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Instability of the attachment line boundary layer
in a supersonic swept flow
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Theoretical analysis of attachment-line instabilities is performed for supersonic swept
flows using the compressible Hiemenz approximation for the mean flow and the successive
approximation procedures for disturbances. The theoretical model captures the dominant
attachment-line modes in wide ranges of the sweep Mach number Me and the wall
temperature ratio. It is shown that these modes behave similar to the first and second Mack
modes in the boundary layer flow. This similarity allows us to extrapolate the knowledge
gained for Mack modes to the attachment-line instabilities. In particular, we find that
at sufficiently large Me, the dominant attachment-line instability is associated with the
synchronisation of slow and fast modes of acoustic nature. Point-by-point comparisons of
the theoretical predictions with the experiments of Gaillard et al. (Exp. Fluids, vol. 26,
1999, pp. 169–176) demonstrate that at Me > 4, the theory captures a significant drop
of the transition onset Reynolds number, which is below the contamination criterion of
Poll (R∗ = 250) at Me > 6. This contradicts the generally accepted assumption that the
attachment-line flow is stable for R∗ ≤ 250. The theoretical critical Reynolds numbers lie
well below the experimental transition-onset Reynolds numbers. Stability computations
using the Navier–Stokes mean flow and accounting for the leading-edge curvature effect
do not eliminate this discrepancy. Most likely, in the experiments of Gaillard et al., we
face with an unknown effect that does not fit to the concept of transition arising from
linear instability.
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Figure 1. Flow scheme and notation.

1. Introduction

At supersonic speeds, the swept-wing leading edge is subject to high thermal loads. To
facilitate the leading-edge thermal protection, it is required to predict and, if feasible, avoid
the laminar–turbulent transition leading to a significant increase of aerodynamic heating.

If the swept leading edge is smooth and it is not contaminated by free-stream
disturbances, transition follows the low-disturbance scenario including the three major
stages (Morkovin, Reshotko & Herbert 1994): excitation of unstable modes of small
initial amplitude (receptivity stage), spatial growth of instability along the attachment
line (amplification stage governed by the linear stability theory) and nonlinear breakdown
leading to a turbulent boundary-layer flow. Low-speed experiments (see Poll 1979) showed
that this scenario is relevant to the case where transition is observed at the Reynolds
number R ≡ W∗

eΔ
∗/ν∗

e ≈ 650. Hereafter, Δ∗ = (ν∗
e /dU∗

e /dx∗)1/2x∗=0 is a characteristic
length scale associated with the boundary-layer thickness, the upper asterisk denotes
dimensional quantities, and the subscript ‘e’ denotes quantities at the upper boundary-layer
edge. The flow scheme and notations are shown in figure 1. In the range 250 < R < 650,
transition is sensitive to the leading-edge roughness, free-stream disturbances and other
external forcing, which trigger early nonlinear breakdown with partial or complete bypass
of the linear amplification stage. For R ≤ 250, the contaminated attachment-line flow is
relaminarised: initial disturbances decay and the laminar flow sets in again.

Review of similar experiments at supersonic speeds is given by Lin & Malik (1995),
see also Benard, Sidorenko & Raghunathan (2002). Analysing these data, Poll (1994)
introduced the reduced Reynolds number R∗ ≡ W∗

eΔ
∗(ν∗)/ν∗, where the kinematic

viscosity ν∗ is calculated at the reference temperature

T∗
∗ = T∗

e + 0.1(T∗
w − T∗

e )+ 0.6(T∗
r − T∗

e ), (1.1)

where T∗
r = T∗

e (1 + √
Pr((γ − 1)/2)M2

e ) is the recovery temperature, Me = W∗
e /a

∗
e is

the local Mach number and the subscript ‘w’ denotes quantities on the wall surface.
However, the low disturbance environment criterion R∗tr ≈ 650 poorly correlates with

transition data obtained on smooth swept cylinders at large sweep Mach numbers.
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Instability of the attachment line boundary layer

Namely, in the wind-tunnel experiments of Gaillard, Benard & Alziary de Roquefort
(1999) for Me > 4, the transition onset Reynolds number decreases with Me and for
Me > 6, approaches the contamination level R∗tr = 250.

Xi, Ren & Fu (2021) recently performed a numerical study of the attachment-line
instability for the conditions relevant to the experiments of Gaillard et al. (1999). Using
the Navier–Stokes (N-S) mean flow on a swept cylinder, they carried out stability analysis
based on two-dimensional partial differential equations (2-D PDE). It was shown that,
in the relatively low speed region (Me < 4), the attachment-line modes can be treated as
an extension of Tollmien–Schlichting (TS) modes (Lin & Malik 1995), while in the high
speed region (Me > 4), the attachment-line modes are closer to the Mack modes (Mack
1975) of the inviscid nature. The behaviour of the Mack-like modes explains why the
critical transition Reynolds number decreases as the sweep Mach number increases in the
experiment of Gaillard et al. (1999).

However, Xi et al. (2021) did not show detailed point-by-point comparisons with the
transition data. It is not clear under what conditions the Mack-like modes compete with
the TS-like modes and become dominant. Moreover, we found that the N-S mean flow
solutions, which were used by Xi et al. (2021) in their stability analyses, do not agree
with our N-S solutions and the compressible Hiemenz solution, which casts doubt on the
correctness of the results reported.

To clarify this situation, we conduct a broadband parametric study, which is difficult
to perform using the computationally expensive 2-D PDE approach of Xi et al. (2021).
We put together and employed the following theoretical model: (1) the mean-flow
parameters at the upper boundary-layer edge are calculated using the inviscid theory of
Rechotko & Beckwith (1958); (2) the boundary-layer profiles are computed using the
compressible Hiemenz solution (Pfenninger 1965, Gaster 1967); (3) the stability problem,
which describes discrete modes propagating in the laminar attachment-line boundary layer,
is solved using the theoretical model of Theofilis, Fedorov & Collis (2006), see also
Semisynov et al. (2003). The model is based on successive approximation procedures of
the type formulated independently by Gaster (1974) and Bouthier (1972, 1973).

This approach is based on the following findings. In the low-speed cases (incompressible
flow), the Hiemenz solution agrees well with the mean flow measurements of Gaster
(1967) and Poll (1979). The temporal stability of the incompressible Hiemenz flow was
analysed by Hall, Malik & Poll (1984) with the assumption that the unstable mode
(hereafter, HMP mode) is symmetric and its chordwise velocity is a linear function of
the x-coordinate. Hall & Malik (1986) analysed weakly nonlinear effects associated with
the HMP mode. They showed that, apart from a small interval near the (linear) critical
Reynolds number, finite-amplitude solutions bifurcate subcritically from the upper branch
of the neutral curve. Both the weakly nonlinear theory and the numerical calculations
showed the existence of supercritical finite-amplitude (equilibrium) states near the lower
branch, which explains why the observed flow exhibits a preference for the lower branch
modes. The direct numerical simulation of Spalart (1988) gave support to the use
of the HMP ansatz. Balakumar & Trivedi (1998) obtained 2-D nonlinear equilibrium
solutions by solving the full Navier–Stokes equations as a nonlinear eigenvalue problem.
The behaviour of these solutions is consistent with the weakly nonlinear theory. Their
secondary instability was investigated using the Floquet theory. The results showed that
these 2-D finite amplitude neutral solutions are unstable to three-dimensional (3-D)
disturbances.

Lin & Malik (1996) solved the 2-D PDE eigenvalue problem and found symmetric
(Sj) and antisymmetric (Aj) discrete modes of the type f (x, y)exp(iβz − iωt), where
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ω(β) = ωr(β)+ iωi(β) is complex eigenvalue and j = 1, 2, . . . Computations showed
that the HMP mode corresponds to the symmetric mode S1 having the highest growth
rate ωi.

Theofilis et al. (2003) found that eigenmodes of the 2-D-PDE stability problem have a
polynomial structure versus x and the 2-D eigenvalue problem can be reduced to a system
of one-dimensional (1-D) problems of the Orr–Sommerfeld class. Using the successive
approximation procedure of Gaster (1974), they derived a compact semi-analytical
relationship providing quick computations of the eigenvalues ω for modes Sj and Aj.
Theofilis et al. (2006) demonstrated that a similar relationship is valid for compressible
attachment-line flows, albeit restricted to certain ranges of Reynolds number owing to the
error of the second-order asymptotic terms scaled as O(M2

e/R
2). Considering the stability

of the compressible Hiemenz flows at Me = 0.5 and 0.9, Gennaro et al. (2013) obtained
perfect agreement between the temporal growth rates ωi of mode S1 predicted by solving
the 2-D-PDE stability problem and using the 1-D theoretical analysis.

In addition to reconsidering the cases reported by Xi et al. (2021) and correcting their
results, this paper suggests a theoretical model, which captures the attachment-line modes
and allows us to determine regions of their dominance in the Me − Tf space. This model
helps to perform quick parametric studies of the compressible attachment-line instability,
shed light on the mechanisms of instability and extrapolate the knowledge gained on the
supersonic boundary layer stability to the attachment-line flow.

The rest of this paper is organised as follows. In § 2, we discuss the methodology and
compare the theoretical growth rates of the most unstable mode with those resulting from
the 2-D-PDE stability computations of Li & Choudhari (2008) in the case of Me = 1.69.
In § 3, parametric stability computations are performed to identify regions where one or
another unstable mode is dominant. It will be shown that at sufficiently high Me and low
wall-temperature ratio Tf ≡ T∗

w/T
∗
r , the attachment-line flow can support discrete modes

of acoustic nature. The most unstable among them is similar to the Mack second mode
in the flat-plate boundary layer. In § 4, we analyse experimental data reported by Gaillard
et al. (1999) with emphasis on high local Mach numbers (Me > 4) associated with large
angles of the leading-edge sweep. The results are summarised in § 5.

2. Methodology

2.1. Mean flow
Consider the near-wall compressible laminar flow on a swept cylinder of radius r∗ and
infinite length in the spanwise direction z (figure 1). In this case, the flow field does not
depend on z. Gas is perfect with constant specific heat ratio γ and Prandtl number Pr. The
dimensionless viscosity μ = μ∗/μ∗

e is approximated by the power law μ(T) = Tm or the
Sutherland law μ = T3/2(1 + S)/(T + S), S = 110.4K/T∗

e .
In the attachment line vicinity, the near-wall flow can be described by the compressible

Hiemenz solution (Theofilis et al. 2006). For small values of Δ∗/r∗, the cylinder-surface
curvature can be neglected. Then, the coordinate system (x, y, z) = (x∗, y∗, z∗)/Δ∗ is
locally Cartesian. The velocity components (u∗, v∗,w∗), temperature T∗ and pressure P∗
are scaled using W∗

e , T∗
e and ρ∗

e W∗2
e , where the flow parameters at the upper boundary-layer

edge are calculated using the analytical relations derived by Rechotko & Beckwith (1958).
In the attachment line vicinity,

(u, v,w) = (εxU( y), εV( y),W( y)), T = T( y), P = (γM2
e )

−1 − ε2x2/2, (2.1a–c)
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where ε = R−1 is assumed to be small. The mean-flow profiles U( y),V( y),W( y), T( y)
are governed by the ordinary differential equation (ODE) system

(U2 + VU′)/T = 1 + μ′T ′U′ + μU′′

VW ′/T = μ′T ′W ′ + μW ′′

U − VT ′/T + V ′ = 0

(μ′T ′2 + μT ′′)/Pr − T ′V/T + M2
e (γ − 1)μW ′2 = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
, (2.2)

with the boundary conditions

y = 0 : U = V = W = 0

T = Tw for isothermal wall, or T ′ = 0 for thermally isolated wall

y = ∞ : U = W = T = 1

⎫⎪⎬
⎪⎭ . (2.3)

Note that for incompressible flows, the Hiemenz solution is an exact Navier–Stokes
solution. For compressible flows, this is not the case owing to the error of the order of
O(ε2M2

e ). The system (2.2) is integrated numerically using the fourth-order Runge–Kutta
algorithm. More than 400 grid points equally spaced versus y are needed to compute the
boundary-layer profiles with six significant digits.

In addition, the laminar flow past a swept cylinder is calculated using the in-house
N-S solver. The 2-D computational domain is limited by: the detached bow shock
with the Rankine–Hugoniot conditions; the body surface with no-slip and isothermal
boundary conditions; the symmetry line; and the chordwise edge, which corresponds to
the azimuthal angle π/2, with the soft boundary condition – the linear extrapolation of
dependant variables.

The problem is solved numerically using the method of bow-shock isolation (Egorov
1992). For approximation of convective and diffusion components of the flow vector
in semi-integer nodes on the elementary cell edges, the second-order central difference
scheme on a nine-point “box” stencil is used. This scheme does not belong to the family
of monotone difference schemes and, therefore, cannot be used for solving problems
with discontinuities. However, in the case where dependant variables are smooth and
the physical dissipation is present, central difference schemes allow us to obtain more
accurate solutions compared with monotone schemes on the same computational grids.
To solve the nonlinear difference equations approximating the differential equations, the
modified Newton–Raphson method is used. The system of linear algebraic equations
obtained at each iteration step, is solved using the direct method of LU-decomposition
with preliminary renumbering of unknowns by the nested dissection method.

Computations are performed on a non-uniform computational grid containing 201 nodes
along the cylinder surface and 301 nodes in the wall normal direction. Near the shock wave
and the body surface there are thin layers, which contain, after clustering, approximately
10 % and 55 % of the total number of nodes, respectively.

Figure 2 compares the theoretical and N-S mean-flow solutions for the case C3373a
specified in table 2 of Appendix A. The profiles U( y),W( y), T( y) and their derivatives
agree very well. The discrepancy in V( y) is not appreciable, because the vertical velocity
εV( y) is not involved into the leading-order approximation of the eigenvalue problem for
disturbances (see § 2.2).

This result disagrees with similar comparisons reported by Xi et al. (2021). Namely,
the N-S mean-flow profiles differ significantly from the boundary layer approximation.
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Figure 2. The mean flow profiles in case C3373a: lines, compressible Hiemenz solution; symbols, our N-S
solution.

As shown in Appendix B, the N-S mean-flow solutions of Xi et al. (2021) are not correct.
This led to the wrong conclusion: “the traditional boundary layer model fails to take the
influence of inviscid flow into consideration this influence sometimes may change the
physics of flow instability significantly. . . ”

2.2. Stability analysis
The disturbance vector is expressed as

q(x, y, z, t) ≡
(

u,
∂u
∂y
, v, p, θ,

∂θ

∂y
,w,

∂w
∂y

)T

= F (x, y)exp[i(βz − ωt)], (2.4)

where t = t∗W∗
e /Δ

∗ is time and θ is non-dimensional temperature. Because the
attachment-line flow is convectively unstable, we consider the spatial stability problem,
where ω is real and β is a complex eigenvalue with σ = −βi representing the growth rate
of a wave propagating along the attachment line.

For quasi-2-D disturbances, the vector-function F is expanded as (Theofilis et al. 2006)

F = Z0( y; x1, z1)+ εZ1( y; x1, z1)+ · · · , (2.5)

where x1 = εx and z1 = εz are slow variables. In accord with the Gaster (1974) approach
(see also Nayfeh 1980) the zero-order term is expressed as Z0 = C(x1, z1)ξ( y, x1), where
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ξ is solution of the problem

∂ξ

∂y
= Aξ

ξ1 = ξ3 = ξ5 = ξ7 = 0, y = 0

ξ1 = ξ3 = ξ5 = ξ7 = 0, y = ∞

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (2.6)

which delivers the eigenvalue β = β0(ω,R). Here A is an 8 × 8 matrix of the linear
stability problem. Its explicit form can be found in Mack (1979), Nayfeh (1980),
Tumin (2007) and other papers. Note that some elements of this matrix include ε and
therefore (2.5) is not a self-consistent asymptotic expansion. Nevertheless, Tumin (2006)
showed that this inconsistency does not lead to an erroneous asymptotic behaviour of
Tollmien–Schlichting waves. Numerous papers demonstrated robustness of this approach
to receptivity and stability problems for weakly non-parallel compressible boundary-layer
flows (for example, see the survey of Tumin 2011).

For the compressible Hiemenz flow, β0 does not depend on x1 while the eigenvector ξ
can be expressed in the form

ξ(x1, y) = (x1ξ01( y), x1ξ02( y), ξ03( y), ξ04( y), ξ05( y), ξ06( y), ξ07( y), ξ08( y))T . (2.7)

In the first-order approximation, we obtain the inhomogeneous problem
∂Z1

∂y
= AZ1 + Gx

∂Z0

∂x1
+ Gz

∂Z0

∂z1
+ HZ0

Z11 = Z13 = Z15 = Z17 = 0, y = 0

Z11 = Z13 = Z15 = Z17 = 0, y = ∞

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (2.8)

where Gz = −i∂A/∂β, Gx = −i∂A/∂α and the matrix H depends on the mean-flow
profiles U( y) and V( y).

The problem (2.8) has a non-trivial solution if the inhomogeneous part is orthogonal to
the solution ζ of the adjoint problem. This leads to the equation for the amplitude function
C(x1, z1)

〈Gxξ , ζ 〉 ∂C
∂x1

+ 〈Gzξ , ζ 〉 ∂C
∂z1

+ C
[〈

Gx
∂ξ

∂x1
, ζ

〉
+ 〈Hξ , ζ 〉

]
= 0, (2.9)

where the scalar product is defined as 〈ξ , ζ 〉 = ∫ ∞
0 (

∑8
j,k=1 ξkζj) dy. Equation (2.9) can be

written in a form similar to the incompressible case (Theofilis et al. 2003)

D1x1
∂C
∂x1

+ D2
∂C
∂z1

+ CD3 = 0, (2.10)

where D1,2,3 are constants. Equation (2.10) admits the family of solutions

Cn = Bxn
1exp(iβ1nz1), β1n = i(D3 + nD1)/D2, (2.11)

where n = 0, 1, 2, . . . and B is constant.
Thus, quasi-2-D modes can be expressed as

qn(x, y, z, t) = Bxn
1ξ(x1, y)[1 + O(ε)]exp[i(βnz − ωt)]

βn = β0 + εβ1n + O(ε2)

}
. (2.12)

Here n = 0, 2, . . . correspond to symmetric modes S1, S2,. . . and n = 1, 3, . . . to
antisymmetric modes A1, A2, . . . These modes are calculated using the following
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algorithm: (1) solve the zero-order problem (2.6) at x1 = 0, which is a standard stability
problem for 2-D waves in a 2-D boundary layer with the mean-flow profiles W( y) and
T( y); (2) solve the corresponding adjoint problem; (3) calculate the eigenvalues βn and
the vector-functions qn using (2.11) and (2.12).

For 3-D disturbances of the type

F = [Z0( y; x1, z1)+ εZ1( y; x1, z1)+ · · · ]exp(iαx), (2.13)

the zeroth-order vector function is expressed as Z0 = C(z1)ξ(x1, y), where ξ is a solution
of the eigenvalue problem (2.6) with the complex eigenvalue β = β0(ω, α). In the
first-order approximation, Z1 is a solution of the problem (2.8), while the amplitude
coefficient is governed by the equation

〈Gzξ , ζ 〉 ∂C
∂z1

+ C
[〈

Gx
∂ξ

∂x1
, ζ

〉
+ 〈Hξ , ζ 〉

]
= 0. (2.14)

Its solution is

C = Bexp(iβ1z1), β1 = i
[〈

Gx
∂ξ

∂x1
, ζ

〉
+ 〈Hξ , ζ 〉

]
/〈Gzξ , ζ 〉. (2.15)

In summary, the 3-D mode is expressed as

q(x, y, z, t) = Bξ(x1, y)[1 + O(ε)]exp[i(αx + βz − ωt)]

β = β0 + εβ1 + O(ε2)

}
, (2.16)

Computations of quasi-2-D modes (2.12) and 3-D mode (2.16) are performed using
an in-house linear stability solver. The fundamental solutions of the direct and adjoint
eigenvalue problems are obtained by numerical integration of the equations from the
upper boundary toward the wall with the known analytical asymptotic solutions outside
the boundary layer using the Gramm–Schmidt orthonormalisation procedure and the
fourth-order Runge–Kutta algorithm. Eigenfunctions of the direct and adjoint problems
are expressed as a linear combination of the fundamental solutions, with coefficients being
determined from the boundary conditions on the wall. To satisfy these conditions, the
eigenvalues β are determined using the Newton–Raphson iterations.

The asymptotic solution (2.12) is validated by comparison with solutions of the
2-D-PDE stability problem reported by Li & Choudhari (2008) for the compressible
Hiemenz flow at Me = 1.69, T∗

e = 300 K, Tw = Tad (thermally isolated wall). Figure 3
shows that the theoretical growth rates σ = −βi(ω) agree well with those predicted by
the 2-D-PDE stability analysis for the first symmetric mode S1. Similar comparisons for
subsonic attachment-line flows (Me = 0.5 and 0.9) were reported by Gennaro et al. (2013).

Because the compressible Hiemenz mean-flow profiles agree well with the
corresponding N-S profiles (figure 2), it is expected that stability characteristics of these
flows also agree well. This is confirmed by figure 4 showing the maximal growth rates
σmax(R) = maxω[−βi(ω,R)] of mode S1 predicted by the theory in the case C3373a.
A slight downward shift of σmax in the case of N-S mean flow seems to arise from the
curvature effect.

For small α : α = aε, a = O(1), the factor exp(iαx) in (2.16) can be expanded in the
Taylor series: exp(iαx) = ∑∞

n=0 (ia)
nxn

1/n!, where 0! = 1. Then the solution can be treated
as a sum of symmetric (n = 0, 2, . . .) and antisymmetric (n = 1, 3, . . .)modes of the form
(2.12). The dominant term of this expansion corresponds to n = 0. Consequently, in the
attachment-line vicinity x1 � 1, the 3-D mode of (2.16) tends to the symmetric quasi-2-D
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Figure 3. Distributions σ = −βi(ω) of mode S1 for the compressible Hiemenz flow at Me = 1.69, T∗
e =

300 K, Tw = Tad and x1 = 0: lines, asymptotic solution (2.12); symbols, 2-D-PDE solution of Li & Choudhari
(2008).
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Figure 4. Distribution of maximum growth rate σmax(R) for mode S1 in case C3373a.

mode S1 as α → 0. This trend is illustrated in figure 5 for a supersonic attachment-line
flow at Me = 1.55, T∗

e = 300 K, Tw = Tad, and in figure 6 for a hypersonic attachment-line
flow at Me = 5, T∗

e = 300 K, Tw = 0.7Te. In the first case, the most unstable are oblique
waves having the wave-front angle ψ = tan−1(α/βr) ≈ 42◦. In the second case, the most
unstable are plane waves of α = 0.

This situation is similar to the case of boundary layer flow on a flat plate. For moderate
supersonic speeds, the dominant attachment-line instability behaves as the TS-like first
mode. It is natural to assume that for sufficiently large Me, the dominant instability is
associated with the Mack second mode of acoustic nature. Indeed, figure 7 shows that
there are fast and slow modes of the discrete spectrum. Owing to their synchronisation
in the frequency band between the two vertical dashed lines, the slow mode becomes
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Figure 5. Growth rate σ(α) at R = 1000, ω = 0.0568 and x1 = 0. The compressible Hiemenz mean flow
at Me = 1.55, T∗

e = 300 K, Tw = Tad: line, 3-D mode (2.16); symbols, quasi-2-D modes (2.12); ψ =
tan−1(α/βr), wave front angle.
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Figure 6. Growth rate σ(α) at R = 1000, ω = 0.5479 and x1 = 0. The compressible Hiemenz mean flow at
Me = 5, T∗

e = 300 K, Tw = 0.7Te: line, 3-D mode (2.16); symbols, quasi-2-D modes (2.12).

more unstable while the fast mode becomes more stable. This behaviour is in full
accordance with the flat-plate case (see, for example, Fedorov 2011 and Fedorov & Tumin
2011). Therefore, in what follows, we use the terminology of Mack for the dominant
attachment-line instabilities. Further analysis is focused on the close vicinity of the
attachment line and all computations are performed at x1 = 0.

It should also be noted that the foregoing results contradict the statement of Xi et al.
(2021) that the attachment-line mode associated with the Mack second mode is absent if
the basic flow is calculated with boundary layer assumptions.
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Figure 7. Phase speeds cr(ω) = (ω/β)r and the spatial decrements βi(ω) of fast and slow modes at R = 4000
and α = 0 for the compressible Hiemenz mean flow at Me = 5, T∗

e = 300 K, Tw = 5.308Te ≈ Tad and x1 = 0:
horizontal dashed lines, phase speeds of 2-D fast and slow acoustic waves of zero angle of incidence (cr =
1 ± 1/Me) and vortical/entropy waves (cr = 1).

3. Parametric studies

Assume that the laminar–turbulent transition is associated with the spatial growth of
unstable waves propagating along the attachment line. If the location of an instability
source, z = z0, is known and the initial amplitudes of unstable waves weakly depend on
frequency, the transition onset point, ztr, is estimated as (Lin & Malik 1995)

Ntr = σmax(Rtr)(ztr − z0), (3.1)

where σmax(R) = maxω,α[−βi(ω, α,R)], and Ntr is the empirically determined N-factor.
Usually, Rtr is plotted as a function of ztr − z0 at a fixed value of Ntr (Lin & Malik 1995).

If z0 is unknown or receptivity is distributed along the attachment line, one can use
the following conservative approach. In the vicinity of critical Reynolds number Rcr :
σmax(Rcr) = 0, the growth rate is approximated as σmax(R) ≈ (dσmax/dR)(Rcr)(R − Rcr).
Substitution of this approximation into (3.1) gives

Rtr ≈ Rcr(1 + δ), δ = Ntr

R
dσ ∗

max

dR
(Rcr)L∗

z

, (3.2)

where σ ∗
max is the dimensional growth rate and L∗

z is the leading-edge spanwise scale. In the
majority of practical cases, δ � 1, and the transition onset Reynolds number is estimated
as Rtr = Rcr. This criterion indicates that at R > Rtr, transition occurs somewhere on a
sufficiently long attachment line.

Consider air flow of γ = 1.4 and Pr = 0.72 using the power law for the viscosity
coefficient: μ(T) = Tm. With this choice of the temperature–viscosity dependency, the
mean-flow profiles (2.1a–c) are functions of the two parameters only: the local Mach
number Me and the wall-temperature ratio Tf = T∗

w/T
∗
r . Therefore, the power law is widely

used in parametric studies. Depending on flow temperature, the exponent varies from
m = 1 for relatively small T to m = 0.7 for high temperatures. Hereafter, we use m = 0.75.
In § 4, it is shown that the critical Reynolds numbers predicted at this value of m are close
to those in the case of the Sutherland law. Because the dominant attachment-line instability
is captured by the asymptotic solution (2.16), further stability computations are performed
using this solution only.
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Figure 8. Distributions of the reduced critical Reynolds number R∗cr(Tf ) at various Me: dashed lines,
quasi-2-D waves of the second mode; solid lines, 3-D waves of the first mode.

Figure 8 shows distributions of the reduced critical Reynolds number R∗cr(Tf ) at various
values of Me. The solid lines are relevant to 3-D waves of the first mode and the dashed
lines refer to 2-D waves of the second mode. As an example, consider the case of Me = 4
marked by arrows. In the region of small Tf , where the second mode is dominant, R∗cr
monotonically increases with Tf and reaches a value shown by the black circle. Starting
from this point, the first mode takes over and R∗cr decreases with Tf . The circles form
a distribution of maximal R∗cr. As Tf decreases, R∗cr,max(Tf ) quickly increases, and
ultimately the attachment-line flow becomes stable for Tf < 0.58.

Using the distributions in figure 8, we identify regions in the Me − Tf space where
different instabilities are dominant (figure 9). This diagram allows us to predict what
mode could trigger transition under different experimental conditions shown by symbols.
For example, in the experiments of Gaillard et al. (1999) and Holden & Kolly (1995),
the second mode is dominant. In the experiments of Murakami, Stanewsky & Krogmann
(1996), some points lie in the stable region, where transition is not relevant to the linearly
unstable modes and the bypass scenario is most likely.

4. Comparison with experiments

Consider the transition data obtained on smooth swept-cylinder models tested in different
wind tunnels. The local flow parameters are given in tables 1 and 2 of Appendix A.
The transition onset Reynolds numbers R∗tr are shown by circles in figure 10. The white
(black) symbols are related to the cases where the first (second) mode is dominant. The
corresponding theoretical predictions, which were performed using the distributions in
figure 8 and the criterion Re∗tr = Re∗cr, are shown by the oblique and straight crosses.

At moderate sweep Mach numbers (Me < 3.5), where the first mode is dominant, a
large scatter of the theoretical points arises from the high sensitivity of the first-mode
growth rates to the wall temperature ratio Tf . For Me > 4, where the second mode is
dominant, the scatter is relatively small. In this region, both experimental and theoretical
values of R∗tr decrease with Me in a similar way. However, the theoretical points lie
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Figure 9. Boundaries in the Me–Tf space between regions associated with instability of different modes
(lines). Symbols show the conditions under which transition is observed in supersonic attachment-line flows
on smooth swept cylinders (see tables 1 and 2 of Appendix A).
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Figure 10. Transition onset Reynolds numbers versus local Mach number. At the arrowed points, transition is
not observed on the model.

significantly below the experimental ones. Stability computations using the Sutherland
law for the viscosity coefficient and accounting for the leading-edge curvature effect led
to a small reduction of this discrepancy (see the white triangles). Similar computations
using the mean flow predicted by our N-S solver did not eliminate the discrepancy either.
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Figure 11. Transition onset Reynolds number versus ztr measured from the upstream side boundary (z0 = 0)
of the swept-cylinder model in case C3373a. Cylinder diameter is D = 33 mm.

For example, in case C3373a, the relative increase of the critical Reynolds number is
(R∗cr,N-S − R∗cr,Hiemenz)/R∗cr,Hiemenz ≈ 2.2 % only.

Because the second-mode instability has frequency approaching the MHz range (e.g.
f ∗ ≈ 700 kHz in case C3379c), it is natural to assume that molecular relaxation processes
can affect the instability growth. Dealing with air, which is predominantly diatomic gas,
one should address the effects associated with rotational and vibrational relaxations.
Bertolotti (1998) showed that the vibrational relaxation becomes important when the flow
temperature surpasses approximately 800 K. Because the experiments of Gaillard et al.
(1999) were performed at the total temperature Tt ≈ 700 K, this effect seems to be small.
The rotational relaxation effect can be approximated using the bulk viscosityμv . Bertolotti
(1998) showed that the ratio μ̄v = μv/μ varies from 0.57 to 1 within the temperature range
of 200–1200 K. For first-cut estimates, we choose μ̄v = 0.8 and calculated the critical
Reynolds number R∗cr in the case C3379c. It turned out that the relative difference

[R∗cr(μ̄v = 0.8)− R∗cr(μ̄v = 0)]/R∗cr(μ̄v = 0) ≈ 25 %, (4.1)

is not sufficient to compensate the discrepancy with Gayllard’s data shown in figure 10.
Nevertheless, real gas effects on the second-mode instability of attachment-line flow
deserve comprehensive studies.

Computations using the less conservative correlation (3.1) demonstrate a similar
discrepancy. As shown in figure 11, even at Ntr = 15, the experimental points are
well above the theoretical line. Because the experimental values of R∗tr are practically
independent of ztr/D, the side boundary effect associated with the limited span of the
model seems to be insignificant. At the experimentally observed transition onset ztr/D ≈
8, the sensitivity of R∗tr to Ntr is quite low: Ntr�R∗tr/(R∗tr�Ntr) ≈ 0.2. Therefore, the
poor agreement between theory and experiment is not relevant to uncertainty in Ntr. Most
likely, at high sweep Mach numbers (Me > 4), we encounter an unknown effect that does
not fit to the concept of transition owing to linear instability.
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Figure 12. Transition onset Reynolds number versus ztr measured by Creel et al. (1986) from the upstream
side boundary (z0 = 0) of the swept-cylinder model at M∞ = 3.5 and Λ = 60◦.

Nevertheless, for moderate supersonic cases (Me < 4), the linear stability theory
predicts R∗tr satisfactorily (the white points in figure 10). In the experiment of Creel,
Beckwith & Chen (1986, 1987), M∞ = 3.5, Λ = 60◦ and T∗

w/T
∗
t ≈ 0.9, where the first

mode is dominant, the experimental point corresponds to Ntr ≈ 12 that is reasonable
for quiet free-stream conditions in the Mach 3.5 pilot low-disturbance wind tunnel
(figure 12). Note that in this case, the model is not long enough to reach the infinite swept
attachment-line limit: Rtr(z) → Rcr.

5. Concluding remarks

The theoretical model, which is based on the compressible Hiemenz solution for the
mean flow and the successive approximation procedures for small disturbances, has been
employed to the linear stability analysis of high-speed attachment-line flows. It was shown
that the dominant attachment-line instability is captured by the asymptotic solution (2.16)
for 3-D waves. This solution tends to the most unstable quasi-2-D mode S1 predicted by
the solution (2.12). The latter agrees well with the 2-D-PDE stability analysis of Li &
Choudhari (2008) at Me = 1.69. In the limit α → 0, the 3-D mode is expressed as a sum
of quasi-2-D symmetric Sj and antisymmetric Aj modes (j = 1, 2, . . .).

Qualitative behaviour of the attachment-line instability is similar to the boundary-layer
instability on a flat plate. Namely, at moderate supersonic speeds (Me < 4), the most
unstable are oblique waves, which are similar to the TS-like first mode. For Me > 4,
the most unstable are plane waves, which are similar to the Mack second mode. These
results are in a qualitative agreement with those reported by Xi et al. (2021). However, we
found that the N-S mean flow solutions, used by Xi et al. (2021) in stability analyses, are
essentially different from the theoretical (compressible Hiemenz) solutions as well as our
N-S solutions, while the latter two agree well. Detailed verification of the N-S solver of Xi
et al. could help to resolve this mismatch.

It was shown that, similar to the Mack second mode, the attachment-line instability
is associated with the synchronisation of slow and fast modes of acoustic nature.
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This similarity allows us to extrapolate the knowledge gained for Mack modes to the
attachment-line instabilities. For example, methods developed for control of the Mack
second mode should be applicable to the attachment-line instability at sufficiently large
sweep Mach numbers.

The critical Reynolds numbers related to the first and second modes have been
calculated in broad ranges of the wall temperature ratio Tf and the local Mach number
Me. Using these dependencies, we identified regions in the Tf –Me space, where one of
these modes is dominant. This allows for quick predictions of what instability could trigger
transition under different experimental conditions.

Using the transition onset criterion, Re∗tr = Re∗cr, we have performed point-by-point
comparisons of our theoretical predictions with available transition data obtained on
smooth swept cylinders in supersonic and hypersonic wind tunnels. In the cases of
Me < 4, where the first mode is dominant, the linear stability theory predicts R∗tr
satisfactorily.

In the cases of Me > 4, where the Mack second mode is dominant, the theory captures
a significant decrease of R∗tr with Me reported by Gaillard et al. (1999). However, the
theoretical points lie well below the experimental ones. Stability computations using the
N-S mean flow and accounting for the leading-edge curvature effect did not eliminate
this discrepancy. First-cut estimates of real gas effects associated with the vibrational
and rotational relaxations of diatomic molecules did not help either. For Me > 6, the
experimental values of transition onset Reynolds number approaches the contamination
criterion of Poll, R∗ = 250, and the corresponding theoretical values of Re∗cr are
essentially below this level.

These results contradict the generally accepted assumption that, for R∗ ≤ 250, the
attachment-line flow must be stable. Most likely, we encounter an unknown effect that does
not fit to the concept of transition owing to the second-mode instability in the experiments
of Gaillard et al. (1999) at Me > 4. To resolve the contradiction, it is planned to perform
direct numerical simulations of disturbances propagating along the attachment line on a
swept cylinder and compare the numerical results with the stability theory and available
experimental data.
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Appendix A. Flow parameters in wind-tunnel experiments

Table 1 (taken from Gaillard et al. 1999) shows the flow parameters and the reduced
Reynolds number R∗tr at the transition onset on smooth swept cylinders tested in different
wind tunnels. Table 2 shows the same parameters for the experiments of Gaillard et al.
(1999) carried out in a low-enthalpy hypersonic blowdown wind tunnel. Each case is
identified by a four-digit number: the first two digits give the cylinder diameter in
millimetres and the last two digits, the sweep angle in degrees. In these tables, M∞ is
free-stream Mach number, Tw/Tt is the ratio of wall temperature to stagnation temperature,
and RD∞,tr is the transition onset Reynolds number based on the free-stream parameters
and the cylinder diameter.
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Case M∞ Λ◦ Tw/Tt Me ReD∞,tr × 10−5 R∗tr

Whitehead & Dunavant (1965) 6.8 80 0.5 5.92 >4.2 >305
Creel et al. (1986, 1987) 3.5 45 0.9 1.66 7 625

3.5 60 0.9 2.39 8 715
3.5 60 0.9 2.39 7 670

Creel (1991) 3.5 76 0.9 3.17 6.55 610
Skuratov & Fedorov (1991) 6 45 0.8 1.87 7 515

6 60 0.8 3.1 9.2 650
Holden & Kolly (1995) 10.6 60 0.28 3.57 5.7–7.75 406–471

10.5 66.5 0.26 4.54 7.4–9.7 464–542
10.6 75 0.26 6.47 <7.3 <383
10.6 80 0.26 8.06 <10.15 <374

Murakami et al. (1996) 5 45 0.75 1.89 12 730
5 60 0.75 2.89 9 695

Coleman et al. (1996) 1.6 76 0.9 1.53 >670

Table 1. Flow parameters on smooth models.

Case M∞ Λ◦ Tw/Tt Me ReD∞,tr × 10−5 R∗tr

C1480 8.15 80 0.39 6.78 2.74 220
C1980 8.15 80 0.39 6.78 3.53 250
C3381 7.14 81 0.39 6.31 3.9 290
C3379a 7.14 79.5 0.39 6.07 4.6 330
C3379b 7.14 79.5 0.42 6.07 5.7 350
C3379c 7.14 79.5 0.38 6.07 3.7 300
C1978 7.14 78 0.44 5.8 3.63 300
C3376a 7.14 76.5 0.38 5.57 5.6 405
C3376b 7.14 76.5 0.38 5.57 4.3 355
C3375 7.14 75 0.45 5.32 6.8 450
C3374a 7.14 74 0.46 5.15 8.55 512
C3374b 7.14 74 0.38 5.15 5.22 420
C3373a 7.14 73 0.39 4.99 6.8 490
C3373b 7.14 73 0.44 4.99 8.5 530
C3372 7.14 72 0.45 4.83 >11 >610
C3370 7.14 70 0.46 4.53 10.4 615
C3369 7.14 68.5 0.45 4.32 >11.6 >670
C3368 7.14 67.5 0.45 4.18 >12 >685
C3365 7.14 65 0.48 3.85 >13.8 >735
C3379C 7.14 79.5 0.22 6.07 <2.48 <250
C3376C 7.14 79.5 0.24 5.57 3.15 310
C3374C 7.14 74 0.24 5.15 5.75 450

Table 2. Flow parameters on smooth models of Gaillard et al. (1999), T∞ ≈ 70 K.

Appendix B. Verification of the mean-flow solutions

Verification of the N-S mean-flow solvers is performed for the case, which is identified by
Xi et al. (2021) as C3376a,

M∞ = 7.14, Λ = 76.5◦, T∗
∞ = 69.84, T∗

w/T
∗
∞ = 3.95, Rer,∞ = 5.9755 × 105,

(B1a–e)

933 A26-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
77

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1077


A.V. Fedorov and I.V. Egorov

0.2 0.4 0.6 0.8 1.00

1

2

3

4

5

0.80 0.85 0.90 0.95 1.00
2.0

2.5

3.0

3.5

W/Qinf

N-S, Xi (2021)
Boundary layer, Xi (2021)
N-S, pres.
Hiemenz, pres

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

1

2

3

4

5

T/Tinf

N-S, Xi (2021)
Boundary layer, Xi (2021)
N-S, pres.
Hiemenz, pres.

0.8 1.2 1.6 2.0 2.4 2.8

0

1

2

3

4

5

y/δ

y/δ

y/δ

ρ/ρinf

Boundary layer, Xi (2021)

N-S, Xi (2021)

N-S, pres.

(b)

(a)

(c)

Figure 13. Comparison of the mean-flow profiles in case (B1). Profiles shown by the solid and dashed lines
were scanned from figure 29 of Xi et al. (2021).
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Figure 14. The profiles of F(h) along the wall-normal distance h = y/δ scanned from figure 6 of Xi et al.
(2021): solid line, compressible Hiemenz solution; dashed line, N-S solution; black crosses, our N-S solution.

the length scale is δ = 1.4937 × 10−4 m and the cylinder radius is r∗ = 33 mm. Note
that Rer,∞ differs from the case C3376a of Gaillard et al. (1999) where the diameter (not
radius) of the cylinder is 33 mm and the correct Reynolds number is Rer,∞ = 2.8 × 105

that is half of the experimental value.
The upper edge parameters predicted by the inviscid flow theory of Rechotko &

Beckwith (1958) are in perfect agreement with those resulted from our N-S solution:

(W∗
e /Q

∗
∞)theory = 0.97237, (W∗

e /Q
∗
∞)N-S = 0.97237

(T∗
e /T

∗
∞)theory = 1.5556, (T∗

e /T
∗
∞)N-S = 1.5555

}
. (B2)

Figure 13 shows (a) the mean-flow profiles resulting from the compressible Hiemenz
solution (our computations) agree well with the boundary-layer approximation reported
by Xi et al. (2021); (b) the mean-flow profiles predicted by our N-S solver agree well with
the theoretical profiles of item a); (c) the N-S mean-flow profiles calculated by Xi et al.
(2021) disagree with both the theoretical profiles of item a) and the profiles predicted by
our N-S solver.

Inviscid instability is associated with the generalised inflection points at which

F(h) ≡ ∂/∂h(ρ(∂W/∂h)) = 0, h = y/δ. (B3)

Figure 14 compares the function F(h) scanned from figure 6 of Xi et al. (2021) with
that predicted by our N-S solver. The latter (black crosses) agrees well with F(h) of the
compressible Hiemenz solution (the solid line), while F(h) resulting from the N-S solution
of Xi et al. (2021) (the dashed line) is essentially different. Because the N-S solution of
Xi et al. (2021) has incorrect generalised inflection points, its stability characteristics are
most likely erroneous.
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