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Abstract

One of the fundamental elements that determines the precision of coordinate measuring machines (CMMs) is the probe,
which locates measuring points within measurement volume. In this paper genetically generated fuzzy knowledge based
models of three-dimensional (3-D) probing accuracy for one- and two-stage touch trigger probes are proposed. The fuzzy
models are automatically generated using a dedicated genetic algorithm developed by the authors. The algorithm uses hy-
brid coding, binary for the rule base and real for the database. This hybrid coding, used with a set of specialized operators of
reproduction, proved to be an effective learning environment in this case. Data collection of the measured objects’ coordi-
nates was carried out using a special setup for probe testing. The authors used a novel method that applies a low-force high-
resolution displacement transducer for probe error examination in 3-D space outside the CMM measurement. The geneti-
cally generated fuzzy models are constructed for both one stage (TP6) and two stage (TP200) types of probes. First, the
optimal number of settings is defined using an analysis of the influence of fuzzy rules on TP6 accuracy. Then, once the
number of settings is obtained, near optimal fuzzy knowledge bases are generated for both TP6 and TP200 triggering
probes, followed by analysis of the finalized fuzzy rules bases for knowledge extraction about the relationships between
physical setup values and error levels of the probes. The number of fuzzy sets on each premise leads to the number of phys-
ical setups needed to get satisfactory error profiles, whereas the fuzzy rules base adds to the knowledge linking the design
experiment parameters to the pretravel error of CMM machines. Satisfactory fuzzy logic equivalents of the 3-D error pro-
files were obtained for both TP6 and TP200 with root mean squsre errors ranging from 0.00 mm to a maximum of 0.58 mm.
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1. INTRODUCTION suring system of the CMM, is called a “probe.” There are
groups of contacting (touch) and noncontacting (optoelec-
tronic) probing systems (Weckenmann et al., 2004). A number
of different optoelectronic probes are used, although triangu-
lation probes are most popular. Touch probes are categorized
into trigger and measuring (scanning) probes. Contacting
probes are categorized into touch trigger and measuring sys-
tems. Touch trigger probes are most widely used, and are the
devices used in this research paper.

The probe is one of the most important factors influencing
CMM accuracy (Nawara & Sladek, 1985; Krejci, 1990; But-
ler, 1991; Reid, 1992; Mayer et al., 1996; Chan et al., 1997;
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Coordinate measuring machines (CMMs) are measuring de-
vices that make possible the evaluation of dimensional values
of geometrically sophisticated workpieces. During the coor-
dinate measuring process the object to be measured is nor-
mally probed point by point using a stylus with a spherical
(most commonly) ruby ball tip. At each probing contact,
the XYZ coordinates of the ball tip are measured and stored
in a computer’s memory. The sensor, which provides the con-
nection between the object surface and the 3-D length mea-
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used over a period of time. Furthermore, comparison of the
metrological feasibilities of different kinds of probes is valu-
able. Until now, methods used to calibrate the CMM have re-
lied on manually checking the probes with standard material
(calibration artefacts), such as a ring or a ball (ANSI/ASME,
1989; VDI/VDE, 1989; Mayer et al., 1996; Miguel et al.,
1998; ISO, 2001). However, these techniques are not precise
enough because the accuracy of the machine is in most cases
comparable with the accuracy of the probe.

One possible solution is to apply a method that allows sep-
aration of machine and probe errors. Nafi et al. (2011) have
developed CMM-based implementation of the multistep
method for such separation. According to the authors, at least
for the two-dimensional error pattern, some on-machine test-
ing and error decoupling is possible.

A more precise description of probe accuracy can be
achieved by outright testing on special setups, separate
from the CMM (Burdekin et al., 1985; Nawara & Sladek,
1985; Harary et al., 1989; Dobosz & Ratajczyk, 1994; Mayer
et al., 1996; Dobosz & Wozniak, 2003; Wozniak & Dobosz,
2003). Several attempts were made to give a simple and ade-
quate description of the CMM probe (Butler, 1991; Estler
et al., 1996; Mayer et al., 1996; WozZniak & Dobosz, 2005),
and to develop a method to test them outside the machine,
with mixed results.

Research done by Butler (1991) has shown that the mea-
suring probe is a source of 60% of errors of measurements
performed on a coordinate machine, and that it is possible
to improve precision by developing models of pretravel var-
iation that consider the character of these errors. Yang et al.
(1996) have proposed a model of probe pretravel switching
which includes a series of parameters: location of the probe
in space, measuring force (usually set by adjusting the probe
tip spring preload), configuration of the measurement stylus
(including weight, length, and rigidity of its tip), direction
of switching, together with ambient conditions such as tem-
perature gradients, humidity, and others. Shen and Moon
(1997) have performed similar research studies, by using
neural networks having reverse propagation apt to correct
the triggering probes errors. Following the authors, thanks
to neural network use, a considerable reduction of systematic
probe errors has been achieved. Tyler Estler and Shen have
developed a mathematical model of kinematic groups of
switching probes (Estler et al., 1996, 1997). The theoretical
description of a probe transducer includes elastic deflections
of the probe tip and a friction phenomenon that appears be-
tween the spherical tip of the measuring probe and the mea-
sured element when locating the measured points on the co-
ordinate machine. The theoretical analysis has been limited
to a simplified model of a kinematic triggering probe trans-
ducerequipped with a straight measuring tip. A possible exten-
sion of this method is the use of the kinematic model pro-
posed by Wozniak and Dobosz (2005). Mayer et al. (1996)
have shown another approach to numerical compensation of
systematic probe errors. Their target was to generate a simple
model, supported by a lesser number of possible parameters.
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It was assumed that the diagram of repeatability in the probe
operating plane is the main characteristic that describes the
precision of probe performance. The considerations assumed
that during the measurement carried out on a coordinate ma-
chine, the probe tip displaces mainly orthogonally to its axis
at the moment of contact with the measured object. Bala-
zinski and Mayer have proposed a manually constructed
fuzzy decision support system that allows corrections of pre-
travel variations (Balazinski et al., 1997). They limited their
analysis to the electromechanical probes. We present an alter-
native approach to the problem, including the consideration
of two stage probes.

In this paper the authors investigate the use of genetically
generated 3-D fuzzy models of the accuracy of touch trigger
probes. In addition, current information pertaining to known
parameters generally specifies the probe accuracy in the plane
perpendicular to the probe axis. This information is extended
to include 3-D space in this paper.

More precisely, the genetically generated fuzzy knowledge
bases (FKBs) are used for reconstruction of the direction-
dependent probe error, that is, the pretravel w. The pretravel
is measured according to its definition as the displacement
of the stylus tip between the point of touch with a workpiece
and the triggering moment. In FKB, w represents the output
variable while setting angles 8 and vy are used as input vari-
ables. Angles 3 and vy describe the spatial direction of probe
triggering (normal to the measured surface). Further details
will be given later in this paper.

The FKBs developed in this research can be used for auto-
matic or manual calibrations of the CMM. The transparency
of the databases and rule bases of FKB, as opposed to black-
boxed approaches like neural networks, adds to the knowl-
edge about the link between the measured parameters (inputs
of the fuzzy models) and the calibration error (output of the
fuzzy model) through the fuzzy rules (FRs) that represent
the relationships between the input parameters and the output
parameter.

This paper starts with an introduction, followed by a re-
search aim. Section 3 is a brief description of touch trigger
systems followed by Section 4, which describes the measure-
ment method. Section 5 describes the experimental setup,
whereas Section 6 explains the learning data collection using
the experimental setup. Section 7 describes the genetic fuzzy
learning environment, followed by Section 8, which presents
the generation of the fuzzy models; Section 9 describes their
validation. The paper ends with a conclusion followed by ac-
knowledgments and a set of references.

2. RESEARCH AIM

Over the past 20 years remarkable progress in coordinate
measurement technology can be noticed in electronic ele-
ments (controllers) and in machine software. The use of mod-
ern controllers and measurement algorithms allows a remark-
able improvement in the measurement precision of coordinate
machines, and is performed by numerical compensation of
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systematic errors of measuring transducers. Currently, in all
coordinate machines a compensation of average error is
used; it is calculated during the calibration process using a
master sphere before performing the proper measurements.
The effective radius of the sphere probe tip is calculated, con-
sidering five (or more) measurement points of the master
sphere; thus extracting an average error value. However,
this way of determining the average error value, based upon
afew random measuring points is not precise enough because
this procedure does not include information about the charac-
ter of systematic errors of the probes.

The main aim of this research paper is to develop a FKB to
model and subsequently correct probe error variation. A sec-
ondary research aim is to define the suitable minimal number
of setups for CMM machines for error calibration. Further-
more, the FRs bases of the FKB are analyzed to better under-
stand the relationships between geometric/physical setups of
the CMM and measuring errors represented by the pretravel
value.

3. TOUCH-TRIGGER SYSTEMS

All touch-trigger probes for CMMs contain a three-base
spring-tighten setting mechanism (a six-point kinematic
mechanism) by which the stylus is electrically fixed in 5 or
6 spatial degrees of freedom. In the basic version this mecha-
nism is designed as a group of electrical contacts (see Fig. 1a).
When the stylus touches a workpiece the electrical contact is
opened and a trigger pulse is generated and sent to the com-
puter resulting in a coordinate reading. Although there are
many different designs of this kind of probe, the generation
of the trigger pulse is always strictly connected with a triploid
structure of the settings. Setting points are always displaced
by 120°, and for this reason the probing force is not uniform.
In addition, different values of stylus displacement from the
neutral position to the triggering position, depending on prob-
ing direction, are observed. As a result, when measuring a cir-
cle, a triangular form error will occur.

spring

stylus

(a)
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Three base setting probes with electrical contact transducers
are the most popular because of their simplicity and low cost.
Because they contain only one kind of transducer, they are
called one-stage probes or electromechanical probes. To avoid
the above-mentioned drawbacks of one-stage probes, piezo-
electric sensors are employed in addition to mechanical/
electrical contacts (see Fig. 1b). This provides constant sensi-
tivity in all probing directions in the plane perpendicular to
the stylus, which effectively reduces probing errors. In the
two-stage probe, a very sensitive piezo-element acts as an ac-
tual position sensor (first stage), and the electromechanical
contact (second stage) only serves to confirm the workpiece
probing action.

As a 3-D model of the touch trigger probe 3-D pretravel,
Estler et al. (1996) presented a first attempt to create a simple
mechanical common model of touch-trigger probe. They lim-
ited their analysis to electromechanical probes. An alternative
approach to the calibration problem is presented in this paper,
using FKBs and applying them to one- and two-stage probes.

In the case of one-stage probes the error is a function of
switching direction, defined in the space by the two angles.
In the case of probes with a piezoelectric transducer, the error
in the orthogonal plane to the probe axis does not depend on
measurement direction.

4. MEASUREMENT METHOD

A method developed by Wozniak and Dobosz (2003) apply-
ing a low-force high-resolution displacement transducer is
proposed to measure triggering probe pretravel w in XYZ
space. The idea relies on detection of contact of a stylus tip
with an element that activates its operation (i.e., a measured
workpiece). As defined above, the pretravel is the displace-
ment between the point of touch of the workpiece and the
triggering moment. The spatial distribution of points obtained
by probe triggering from different directions in XYZ space de-
livers information on probe accuracy. The moment of contact
of the probe tip with the element that initiates its movement is

electro-mechanical
contacts

confirming stage

piezoelement

sensor stage

(b)

Fig. 1. The scheme of the touch trigger probes: (a) one-stage type with electromechanical transducer and (b) two-stage type with three

piezo elements.
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detected by means of a low-force displacement transducer.
The transducer tip contacts the probe tip before the measure-
ment of pretravel length is realized. The thrust induced by the
transducer must be at least 10 times lower than the probe
thrust in order to prevent activating the probe. The measure-
ment starts from determination of the position of the trans-
ducermeasuring armin the neutral position, which corresponds
to the moment when the displacement transducer tip touches
the probe tip. When the probe is mechanically triggered by
external force the transducer reading is recorded. The differ-
ence in readings is the measure of the pretravel (w).

5. EXPERIMENTAL SETUP

The experimental setup employing the low-force displacement
transducer with a hinged arm is shown in Figure 2. The high-
resolution interference displacement transducer with a low
measuring force is the key part of the system. The applied
gauge was equipped with a rotary measuring arm as described
in Dobosz (19944, 1994b). The measuring range of the dis-
placement transducer was equal to 4 mm, with a resolution
of about 0.015 pwm. The measuring force was about 5 mN
and varied less than a few percent within the whole measuring
range. In order to reach such a low measuring force the follow-
ing precautions were taken: a precise ball bearing was used on
the transducer measuring arm, moving elements made of mag-
nesium alloy were used to ensure a low moment of inertia and a
precise balance of the system was completed.

Because the applied measuring force of the displacement
transducer is a few dozen times lower than the thrust required

drive
controller

S. Achiche and A. Wozniak

to trigger the probe (at least 100 mN lower) it can be assumed
that the mutual interaction of the tips of the measuring head and
the tested probe is negligible. The external driving unit used to
change the position of the tested probe comprises a carriage
and its drive. Flat faces of the carriage do not affect the tip of
the tested probe directly but by means of the rotary arm of
the interference measuring head. The arm ends with a flat sur-
face from one side and ball shaped from the other. Thus, it can
interact both with the ball tip of the tested probe and the flat
face of the driving unit. The arm transfers the movement to
the tip of the tested probe. The carriage performs a to and
from motion resulting in triggering the tested probe. Informa-
tion related to the path that the tip has traveled from the neutral
position to the triggering point is registered at the moment of
triggering and the results are recorded in a computer.

The measuring system allows changing the approach angle
of the probe in the 3-D space. It is realized by rotation of the
probe along its axis (angle (3 in Fig. 2) and by tilting the probe
holder in the plane YZ of the measuring system (angle vy in
Fig. 2) using the index head.

The measuring system is controlled by computer software
that also calculates parameters and characteristics of the tested
probes as well as stores data on a hard disc and/or presents
them in a form of printed protocols.

The settings of the described measuring system are as fol-
lows:

o the angle {3 of rotation of the probe around its axis during
measurement in the measuring setup extending from 0°
to 351°,

interference
displacement transducer

computer

t

displacement
encoder

_ System of rotation the probe
along its axis {angle )

Index head (angle -}

Tested probe

Interference
displacement transducer

Maving carriage

Fig. 2. (a) A schematic and (b) photo of the experimental setup. [A color version of this figure can be viewed online at journals.cambridge.

org/aie]
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e the minimum angle of rotation of the probe around its
axis during measurement equal to 1.8°,

o the angle y of rotation of the probe during measurement
in the YZ plane of the measuring system extending from
0° to 90°,

e the minimum angle of revolution of a probe in the YZ
plane during measurement equal to 1°, and

e the carriage velocity in a probe triggering mode con-
trolled within the range from about 3.1 to about 9.5
mm/s.

6. COLLECTING THE EXPERIMENTAL
LEARNING DATA

The 3-D characteristics of pretravels are values of the pre-
travel as a function of the approaching direction of a stylus
tip to a contact with a surface of a measured workpiece.

In this paper the full 3-D pretravel characteristics of various
one- and two-stage probes were measured. The probes were
tested in their standard configuration and commonly used sty-
luses were utilized. The stems were 40 mm long and 2 mm in
diameter, and were made of tungsten carbide with a 4-mm
sapphire ball at the end. For the probes with adjustable spring
pressure the transducer thrust was set in the middle of the
range. The measuring velocity of the majority of CMMs
(which is also the probe triggering velocity) can be adjusted
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from 1 to a few 10s of millimeters per second. In our experi-
ments we applied a value of 8 mm/s, which is the most typical
speed used for probe tests by Renishaw.

Test runs comprising five measurements of pretravel were
done for both probes considered in this paper. The tip ap-
proaching direction in space was changed by 9° for every con-
secutive measurement. In total, 2000 measurement points
were obtained for each probe. Figure 3 and Figure 4 show spa-
tial distributions of the average error plotted in Cartesian co-
ordinates for the switching probe TP6 and the double-stage
probe TP200, respectively. Angle B represents the angle of
triggering force direction in the XY plane perpendicular to
the probe axis, whereas angle vy is the angle between trigger-
ing force direction and the XY plane.

7. AUTOMATIC GENERATION OF FKB

Genetic algorithms (GAs) are powerful stochastic optimiza-
tion techniques based on the analogy of the mechanics of bi-
ological genetics and imitate the Darwinian survival of the
fittest approach (Goldberg, 1989). Each individual of a pop-
ulation is a potential fuzzy decision support system FKB,
where four basic operations of the developed GA learning
software are performed: reproduction, mutation, evaluation,
and natural selection. The GA developed by the authors
is a combination of a real coded genetic algorithm and a
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Fig. 3. An example of spatial distributions of the average pretravel of the electroswitching probe TP6 plotted in Cartesian coordinates.
[A color version of this figure can be viewed online at journals.cambridge.org/aie]
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Fig. 4. An example of spatial distribution of the average pretravel of two-stage probe TP200 plotted in Cartesian coordinates. [A color
version of this figure can be viewed online at journals.cambridge.org/aie]

binary coded genetic algorithm called a real binary/like
coded genetic algorithm (RBCGA; Achiche et al., 2003,
2004b). The reproduction mechanism is a multicrossover
proposed by the authors (Achiche et al., 2004b; Achiche,
Balazinski, & Baron, 2004) and the mutation is uniform as
proposed by Cordon et al. (2000).

7.1. Performance criterion of RBCGA

The performance criterion allows computation of the rating of
each FKB used by the RBCGA to perform natural selection.
In this paper, the performance criterion is the accuracy level
of FKB (approximation error) in reproducing the outputs of
the learning data. The approximation error is a combination
of the Arys, measured using the root mean square (RMS) er-
ror method and the average absolute error Aags. The next two
equations detail these errors.

2
ul (RBCGAoutput - dataoutput)
ARMS = Z N ’
i=1

M

where N represents the size of the learning data. The absolute
error is measured as follows:

M. ABS (RBCGA guiput

Apps =

=1 N

- dataoulput) .

2
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The fitness value ¢ is evaluated as a percentage of the out-
put length of the conclusion L, that is,

b= (1 —W) x 100. A3)

7.2. Evolutionary strategy of RBCGA

The multiple crossovers per couple (MCPC) strategy is used
on the reproduction mechanisms as the evolutionary strategy.
The MCPC consists of the exploration/exploitation balance
strategy proposed by the authors (Achiche et al., 2004a;
Achiche, Balazinski, & Baron, 2004). This strategy is applied
to ensure good balance between exploitation and exploration
throughout the evolution. Different values were given to the
Exploitation/Exploration parameter « that influences the ex-
ploration, exploitation or relaxed exploitation levels of the
crossover mechanism. These values are set as follows:

e Exploration: a = 1.00 for exploration only

e Relaxed exploitation: a = 0.50

e Exploitation: o = 0.1 for close to maximal exploitation
(a different from 0.00 to avoid resemblance with uni-
form mutation)

MCPC uses exploration at the early stages, then shifts to a re-
laxed exploitation for the evolution stage, and finally switches
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to exploitation for the latest stages of evolution. This order
proved to be efficient (Achiche et al., 2004a; Achiche, Balazin-
ski, & Baron, 2004). The following was considered for defini-
tion of the stages: for a maximum number of generations N
(numbers based on the author’s previous work; Achiche, Bala-
zinski, & Baron, 2004; Akrout et al., 2007):

e The first third of N is considered as being the early stages
of evolution.

e The second third is considered as the evolution stage.

e The last third is considered as the latest stages of evolution.

The maximum number of generations N is set to 200.

8. FKB FOR PROBING ACCURACY

The first step in this section is to investigate the influence of
the number of FRs on the quality of FKB. It is noteworthy that
in this paper the FR number is directly correlated to the num-
ber of fuzzy sets (FS) on the input premises and subsequently,
as will be discussed later, the optimal number of FS can be
used to choose the number of physical settings of CMM cal-
ibration. Furthermore, increasing the number of FR and the
number of FS on the conclusion (matching the number of ex-
perimental outputs) should result in an FKB with a very low
error. However, this will prove to be wrong, as the following
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investigation of FR influence on FKB accuracy is carried out
using TP6 triggering probe experimental data.

8.1. Modeling TP6 gauge error profile and settings

For testing the influence of FR number on the accuracy of the
FKB genetically generated using TP6 experimental data, the
maximum number of FS on the input premises is set to the
following values:

e Premise y: 2 FS to 11 FS; 2 being the minimum allowed
by the learning algorithm, 11 being the maximum exper-
imental number of settings of vy.

e Premise 3: 2 FS to 20 FS; 2 being the minimum allowed
by the learning algorithm, 20 being half the maximum
number of different values of 3. The maximum was
fixed at 20 after preliminary tests.

As aresult, the number of FR varies between 4 (2 x2) and 220
(11 x 20). The maximum number of possible conclusions on
output w is fixed at 44. This represents 10% of the maximum
number of experimental outputs (440 measurements). Using
the center of gravity as a defuzzification mechanism, 44 FS
cover the universe of discourse range (~0.5 to ~12.7 mm)
with 0.27-mm resolution, which is considered sufficient by
the authors because the middle values can still be interpolated
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Fig. 5. Root mean square error variation versus the number of fuzzy rules. [A color version of this figure can be viewed online at journals.

cambridge.org/aie]
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Fig. 6. Mean root mean square error variation versus the number of fuzzy rules. [A color version of this figure can be viewed online at

journals.cambridge.org/aie]

using center of gravity. Figure 5 shows the variation of the
RMS error of the automatically generated FKB versus the
number of FR, whereas Figure 6 illustrates the mean RMS er-
ror of the last population versus the number of FR. From these
figures one can notice that the RMS error increases as the
number of rules increase, which seems uncharacteristic be-
cause one would expect the inverse to occur.

Letusanalyze the influence of the FS number (on each prem-
ise) on the error variation. Figure 7 shows that the curve rep-
resenting the mean value of RMS increases along with the
number of FSs on premise 1 (values of y). The variation is
contained within the 0.8- to 1.0-mm range.

It is worth noting than in both Figure 5 and Figure 6 outliers
can be noticed. These are probably due to the RBCGA not con-
verging to a solution and being stuck in local optimum.

The variation of RMS error versus the number of FS on
premise 2 (values of ) is illustrated in Figure 8. One can
see that it is quite stable between 2 and 15 FS, with the lowest
value obtained for 3 FS. However, beyond 15 FS the RMS er-
ror increases quickly.

Theoretically, the approximation error was expected to de-
crease when increasing the number of FS and the number of
FR, because more FS and FR are available for the RBCGA to
select from to find an adequate model. This hypothesis, how-
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ever, does not take into account the fact that adding more FSs/
FRs to the learning increases the search space for the RBCGA
and therefore increases the degree of difficulty to find near-
optimal solutions. It is possible to solve this problem by re-
ducing the number of FR. This approach is explored in the
next sections.

8.1.1. Influence of FKB complexity on learning quality

From analysis of the raw experimental data (see Fig. 9), one
can notice that the values are spread through 13 intervals
[0-1], [1-2], . . . [11-12], and finally, [12—13]. Taking into
account these intervals, the maximum number of outputs
was reduced from 44 to 13. New learning of the FKBs is car-
ried out using 13 outputs as a maximum number of FS on the
conclusion. The variation of the FS number on premises 1 and
2 remains unchanged, that is, [2 —11] x [2 — 20].

As shown in Figure 10 and Figure 11, the RMS error de-
creased when fewer FS were used on the conclusion (13 ra-
ther than 44). Reducing the number of FS on the conclusion
improved the learning by decreasing the size of the FKB and
by targeting a more precise set of outputs.

Increasing the number of FS on the premises and the con-
clusion and hence increasing the number of FR did not trans-
late into an improvement of the precision of the automatically


https://doi.org/10.1017/S0890060411000151

3-D Modeling of coordinate measuring machines

433

1.8
* ¢ RMS
—&— Mean RMS
16
.
1.4 . 2
e
&
= o
é * * B
s 1.2 < =
g © N - - S
g L * L
[4 & * &
*
’
1 * * Y f 3
s ¢
T . e
P 5§ g § 4 :
3 % ; ¢ * : b $
08 B 4 3 i E 4 4 . ‘
‘ § v 3 ¢ ¢
o 4 .
o *
0.6 4 - : ; : - - : . )
2 3 4 5 6 7 8 9 10 11

NbFs on premise 1 = Gamma

Fig. 7. Root mean square error variation versus the number of fuzzy sets: . [A color version of this figure can be viewed online at journals.
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generated FKB for this specific task of reconstruction of
CMM 3-D triggering probe error characteristics. Furthermore,
again from analyzing Figure 7 and Figure 8, one can conclude
that the combination of 2 FS on premise y and 12 FSs on
premise [3 produced a FKB with the lowest error. These two
values induce a FR base of 24. In the next section these results
will be used to perform near-optimal learning of the FKB.

8.1.2. Optimal learning of FKB for TP6

The learning of a FKB is performed using 2 FS on premise
v and 12 FS on premise 3. The best FKB obtained from the
learning is illustrated in Figure 12. The number of FS on the
output premise was reduced to 7 FS instead of 13. In Figure 12,
13 FS are shown on the conclusion but only 7 are fired by the
FRs base, namely, FS: 1, 2, 7, 8 (superimposed with 9), 10, 11
(superimposed with 12), and 13. Hence, FS error outputs for
TP6 triggering probe can be semantically labelled as high
(FS 13, 12, and 10), medium (FS 7 and 8), and low (FS 1
and 2). In addition, on premise 3 one can see the 12 triangular
FS are actually composed of 8§ different summits only, because
11 and 12 are superimposed, whereas 3—2 and 9-8 are straight
angled triangles sharing the same physical summit.

The genetically generated FKB reproduces the data with an
RMS of 0.58 mm, a maximum absolute error of 2.23 mm, and a
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minimum absolute error of 0.00 mm. The correlation between
the experimental and the predicted error profile is 98.00%.

The FKB illustrated in Figure 12 can be used for CMM cal-
ibration to lower the number of setups needed and hence re-
duce costs in time and money. The positions of the summits
of the FSs indicate possible setup values for 3 and -y angles of
the CMM.

Figure 13 illustrates the profile of CMM 3-D triggering probe
error characteristics as predicted by the genetically generated
FKB. One can see similarities between Figure 3 and Figure 13,
however, the genetic-fuzzy predicted profile is smoother and
less prone to big local jumps and/or deviations of calibration er-
rors. This can be considered an improvement.

8.1.3. Partial conclusion

Increasing the number of FS on the premises and the con-
clusion and hence increasing the number of FRs does not al-
ways translate into improvement of the precision of an auto-
matically generated FKB. A good balance between these
numbers has to be found in order to optimize the automatic
learning. Reducing the number of FS on premises y and 3
produced a more accurate FKB. Furthermore, the precision
of the FKB was more sensitive to increasing the number of
FS on premise vy than on premise [3; this can be explained be-
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cause [3 is measured along the probe axis, which makes it less
influential on the errors. The number of FSs on premises vy
and 3 can be used as a number of setups when modeling
CMM 3-D triggering probe error characteristics. Further-
more, reducing the number of setups reduces the time re-

quired for reconstruction of the compensation model and
can also increase its efficiency. The summit of each of the
FSs of the inputs can be used as a setup value for future cali-
brations; in this particular case it means a combination of two
setup values for y and eight for (3.
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Fig. 11. Root mean square and mean root mean square error versus the number of fuzzy sets on 3 (13 vs. 44 fuzzy sets). [A color version of

this figure can be viewed online at journals.cambridge.org/aie]
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Fig. 13. The profile of the fuzzy predicted error of the TP6 triggering probe. [A color version of this figure can be viewed online at
journals.cambridge.org/aie]

8.2. Modeling TP200 gauge error profile and settings

In this section the FKB equivalent to the 3-D error profile of
TP200 is presented. The learning starts with 8 FSs on each
premise (y and (), 8 FS being the highest number of FS
obtained for fuzzy modeling of TP6 triggering probe. For
the conclusion, a maximum of 13 FSs is used; again, this
number is obtained from the TP6 FKB. The RBCGA is al-
lowed to reduce these numbers in order to find a simple
near-optimal FKB. The same evolutionary strategy pre-
viously used is utilized for TP200 fuzzy reconstruction of
the error profile.

The near-optimal genetically generated FKB reproduced
the data with an RMS of 0.21 mm, a maximum absolute error
of 0.57 mm, and a minimum absolute error of 0.00 mm. The
correlation between the experimental and the predicted error
profile is around 99.00%. As one can notice from Figure 14,
the error profile is smoother and less prone to big local jumps
and/or deviations than the experimental calibration error pro-
file (see Fig. 4).

The FKB illustrated in Figure 15 has five FS on premise y Fig. 14. The profile of the fuzzy predicted errors for TP200. [A color version
and two FS on premise B (both values were reduced from of this figure can be viewed online at journals.cambridge.org/aie]
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Table 1. Fuzzy rules for the TP6 error profile

Y B FS Error TP200 Error Semantics
1 0° 1 0° 7 High
1 0° 2 <21° 4 Medium
1 0° 3 >21° 4 Medium
1 0° 4 80° 3 Medium
1 0° 5 120° 6 High
1 0° 6 160° 4 Medium
1 0° 7 <235° 5 High
1 0° 8 <235° 6 High
1 0° 9 >235° 5 High
1 0° 10 300° 3 Medium
1 0° 11 351° 6 High
1 0° 12 351° 6 High
2 90° 1 0° 1 Low
2 90° 2 <21° 2 Low
2 90° 3 >21° 2 Low
2 90° 4 80° 2 Low
2 90° 5 120° 1 Low
2 90° 6 160° 2 Low
2 90° 7 <235° 1 Low
2 90° 8 <235° 1 Low
2 90° 9 >235° 2 Low
2 90° 10 300° 2 Low
2 90° 11 351° 1 Low
2 90° 12 351° 1 Low

eight). On the output there are 4 FS; however, FS 1 and FS 2
were extremely close in position so they were manually
merged by the authors. Hence, FS error outputs for TP200
triggering probe can be semantically labeled as high, me-
dium, and low.

8.2.1. Partial conclusion

The number of FSs on premises y and {3, five and two, re-
spectively, can be used as the number of experimental setups
needed to model CMM 3-D triggering probe error character-
istics for this type of probe. Furthermore, using the FKB can
lead to a better understanding of the relationships between
different directions of probing and the error profile. This
could be achieved by adding semantics to the FS of the ge-
netically generated FKB.

Table 2. Fuzzy rules for the TP200 error profile

kY B FS Error TP200 Error Semantics
1 0° 1 0° 3 High
1 0° 2 351° 3 High
2 11° 1 0° 3 High
2 11° 2 351° 3 High
3 48° 1 0° 2 Medium
3 48° 2 351° 2 Medium
4 78° 1 0° 1 Low
4 78° 2 351° 1 Low
5 90° 1 0° 1 Low
5 90° 2 351° 1 Low
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In the next section the genetically generated FKBs for both
TP6 and TP200 triggering probes are analyzed in order to un-
derstand the relationships between the setup angles and the
pretravel values. This is done through a semantic translation
of the FRs bases.

9. ANALYZING THE FRS BASES FOR TP6 AND
TP200 FKBS

In order to add to the knowledge about relationships that exist
between setup angles of the CMM and probing accuracy, the
FRs of the previously generated FKB are thoroughly ana-
lyzed.

Table 1 and Table 2 contain the FRs embedded in the FKB
generated automatically by RBCGA. The FSs on the output
were semantically translated into three different states: low,
medium and high. These tables could easily be used by the
calibration technician when using TP6 or TP200 because
they provide explicit information on the state of the errors de-
pending on the position of the probe.

From Table 1 one can notice that FSs 7 and 8 along with 11
and 12 on premise b share the same position (same value of the
angle). The reason is that they are superimposed and the authors
chose to leave them in the FKB. However, they cause no ambi-
guity because they use the same FR. Furthermore, FSs 2, 3, 7,
8, and 9 are preceded by the sign “<<” for inferior to the value or
“>”for superior to the value. The reason for this being that the
RBCGA proposed right-angled triangles rather than regular
ones, which allows use of different FRs around the main
value—summit—if needed (however, not the case here).

Table 2 contains the FR for the TP200 FKB. One can no-
tice that error values are high for lower values of -y and low for
higher values of v. This information could help the CMM
technician to be aware of the influence of setups on the result-
ing pretravel values.

10. CONCLUSION

We have presented FKB modeling 3-D triggering probe pre-
travel. A new method utilizing a low-force high-resolution
displacement transducer has been applied and described.
This method allowed measurements of a real pretravel length
in an XYZ space. A satisfactory agreement of the experimental
observations with FKB error predictions has been obtained.

The level of correlation of the probe pretravel with the
fuzzy prediction is higher than 98% for two different probes.
The FKBs for accuracy profiles were developed for one-stage
and two-stage probes.

The influence of the number of FRs on FKB accuracy in
reproducing the pretravel was investigated, and the results
showed that a lower number of rules and simpler FKB per-
formed better. The number of FSs obtained from this investi-
gation was used as a starting point for optimal FKB learning.

We have assessed which of the setup angles has the highest
contribution on the value of the pretravel length. Tilting of the
probe holder in the YZ plane of the measuring system has a
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higher impact on pretravel value. These conclusions were also
easy to see from analysis of the FRs bases of genetically gen-
erated FKBs. These FKBs offer a better understanding of the
influence of the different directions of probing on the error by
adding semantics to the FSs. Furthermore, the number of FSs
and their position on premises [3 and vy can be used as the
number and positions of setups when modeling CMM 3-D
triggering probe error characteristics. Reducing the number
of setups reduces the time required for reconstruction of the
compensation model and can also increase its efficiency by
reducing the risk of human error due to longer manipulation
of the measuring devices.

It is worth noting that when the FKBs will be implemented
one has to assume that the angular orientation of the probe is
known. This can be either determined experimentally or that
the probes’ producers can determine the angular position of
the probe transducer with the special mark.
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