma flows (Diamond
et al. 2005)) either due to the thinness of the layer, fast rotation or the presence of
strong magnetic fields.

This work focuses on one of the simplest setups that exhibits such a transition:
turbulence in a thin layer. By thin layer we refer to a 3-D domain that extends to large
distances L in two (horizontal) directions and short distance H in the third (vertical)
direction. In such a system eddies with scales ` much larger than the layer thickness
H� ` are constrained to two-dimensional dynamics while small eddies in the opposite
limit `� H do not to feel this constraint and behave like a 3-D flow. This system
was first examined by Celani et al. (2010) where it was shown that for large Re the
direction of the energy cascade depends on the ratio Q= `f /H of the horizontal length
scale of the forcing `f to the layer height H. Alternatively, Q can be considered as
the ratio of the smallest non-zero vertical wavenumber to the forcing wavenumber.
For Q � 1 (`f � H) the energy is injected in eddies that fall in the first regime
(two-dimensional) and therefore the cascade is inverse, while for Q � 1 (`f � H)
the energy is injected in eddies that fall in the second regime (three-dimensional) and
therefore the cascade is forward. At intermediate values however the system displays
a bidirectional cascade (Celani et al. 2010).

In this work we will focus on the exact way that the system transitions from a
unidirectional to a bidirectional cascade. There are three possible scenarios for such a
transition. (i) The transition happens in a smooth way. In this case the amplitude of
the inverse or forward cascade decreases smoothly as Q is varied (possibly as a power
law) and therefore the inverse cascade becomes zero only at the limit Q→ 0 while the
forward cascade becomes zero only at the opposite limit Q→∞. (ii) The transition
happens at a critical value Q = Qc in a discontinuous way, much like a subcritical
instability or a first-order phase transition, so that the system changes abruptly from
an inverse cascade to a forward cascade. (iii) The amplitude of the inverse/forward
cascade decreases/increases continuously as Q is increased and at a critical point Qc
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Bidirectional cascade
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FIGURE 1. (Colour online) An illustration of the expected critical transitions,
corresponding to scenario (iii) described in the text. Q = `f /H is the ratio of the
horizontal length scale of the forcing `f to the layer height H.

the inverse/forward cascade becomes exactly zero with discontinuous or diverging
derivatives much like a supercritical instability or a second-order phase transition. In
the work of Celani et al. (2010) it was conjectured that the third scenario, (iii), is
observed for the transition from a forward unidirectional cascade to a bidirectional
cascade although their data did not allow a precise conclusion to be drawn.

For the case of a critical transition there a few remarks that we need to make.
These systems transition from one turbulent state that cascades energy inversely, say,
to the large scales to a different turbulent state that cascades energy forward to the
small scales. Turbulence is thus always present! This makes the discussed transition
far different from the traditional scenarios of transition from a laminar to a turbulent
state. Turbulent fluctuations are always present and constitute an integral part of the
mechanism for the transition, much like how thermal fluctuations play a determinant
role in equilibrium phase transitions close to criticality.

For turbulence in thin layers we expect two critical values of Q to exist. The first,
Q3D, marks the transition from purely forward to a bidirectional cascade, whereas the
second one, Q2D, marks the transition from a bidirectional cascade to a purely inverse
cascade. In more detail, for flows of large Reynolds number and for layers sufficiently
thick Q�1 we expect that all energy cascades towards the small scales and no energy
to the large scales. As Q is increased, and thus the layer made thinner, a critical
value Q3D will be met for which the appearance of an inverse cascade will begin in
coexistence with the forward cascade. This marks the beginning of the bidirectional
cascade. As Q is increased further the forward cascade decreases while the inverse
cascade increases. We then expect a second critical height Q2D where the forward
cascade becomes zero and all the energy cascades to the large scales. Further increase
of Q will not alter this behaviour. The bidirectional cascades then exist in the range
Q3D <Q<Q2D. An illustration of this expectation is shown in figure 1.

The purpose of the present work is to focus on the two critical points: unravel
their statistical behaviour as well as study the mechanisms involved close to criticality.
Performing such a study with direct numerical simulations of the 3-D Navier–Stokes
equation is computationally costly due to the high degree of resolution required in
order to have both large enough Reynolds number so that the flow is turbulent and
large enough scale separation L� `f so that an inverse cascade develops. To overcome
this difficulty we will instead focus on a model of the Navier–Stokes equation. In our
model we will keep a minimal description for the vertical direction by performing a
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drastic Galerkin truncation in the vertical direction keeping only two modes u2D(t, x, y)
and uq(t, x, y, z). The first mode corresponds to purely 2-D motions and depends only
on the horizontal directions (x, y), while the second mode corresponds to a flow whose
vertical structure is proportional to sin(qz) or cos(qz) and has arbitrary dependence in
the horizontal directions.

The rest of this paper is structured as follows. Section 2 describes our model
of thin layer turbulence, as well as our methodology, explaining our measures of
the inverse and forward energy cascades (acting as order parameters) as well as
the simulation details themselves. Section 3 presents the results and analysis of our
investigation of the transition from a purely forward energy cascade to a bidirectional
energy cascade. Section 4 focuses on the other transition between a bidirectional
cascade and a pure inverse cascade. Finally, in § 5 we summarize our findings and
give concluding remarks regarding the results.

2. Model description and methodology
We consider an incompressible flow in a thin layer of thickness H = π/q in the

vertical direction (z) and of size 2πL in the remaining two directions (x, y) with free
slip boundary conditions ∂zux = ∂zuy = uz = 0 at z = ±H/2. The flow velocity u is
governed by the Navier–Stokes equations:

∂tu+ u · ∇u=−∇P+ ν1u+F, (2.1)
∇ · u= 0, (2.2)

where ν is the kinematic viscosity, P is the pressure and F is a two-dimensional
forcing (varying only along x and y) that acts at a particular horizontal length scale `f .

As discussed in § 1, in this work we do not solve for the full system requiring 3-D
numerical simulations, but we rather focus on a model that is obtained by a severe
Galerkin truncation in the vertical direction such that only two modes are kept. The
first mode u2D has two components that are obtained by vertically averaging ux and
uy. This corresponds to a purely 2-D flow which thus satisfies the incompressibility
condition ∇ · u2D = 0. This allows us to write u2D in terms of a streamfunction
ψ(t, x, y) as indicated in (2.3). The second mode uq has all three components and a
prescribed vertical dependence as given below:

u2D(t, x, y)=

 ∂yψ

−∂xψ
0

 , uq(t, x, y, z)=

vx(x, y, t) sin(qz)
vy(x, y, t) sin(qz)
vz(x, y, t) cos(qz)

 . (2.3a,b)

The vector field uq satisfies free slip boundary conditions at z = ±H/2 and the
incompressibility condition ∇ · uq = 0 that, in terms of vq(t, x, y) = (vx, vy, vz), is
written as ∂xvx + ∂yvy = qvz. With this notation the truncated Navier–Stokes equations
can be written as

∂tu2D + u2D · ∇u2D =−uq · ∇uq −∇P+ ν1u2D −µ∆
−2u2D +F, (2.4)

∂tuq + u2D · ∇uq =−uq · ∇u2D −∇pq + ν1uq, (2.5)

where the overbar stands for vertical averaging f ≡ (1/H)
∫

f dz and pq is the partial
pressure that guarantees the incompressibility of uq. Note that if one plugs in uq from
(2.3) into (2.5), the vertical dependence drops out and we are left with two coupled
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partial differential equations that depend only on the horizontal directions (x, y). We
note that our model is rigorously valid for very thin layers where 1/q is of the order
of the viscous length scales, in which case it can be derived based on an asymptotic
expansion, using the thinness of the layer as a small parameter. Despite the lack of
rigor for thicker layers, as we will show later, this model is able to capture the relevant
physical processes and display a rich behaviour.

Furthermore, note that in our system we have included the hypo-dissipation term
µ∆−2u2D that is responsible for saturating the inverse cascade when present. If such
a term is absent in the presence of an inverse cascade the energy of the large-scale
modes will grow to very large values forming a condensate (Chertkov et al. 2007;
Boffetta & Ecke 2012; Laurie et al. 2014) whose amplitude growth is balanced by
the small viscous forces. These two cases correspond to two very different situations.
In the first, there is a constant flux of energy to the large scales while in the second
situation the system reaches an almost thermal equilibrium with a non-constant and
very weak (compared to the amplitude of the fluctuations) inverse flux of energy.
Although both cases are physically relevant, in this work we only focus on the
first situation and in all our runs µ is tuned so that the largest scale is sufficiently
suppressed.

In the absence of forcing and dissipation terms this system conserves the total
energy of the flow given by

E= 1
2 〈|u2D|

2
+ |uq|

2
〉 =

1
2 〈|∇ψ |

2
〉 +

1
4 〈v

2
x + v

2
y + v

2
z 〉, (2.6)

where angular brackets 〈·〉 stand for spatial average. For uq = 0 one recovers
the two-dimensional Navier–Stokes equation in which case the enstrophy Ω =
〈|∇ × u2D|

2
〉/2 = 〈|1ψ |2〉/2 is also conserved. In the presence of forcing and

dissipation the system eventually reaches a steady state where the energy injected by
the forcing at the averaged rate I= 〈F · u2D〉T is balanced by the dissipation rates ε+3D,
ε+2D, and ε−2D due to viscous and hypo-viscous forces defined as:

ε+2D = ν〈|∇× u2D|
2
〉T, ε+3D = ν〈|∇× uq|

2
〉T, ε−2D =µ〈|∆

−1u2D|
2
〉T, (2.7a−c)

where the brackets 〈·〉T indicate space and time average. The dissipation rate ε+2D
measures the rate energy is dissipated at the small scales of the 2-D velocity field
u2D, while ε+3D measures the rate energy is dissipated by the 3-D field uq. Finally ε−2D
measures the rate energy is dissipated at the large scales of the 2-D velocity field.
At steady state a balance is reached and we obtain:

I = ε+2D + ε
+

3D + ε
−

2D. (2.8)

Thus, with a large enough scale separation L� `f , the ratio ε−2D/I provides us with a
measure of what fraction of the energy injected is cascading to the large scales. On
the other hand, at high enough Reynolds numbers, the ratios ε+2D/I and ε+3D/I provide
us with the fraction of the energy that cascades to the small scales.

We need to stress here the importance of considering the large Reynolds number
and large-box limit. Here by large-box limit we refer to the horizontal dimensions of
the box L→∞ and not H, which is considered fixed in this limiting procedure. In
2-D turbulence there is always some forward transfer of energy that is required to
sustain the forward cascade of enstrophy. Similarly, in 3-D turbulence in the presence
of a hypo-dissipation term there is an inverse transfer of energy that is needed to
sustain the energy at large scales against any dissipative mechanism that removes
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energy from these scales. These forward and inverse transfers, however, depend on
the amplitude of the dissipation coefficients and the box size. When the dissipation
coefficients are decreased and the box size is increased, their amplitude decreases to
zero (see discussions in Eyink (1996), Boffetta & Musacchio (2010), Boffetta & Ecke
(2012)). Thus, in order to distinguish a weak inverse cascade from these finite size
effects we need to demonstrate that ε−2D remains finite as the box size is increased
and the hypo-dissipation is decreased. Similarly for ε+2D and ε+3D, we need to investigate
their large Reynolds number behaviour.

Two different forcing functions were used in this study. The first was a deterministic
time-independent forcing explicitly given by

F= F0[cos(kf y),− cos(kf x), 0], (2.9)

where F0 is the forcing amplitude and kf = π/`f is the forcing wavenumber. It
corresponds to forcing a square array of vortices with alternating sign of vorticity.
This forcing, although more physical than our second choice, does not inject energy
at a constant rate since the injection rate depends on the particular flow realization.

For a better control of the energy injection rate in our system a second type of
forcing was used that was designed to inject energy at a given shell of wavenumbers
of modulus kf at a constant rate at each instant of time and for every realization. It
is written as

F= I0

∑
|k|=kf

ũ2D(k)eik·x∑
|k′|=kf

|ũ2D(k′)|2
+ i

∑
|k|=kf

Ωkũ2D(k)eik·x, (2.10)

where ũ2D(k) stands for the Fourier transform of the field u2D. The sums are over all
wavenumbers that satisfy |k| = kf , and Ωk is a random frequency that takes values
between 1 and −1 (for |k| = kf and zero otherwise) and leads to a decorrelation of
the phases between the different forced modes. The total energy injection rate for this
forcing at each instant of time and for each realization is given by I0. This forcing
thus allows us to control the energy injection rate without employing a delta correlated
random forcing.

The relevant non-dimensional control parameters of our system depend on the
domain geometry, dissipation parameters, and on the forcing mechanism and scale.
The ratio of the inverse layer thickness to the forcing wavenumber is given by
Q≡ q/kf and is our primary control parameter. The relative scale separation between
the forcing scale and the horizontal box size is measured by kf L. The Reynolds
number of our system is defined as, Re = uf /kfν, where uf is the root mean square
(r.m.s.) value of the velocity at the forcing scale

u2
f =

∑
|k|=kf

|u(k)|2. (2.11)

Similarly we define a Reynolds number based on µ that is related to the inverse
cascade as Rµ = uf k5

f /µ. The value of µ was always tuned so that no large-scale
condensate was formed and thus it was always linked to the size of the box kf L. We
note however that uf is a quantity that is measured a posteriori and does not truly
express a control parameter. For this reason we also define Ref , which is a Reynolds
number based on F0 or I0, that represents a true control parameter of the given system.
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Case A1 A2 A3 B1 B2 B3 B4 C1 C2 C3 C4

kf L 8 16 32 8 16 32 64 8 8 8 8
N 512 1024 2048 512 1024 2048 4096 512 512 512 1024
Ref 59 59 59 66 66 66 66 44 59 88 177
Rµf /104 1.1 26 593 1.3 33 760 21 300 1.1 1.1 1.1 1.1
Forcing F0, equation (2.9) I0, equation (2.10) F0, equation (2.9)

TABLE 1. A summary of the parameter ranges used in our simulations.

For the runs of constant forcing amplitude given in (2.9) we define Ref = F1/2
0 /νk3/2

f

and Rµf = F1/2
0 k9/2

f /µ. For the constant energy injection rate runs of (2.10) we define
Ref = I1/3

0 /νk4/3
f and Rµf = I1/3

0 k14/3
f /µ.

Equations (2.4) and (2.5) were solved using a standard parallel pseudo-spectral
code with a fourth-order Runge–Kutta scheme for time integration and a two-thirds
dealiasing rule. More details on the parallelization can be found in Gomez, Mininni
& Dmitruk (2005). All runs started from random initial conditions and were carried
out long enough so that a statistically steady state was reached. All measurements
and averages were made at this state unless otherwise stated. The resolutions used
varied from 5122 to 40962 grid points.

Our goal is to investigate how the system transitions to and from a bidirectional
cascade as Q is varied in the limit of large box size L (or large-scale separation
L� 1/kf ) and large Reynolds numbers. Thus, close to the points of criticality, a series
of runs were performed varying the parameter Q for fixed values of kf L and Ref . Then
the same series of runs were repeated for larger values of kf L or Ref until we observed
convergence. The runs were separated into three cases: A, B, and C. See table 1 for a
list of our cases and their corresponding parameters. Cases A and B investigated the
transition from a purely forward cascade to a bidirectional cascade, with a constant
forcing amplitude (2.9) and a constant energy injection rate (2.10), respectively. For
these runs we fixed Ref while varying kf L, and measured the inverse energy cascade
(which we expected to transition from being zero to being non-zero) via ε−2D/I. Finally,
Case C investigated the transition from a bidirectional cascade to a purely inverse
energy cascade. For these runs we fixed kf L, varied Ref , and measured the forward
energy cascade (which we expected to transition from being non-zero to zero) via
ε+3D/I.

3. Transition from a forward to a bidirectional cascade

We first investigate the first critical point Q3D that marks the transition from a
forward cascade to bidirectional cascade. Figure 2 shows the dependence of the
inverse cascade measured by the ratio of ε−2D/I as a function of Q for flows driven
by the deterministic forcing (2.9) in panel (a) and by constant injection of energy
forcing (2.10) in panel (b). Since both cases are similar, we focus on panel (a), Case
A. The three lines correspond to three different box sizes kf L as marked in the legend.
For the smallest box size kf L = 8 the transition appears smooth with the presence
of an inverse cascade at even the smallest values of Q displayed. As the box size
is increased the transition appears to become sharper, and at the largest box size
the system seems to converge into a critical transition at the value Q = Q3D ' 3.6.
Close to the critical point the inverse cascade ε−2D/I appears to scale linearly with
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FIGURE 2. (Colour online) (a) Runs from Case A. Measure of the inverse cascade for
various runs as we increased the box size kf L. Our runs converge to a sharp transition in
the large box limit, confirming the existence of Q3D. The dashed vertical line represents
the approximate value of Q3D. (b) Runs from Case B. A similar tendency is seen, although
convergence is not yet reached.

the deviation from criticality ε−2D ∝ (Q − Q3D)I for Q > Q3D. Looking at Case B in
figure 2(b), the transition seems to take longer to converge but the same tendency is
seen. For large values of Q the curves saturate to a value slightly smaller than unity,
which reflects that there is still a finite value of energy that is dissipated by viscous
effects. This is because only moderate values of Re are used. We discuss this issue
more in the next section where the second critical point is investigated and Re is
varied.

An alternative way to quantify the rate at which energy cascades towards the
large scales is by measuring the rate of increase of energy. An inverse cascading
system without large-scale dissipation and with a constant energy injection rate is
expected to lead to a linear increase of energy with time. This linear increase is
expected after a short transient time where small scales reach a quasi-steady state
and before the largest scales of the system are exited and a condensate starts to form.
The growth rate of the energy (i.e. the linear slope) is due to the inverse cascade
and is equal to the inverse energy flux. We tested this method of measurement by
performing runs identical to those of Case B (using the forcing with constant energy
injection given in (2.10)) but this time without a hypo-dissipation term, µ = 0. The
energy evolution for the runs without hypo-dissipation are depicted in figure 3(a) for
different values of Q, where a linear increase of energy can be seen. The slope of
the linear growth of energy for different values of Q and kf L is calculated. These
results are compared with the results obtained from steady-state runs in the presence
of hypo-dissipation and are shown in figure 3(b) for three different values of the box
size. For the smallest value of kf L the two measurements differ quite a bit, with the
steady-state hypo-viscous simulations (dashed) which display a much more smooth
behaviour, and the µ = 0 runs (solid) having significantly larger error. As the box
size is increased the two methods of measuring the amplitude of the inverse cascade
converge and the two curves overlap. Although measuring the inverse cascade by
the slope of the energy versus time graph converges faster to the large box limit,
the calculation using the hypo-dissipation term leads to much smaller error bars
due to the long-time averaging that is possible in this case. The smaller error is
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FIGURE 3. (Colour online) (a) The evolution of the energy for different values of Q in
the absence of large-scale dissipation. (b) The results of our constant energy injection runs,
comparing the two methods of measuring the inverse cascade. The solid lines represent
the slope measurement with no hypo-dissipation, whereas the dashed lines represent the
steady-state long-time-averaged measurements of runs with hypo-dissipation (Case B). The
plots are shifted to emphasize differences. The horizontal black lines all correspond to
ε−2D = 0 for the corresponding plot.

favourable when attempting to determine very small trends of inverse cascade, as is
seen figure 2.

We next look how the spectral distribution of energy is changing as Q is varied by
looking at the energy spectra E(k), E2D(k), and Eq(k) defined as:

E2D(k)=
1
2

∑
k<|k|6k+1

|ũ2D(k)|2, (3.1)

Eq(k)=
1
4

∑
k<|k|6k+1

|ṽq(k)|2, (3.2)

where ũ2D(k) and ṽq(k) stand for the Fourier mode amplitude of wavenumber k of
the u2D and vq fields respectively. The total energy spectrum E(k)=E2D(k)+Eq(k) is
shown in figure 4(a) for different values of Q and for kf L= 32. These spectra were
outputted during the run time of our simulations and then afterwards averaged together
during the steady-state period to get the final results. The smaller values of Q are
displayed with darker colours while the larger values of Q are displayed with lighter
colours. Clearly as Q is increased there is more energy in the large scales and less
energy in the small scales. For small values of Q the energy spectrum is close to flat
at the large scales k< kf and at the small scales k> kf it is compatible with a k−5/3

power-law scaling. As we increase Q the large scales gain more and more energy
until we reach the point where a spectrum compatible with k−5/3 is observed at the
large scales k < kf , and at small scales the spectrum is very steep (steeper than k−3

that is predicted for 2-D turbulence). This very steep behaviour is due to the small
value of the Reynolds number used. The k−3 spectrum is only realized in very high
Re (see Boffetta & Musacchio 2010), and such values are beyond the scope of this
work. Figure 4(b) compares the three spectra Eq (blue, vertical dashed line) and E2D

(red, dashed line) for the intermediate value of Q= 3.44>Q3D. At large wavenumbers
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FIGURE 4. (Colour online) (a) Spectra of the total energy for different values of Q
(averaged over many outputs). The colour of the curves become lighter and lighter as we
have more and more inverse cascade. (b) The total energy E(k) (black), the 2-D energy
E2D (red) and the 3-D energy Eq (blue) for Q= 3.44.

the energy spectrum is dominated by Eq, while at small wavenumbers, which exhibit
some inverse cascade, the spectrum is dominated by E2D.

The direction of the cascade is best described by the direct measurement of the
transfer of energy among scales provided by the nonlinear terms in our equations.
More precisely, this flux of energy expresses the rate energy is transferred out of a
given set of wavenumbers due to the nonlinearities. By performing a filtering of the
2-D velocity field u2D and the 3-D velocity field uq in Fourier space so that only
the wavenumbers with modulus smaller than k are kept, denoted by u<k

2D and u<k
q , one

looks at only the structures of scales larger than `= 2π/k. With these filtered velocity
one can calculate the flux of energy, defined to be:

Π2D(k)=−〈u<k
2D · (u2D · ∇u2D)〉, (3.3)

Πq(k)=−〈u<k
q · (u2D · ∇uq)〉, (3.4)

ΠT(k)=−〈u<k
2D · (uq · ∇uq)〉 − 〈u<k

q · (uq · ∇u2D)〉. (3.5)

The first flux Π2D expresses the rate energy is transferred from large-scale u2D modes
to small-scale u2D modes by self-interaction. The second flux Πq expresses the rate
energy is transferred from large-scale uq modes to small-scale uq modes through
interactions with the 2-D field u2D. Finally, the last flux ΠT expresses the rate energy
is transferred to the small scales by a simultaneous exchange of energy from one
field to the other. The total energy flux is given by

ΠE(k)=Π2D(k)+Πq(k)+ΠT(k). (3.6)

In the inertial range ΠE(k) is constant and positive if the cascade is forward and
constant and negative if the cascade is inverse. In the case for which uq = 0 and
enstrophy is conserved we can also define the flux of enstrophy as

ΠΩ(k)=−〈∇× u<k
2D · (u2D · ∇(∇× u2D))〉. (3.7)

We note however that if uq is not exactly zero the enstrophy flux ΠΩ(k) is not
constant due to the enstrophy generation by the vorticity stretching term uq · ∇uq.
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FIGURE 5. (Colour online) (a) The total energy flux ΠE for different values of Q
(averaged over many outputs). The lighter the shade of green, the higher the value of
Q. (b) For the case of Q= 3.75: The cyan/light blue lines show the instantaneous values
of the total energy flux; the solid black line is their average, corresponding to one of the
curves on (a).

Figure 5 shows the time-averaged total energy flux ΠE normalized by the energy
injection rate I for different values of Q. As before, dark lines correspond to small
values of Q while light lines correspond to larger values of Q. For the smallest value
of Q the flux ΠE is almost zero for k < kf and positive for k > kf describing a
unidirectional forward cascade. As Q is increased a bidirectional cascade appears with
both positive and negative fluxes in either side of the forcing wavenumber indicating
that energy cascades to both large and small scales. At the largest value of Q almost
all energy cascades inversely demonstrated by the negative values of the flux for k<
kf and almost zero values for k > kf . The time-averaged flux shows the predicted
constant-in-k behaviour for small k while it is affected by viscosity in the large scales
and thus decays with k. Instantaneous fluxes however are strongly fluctuating. This
is displayed in figure 5(b), where the time-averaged value of the flux (thick black
line) is displayed along with numerous instantaneous fluxes (cyan lines) for the case
of Q = 3.75. The role of the fluctuations becomes particular important close to the
transition where the amplitude of the fluctuations becomes much larger than the mean
value.

To demonstrate the role of each field in the cascade of energy we show, in
figure 6(a), the decomposition of the total energy flux ΠE into the three components
Π2D, Πq and ΠT for the value of Q = 3.75. The flux Π2D is negative for all values
of k < kf while it is positive but small for k > kf . The remaining fluxes Πq and ΠT
are positive for all k. Thus the inverse cascade is driven by the Π2D term whereas
the forward cascade is driven mostly by Πq and ΠT . It is worth noting that neither
of these partial fluxes is constant in either inertial range. Furthermore Πq and ΠT are
positive and finite for k< kf implying that part of the energy transferred to the large
scales by the u2D field is brought back to the small scales by interactions with the
uq field. As k is decreased the effect of Πq and ΠT weakens and at the smallest k
only Π2D remains non-zero.

Figure 6(b) shows the flux of enstrophy ΠΩ for different values of Q. As discussed
in the previous section enstrophy is only conserved by the nonlinearities when uq= 0.
For large values of Q, for which uq is small, we expect that enstrophy will be quasi-
conserved and its flux will be positive and slowly varying. This is indeed observed in
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FIGURE 6. (Colour online) (a) For the case of Q= 3.75: the total energy flux is shown in
the thick black line and the contributions from each nonlinear term are shown in the other
coloured lines. Notice that Π2D is the only one with a negative contribution. One should
also note that the green dotted line, corresponding to the term Πq, is always positive for
all Q examined but that the blue dash-dot line, corresponding to ΠT , can be both negative
and positive depending on Q and k. (b) The enstrophy flux ΠΩ for different values of Q
(averaged over many outputs) normalized by the enstrophy injection rate IΩ = 〈∇× u2D ·

∇×F〉T . The colour of the curves becomes lighter and lighter as the value of Q increases.

this figure for Q= 8.75, where the enstrophy flux is slowly decreasing due to viscous
effects. For smaller values of Q, however, the enstrophy flux becomes non-monotonic
with a sharp increase close to the dissipation scales. This is due to the generation of
enstrophy by the uq field that leads to an excess of enstrophy that is transported to
the small scales.

The results so far have demonstrated the presence of a bidirectional cascade in
Fourier space. Further insight is obtained by looking at the resulting structures in
physical space. Figure 7 shows, in (a–c), the 2-D vorticity ∇ × u2D for three values
of Q. Panels (d–f ) show the energy density Eq≡ |vq|

2/4 of the 3-D field at the same
instant of time as the vorticity for the same values of Q. The vorticity snapshots
show that, as Q is varied from small to large values, the structures change from
small scale to structures larger than the forcing scale kf L= 16, further demonstrating
the growth of the inverse cascade as Q is increased. For the smallest value of Q
the structures are small compared to the forcing scale, and one can notice by the
sharp changes from blue to red that there are also large gradients of vorticity. For
the largest value of Q the flow has very similar structure to that obtained in pure
2-D simulations, where structures grow in size due to vortex clustering and stretching
of the iso-vorticity lines (Chen et al. 2006; Eyink 2006; Xiao et al. 2009; Boffetta
& Musacchio 2010; Boffetta & Ecke 2012). Finally, the intermediate value of Q
appears to have characteristics of both extreme cases but concentrated in different
regions of space. Some regions in space resemble the small-scale eddies and large
gradient case of small Q while other regions have the typical 2-D eddy structures.
The structures in the 3-D energy density snapshots, shown in figure 7(d–f ) are
filamentary and are well correlated with the areas of high strain in the 2-D field.
Furthermore, the density of these areas of high Eq appears to decrease with Q.
Combining these observations, one notices that, for small values of Q, the intensity
of vorticity is not uniform throughout the domain – some regions appear to be
‘3-D active’ and some regions to be ‘3-D quiet’. As Q is increased the ‘3-D active’
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FIGURE 7. (Colour online) The 2-D vorticity ∇ × u2D (a–c) and 3-D energy density Eq
(d–f ), for three values of Q. The box size kf L= 16 is fixed for all cases. The grid pattern
which is seen in (a) is due to the forcing.

regions appear to become less space filling. A similar behaviour has been observed
in the transition from forward to inverse cascade in 2-D magnetohydrodynamic flows,
where the role of uq was played by the magnetic field (Seshasayanan et al. 2014;
Seshasayanan & Alexakis 2016). This behaviour, as we will discuss next, has direct
consequences for the behaviour of the flow close to the second critical point.

4. Transition from a bidirectional to an inverse cascade
We now focus on large values of Q for which the flow transitions from a

bidirectional cascade to an inverse unidirectional cascade. As shown in the previous
section the terms that involve the 3-D field uq are responsible for driving the forward
cascade. In their absence we recover the 2-D Navier–Stokes equation that leads to an
inverse cascade with all energy dissipated at large scales in the large Re limit. Thus
in order to transition to a unidirectional inverse cascade the flow needs to become
purely two-dimensional with uq = 0. This is indeed possible since a purely 2-D flow
is always a solution of the 3-D Navier–Stokes equation, equation (2.1). Therefore
if the initial data are exactly two-dimensional the flow will remain two-dimensional
for all times cascading energy inversely. However these solutions can be unstable
and small perturbations can grow exponentially driving the flow away from the 2-D
behaviour and thus alter the direction of cascade. This brings us to the intuitive
understanding of the second critical point. The bidirectional cascade will transition
to a unidirectional inverse cascade when the layer thickness is so small (Q is large
enough) that all 3-D perturbations are damped and decay exponentially in time, and
thus the 2-D solution is an attractor of the system. This is expected to occur when
the thickness of the box H2D is such that the viscous dumping rate ν/H2

2D due to the
vertical variation alone is similar to the shear rate uf kf that drives the 3-D instability.
This argument ν/H2

2D ∼ uf kf implies that the second critical point Q2D will satisfy:

Q2D =π/(H2Dkf )∝
√

Re. (4.1)
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A more precise estimate for the location of Q2D can be obtained by looking at the
energy evolution of the 3-D component of the flow that reads

1
2

d
dt
〈|uq|

2
〉 =−〈uq · (∇u2D) · uq〉 − ν〈|∇uq|

2
〉 ≡H. (4.2)

Note that the equation above is also valid for the full Navier–Stokes equations, not
just our model, with uq = u − u2D. The 2-D solutions will be globally stable if
the functional H is negative definite in which case all 3-D perturbations will decay
independent of the initial conditions. We can prove that this is the case for a given
range of Q using the following rigorous inequalities. Using Hölder’s inequality the
vortex stretching term 〈uq · (∇u2D) · uq〉 is bounded by

|〈uq · (∇u2D) · uq〉|6 ‖∇u2D‖∞〈|uq|
2
〉, (4.3)

where ‖∇u2D‖∞ stands for the L∞ norm (both in time and space) of the gradient of
u2D. Furthermore Poincaré’s inequality gives, for the dissipation term, that 〈|∇uq|

2
〉>

νq2
〈|uq|

2
〉. These two results lead to the negativity of H if Q2

= q2/k2
f > ‖∇u2D‖∞/k2

f ν.
Provided that ‖∇u2D‖∞ is bounded, this result guarantees that, beyond some value of
Q, the flow becomes exactly two-dimensional. However, deriving an upper bound on
‖∇u2D‖∞ in terms of the control parameters of the system is not trivial. An upper
bound on the long-time-averaged growth rate of 〈|uq|

2
〉 was derived in Gallet &

Doering (2015) where the two-dimensionalization of a flow due to the presence of an
external strong magnetic field B0 was examined. Their results extend directly to our
case by setting B0 = 0. They were able to show, using properties of the steady-state
2-D Navier–Stokes equations (Alexakis & Doering 2006), that the 3-D energy will
decay, in the long-time limit if Q satisfies:

Q2 > Re3
( c1

Re
+ c2

)
, (4.4)

where each ci is a positive dimensionless number that depends on forcing shape and
other non-universal properties of the flow and Re is based on the r.m.s. velocity of
the flow. Note that Q does not scale as we predicted with respect to Re. This is
because this bound is very conservative and does not capture all the physics at the
transition point. However, despite this loose scaling, this results guarantees that the
transition from a bidirectional to a purely inverse cascade will be through a critical
point because it guarantees that there is a value of Q above which ε+3D is exactly zero.

Another less conservative bound which was derived in Gallet & Doering (2015) is
based on the linear stability analysis of 2-D flows to 3-D perturbations. Linear stability
guarantees that the 2-D solutions are locally stable but does not exclude the possibility
that a locally attracting 3-D solution also exist for the same parameters. Their analysis
shows that 2-D solutions (for harmonic forcing and in the absence of hypo-dissipation
term) are linearly stable provided that

Q2 > Re
(

c3 + c4 ln |Re| + c5 ln
∣∣∣∣ kf

2π

∣∣∣∣) . (4.5)

Up to logarithmic corrections this result follows the scaling Q2D∼Re1/2, which is what
our scale analysis predicts.

This scaling is clearly demonstrated by our numerical simulations in figure 8 that
shows the energy dissipation rate ε+3D as a function of the rescaled Q/

√
Re. This
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FIGURE 8. (Colour online) Run set C. ε+3D normalized by the energy injection rate
for various runs as we increased the Reynolds number. Rescaling Q by our scale
analysis prediction collapses the curves into one. The dashed vertical line represents the
approximate value of Q2D, after which all runs have decaying 3-D energy.

rescaling of Q collapses the curves together. The vertical dashed line marks the critical
value Q2D = C2D

√
Re (where C2D ' 1.16) and represents the point after which the

amplitude of the 3-D field decays exponentially. In the absence of uq we have a 2-D
solution – ε+3D is zero and most of the energy is dissipated in the large scales. Note
that for a given value of Q the exact two-dimensionalization occurs for the values of
Re in the range Re 6 Q2/C2

2D. Since Re is bounded from above there is always some
viscous dissipation ε+2D. Thus, a strict inverse cascade where all the injected energy
is dissipated at the large scales ε−2D = I0 and ε+2D + ε

+

3D = 0 is realized only in the
limit Re→∞, Q→∞ with Q > Q2D = C2DRe1/2. On the other hand the small-scale
dissipation due to the uq field ε+3D becomes exactly zero ε+3D = 0 for any finite value
of Re that satisfies Re6Q2/C2

2D. It is also worth pointing out that the dependence of
ε+3D on the deviation from criticality differs from that of ε−2D close to the first critical
point Q3D that was linear. Close to Q2D the energy dissipation ε+3D follows the relation

ε+3D ∝ (Q2D −Q)βI, where β > 1 and Q 6 Q2D. (4.6)

The exponent β was found to be close to β ' 2. To understand the origin of this
exponent we need to look at the temporal and spatial form of the unstable field uq.

Figure 9 shows a typical signal for the evolution of the energy of the 3-D field
uq as a function of time, in linear (a) and log-linear (b) scale. The signal exhibits
bursts of energy followed by times with very weak energy. This is a signature of
‘on–off’ intermittency. On–off intermittency is a generic behaviour that appears in
the vicinity of an instability in the presence of multiplicative noise (Fujisaka et al.
1986; Platt, Spiegel & Tresser 1993). It has been observed in turbulent dynamo
simulations (Alexakis & Ponty 2008), in electronic circuits (Hammer et al. 1994),
in electrohydrodynamic convection (John, Stannarius & Behn 1999) and spin-wave
systems (Rödelsperger, Čenys & Benner 1995). In such situations the unstable modes
have a growth rate that varies strongly with time, taking both positive and negative
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FIGURE 9. (Colour online) A typical time series of the 3-D energy for a Q very close
to Q2D. (a) Shows linear scalings and the typical picture of an on–off intermittent signal,
whereas (b) shows the same signal but in log–linear scale.

values. Our system also falls in this category because for small values of uq it is
linearly advected by a turbulent/chaotic flow u2D. Thus, at some instances of time
u2D is efficient at exponentially increasing uq while at others uq is exponentially
decreased. In its simplest form on–off intermittency models a single mode X that
is amplified or decreased by a fluctuating growth rate α + ξ and is restricted from
taking very large values by a nonlinearity −X3:

Ẋ = (α + ξ)X − X3. (4.7)

Here α represents mean growth rate and ξ represents a zero mean random noise. In
the thin layer turbulent system the 3-D instabilities of the 2-D flow, whose energy
is described by (4.2), have an averaged growth rate α that is proportional to the
deviation from criticality α ∝ (Q2D − Q). At the same time the role of the turbulent
fluctuations of the 2-D field u2D is played by the random multiplicative noise. If the
averaged growth rate α in (4.7) is sufficiently smaller than the fluctuations ξ of the
instantaneous growth rate, then the system spends long intervals of time with very
small amplitudes (off phase) intervened by short burst where the nonlinearities are
effective (on phases). In log scale the amplitude of the unstable mode follows a biased
random walk bounded from above by the nonlinearities. The model predicts that, close
to the onset, the probability distribution function (PDF) P(Eq) of the energy of the
mode Eq ∼ X2 follows the scaling

P(Eq)∼ Eα/D−1
q , for X� 1, (4.8)

where D is the amplitude of the noise. Furthermore, the duration of the off phases
Toff diverges with the deviation from the onset (here Q2D −Q) as Toff ∝ (Q2D −Q)−1

while the amplitude Eon and the time Ton in the on phase becomes independent of
(Q2D −Q). This implies that the time-averaged energy scales like

〈Eq〉T ∝
EonTon

Toff + Ton
∝Q2D −Q, (4.9)

where 〈Eq〉T is also the time average of Eq. Note that this is not the behaviour we
observe in figure 8, which suggests a scaling closer to 〈Eq〉T ∝ (Q2D −Q)2, since the
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FIGURE 10. (Colour online) (a) The PDF in time of Eq. As before, dark means farther
away from Q2D and thus smaller Q and light green is the most two-dimensional (closest
to Q2D). The blue dashed line represents E−1

q and the red dashed lines represent where the
power-law exponent measurements were taken (if any). (b) Various values of the exponents
S(Q) versus the fraction Q/Q2D that measures the deviation from criticality. These values
are the slopes of the red dashed lines in (a). Notice the approach to −1, as the model
predicts.
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FIGURE 11. (Colour online) The vorticity ∇× u2D (a) and the 3-D energy density Eq (b)
for a point Q/Q2D = 0.92, right before Q2D. For kf L= 8 and constant forcing amplitude.
Note the very localized structure of the 3-D energy, an extreme of a trend seen in figure 7.

time averaged ε+3D is proportional to the time average of Eq. Figure 10(a) shows the
PDF of the energy Eq calculated for different values of Q. In agreement with the
model when the critical value Q2D is approached, the PDF becomes singular showing
a power-law behaviour P(Eq) ∝ (Eq)

S(Q). The exponents S(Q) of this power law are
shown in figure 10(b). As criticality is approached Q→ Q2D these exponents tend
to −1 in agreement again with the model. However this asymptotic value is not
approached linearly (i.e. S(Q) ' (Q2D − Q)/D − 1) as the model suggests but closer
to a quadratic behaviour S(Q) ' (Q2D − Q)2/D2

− 1. Thus, just as with the scaling
observed in (4.6) there is a disagreement with this model.

Resolution comes from looking at the spatial behaviour of the unstable modes.
Figure 11 shows a snapshot of the vorticity ∇ × u2D in panel (a) and of the 3-D
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FIGURE 12. (Colour online) (a) The PDF in space of Eq. As before, dark means farther
away from Q2D and thus smaller Q and light green is the most two-dimensional (closest
to Q2D). The blue dashed line represents E−1

q and the red dashed lines represent where the
measurements of the exponents were taken. (b) Various values of the measured power-law
exponents Z versus the fraction Q/Q2D. The measured power laws are demonstrated by the
red dashed lines in (a).

energy density Eq = |vq|
2/4 in panel (b). The vorticity shows the classical behaviour

of 2-D turbulence. The 3-D energy, however, shows a very intermittent behaviour
in space: most of the 3-D energy is concentrated in a single structure occupying a
small fraction of the area of the domain size. Comparing with figure 7(d–f ) we see
that, as Q is increased and Q2D is approached, there are less and less 3-D structures
occupying a smaller and smaller fraction of the domain area. For Q really close to
Q2D in figure 11(b) only a single structure or two exist. The unstable solution thus is
not only intermittent in time, but it is also intermittent in space!

Figure 12 shows the PDF in space of Eq measured for different values of Q. Just
like the PDF of the energy Eq the PDF of Eq shows a power-law behaviour: as
criticality is approached P(Eq)∝ EZ

q with Z→−1 as Q→ Q2D. Spatial intermittency
is not taken into account in the on–off intermittency model (4.7) that takes into
account the evolution of only one single mode. In our system the nonlinearity (on
phase) is not only visited rarely in time but also rarely in space. The averaged energy
in space and time will then satisfy

〈En
q 〉T =

En
onTonVon

(Ton + Toff )V
, (4.10)

where Von is the area occupied by the ‘3-D active’ regions, and V is the total area
of our system. The scaling of 〈En

q 〉T on (Q2D −Q) will thus not only depend on the
scaling of the time fraction Ton/Toff but also on the area fraction Von/Voff . The model
in (4.7) is not sufficient to describe our system and most likely an extended system
with random multiplicative noise both in space and time will be required to capture
correctly the statistics of our system (Grinstein, Munoz & Tu 1996; Horsthemke &
Lefever 2006). Such a possibility will be examined in future work.

5. Conclusions
In this work we investigated turbulence in a thin layer using numerical simulations

of a two-dimensional model of the Navier–Stokes equation obtained by a severe

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

29
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.293


382 S. J. Benavides and A. Alexakis

Galerkin truncation in the vertical direction. The decreased dimensionality of our
system allowed us to systematically investigate the transition from a forward to
an inverse cascade. Our results demonstrate the existence of two critical heights
(quantified by the parameter Q) with an unexpectedly rich behaviour close to
criticality.

The first critical height H3D = `f /Q3D marks the transition from a forward cascade
for H>H3D to a bidirectional cascade for H<H3D. Above this critical height H>H3D
the 3-D component of the flow is in equipartition with the 2-D part of the flow and
the energy cascades to the small scales. Although there is some transfer of energy
from u2D to the large scales it is compensated by the forward transfer caused by the
three-dimensional uq field leading to zero net transfer of energy to the large scales.
The spectrum displays a power law compatible with a Kolmogorov spectrum at large
wavenumbers. The structures in this case are small-scale vortex tubes occupying a
finite fraction of the computational domain.

Below but close to the critical height H . H3D a weak inverse cascade is observed.
The amplitude of the inverse cascade displays a close to linear dependence with the
deviation from criticality Q− Q3D (or H3D − H). The transfer of energy to the large
scales from the two-dimensional field u2D cannot be compensated by the forward
transfer of the three-dimensional field uq, which is weaker, leading to the observed
inverse cascade. The spectrum is close to Kolmogorov k−5/3 both at the large and the
small scales. In real space one observes the coexistence of large-scale 2-D structures
(similar to a pure 2-D flow) along with 3-D vortex tubes. The two distinct structures
occupy different regions of space. The fraction of the area they occupy depends on
the deviation from the onset. It is possible that the interactions of these 2-D vortices
with the 3-D structures display predator–prey dynamics, as has been recently claimed
for the transition to turbulence in Couette and Poiseuille flow (Barkley et al. 2015;
Goldenfeld & Shih 2017; Lemoult et al. 2016; Sano & Tamai 2016), and thus this
transition could also fall in the universality class of directed percolation (Obukhov
1980) as suggested by Pomeau (1986) for subcritical instabilities in turbulence.

The second critical height H2D= `f /Q2D marks the transition from the bidirectional
cascade for H2D <H<H3D to an inverse cascade for H<H2D. The critical point H2D
is shown to scale like H2D ∝ `f Re−1/2. It can be shown that for all H < H2D all 3-D
perturbations decay exponentially in time (Gallet & Doering 2015). For values of H
larger but close to H2D the three-dimensional flow exhibited a strongly intermittent
behaviour. The total energy displayed on–off intermittency behaviour in time with
bursts of energy. At the same time intermittent behaviour was also observed in space
with the 3-D vortex-tube-like structures occupying a lesser domain area the closer H
is to H2D. This intermittent behaviour results from the almost linear evolution of the
unstable 3-D mode uq driven by the spatio-temporal fluctuations of the 2-D turbulence.
The transition close to this point then could possibly modelled by extended systems
in the presence of multiplicative noise (Grinstein et al. 1996; Horsthemke & Lefever
2006).

Our model was based on a drastic Galerkin truncation in the vertical direction so
it is worth discussing the expected effect of including higher modes. Close to the
critical point Q2D, since this is where the model is valid, we expect that it captures
the transition quite accurately. At a neighbourhood of this point one can envision an
expansion based on the distance from the onset (Q2D − Q) � 1 so that only one
q-mode (the one with the smallest q) is unstable. For the other critical point Q3D there
might be some differences. For example the exact location of the critical point might
change. We do not expect, however, to see any change with respect to the critical
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nature of this point because if one 3-D mode is sufficient to stop the inverse cascade,
then certainly two or three modes will do even better. Of course this expectation
remains to be seen by examining the full 3-D layer problem, something that is well
beyond the purpose of this work.

The precise statistical description and the possible universality class of the two
critical points certainly require further investigation. The present investigation however
clearly demonstrated the non-triviality of the two critical points and their unexpectedly
rich behaviour. Whether similar transitions are observed in other systems such as
rotating, stratified or magnetized flows remains to be seen.
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