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We show that, in the two-dimensional case, every objective, isotropic and isochoric
energy function that is rank-one convex on GL+(2) is already polyconvex on GL+(2).
Thus, we answer in the negative Morrey’s conjecture in the subclass of isochoric
nonlinear energies, since polyconvexity implies quasi-convexity. Our methods are
based on different representation formulae for objective and isotropic functions in
general, as well as for isochoric functions in particular. We also state criteria for these
convexity conditions in terms of the deviatoric part of the logarithmic strain tensor.
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1. Introduction

We consider different convexity properties of a real-valued function W : GL+(2) →
R on the group GL+(2) = {X ∈ R

2×2 |det X > 0} of invertible 2× 2-matrices with
positive determinant. Our work is mainly motivated by the theory of nonlinear
hyperelasticity, where W (∇ϕ) is interpreted as the energy density of a deformation
ϕ : Ω → R

2; here, Ω ⊂ R
2 corresponds to a planar elastic body in its reference

configuration. The elastic energy W is assumed to be objective as well as isotropic,
i.e. assumed to satisfy the equality

W (Q1FQ2) = W (F ) for all F ∈ GL+(2) and all Q1, Q2 ∈ SO(2),

where SO(2) = {X ∈ R
2×2 | XTX = 1 , det X = 1} denotes the special orthogonal

group.
Different notions of convexity play an important role in elasticity theory. Here,

we focus on the concepts of rank-one convexity, polyconvexity and quasi-convexity.
Following a definition by Ball [7, definition 3.2], we say that W is rank-one convex
on GL+(2) if it is convex on all closed line segments in GL+(2) with end points
differing by a matrix of rank 1, i.e.

W (F + (1 − θ)ξ ⊗ η) � θW (F ) + (1 − θ)W (F + ξ ⊗ η)

for all F ∈ GL+(2), θ ∈ [0, 1] and all ξ, η ∈ R
2 with F + tξ ⊗ η ∈ GL+(2) for all

t ∈ [0, 1], where ξ ⊗ η denotes the dyadic product. For sufficiently regular functions
W : GL+(2) → R, rank-one convexity is equivalent to Legendre–Hadamard elliptic-
ity (see [29]) on GL+(2):

D2
F W (F )(ξ ⊗ η, ξ ⊗ η) � 0 for all ξ, η ∈ R

2 \ {0}, F ∈ GL+(2).

The rank-one convexity is connected with the study of wave propagation [2, 20,
68, 79] or hyperbolicity of the dynamic problem, and plays an important role in
the existence and uniqueness theory for linear elastostatics and elastodynamics
[32,34,59,73] (cf. [33,45]). It also ensures the correct spatial and temporal behaviour
of the solution to the boundary-value problems for a large class of materials [19,21,
35, 36]. Important criteria for the rank-one convexity of functions were established
by Knowles and Sternberg [44] as well as by Šilhavý [71] and Dacorogna [26].

The notion of polyconvexity was introduced into the context of nonlinear elas-
ticity theory by Ball [6, 7] (see [6, 27, 65]). In the two-dimensional case, a function
W : GL+(2) → R is called polyconvex if and only if it is expressible in the form

W (F ) = P (F, det F ), P : R
2×2 × R ∼= R

5 → R ∪ {+∞},

where P (·, ·) is convex. Since the polyconvexity of an energy W already implies the
weak lower semi-continuity of the corresponding energy functional, it is of funda-
mental importance to the direct methods in the calculus of variations. In partic-
ular, this implication is still valid for functions W defined only on GL+(2), which
do not satisfy polynomial growth conditions; this is generally the case in nonlinear
elasticity.
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Lastly, a function W is called quasi-convex at F̄ ∈ GL+(n) if the condition∫
Ω

W (F̄ + ∇ϑ)dx �
∫

Ω

W (F̄ )dx = W (F̄ ) · |Ω|

for every bounded open set Ω ⊂ R
n (1.1)

holds for all ϑ ∈ C∞
0 (Ω) such that det(F̄ + ∇ϑ) > 0. Note carefully that there

are alternative definitions of quasi-convexity for functions on GL+(n) (see [11]).
Although quasi-convexity of an energy function W is sufficient for the weak lower
semi-continuity of the corresponding energy functional if W : R

n×n → R is contin-
uous and satisfies suitable growth conditions [18,74], it is generally not sufficient in
the case of energy functions defined only on GL+(n).

It is well known that the implications

polyconvexity =⇒ quasi-convexity =⇒ rank-one convexity

hold for arbitrary dimension n. However, it is also known that rank-one convex-
ity does not imply polyconvexity in general (see the Alibert–Dacorogna–Marcellini
example [1]; cf. [27, p. 221] and [4]), and that for n > 2 rank-one convexity does
not imply quasi-convexity [12,27,64,75].

The question of whether rank-one convexity implies quasi-convexity in the two-
dimensional case is considered to be one of the major open problems in the calculus
of variations [9, 10, 24, 60, 61]. Morrey conjectured in 1952 that the two are not
equivalent [3, 42, 43, 48, 51, 63], i.e. that there exists a function W : R

2×2 → R that
is rank-one convex but not quasi-convex. A number of possible candidates have
already been proposed: for example [77], the function W# : R

2×2 → R with

W#(F ) =

{
−4 det F,

√
‖F‖2 − 2 det F +

√
‖F‖2 + 2 det F � 1,

2
√

‖F‖2 − 2 det F − 1, otherwise,

=

{
−4λminλmax, λmax � 1

2 ,

2(λmax − λmin) − 1, otherwise
(1.2)

(where λmin and λmax denote the smallest and the largest singular value of F ,
respectively) is known to be rank-one convex,1 but it is not known whether this
function is quasi-convex at F = 0.

There are, however, a number of special cases for which the two convexity con-
ditions are, in fact, equivalent: for example, every quasi-convex quadratic form is
polyconvex [47,70,75,76] and, as Müller [49] has shown, rank-one convexity implies
quasi-convexity in dimension two on diagonal matrices [17, 22, 23]. Moreover, Ball

1 This follows from the convexity of the function

λmax ± λmin =
√

‖F‖2 ± 2 det F =
√

(F11 ± F22)2(F21 ∓ F12)2

(see [23, lemma 2.2]). In [23, remark 1] it is also noted that any SO(2)-invariant polyconvex
function can be written as the supremum of linear combinations of the functions ϕ±

c = λmax ±
λmin − (λmaxλmin/c), for c ∈ R \ {0}, ϕ±

0 = −λmaxλmin, by writing it first as the supremum of
polyaffine functions and then exploiting SO(2) invariance. Thus, the individual branches of W#

are polyconvex.
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and Murat [12] showed that every energy function W : R
2×2 → R of the form

W (F ) = ‖F‖α +h(det F ) with a function h : R → R and 1 � α < 2 is polyconvex if
and only if it is rank-one convex. Iwaniec et al . even conjectured that “continuous
rank-one convex functions W : R

2×2 → R are quasi-convex” [3, conjecture 1.1] in
general2 (whereas Pedregal found “some evidence in favour” [63] of the hypothesis
that the two conditions are not equivalent [62]).

In this spirit, we present another condition under which rank-one convexity
implies polyconvexity (and thus quasi-convexity), thereby further complicating the
search for a counterexample: we show that any function W : GL+(2) → R that is
isotropic and objective (i.e. bi-SO(2)-invariant) as well as isochoric is rank-one con-
vex if and only if it is polyconvex. A function W : GL+(2) → R is called isochoric3

if
W (aF ) = W (F ) for all a ∈ R

+ := (0,∞).

Note carefully that we explicitly consider functions that are defined only on GL+(2),
and not on all of R

2×2. Such a function W can equivalently be expressed as a
(discontinuous) function W : R

2×2 → R ∪ {+∞} with W (F ) = +∞ for all F /∈
GL+(2). In many fields, these energy functions are more suitable for applications
than finite-valued functions on R

2×2. In the theory of nonlinear hyperelasticity,
for example, the requirement W (F ) → ∞ as det F → 0 is commonly assumed
to hold. The left and right SO(2) invariance is also motivated by applications in
nonlinear elasticity and corresponds to the requirements of objectivity and isotropy,
respectively.4 While Morrey’s conjecture is usually stated for finite-valued functions
on all of R

2×2 only, energy functions on GL+(2) have long been a valuable source
of inspiring examples; indeed, for n > 2, an early example of a non-continuous
function mapping R

n×n to R ∪ {+∞} which is rank-one convex but not quasi-
convex was given by Ball [8], even before Šverák [75] found a continuous finite-
valued counterexample. Additional conditions for rank-one convexity of objective
and isotropic energy functions on GL+(2) have also been considered by Šilhavý [72],
Parry and Šilhavý [61], Aubert [5] and Davies [28].

Note also that a function W : GL+(2) → R is isotropic, objective and isochoric if
and only if W is (left and right) conformally invariant, i.e. W (AFB) = W (F ) for
all A, B ∈ CSO(2), where

CSO(2) = R
+ · SO(2) = {aQ ∈ GL+(2) | a ∈ R

+, Q ∈ SO(2)}

2 Interestingly, the related (but not equivalent) question of whether isotropic rank-one convex
sets in R

2×2 are already quasi-convex has a positive answer [38,46].

3 In elasticity theory, isochoric energy functions measure only the change of form of an elastic
body, not the change of size. For more general elastic energy functions W : GL+(2) → R, an
additive isochoric–volumetric split [50] of the form

W (F ) = W iso(F ) + W vol(det F ) = W iso
(

F

(det F )1/2

)
+ W vol(det F )

into an isochoric part W iso : GL+(2) → R and a volumetric part W vol : R
+ → R is sometimes

assumed (see § 5.2).

4 If functions on R
2×2 are considered, then the isotropy requirement is often assumed to be right

O(2) invariance, whereas right SO(2) invariance is the natural isotropy condition for functions on
GL+(2).
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denotes the conformal special orthogonal group. In the literature, one also encoun-
ters the concept of conformal energies [78], which are functions W such that W (F )
vanishes if and only if F ∈ CSO(2), e.g. W (F ) = ‖F‖2 − 2 det F . However, as this
example shows, such energies are generally not isochoric (or conformally invariant).

The idea of finding new isochoric functions that are rank-one convex arose from
the search for a function of the isotropic invariants ‖dev2 log U‖2 and [tr(log U)]2

of the logarithmic strain tensor log U that is rank-one convex or polyconvex (see
[25,54,54,55,58,69]), since the commonly used quadratic Hencky energy

WH(F ) = W iso
H

(
F

(det F )1/2

)
+ W vol

H (det F ) = µ‖dev2 log U‖2 + 1
2κ[tr(log U)]2

is not rank-one convex even in SL(2) := {X ∈ GL+(2) |det X = 1} (see [56]). Here,
µ > 0 is the infinitesimal shear modulus, κ = 1

3 (2µ + 3λ) > 0 is the infinitesimal
bulk modulus, λ is the first Lamé constant, F = ∇ϕ is the gradient of deformation,
U =

√
FTF is the right stretch tensor and log U denotes the principal matrix

logarithm of U . For X ∈ R
2×2, we denote by ‖X‖ the Frobenius tensor norm,

tr(X) is the trace of X, dev2 X = X − 1
2 tr(X) · 1 is the deviatoric part of X and

1 denotes the identity tensor on R
2×2.

Promising candidates for an appropriate polyconvex formulation in terms of
‖dev2 log U‖2 and [tr(log U)]2 are the exponentiated Hencky energies previously
considered in the series of papers [37,53,56,57]:

WeH(F ) = W iso
eH

(
F

(det F )1/2

)
+ W vol

eH (det F )

=
µ

k
exp(k‖dev2 log U‖2) +

κ

2k̂
exp(k̂[(log detU)]2), (1.3)

where k, k̂ are additional dimensionless parameters.

2. Preliminaries

In order to establish our main result, i.e. that rank-one convexity and polyconvexity
are equivalent for isochoric energy functions, we first need to recall some conditions
for these convexity properties. In the following, we shall assume W : GL+(2) → R,
F �→ W (F ) to be an objective, isotropic function. It is well known that such
a function can be expressed in terms of the singular values of F : there exists a
uniquely determined function g : R

+ × R
+ → R such that

W (F ) = g(λ1, λ2) (2.1)

for all F ∈ GL+(2) with singular values λ1, λ2. Note that the isotropy of W also
implies the symmetry condition g(λ1, λ2) = g(λ2, λ1).

2.1. A sufficient condition for polyconvexity

A proof of the following lemmas can be found in [37].

Lemma 2.1. If Y : [1,∞) → R is non-decreasing and convex and Z : GL+(2) →
[1,∞) is polyconvex, then Y ◦ Z is polyconvex.
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Lemma 2.2. The function Z : GL+(2) → [1,∞) with Z(F ) = ‖F‖2
op/det F , where

‖F‖op = max{λ1, λ2} denotes the spectral norm of F ∈ GL+(2) with singular values
λ1, λ2, is polyconvex on GL+(2). Note that the function Z can be expressed as
Z(F ) = g(λ1, λ2) with g(λ1λ2) = max{λ2

1, λ
2
2}/λ1λ2.

These two lemmas immediately imply the next proposition [37], which will play a
key role in showing that isochoric, rank-one convex energies are already polyconvex.

Proposition 2.3. If, for given W : GL+(2) → R, there exists a non-decreasing and
convex function h : [1,∞) → R such that W = h ◦ Z, where Z(F ) = ‖F‖2

op/ det F ,
then W is polyconvex.

2.2. A necessary condition for rank-one convexity

We prove the following well-known necessary condition for rank-one convexity.

Lemma 2.4. Let W : GL+(2) → R be objective, isotropic and rank-one convex, and
let g : R

+ × R
+ → R denote the representation of W in terms of singular values.

Then g is separately convex, i.e. the mapping λ1 �→ g(λ1, λ2) is convex for fixed
λ2 ∈ R

+ and the mapping λ2 �→ g(λ1, λ2) is convex for fixed λ1 ∈ R
+.

Proof. For a, b ∈ R, we define

diag(a, b) :=
(

a 0
0 b

)
.

Let λ2 ∈ R
+ be fixed. Since the matrix diag(1, 0) has rank 1, the rank-one convexity

of W implies that the mapping

t �→ W (diag(1, λ2)+ t diag(1, 0)) = W (diag(1+ t, λ2)) = g(1+ t, λ2), t ∈ (−1,∞),

is convex. Therefore, the function g is convex in the first component and, for sym-
metry reasons, convex in the second component.

Note that for an energy function W of class C2 the separate convexity of g is
equivalent to the tension-extension inequalities (TE inequalities)

∂2g

∂λ2
1

� 0 and
∂2g

∂λ2
2

� 0 for λ1, λ2 ∈ R
+.

3. The equivalence of rank-one convexity and polyconvexity for
isochoric energy functions

3.1. The main result

We now focus on isochoric functions W on GL+(2), i.e. functions that satisfy
W (aF ) = W (F ) for all F ∈ GL+(2) and all a > 0. These functions can be uniquely
represented in terms of the ratio λ1/λ2 of the singular values of F .

Lemma 3.1. Let W : GL+(2) → R, F �→ W (F ) be an objective, isotropic function
that is additionally isochoric, i.e. it satisfies W (aF ) = W (F ) for all F ∈ GL+(2)
and all a > 0. Then there exists a unique function h : R

+ → R with h(t) = h(1/t)
such that W (F ) = h(λ1/λ2) for all F ∈ GL+(2) with singular values λ1, λ2 ∈ R

+.
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Remark 3.2. Note that lemma 3.1 explicitly requires W to be defined on GL+(2)
only: for functions on all of GL(2), the isotropy requirement must be extended from
right SO(2) invariance to right O(2) invariance in order to ensure a representation
in terms of the singular values; if singular matrices are included in the domain of
W , then h is not well defined in the form stated in the lemma.

Proof. Since W is objective and isotropic, there exists a function g : R
+ × R

+ → R

with W (F ) = g(λ1, λ2) = g(λ2, λ1) for all F ∈ GL+(2), where λ1, λ2 are the
singular values of F . Then

W (F ) = W

(
F√

det F

)
= g

(
λ1√
λ1λ2

,
λ2√
λ1λ2

)
= g

(√
λ1

λ2
,

√
λ2

λ1

)
.

Hence, for h : R
+ → R with h(t) := g(

√
t, 1/

√
t) we find

h

(
λ1

λ2

)
= g

(√
λ1

λ2
,

1√
λ1/λ2

)
= g

(√
λ1

λ2
,

√
λ2

λ1

)
= W (F ),

and the symmetry of g (which follows from the isotropy of W ) implies

h(t) = g

(√
t,

1√
t

)
= g

(
1√
t
,
√

t

)
= g

(√
1
t
,

√
1

1/t

)
= h

(
1
t

)
.

Finally, the uniqueness of h follows directly from the equality h(t) = W (diag(t, 1)).

We are now ready to prove our main result.

Theorem 3.3. Let W : GL+(2) → R, F �→ W (F ) be an objective, isotropic and
isochoric function, and let h : R

+ → R, g : R
+×R

+ → R denote uniquely determined
functions with

W (F ) = g(λ1, λ2) = h

(
λ1

λ2

)
= h

(
λ2

λ1

)
for all F ∈ GL+(2) with singular values λ1, λ2. Then the following are equivalent:

(i) W is polyconvex;

(ii) W is rank-one convex;

(iii) g is separately convex;

(iv) h is convex on R
+;

(v) h is convex and non-decreasing on [1,∞).

Proof. The implication (i) ⇒ (ii) is known to hold in general, whereas the implica-
tion (ii) ⇒ (iii) is stated in lemma 2.4.

(iii) ⇒ (iv). If g is separately convex, then the mapping

λ1 �→ g(λ1, 1) = h(λ1)

is convex; thus, h is convex on R
+.
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(iv) ⇒ (v). Assume that h is convex on R
+. Then, of course, h is also convex on

[1,∞), and it remains to show the monotonicity of h. Let 1 � t1 < t2. Then 1/t2 <
1 � t1 < t2, i.e. t1 lies in the convex hull of 1/t2 and t2. But then t1 = s/t2+(1−s)t2
for some s ∈ (0, 1), and thus the convexity of h on R

+ implies that

h(t1) = h

(
s

1
t2

+(1−s)t2

)
� s h

(
1
t2

)
+(1−s)h(t2) = s h(t2)+(1−s) h(t2) = h(t2).

Hence, h is non-decreasing on [1,∞).

(iv) ⇒ (v). Assume that h is convex and non-decreasing on [1,∞). Then we can
apply proposition 2.3: since the mapping

F �→
‖F‖2

op

det F
=

max{λ2
1, λ

2
2}

λ1λ2
∈ [1,∞)

is polyconvex [37] and h is convex and non-decreasing on [1,∞), the mapping

F �→ h

(
max{λ2

1, λ
2
2}

λ1λ2

)
= h

(
λ1

λ2

)
= W (F )

is polyconvex as well.

If the function h is continuously differentiable, then the criteria in theorem 3.3
can be simplified even further.

Corollary 3.4. Let W : GL+(2) → R be an objective, isotropic and isochoric
function, and let h : R

+ → R denote the uniquely determined function with W (F ) =
h(λ1/λ2) for all F ∈ GL+(2) with singular values λ1, λ2. If h ∈ C1(R+), then W
is polyconvex if and only if h is convex on [1,∞).

Proof. We need only to show that the stated criterion is sufficient for the polycon-
vexity of W . Assume therefore that h is convex on [1,∞). Taking the derivative on
both sides of the equality h(t) = h(1/t), which holds for all t ∈ R

+, yields

h′(t) = − 1
t2

h′
(

1
t

)
.

In particular, h′(1) = −h′(1) and thus h′(1) = 0. Since the convexity of h implies
the monotonicity of h′ on [1,∞), we find h′(t) � 0 for all t ∈ [1,∞). This means that
h is non-decreasing on [1,∞), and applying theorem 3.3(v) yields the polyconvexity
of W .

4. Criteria for rank-one convexity and polyconvexity in terms of
different energy representations

4.1. Energy functions in terms of the logarithmic strain

We shall now assume that the function W is of class C2. While the criterion
h′′(t) � 0 for all t ∈ [1,∞) in corollary 3.4 is easy to state, isochoric elastic energy
functions in nonlinear hyperelasticity are typically not immediately given in terms of
the quantity λ1/λ2. We therefore consider different representations of such functions
in our search for easily verifiable polyconvexity criteria.
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Lemma 4.1. Let W : GL+(2) → R be objective, isotropic and isochoric. Then there
exist unique functions f, f̃ : [0,∞) → R such that

(i) W (F ) = f

(
log2 λ1

λ2

)
,

(ii) W (F ) = f̃(‖dev2 log U‖2)

for all F ∈ GL+(2), where λ1, λ2 denote the singular values of F , U =
√

FTF
is the positive definite symmetric polar factor in the right polar decomposition of
F , dev2 X = X − 1

2 tr(X) · 1 is the deviatoric part of X ∈ R
2×2, log denotes the

principal matrix logarithm on PSym(2) and ‖ · ‖ is the Frobenius matrix norm.

Proof.
(i) Let us first recall from lemma 3.1 that there exists a unique function h : R

+ → R
+

such that W (F ) = h(λ1/λ2) for all F ∈ GL+(2) with singular values λ1, λ2. Let
f(θ) = h(exp(

√
θ)) for θ > 0. Since√

log2 λ1

λ2
=

∣∣∣∣log
λ1

λ2

∣∣∣∣ = log
max{λ1, λ2}
min{λ1, λ2}

,

we find

f

(
log2 λ1

λ2

)
= h

(
exp

(√
log2 λ1

λ2

))
= h

(
exp

(
log

max{λ1, λ2}
min{λ1, λ2}

))
= h

(
max{λ1, λ2}
min{λ1, λ2}

)
= h

(
λ1

λ2

)
= W (F )

for all F ∈ GL+(2) with singular values λ1, λ2. To show the uniqueness of f , we
simply note that

f(θ) = f

(
log2

(
e
√

θ

1

))
= W (diag(e

√
θ, 1))

for all θ > 0.

(ii) It was shown in [56] that

‖dev2 log U‖2 = 1
2 log2 λ1

λ2
.

The equality W (F ) = f̃(‖dev2 log U‖2) is therefore satisfied for all F ∈ GL+(2) if
and only if f̃(t) = f(2t), where f is given by (i).
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Note carefully that, for n > 2, not every objective, isotropic and isochoric energy
W : GL+(n) → R can be written in terms of ‖devn log U‖2 in the way lemma 4.1
states for n = 2. However, there always exists a function Ŵ : Sym(n) → R such
that W (F ) = Ŵ (devn log U) for all F ∈ GL+(n) with U =

√
FTF .

We can now state theorem 3.3 in terms of the functions f , f̃ as defined in
lemma 4.1.

Proposition 4.2. Let W : GL+(2) → R, F �→ W (F ) be an objective, isotropic
and isochoric function and let f, f̃ : [0,∞) → R denote the uniquely determined
functions with

W (F ) = f̃(‖dev2 log U‖2) = f

(
log2 λ1

λ2

)
for all F ∈ GL+(2) with singular values λ1, λ2. If f, f̃ ∈ C2([0,∞)), then the
following are equivalent:

(i) W is polyconvex,

(ii) W is rank-one convex,

(iii) 2θ f ′′(θ) + (1 −
√

θ)f ′(θ) � 0 for all θ ∈ (0,∞),

(iv) 2η f̃ ′′(η) + (1 −
√

2η)f̃ ′(η) � 0 for all η ∈ (0,∞).

Proof. For h : R
+ → R with h(t) = f(log2 t) we find

h

(
λ1

λ2

)
= f

(
log2 λ1

λ2

)
= W (F )

for all F ∈ GL+(2) with singular values λ1, λ2. If f ∈ C2([0,∞)), then h ∈ C2(R+).
Thus, we can apply corollary 3.4 to find that W is polyconvex (and, equivalently,
rank-one convex) if and only if h is convex on [1,∞). Since h′′ is continuous on R

+,
this convexity of h is equivalent to h′′(t) � 0 for all t ∈ (1,∞). We compute

h′(t) = 2f ′(log2 t)
log t

t
(4.1)

as well as

h′′(t) = 4f ′′(log2 t)
log2 t

t2
− 2f ′(log2 t)

log t

t2
+ 2f ′(log2 t)

1
t2

=
2
t2

(2(log2 t) f ′′(log2 t) + (1 − log t) f ′(log2 t)).

Writing t > 1 as t = e
√

θ with θ > 0 we find

h′′(t) =
2

e2
√

θ
(2θf ′′(θ) + (1 −

√
θ)f ′(θ)).

Since the mapping θ → e
√

θ is bijective from (0,∞) to (1,∞), the condition

h′′(t) � 0 for all t ∈ (1,∞) (4.2)
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is therefore equivalent to

2θf ′′(θ) + (1 −
√

θ)f ′(θ) � 0 for all θ ∈ (0,∞), (4.3)

which is exactly criterion (iii).

It remains to show that (iii) and (iv) are equivalent. Since f̃(η) = f(2η) (see
lemma 4.1), we find

2ηf̃ ′′(η) + (1 −
√

2η f̃ ′(η)) = 2[2(2η)f ′′(2η) + (1 −
√

(2η))f ′(2η)].

Thus, (iv) is satisfied for all η ∈ R
+ if and only if (iii) is satisfied for all θ = 2η ∈ R

+.

In addition to proposition 4.2(iii), the polyconvexity of W also implies the mono-
tonicity of f .

Corollary 4.3. Under the assumptions of proposition 4.2, if W is polyconvex (or,
equivalently, rank-one convex), then f ′(θ) � 0 for all θ > 0.

Proof. According to theorem 3.3, the polyconvexity of W implies that h = f ◦ log2

is non-decreasing on [1,∞). Then

0 � h′(t) = 2f ′(log2 t)
log t

t

for all t > 1, and thus 0 � f ′(log2 t) for all t > 1, which immediately implies
f ′(θ) � 0 for all θ > 0.

4.2. Energy functions in terms of the distortion function

We now consider the representation of an isochoric energy W (F ) in terms of

K(F ) =
1
2

‖F‖2

det F
,

where ‖ · ‖ denotes the Frobenius matrix norm; the mapping K is also known as the
(planar) distortion function [40] or outer distortion [41, eq. (14)]. Note that K � 1
and that, for F ∈ GL+(2), K(F ) = 1 if and only if F is conformal, i.e. if F = a · R
with a ∈ R

+ and R ∈ SO(2). In the two-dimensional case, every objective, isotropic
and isochoric (i.e. conformally invariant) energy can be written in terms of K.

Lemma 4.4. Let W : GL+(2) → R be objective, isotropic and isochoric. Then there
exists a unique function z : [1,∞) → R with

W (F ) = z(K(F )) = z

(
1
2

‖F‖2

det F

)
for all F ∈ GL+(2).

Proof. It can easily be seen that the function p : [1,∞) → [1,∞) with

p(t) =
1
2

(
t +

1
t

)
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is bijective, and that its inverse is given by

q(s) = p−1(s) = y +
√

y2 − 1.

Then

q

(
1
2

(
t +

1
t

))
= t for all t ∈ [1,∞),

while for t ∈ (0, 1) we find

q

(
1
2

(
t +

1
t

))
= q

(
1
2

( >1︷︸︸︷
1
t

+
1

1/t

))
=

1
t
.

Therefore,

q

(
1
2

(
t +

1
t

))
= max

{
t,

1
t

}
for all t ∈ R

+ = (0,∞).

According to lemma 3.1, there exists a unique function h : R
+ → R

+ such that
W (F ) = h(λ1/λ2) = h(λ2/λ1) for all F ∈ GL+(2) with singular values λ1, λ2.
Then the function z := h ◦ q has the desired property: since

1
2

‖F‖2

det F
=

1
2

λ2
1 + λ2

2

λ1λ2
=

1
2

(
λ1

λ2
+

λ2

λ1

)
,

we find

z

(
1
2

‖F‖2

det F

)
= h

(
q

(
1
2

‖F‖2

det F

))
= h

(
q

(
1
2

(
λ1

λ2
+

1
λ1/λ2

)))
= h

(
max

{
λ1

λ2
,
λ2

λ1

})
= W (F ).

The uniqueness follows directly from the observation that

z(r) = W (diag(r +
√

r2 − 1, 1))

for all r ∈ [1,∞).

By means of this representation formula, we can easily show that every objec-
tive, isotropic and isochoric function on GL+(2) satisfies the tension–compression
symmetry condition W (F−1) = W (F ): since

F−1 =
1

det F

(
F22 −F12

−F21 F11

)
for F =

(
F11 F12

F21 F22

)
,

we find

K(F−1) =
1
2

‖F−1‖2

det(F−1)
=

det F

2

∥∥∥∥ 1
det F

(
F22 −F12

−F21 F11

) ∥∥∥∥2

=
1

2 det F

∥∥∥∥(
F22 −F12

−F21 F11

) ∥∥∥∥2

=
1
2

‖F‖2

det F
= K(F )
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and thus W (F ) = z(K(F )) = z(K(F−1)) = W (F−1) for all F ∈ GL+(2). Note that
this implication is restricted to the two-dimensional case: isochoric energy functions
on GL+(n) are generally not tension–compression symmetric for n > 2.

Criteria for the polyconvexity of W can now be established in terms of the func-
tion z corresponding to W .

Proposition 4.5. Let W : GL+(2) → R, F �→ W (F ) be an objective, isotropic and
isochoric function and let z : [1,∞) → R denote the uniquely determined function
with

W (F ) = z(K(F )) = z

(
1
2

‖F‖2

det F

)
for all F ∈ GL+(2). If z ∈ C2([0,∞)), then the following are equivalent:

(i) W is polyconvex;

(ii) W is rank-one convex;

(iii) (r2 − 1)(r +
√

r2 − 1)z′′(r) + z′(r) � 0 for all r ∈ (1,∞).

Proof. As indicated in the proof of lemma 4.4, the unique function h with W (F ) =
h(λ1/λ2) = h(λ2/λ1) for all F ∈ GL+(2) with singular values λ1, λ2 is given by

h(t) = z

(
t

2
+

1
2t

)
for all t � 1.

By corollary 3.4, we only need to show that condition (iii) is equivalent to the
convexity of h on [1,∞), i.e. equivalent to h′′(t) � 0 for all t > 1. For t > 1, we find

h′(t) =
1
2

(
1 − 1

t2

)
z′

(
t

2
+

1
2t

)
and

h′′(t) =
1
4

(
1 − 1

t2

)2

z′′
(

t

2
+

1
2t

)
+

1
t3

z′
(

t

2
+

1
2t

)
=

1
t3

[
1
4
t

(
t − 1

t

)2

z′′
(

t

2
+

1
2t

)
+ z′

(
t

2
+

1
2t

)]
=

1
t3

[
t

((
t

2
+

1
2t

)2

− 1
)

z′′
(

t

2
+

1
2t

)
+ z′

(
t

2
+

1
2t

)]
.

Thus,

h′′(t) � 0 ⇐⇒ 0 � t

((
t

2
+

1
2t

)2

− 1
)

z′′
(

t

2
+

1
2t

)
+ z′

(
t

2
+

1
2t

)
.

Recall from the proof of lemma 4.4 that the mapping r �→ q(r) = r +
√

r2 − 1
bijectively maps (1,∞) onto itself and that

q(r)
2

+
1

2q(r)
= r for all r > 1.
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Therefore, by writing t = q(r), we find that the inequality h′′(t) � 0 holds for all
t > 1 if and only if

0 � q(r)
((

q(r)
2

+
1

2q(r)

)2

− 1
)

z′′
(

q(r)
2

+
1

2q(r)

)
+ z′

(
q(r)
2

+
1

2q(r)

)
= q(r)(r2 − 1) z′′(r) + z′(r)

= (r +
√

r2 − 1)(r2 − 1) z′′(r) + z′(r) for all r > 1.

An example of the application of proposition 4.5 can be found in Appendix B.

5. Applications

5.1. The quadratic and the exponentiated isochoric Hencky energy

Proposition 4.2 can be applied directly to isochoric energy functions given in
terms of ‖dev2 log U‖2.

Corollary 5.1.

(i) The isochoric Hencky energy ‖dev2 log U‖2 = 1
2 log2(λ1/λ2) is not polyconvex

and not rank-one convex on GL+(2).

(ii) The exponentiated isochoric Hencky energy

exp(k‖dev2 log U‖2) = exp
(

k

∥∥∥∥log
U

det U1/2

∥∥∥∥2)
= exp

(
k

2
log2 λ1

λ2

)
is rank-one convex (and therefore polyconvex) on GL+(2) if and only if k � 1

4 .

Proof.
(i) In the case of the isochoric Hencky energy

W (F ) = ‖dev2 log U‖2 =
1
2

log2 λ1

λ2
,

the function f̃ is defined by f̃(η) = η. This function does not satisfy proposi-
tion 4.2(iv); since

2ηf̃ ′′(η) + (1 −
√

2η)f̃ ′(η) = 1 −
√

2η, (5.1)

the inequality is not satisfied for η > 1
2 .

(ii) For the exponentiated isochoric Hencky energy

W (F ) = exp(k‖dev2 log U‖2) = exp
(

k

∥∥∥∥log
U

det U1/2

∥∥∥∥2)
= exp

(
k

2
log2 λ1

λ2

)
,

the functions f, f̃ : [0,∞) → R are given by f(θ) = ekθ/2 and f̃(η) = ekη. We find

2ηf̃ ′′(η) + (1 −
√

2η)f̃ ′(η) = 2ηk2ekη + (1 −
√

2η)kekη.
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Thus, proposition 4.2(iv) is equivalent to

k �
√

2η − 1
2η

for all η > 0.

This inequality is satisfied if and only if k � 1
4 . Therefore, the requirement k � 1

4 is
necessary and sufficient for the rank-one convexity as well as for the polyconvexity
of the isochoric exponentiated Hencky energy exp(k‖dev2 log U‖2).

5.2. The isochoric-volumetric split

Our results can also be applied to non-isochoric energy functions possessing an
additive isochoric–volumetric split,5 i.e. energy functions W of the form

W : GL+(2) → R,

W (F ) = W iso(F ) + W vol(det F ) = W iso
(

F

(det F )1/2

)
+ W vol(det F )

with an isochoric function W iso : GL+(2) → R and a function W vol : R
+ → R.

In this case, theorem 3.3 and propositions 4.2 and 4.5 provide sufficient criteria
for the polyconvexity of W : if W vol is convex on R

+, then the polyconvexity of
W iso is sufficient for W to be polyconvex as well. For example, since the mapping
t �→ (κ/2k̂) exp(k̂[(log t)]2) is convex on R

+ for k̂ � 1
8 , it follows from corollary 5.1

that the exponentiated Hencky energy WeH : GL+(2) → R with

WeH(F ) = W iso
eH (F ) + W vol

eH (det F )

=
µ

k
exp(k‖dev2 log U‖2) +

κ

2k̂
exp(k̂[(log detU)]2)

is polyconvex for k � 1
4 and k̂ � 1

8 , as indicated in § 1.

5.3. Growth conditions for polyconvex isochoric energies

By integrating the polyconvexity criteria given in proposition 4.2, we obtain an
exponential growth condition for the function f that is necessarily satisfied if W is
rank-one convex (i.e. polyconvex).

Corollary 5.2. Let

W : GL+(2) → R with W (F ) = f̃(‖dev2 log U‖2) = f

(
log2 λ1

λ2

)
be a polyconvex energy function with f ∈ C2([0,∞)). If f ′(θ) �= 0 for all θ > 0,
then the function f satisfies the inequality

f(θ) � (e
√

θ − 1)
√

ε

e
√

ε
f ′(ε) + f(0) for all θ, ε > 0. (5.2)

5 In nonlinear elasticity theory, the assumption that an elastic energy function takes this specific
form is due to the physically plausible requirement that the mean pressure should depend only on
the determinant of the deformation gradient F , i.e. that there exists a function F : R

+ → R such
that (1/n) tr σ = F(det F ), where σ denotes the Cauchy stress tensor (cf. [16, 66,67]).
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Proof. According to proposition 4.2 and corollary 4.3, if the energy W is polyconvex,
then

2θf ′′(θ) + (1 −
√

θ)f ′(θ) � 0 and f ′(θ) � 0 for all θ > 0. (5.3)

Under our assumption f ′(θ) �= 0, we therefore find f ′(θ) > 0 for all θ > 0 and
deduce

f ′′(θ)
f ′(θ)

�
√

θ − 1
2θ

for all θ > 0. (5.4)

By integration from ε > 0 to θ, it follows that

log f ′(θ) � log f ′(ε) + 1
2 (2

√
θ − log θ) − 1

2 (2
√

ε − log ε) for all θ, ε > 0. (5.5)

Thus, we obtain

f ′(θ) � exp(log f ′(ε) + 1
2 (2

√
θ − log θ) − 1

2 (2
√

ε − log ε))

= f ′(ε) exp(−
√

ε + 1
2 log ε) exp(

√
θ − 1

2 log θ)

= f ′(ε)
√

ε

e
√

ε

e
√

θ

√
θ

(5.6)

for all θ, ε > 0. By another integration on the interval [δ, θ], δ > 0, we obtain

f(θ) � f ′(ε)
√

ε

e
√

ε
e
√

θ + f(δ) − f ′(ε)
√

ε

e
√

ε
e
√

δ for all θ, ε, δ > 0. (5.7)

Taking the limit case δ → 0 and using the continuity of the function f , we finally
obtain

f(θ) � f ′(ε)
√

ε

e
√

ε
e
√

θ + f(0) − f ′(ε)
√

ε

e
√

ε
for all θ, ε > 0, (5.8)

and the proof is complete.

Remark 5.3. Since f ′(θ) � 0 for all θ � 0, a necessary condition is that

f(θ) � C1e
√

θ + C2 for all θ > 0, (5.9)

for C1 = (1/e)f ′(1) > 0 and C2 = f(0) − (1/e)f ′(1) ∈ R. In terms of the function
h with W (F ) = h(λ1/λ2), inequality (5.9) also implies

h(t) � C1t + C2 for all t > 1,

since h(t) = f(log2 t).

Sendova and Walton [69] derive similar necessary growth conditions for the three-
dimensional case. Growth conditions for polyconvex functions were also considered
by Yan [78], who showed that non-constant polyconvex conformal energy functions
defined on all of R

n×n must grow at least with power n.
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Appendix A. Additional examples and applications

The criteria given in §§ 3 and 4 can be applied to a number of isochoric energy
functions in order to determine whether or not they are polyconvex or, equivalently,
rank-one convex.

Corollary A.1. The following functions W : GL+(2) → R are rank-one convex
and polyconvex:

(i) W (F ) =
∥∥∥∥ U

(det U)1/2 −
(

U

(det U)1/2

)−1∥∥∥∥2

;

(ii) W (F ) = exp(‖dev2 log U‖2)
‖F‖2

det F
;

(iii) W (F ) = cosh(‖dev log U‖2) = cosh(‖dev log
√

FTF‖2).

The following functions W : GL+(2) → R are neither rank-one convex nor polycon-
vex:

(iv) W (F ) = ‖dev2 log U‖β for β > 0;

(v) W (F ) = exp(‖dev2 log U‖2 + sin(‖dev2 log U‖2)).

Proof.
(i) The squared Frobenius norm of a symmetric matrix X is the squared sum of its
eigenvalues, and thus for F ∈ GL+(2) with singular values λ1, λ2, we find

W (F ) =
(

λ1√
λ1λ2

− λ−1
1√

λ−1
1 λ−1

2

)2

+
(

λ2√
λ1λ2

− λ−1
2√

λ−1
1 λ−1

2

)2

= 2
(√

λ1

λ2
−

√
λ2

λ1

)2

.

Therefore, the function h : R
+ → R

+ with h(t) = h(1/t) with W (F ) = h(λ1/λ2)
for all F ∈ GL+(2) with singular values λ1, λ2 is given by

h(t) = 2
(√

t − 1√
t

)2

= 2
(

t +
1
t

)
− 4,

and we find

h′(t) = 2
(

1 − 1
t2

)
and h′′(t) =

4
t3

� 0

for all t ∈ R
+. Thus, according to theorem 3.3, W is polyconvex.

(ii) Again, we write W (F ) in terms of the singular values λ1, λ2 of F :

W (F ) = exp(‖dev2 log U‖2)
‖F‖2

det F

= exp
(

1
2

log2 λ1

λ2

)
λ2

1 + λ2
2

λ1λ2

= exp
(

1
2

log2 λ1

λ2

)(
λ1

λ2
+

λ2

λ1

)
.
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Then W (F ) = h(λ1/λ2), where

h(t) = exp(1
2 log2 t)

(
t +

1
t

)
,

and we compute

h′(t) = exp(1
2 log2 t)

[
1− 1

t2
+

log t

t

(
t+

1
t

)]
= exp(1

2 log2 t)
[
1− 1

t2
+log t

(
1+

1
t2

)]
as well as

h′′(t)

= exp(1
2 log2 t)

[
log t

t

(
1 − 1

t2
+ log t

(
1 +

1
t2

))
+

(
2
t3

+
1
t

(
1 +

1
t2

)
− 2 log t

t3

)]
= exp(1

2 log2 t)
[
log t

t
− log t

t3
+

(
1
t

+
1
t3

)
log2 t +

2
t3

+
1
t

+
1
t3

− 2 log t

t3

]
= exp(1

2 log2 t)
[
1
t

+
3
t3

+
(

1
t

− 3
t3

)
log t +

(
1
t

+
1
t3

)
log2(t)

]
.

Therefore, theorem 3.3 states that W is polyconvex if and only if(
3
t2

− 1
)

log t � 1 +
3
t2

+
(

1 +
1
t2

)
log2 t (A 1)

for all t > 0. For t < 1 or t >
√

3, the left-hand side is negative and the inequality
is therefore satisfied. If 1 � t �

√
3, then 0 � log t < 1 and 3/t2 − 1 � 0; thus,(

3
t2

− 1
)

log t � 3
t2

− 1 < 1 +
3
t2

+
(

1 +
1
t2

)
log2 t.

Hence, inequality (A 1) is satisfied in this case as well.

(iii) The function f̃ : [0,∞) → R with W (F ) = f̃(‖dev2 log U‖2) for all F ∈ GL+(2)
is given by f̃(η) = cosh(η). For η ∈ R

+ we find

2ηf̃ ′′(η) + (1 −
√

2η)f̃ ′(η) = 2η cosh(η) + (1 −
√

2η) sinh(η)

� (2η + 1 −
√

2η) sinh(η)
� 0.

Thus, W is polyconvex according to proposition 4.2.

(iv) Let α := 1
2β. Then W (F ) = f̃(‖dev2 log U‖2) for f̃(η) = ηα. Since

2ηf̃ ′′(η) + (1 −
√

2η)f̃ ′(η) = 2ηα(α − 1)ηα−2 + (1 −
√

2η)αηα−1

= αηα−1[2α − 1 −
√

2η],

we use proposition 4.2 to find that W is polyconvex if and only if

0 � 2α − 1 −
√

2η for all η ∈ R
+,

which is obviously not the case for any β = 2α > 0. This result was also hinted at
by Hutchinson and Neale [39].
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(v) We apply proposition 4.2 to the function f̃ with f̃(η) = exp(η + sin η). Since

f̃ ′(η) = exp(η +sin η)(1+ cos η) and f̃ ′′(η) = exp(η +sin η)((1+ cos η)2 − sin η),

we find

2ηf̃ ′′(η) + (1 −
√

2η)f̃ ′(η) = 2η exp(η + sin η)((1 + cos η)2 − sin η)

+ (1 −
√

2η) exp(η + sin η)(1 + cos η).

Thus, W is polyconvex if and only if

2η((1 + cos η)2 − sin η) + (1 −
√

2η)(1 + cos η) � 0 for all η ∈ (0,∞).

This inequality is not satisfied for η = 1
2π. Note that f̃ is monotone on R

+ with
exponential growth, but is not convex.

Appendix B. On dist2(F/(det F )1/2, SO(2))

For F ∈ GL+(2), we consider the squared distance from F/(det F )1/2 ∈ SL(2) to the
special orthogonal group SO(2) with respect to different distance measures. Such
distances are closely connected to a number of elastic energy functions, including
the isochoric quadratic Hencky energy [58], and they provide an important class
of examples for isochoric energy functions on GL+(2). In this appendix, we collect
some related results which are scattered throughout the literature.

B.1. The Euclidean distance of F ∈ R
2×2 to SO(2)

We first consider the Euclidean distance

dist2Euclid(F, SO(2)) := inf
R∈SO(2)

‖F − R‖2

of F ∈ R
2×2 to SO(2), where ‖ · ‖ denotes the Frobenius matrix norm. In the

two-dimensional case, this distance can be calculated explicitly: since

dist2Euclid(F, SO(2)) = inf
R∈SO(2)

‖F − R‖2 = inf
α∈[−π,π]

∥∥∥∥F −
(

cos α sin α

− sin α cos α

) ∥∥∥∥2

,

we find∥∥∥∥(
F11 − cos α F12 − sin α

F21 + sinα F22 − cos α

) ∥∥∥∥2

= (F11 − cos α)2 + (F12 − sin α)2 + (F21 + sinα)2 + (F22 − cos α)2.

Taking the derivative with respect to α yields the stationarity condition

(F11 + F22) sin α + (F21 − F12) cos α = 0

⇐⇒
〈 (

sin α

cos α

)
,

(
F11 + F22

F21 − F12

) 〉
= 0,
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which implies (
sin α

cos α

)
= ± 1√

‖F‖2 + 2 det F

(
−(F21 − F12)

F11 + F22

)
.

The minimum is easily seen to be realized by(
sin α

cos α

)
=

1√
‖F‖2 + 2 det F

(
−(F21 − F12)

F11 + F22

)
,

and thus

dist2Euclid(F, SO(2)) = inf
R∈SO(2)

‖F − R‖2 = ‖F‖2 − 2
√

‖F‖2 + 2 det F + 2

for arbitrary F ∈ R
2×2. Let us recall the Biot energy term

WBiot(F ) = ‖U − 1‖2 = ‖U‖2 − 2 tr(U) + 2.

For F ∈ GL+(2), we find

‖U‖2 − [tr(U)]2 + 2 det U = 0

=⇒ tr(U) =
√

‖U‖2 + 2 det U
F∈GL+(2)

=
√

‖F‖2 + 2 det F .

Hence,

WBiot(F ) = ‖F‖2 − 2
√

‖F‖2 + 2 det F + 2

= (
√

‖F‖2 + 2 det F − 1)2 + 1 − 2 det F

F∈GL+(2)
= ‖U‖2 − 2

√
‖U‖2 + 2 det U + 2

and we observe that

dist2Euclid(F, SO(2)) = ‖U − 1‖2 = WBiot(F ) for all F ∈ GL+(2), (B 1)

while in general

dist2Euclid(F, SO(2)) � WBiot(F )

for F ∈ R
2×2. Note that WBiot is not rank-one convex [13].

B.2. The polyconvexity of F �→ dist2Euclid(F/(det F )1/2, SO(2))

In order to show that the mapping

F �→ dist2Euclid

(
F

(det F )1/2 , SO(2)
)
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is polyconvex on GL+(2), we apply (B 1) to F/(det F )1/2 and find

dist2Euclid

(
F

(det F )1/2 , SO(2)
)

=
(√∥∥∥∥ F

(det F )1/2

∥∥∥∥2

+ 2 det
(

F

(det F )1/2

)
− 1

)2

+ 1 − 2 det
(

F

(det F )1/2

)

=
(√

‖F‖2

det F
+ 2 − 1

)2

− 1.

Since the function

t �→ (
√

t + 2 − 1)2 − 1.

is convex and monotone, we only need to prove that the mapping F �→ ‖F‖2/ det F
is polyconvex. This is shown (in a slightly generalized version) in the following
lemma, using the criteria developed in § 4.

Lemma B.1. Let β > 0. Then the function

W : GL+(2) → R, W (F ) =
(

‖F‖2

det F

)β

is polyconvex (and, equivalently, rank-one convex) if and only if β � 1.

Proof. The unique function z : [1,→ ∞) → R with

W (F ) = z

(
1
2

‖F‖2

det F

)
for all F ∈ GL+(2)

is given by z(r) = 2βrβ . Then

z′(r) = 2ββrβ−1 and z′′(r) = 2ββ(β − 1)rβ−2.

Thus, according to proposition 4.5, the function W is polyconvex if and only if

0 � (r2 − 1)(r +
√

r2 − 1)z′′(r) + z′(r)

= 2ββrβ−2[(β − 1)(r2 − 1)(r +
√

r2 − 1) + r] for all r > 1.

Since 2ββrβ−2 > 0 for all β > 0 and r > 1, this inequality is equivalent to

0 � (β − 1)(r2 − 1)(r +
√

r2 − 1) + r

⇐⇒ β − 1 � − r

(r2 − 1)(r +
√

r2 − 1)
for all r > 1.

The right-hand side in the above equality is always negative, so the polyconvexity
condition is satisfied for all β � 1. Furthermore, the right-hand expression tends to
0 as r tends to ∞, and hence the condition cannot be satisfied for β < 1.

Note that in the three-dimensional case the mapping F �→ (‖F‖3/ det F )β is
polyconvex if and only if β � 1

2 , as shown in [16, proposition 6].
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B.3. The quasi-convex hull of dist2Euclid(F, SO(2))

In contrast to the isochoric function F �→ dist2Euclid(F/(det F )1/2, SO(2)), the
squared Euclidean distance of F to SO(2) is not polyconvex and not even rank-one
convex. However, the quasi-convex hull of the function can be computed explicitly
using the Brighi–Theorem, adapted to the two-dimensional case.

Theorem B.2 (Bousselsal and Brighi [14, theorem 3.2]). Let q : R
2×2 → R+ be a

non-negative quadratic form. For a function ϕ : R
+ → [0,∞), define W : R

2×2 → R

by

W (F ) = ϕ(q(F )).

Let µ∗, α ∈ R be such that

µ∗ = inf
t∈R+

ϕ(t) = ϕ(α).

Then

R[W (F )] = Q[W (F )] = P [W (F )] = C[W (F )] = µ∗ for all F ∈ R
2×2, q(F ) � α,

where R[W (·)], Q[W (·)], P [W (·)] and C[W (·)] denote the rank-one convex hull, the
quasi-convex hull, the polyconvex hull and the convex hull of W , respectively.

We apply this theorem to q : R
2×2 → R+ with

q(F ) = ‖F‖2 + 2 det F.

Note that q is indeed a non-negative quadratic form due to the arithmetic–geometric
mean inequality. Consider the function ϕ : R+ → R+ with

ϕ(t) = (
√

t − 1)2 =⇒ inf
t∈R+

= 0 = ϕ(1) =⇒ µ∗ = 0, α = 1,

and let
W (F ) = ϕ(q(F )) = (

√
‖F‖2 + 2 det F − 1)2.

From theorem B.2 we conclude that

R[W (F )] = Q[W (F )] = P [W (F )] = C[W (F )] = 0 for all F ∈ R
2×2, q(F ) � 1.

Now set

Ŵ (F ) :=

{
0, q(F ) � 1,

(
√

q(F ) − 1)2, q(F ) > 1,

=

{
0, ‖F‖2 + 2 det F � 1,

(
√

‖F‖2 + 2 det F − 1)2, ‖F‖2 + 2 det F � 1.

Then Ŵ is convex (and therefore quasi-convex) as the composition Ŵ = ϕ̂ ◦ q of
the (convex) quadratic form q and the non-decreasing convex function ϕ̂ : R

+ → R

with

ϕ̂(t) :=

{
0, t � 1,

(
√

t − 1)2, t � 1.
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We observe that

Ŵ (F ) = 0 = Q[W (F )] for all F ∈ R
2×2 with q(F ) � 1

and that

Ŵ (F ) = W (F ) � Q[W (F )] for all F ∈ R
2×2 with q(F ) > 1.

Thus, Ŵ is a quasi-convex function with

Ŵ (F ) � Q[W (F )] and Ŵ (F ) � W (F ) for all F ∈ R
2×2.

Hence, Ŵ is the quasi-convex hull of W :

Q[W (F )] = Ŵ (F ) =

⎧⎨⎩0, ‖F‖2 + 2 det F � 1,

(
√

‖F‖2 + 2 det F − 1)2, ‖F‖2 + 2 det F > 1.

Taking the representation

dist2Euclid(F, SO(2)) = (
√

‖F‖2 + 2 det F − 1)2 + 1 − 2 det F

= W (F ) + 1 − 2 det F,

it is easy to see that

Q[dist2Euclid(F, SO(2))] = Q[W (F )] + 1 − 2 det F = Ŵ (F ) + 1 − 2 det F,

since F �→ 1 − 2 det F is a null Lagrangian. We therefore find

Q[dist2Euclid(F, SO(2))]

=

⎧⎨⎩1 − 2 det F, ‖F‖2 + 2 det F � 1,

(
√

‖F‖2 + 2 det F − 1)2 + 1 − 2 det F, ‖F‖2 + 2 det F � 1,

=

⎧⎨⎩1 − 2 det F, ‖F‖2 + 2 det F � 1,

dist2Euclid(F, SO(2)), ‖F‖2 + 2 det F � 1,

for F ∈ R
2×2. The same result has been given by Dolzmann [30, 31] with an alter-

native proof. The quasi-convex hull of the mapping F �→ dist2Euclid(F, SO(3)) is not
yet known.

B.4. A comparison of distance functions on GL+(2)

Let distgeod(F, SO(2)) = ‖log U‖2 denote the geodesic distance [54,55,58] of F to
SO(2). Then we can list the following convexity properties of (modified) distance
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functions to SO(2):

dist2Euclid(F, SO(2)) = ‖U − 1‖2 is not rank-one convex [13];

dist2Euclid

(
F

(det F )1/2 , SO(2)
)

=
∥∥∥∥ U

(det U)1/2 − 1
∥∥∥∥2

is polyconvex (§ B.2);

dist2geod(F, SO(2)) = ‖log U‖2 is not rank-one convex [15,52];

dist2geod

(
F

(det F )1/2 , SO(2)
)

= ‖dev2 log U‖2 is not rank-one convex [52];

exp(dist2geod(F, SO(2))) = exp(‖log U‖2) is not rank-one convex [56];

exp
(

dist2geod

(
F

(det F )1/2 , SO(2)
))

= exp(‖dev2 log U‖2) is polyconvex [37].
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Sţ. Univ. Iaşi, Sect. Mat. 52 (2006), 75–86.
36 I. D. Ghiba and E. Bulgariu. On spatial evolution of the solution of a non-standard problem

in the bending theory of elastic plates. IMA J. Appl. Math. 80 (2015), 452–473.
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