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Escaping a Neighborhood Along a
Prescribed Sequence in Lie Groups and
Banach Algebras

Catalin Badea, Vincent Devinck, and Sophie Grivaux

Abstract. It is shown that Jamison sequences, introduced in 2007 by Badea and Grivaux, arise nat-
urally in the study of topological groups with no small subgroups, of Banach or normed algebra ele-
ments whose powers are close to identity along subsequences, and in characterizations of (self-adjoint)
positive operators by the accretiveness of some of their powers. he common core of these results is
a description of those sequences for which non-identity elements in Lie groups or normed algebras
escape an arbitrary small neighborhood of the identity in a number of steps belonging to the given
sequence. Several spectral characterizations of Jamison sequences are given, and other related results
are proved.

1 Introduction

1.1 Jamison Sequences

hemain characters of thismanuscript are the so-called Jamison sequences of integers.
his notion was introduced in [1], following the original work of Jamison in [25] and
the subsequent extensions of Ransford in [39] and Ransford and Roginskaya in [40].
It is part of the general study of the relationships between the geometry of a (complex,
separable) Banach space X, the growth of the iterates Tn of a bounded operator T ∈
B(X), and the size of (parts of) its spectrum. More precisely, the following deûnition
was introduced in [1].

Deûnition 1.1 (Jamison Sequences) A sequence of integers (nk)k≥0 with n0 = 1 is
said to be a Jamison sequence if the following spectral property holds: for any bounded
linear operator T on a complex separable Banach space such that supk≥0 ∥Tnk∥ < +∞,
the set of eigenvalues of modulus 1 of T is countable.

Jamison [25] proved the result that the set of eigenvalues of modulus 1 of a power-
bounded operator on a complex separable Banach space is countable. his can be
formulated as “nk = k+1 is a Jamison sequence”, whence the terminology used inDef-
inition 1.1. We also know (see for example [3]) that the sequence nk = 2k is a Jamison
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sequence. More generally, sequences with bounded quotients, that is sequences (nk)
with n0 = 1 and supk≥0

nk+1
nk

≤ c < +∞, are Jamison sequences. We refer the reader
to Subsection 1.4 for more information and for other examples of Jamison sequences.
See also [3] and the references therein for a recent survey of results concerning Jami-
son sequences and related notions, as well as formany examples of Jamison sequences.
On the other hand, the sequences given by nk = k! or by n0 = 1 and nk = 22k

for k ≥ 1
are not Jamison sequences.

he following characterization has been obtained by two authors of this paper
in [2].

heorem 1.2 (Characterizing Jamison Sequences [2]) A sequence of integers (nk)k≥0
with n0 = 1 is a Jamison sequence if and only if there exists ε > 0 such that for every

λ ∈ T/{1},

(1.1) sup
k≥0

∣λnk − 1∣ ≥ ε.

It will be helpful in this paper to pass from the (qualitative) deûnition of Jamison
sequences to the (quantitative) deûnition of Jamison pairs.

Deûnition 1.3 (Jamison pairs and Jamison constants) Given a sequence (nk)k≥0 of
integers with n0 = 1 and a real number ε > 0, we say that ((nk)k≥0 , ε) is a Jamison

pair whenever (1.1) holds for every λ ∈ T/{1}. If (nk)k≥0 is a Jamison sequence,
the supremum of all ε’s such that ((nk)k≥0 , ε) is a Jamison pair is called the Jamison

constant of (nk)k≥0 .

Condition (1.1) can be interpreted as a Diophantine approximation condition.
Indeed, using the fact that the quantities ∣e i2πnα − 1∣ and ⟨⟨nα⟩⟩, α ∈ R, are com-
parable, where ⟨⟨ ⋅ ⟩⟩ denotes the distance to the closest integer, one can interpret (1.1)
for λ = e i2πα as the impossibility to well approximate α by rationals with prescribed
denominators from the sequence (nk)k≥0 . An analogue of this Diophantine approx-
imation condition has also been used by one of the authors in [13] to give a version of
heorem 1.2 for C0-semigroups; see also Section 3.5 for more on Jamison sequences
in R.

he same condition (1.1) has the following dynamical interpretation in terms of
nontrivial circle rotations Rλ ∶ T ∋ z ↦ λz ∈ T. If (nk)k≥0 is a Jamison sequence,
then there exists a neighborhood V of 1 in T such that R

nk
λ (1) “escapes V”; that is,

R
nk
λ (1) ∉ V for some k ≥ 0.

1.2 What this Paper is About

he aim of this paper is to obtain some surprisingly general characterizations of
Jamison sequences and Jamison pairs. We summarize the main results obtained in
this paper as follows.

(a) A sequence (nk) is Jamison if and only if, for any Lie groupG, there is a neigh-
borhood U of the identity element e in G such that for any g ≠ e in G, the sequence
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(gnk) “escapes U”; that is, gnk ∉ U for some k ≥ 0. he same holds true for any linear
Banach–Lie group.

(b) If (nk)k≥0 has bounded quotients, then it satisûes the same property as in
(a) for any Banach–Lie group G, and for any topological group admitting a minimal

metric (a notion introduced recently by Rosendal [41]).
(c) A pair ((nk), ε) is Jamison with ε ≤ 1 if and only if, for any complex normed

algebra Awith identity e and with any a ≠ e in A, the sequence (ank) escapes the ball
B(e , r) for every r < ε.

(d) he pair ((nk),
√

2) is Jamison if and only if anyHilbert space operator T such
that ReTnk > 0 for all k ≥ 0 is a positive invertible operator. he pair ((nk),

√
2) is

a “strict” Jamison pair (i.e., strict inequality holds in (1.1)), if and only if any Hilbert
space operator T such that ReTnk ≥ 0 for all k ≥ 0 is a positive operator.
As explained in Section 2, these results are generalizations of classical results ob-

tained by Gotô and Yamabe (for Lie groups), Chernoò (for normed algebras), and
Shiu (for positive operators) in the case nk ∶= 2k .

1.3 Organization of the Paper

We end this introduction by presenting some examples of Jamison sequences, includ-
ing a sharp estimate of the Jamison constant of a sequence with bounded quotients.
In the next section, we state the main results of this paper and the background be-
hind them. Section 3 is devoted to the study of sequences verifying an analogue of
the “escape property” in normed algebras; we proveheorem 2.4 and state some con-
sequences. he characterization of sequences verifying an “escape property” for Lie
groups (heorem 2.2) is proved in Section 4. Section 5 is devoted to the proof of
heorem 2.9, while the results of Subsection 2.4 about sequences characterizing pos-
itive operators are proved in the ûnal Section 6.

1.4 Jamison Sequences: Some Examples

So as not to interrupt the �ow of the presentation, we have postponed to this subsec-
tion our discussion of some examples of Jamison sequences. he reader impatient to
know the statement of the main results of this paper can go directly to Section 2.

he ûrst class of examples of Jamison sequences that we consider here is the class
of sequences with bounded quotients. he fact that such sequences are Jamison was
proved in [40, heorem 1.5]. Using heorem 1.2, we give here a quick proof of this
result, including an estimate of the Jamison constant.

Proposition 1.4 (Sequences with bounded quotients are Jamison) Let (nk)k≥0 be a

sequence of integers with n0 = 1 and

sup
k≥0

nk+1

nk
≤ c < +∞.

hen ((nk)k≥0 , 2 sin(π/(c + 1))) is a Jamison pair.

he constant 2 sin(π/(c + 1)) from Proposition 1.4 is sharp, as the example of the
sequence given by nk = ck , for a positive integer c, shows. Indeed, for µ = e2iπ/(c+1),
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we have

sup
k≥0

∣µnk − 1∣ = sup
k≥0

∣e2i c
kπ/(c+1) − 1∣ = 2 sin ( π

c + 1
).

In particular, for the sequence nk = 2k of powers of 2, the Jamison constant is exactly√
3 = 2 sin(π/3). he same value

√
3 is the Jamison constant of the sequence nk = k+1

(see [3, Exemple 2.11]). his is one possible explanation for the fact that several results
described below, known for the sequence given by nk = k + 1, are also valid for the
sequence of powers of 2.

Proof of Proposition 1.4 Suppose that n0 = 1 and nk+1 ≤ cnk if k ≥ 0. Suppose that
λ = e iθ , with ∣θ∣ ≤ π, satisûes ∣λnk − 1∣ ≤ ε < 2 sin(π/(c + 1)) for every k ≥ 0. For the
sake of contradiction, suppose that λ ≠ 1. Without loss of generality, we can assume
that θ ∈]0, π]. Since n0 = 1, we have 2 sin(θ/2) = ∣e iθ − 1∣ < 2 sin(π/(c + 1)). hus,
0 < θ < 2π/(c + 1). Let j be the smallest positive integer such that n j+1θ ≥ 2π/(c + 1).
hen

2π
c + 1

≤ n j+1θ ≤ cn jθ ≤ 2π − 2π
c + 1

,

and thus ∣λn j+1 − 1∣ = 2 sin(n j+1θ/2) ≥ 2 sin(π/(c + 1)), a contradiction. herefore,
θ = 0. It follows fromheorem 1.2 that ((nk)k≥0 , 2 sin(π/(c+1))) is a Jamison pair.∎

he next class of Jamison sequences, considered in [2], shows that not only the
growth of the sequence matters, but also its arithmetical properties. Recall that a set
Σ = {σk ∶ k ≥ 0} of real numbers is said to be dense modulo 1 if the set Σ+Z = {σk+n ∶
k ≥ 0, n ∈ Z} is dense in R. For any η > 0, the set Σ is said to be η-dense modulo 1 if
the set Σ +Z intersects every open sub-interval of R of length greater than η.

Proposition 1.5 (Arithmetic Jamison Sequences [2]) Let (nk)k≥0 be a sequence of

integers with n0 = 1. If there exists a number 0 < η < 1 such that the set

Dη = {θ ∈ R ∶ (nkθ)k≥0 is not η-dense modulo 1}

is countable, then (nk)k≥0 is a Jamison sequence. In particular, if (nkθ)k≥0 is dense

modulo 1 for every irrational θ, then (nk)k≥0 is a Jamison sequence.

It is more diõcult to give an estimate of the Jamison constant of (nk)k≥0, since the
proof of Proposition 1.5 is based on a qualitative statement ([2, Corollary 2.11]).

heorem 1.6 (A Second Characterization of Jamison Sequences [2]) A sequence

(nk)k≥0 of integers with n0 = 1 is a Jamison sequence if and only if there exists an ε > 0
such that the set

Λε ∶= {λ ∈ T ∶ sup
k≥0

∣λnk − 1∣ < ε}

is countable.

Several other examples of Jamison sequences are presented in [1–3, 40].
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2 Background and Main Results

We start by describing the sequences (nk)k≥0 of positive integers that have the prop-
erty that given a Lie group G or a normed algebra A, powers xnk of an element x
diòerent from the identity element e escape some prescribed neighborhood of e.

2.1 NSS Sequences in Lie Groups

It is well known that the sequence nk = k + 1, k ≥ 0, has this escape property for
every Lie group G. Indeed, real or complex Lie groups have no small subgroups; that
is, there exists a neighborhood of the identity element which contains no subgroup
other than the trivial one. See, for instance, [24, Proposition 2.17] for the classical
argument, or the proof of heorem 2.9 below. he standard terminology is that Lie
groups have No Small Subgroups (or are NSS).
As part of the solution, due to Gleason, Montgomery, Yamabe, and Zippin, of

Hilbert’s û�hproblem (the topological characterization of locally compact Lie groups),
we know that, conversely, locally compact groups with no small subgroups are iso-
morphic to Lie groups. We refer the reader to the expositions in [33] or [43] for this
result and related aspects concerning Hilbert’s û�h problem.

It was proved in 1951 by Gotô and Yamabe [19] that a locally compact group G

with no small subgroups (so isomorphic to a Lie group) has the following property:
for every x ≠ e in a suõciently small neighborhood U of the identity e in G, there
exists an integer k such that x2k /∈ U . Note that powers of 2 play a special role in
the construction of (weak) Gleason metrics (see for instance [43]), a fundamental
toolkit in the solution of Hilbert’s û�h problem. It is a natural question to ask which
sequences of integers can replace the powers of 2 in the result of Gotô and Yamabe.
By sequence of integers, we will always mean a strictly increasing sequence (nk)k≥0 of
positive integers with n0 = 1.

In light of the preceding discussion, we introduce the following deûnition.

Deûnition 2.1 (NSS Sequences for Topological Groups) Let G be a topological
group and let (nk)k≥0 be a sequence of integers with n0 = 1. We say that (G , (nk)k≥0 )
is NSS if there exists a neighborhood U of the identity e of G such that if gnk ∈ U for
every k, then g = e. We say that (nk)k≥0 is NSS for a class C of topological groups if
(G , (nk)k≥0 ) is NSS for each group G in the class C.

Our ûrst main result is a characterization of NSS sequences for (real or complex)
Lie groups, in surprisingly simple terms. We write T = {λ ∈ C; ∣λ∣ = 1}.

heorem 2.2 (ACharacterization ofNSS Sequences, LieGroupsVersion) Let (nk)k≥0
be a sequence of integers. he following assertions are equivalent:

(i) (nk)k≥0 is NSS for the class of all Lie groups;
(ii) (T, (nk)k≥0) is NSS;
(iii) (nk)k≥0 is a Jamison sequence.
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Notice that the equivalence of (ii) and (iii) of heorem 2.2 follows from
heorem 1.2.

2.2 NSS Sequences in Normed Algebras

In order to prove heorem 2.2, an important step will be to prove that Jamison se-
quences are NSS for linear Lie groups, i.e., for matrix groups. he groups GLn(R)
and GLn(C) have No Small Subgroups; see for instance [24, Proposition 2.17] for an
argument valid for all Lie groups. For complex matrices the following result has been
proved as early as 1966 by Cox [10] (see also [4]): if M is a square matrix with com-
plex entries such that supn≥1 ∥Mn − I∥ < 1, then M is the identity matrix I. his result
gives themaximal radius of the ball around I in which GLn(C) has no nontrivial sub-
groups. To show maximality, takeM = δI for small δ. Cox’s result has been extended
to bounded linear operators on a Hilbert space by Nakamura and Yoshida [36] and to
arbitrary normed algebras by Hirschfeld [23] andWallen [45]. See also the related pa-
per by Wils [46]. he fact that the group of invertible elements of a complex Banach
algebra A has no small subgroups was proved as early as 1941 by Gelfand [15]; see,
for instance, the explanations in Kaplansky’s book [28, p. 88]. Notice that, by taking
completions, one can always assume that the considered normed agebra is in fact a
Banach algebra.

It seems that Chernoò [9] was the ûrst to consider powers of elements along sub-
sequences in the framework of normed algebras. In 1969, he proved that if A is a
complex normed algebra with unit e and a ∈ A is such that supk≥0 ∥a2k − e∥ < 1, then
a = e. his is the normed algebras counterpart of the result of Gotô and Yamabe [19]
for the sequence of powers of 2. Chernoò ’s result has been extended/generalized in
[18, 27].

It is thus natural to introduce the following deûnition. Recall that a unital normed
algebra with unit e satisûes ∥e∥ = 1 and ∥xy∥ ≤ ∥x∥y for every x , y ∈ A.

Deûnition 2.3 (NSS for Normed Algebras) A triplet (A, (nk)k≥0 , ε) consisting of
a normed unital algebra A with unit e, a sequence of integers (nk)k≥0 with n0 = 1
and a positive real number ε is said to be NSS if the only element a ∈ A satisfying
supk≥0 ∥ank − e∥ < ε is a = e.

Here, NSS again stands for No Small Subgroups. hen Chernoò ’s result can be
expressed shortly as “(A, (2k)k≥0 , 1) is NSS” for any complex normed algebra A.

Our second main result, which extends [18, heorem 2] and [27, Corollary 4.2], is
the following theorem.

heorem 2.4 (ACharacterization ofNSS Sequences, NormedAlgebras version) Let

ε > 0 be a real number and let (nk)k≥0 be a sequence of integers with n0 = 1. hen the

following assertions are equivalent:

(i) (A, (nk)k≥0 , ε) is NSS for any complex normed algebra A;

(ii) (C, (nk)k≥0 , ε) is NSS;

(iii) ((nk)k≥0 , ε) is a Jamison pair with ε ≤ 1.
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Note that the assumption that (C, (nk)k≥0 , ε) is NSS for the Banach algebra C of
all complex numbers is a minimal requirement to have that (A, (nk)k≥0 , ε) is NSS for
any complex normed algebra A. By considering a = 0 in the deûnition of a Jamison
pair, it is clear that the condition ε ≤ 1 is necessary in heorem 2.4.

2.3 NSS Sequences in Banach–Lie Groups and Groups with a Minimal Metric

A rather easy consequence of heorem 2.4 is that Jamison sequences are NSS for the
class of linear Banach–Lie groups. In this paper, a real (resp. complex) linear Banach–
Lie group G is a topological group for which there exists an injective continuous ho-
momorphism from G into the group of invertible elements of a real (resp. complex)
Banach algebra A. Corollary 2.5 follows directly from heorem 2.4 when one con-
siders complex linear Banach–Lie groups. he same result holds true for real linear
Banach–Lie groups, by considering the complexiûcation of real Banach algebras as in
[7, p. 68].

Corollary 2.5 (Characterizing NSS Sequences for Linear Banach–Lie Groups) Let

(nk)k≥0 be a sequence of integers with n0 = 1. he following assertions are equivalent:

(i) (nk)k≥0 is NSS for the class of linear Banach–Lie groups;

(ii) (nk)k≥0 is a Jamison sequence.

We do not know whether Corollary 2.5 can be extended to the class of Banach–Lie
groups. See Remark 4.1 a�er the proof ofheorem 2.2 for a discussion of the diõcul-
ties that arise when considering Banach–Lie groups instead of (ûnite dimensional)
Lie groups.

Problem 2.6 Let (nk)k≥0 be a Jamison sequence with n0 = 1. Is (nk)k≥0 NSS for
the class of Banach–Lie groups?

Another interesting class of topological groups that has been recently introduced
and studied by Rosendal in [41] is that of groups possessing a minimal metric.

Deûnition 2.7 (Minimal Metric [41]) A metric d on a (metrizable) topological
group G is said to beminimal if it is compatible with the topology of G, le�-invariant
(that is, d(hg , h f ) = d(g , f ) for all g, f , h in G) and, for every other compatible
le�-invariant metric ∂ on G, the map

id∶ (G , ∂) z→ (G , d)
is Lipschitz in a neighborhood of the identity e of G; i.e., there is a neighborhood U

of e and a positive constant K such that for all g , f ∈ U ,

d(g , f ) ≤ K ⋅ ∂(g , f ).

Remark that minimal metrics coincide with metrics that are termed weak Gleason

in [43], as they underlie Gleason’s results in [16]; see [41, 43]. It should be also noted
that groups with minimal metrics have no small subgroups ([41, p. 198]), and thus
locally compact groups with minimal metrics are isomorphic to Lie groups. It comes
as a natural question to ask the following.
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Problem 2.8 Let (nk)k≥0 be a Jamison sequence with n0 = 1. Is (nk)k≥0 NSS for
the class of groups with a minimal metric?

he following result provides a partial answer to Problems 2.6 and 2.8 for sequences
with bounded quotients.

heorem 2.9 (Sequences with Bounded Quotients as NSS Sequences) Let (nk)k≥0
be a sequence of integers with n0 = 1 and

sup
k≥0

nk+1

nk
≤ c < +∞.

hen (nk)k≥0 is NSS for the class of Banach–Lie groups and for the class of topological

groups possessing a minimal metric.

2.4 Sequences Characterizing Positive Operators

Jamison sequences also appear naturally in characterizations of (self-adjoint) positive
operators by the accretiveness of some of their powers. It has been proved by John-
son [26] for matrices and by DePrima and Richard [12] for operators that a bounded
linear operator A on a complex Hilbert space H is a (semi-deûnite) positive operator
if and only if all iterates An , n ≥ 0, are accretive; see also [11, 17, 44] for related results.
Recall that an operator B is said to be positive (we write B ≥ 0) if ⟨Bx , x⟩ ≥ 0 for every
x ∈ H. he operator B is accretive if ReB ≥ 0, where ReB = (B+B∗)/2. We also write
B > 0 when B is positive and invertible; notice that this is equivalent to B ≥ εI for
some positive ε. It is also true [12] that A > 0 if and only if ReAn > 0 for all n ≥ 0.
Concerning subsequences, Shiu proved in [42] that powers of 2 suõce: if ReA2k ≥ 0
for every k ≥ 0, then A ≥ 0. he same proof shows that A > 0 whenever ReA2k > 0
for every k ≥ 0.

he reader should not be surprised now that we ask which sequences can replace
the powers of 2 in Shiu’s result. he answer is obtained in the following theorems,
which give all admissible sequences characterizing positive invertible operators by the
accretiveness of some of their powers. We start with the characterization of positive
invertible operators.

heorem 2.10 (SequencesCharacterizingPositive InvertibleOperators) Let (nk)k≥0
be a sequence of integers with n0 = 1. he following assertions are equivalent:

(i) Every Hilbert space operator A for which ReAnk > 0 for every k ≥ 0 is a positive

invertible operator;

(ii) Every complex number c with Re cnk > 0 for every k ≥ 0 is real and satisûes c > 0;
(iii) he pair ((nk)k≥0 ,

√
2) is a Jamison pair.

We also have the following variant for positive operators.

heorem 2.11 (Sequences Characterizing Positive Operators) Let (nk)k≥0 be a se-

quence of integers with n0 = 1. he following assertions are equivalent:
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(i) Every Hilbert space operator A for which ReAnk ≥ 0 for every k ≥ 0 is a positive

operator;

(ii) Every complex number c with Re cnk ≥ 0 for every k ≥ 0 is real and satisûes c ≥ 0;
(iii) Every λ ∈ T such that supk≥0 ∣λnk − 1∣ ≤

√
2 satisûes λ = 1.

Remark 2.12 From heorems 2.11 and 2.10, we obtain the amusing consequence
that the following operator-theoretical implication holds true. If the assertion “every
Hilbert space operator A for which ReAnk ≥ 0 for all k ≥ 0 is a positive operator”
is true, then “every Hilbert space operator A for which ReAnk > 0 for all k ≥ 0 is a
positive invertible operator” is also true. Indeed, heorem 2.11(iii) is stronger than
heorem 2.10(iii). We are not aware of a simple argument proving this operator-
theoretical implication directly.

Remark 2.13 Notice also that there are sequences satisfying the equivalent condi-
tions of heorem 2.10 that do not satisfy the conditions of heorem 2.11. Consider
for instance the sequence nk = 3k for k ≥ 0. hen, by Proposition 1.4, (nk)k≥0 is
a Jamison sequence with Jamison constant 2 sin(π/4) =

√
2. hus, the sequence of

powers of 3 satisûes the conclusions ofheorem 2.10. On the other hand, the sequence
nk = 3k does not satisfy condition (ii) of heorem 2.11: we have Re i3

k = 0 for every
k ≥ 0.

Remark 2.14 Recall the following result, proved by Shiu in [42], and which has
been generalized in heorems 2.11 and 2.10: for a Hilbert space bounded linear op-
erator A, if ReA2k ≥ 0 for every k ≥ 0, then A ≥ 0. Shiu’s result is very sensitive to
perturbations, in the sense that replacing one term in the sequence of powers of 2 can
destroy the property above. Indeed, consider the sequence (mk)k≥0 whose terms are
given by 1, 3, 4, 8, 16, . . . , which is obtained by replacing 2 by 3 on the second place of
the sequence of powers of 2. he sequence (mk)k≥0 does not satisfy the analogue of
Shiu’s result. Indeed, we have Re (imk) ≥ 0 for every k ≥ 0. he reason is that replac-
ing one term of the sequence can drastically change the Jamison constant. Observe
that the Jamison constant of the sequence (mk)k≥0 is

√
2 (while the Jamison constant

of the sequence (2k)k≥0 of powers of 2 is
√

3). Indeed, suppose that λ ∈ T is such
that supk≥0 ∣λmk − 1∣ <

√
2. hen supk≥0 ∣(λ4)2k − 1∣ <

√
2 <

√
3, so that λ4 = 1. Since

∣λ−1∣ <
√

2, λ = 1. Hence, ((mk)k≥0 ,
√

2) is a Jamison pair. Since supk≥0 ∣imk−1∣ =
√

2,√
2 is the Jamison constant of (mk)k≥0. A recent note dealing with perturbations of

Jamison sequences is [38].

3 Jamison Sequences in Normed Algebras

Our aim in this section is to prove heorem 2.4, as well as some related results and
consequences, including, in particular, several spectral characterizations of Jamison
sequences in normed algebras (see heorem 3.2). Given an element a of a Banach
algebra A, we denote by σ(a) the spectrum of the element a, and by r(a) its spectral

radius. We write D = {λ ∈ T ; ∣λ∣ ≤ 1} and T = {λ ∈ C; ∣λ∣ = 1}.
We begin with the proof of heorem 2.4.
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3.1 Proof of Theorem 2.4

It is clear that if (A, (nk)k≥0 , ε) is NSS for any complex normed algebra A, then, in
particular, (C, (nk)k≥0 , ε) is also NSS.

Suppose now that (C, (nk)k≥0 , ε) is NSS. hen z = 1 is the only complex num-
ber satisfying supk≥0 ∣znk − 1∣ < ε. In particular, ((nk)k≥0 , ε) is a Jamison pair. By
considering z = 0, we obtain that ε ≤ 1.

Suppose now that (nk)k≥0 is a Jamison sequence and let ε ≤ 1 be a positive number
such that ((nk)k≥0 , ε) is a Jamison pair. We undertake the proof that (A, (nk)k≥0 , ε) is
NSS for any complex normed algebraA. By considering the completion of the normed
algebra, we can assume without loss of any generality that A itself is a Banach algebra.
Suppose that a ∈ A satisûes

(3.1) ∥ank − e∥ < ε

for every k ≥ 0. his implies that ∥ank∥ ≤ 1 + ε, and thus the spectral radius of a
satisûes r(a) = limk→∞ ∥ank∥1/nk ≤ 1. So σ(a) ⊂ D. Since n0 = 1 and є ≤ 1, equation
(3.1) for k = 0 implies that a is invertible. We have

(3.2) ∥a−nk∥ ≤ ∥a−nk − e∥ + 1 = ∥a−nk(e − ank)∥ + 1 ≤ ∥a−nk∥ε + 1.

herefore, ∥a−nk∥ ≤ 1
1−ε , which implies that r(a−1) ≤ 1 and σ(a−1) ⊂ D. hus r(a) = 1

and σ(a) ⊂ T. Let λ ∈ σ(a). hen ∣λ∣ = 1 and λnk − 1 ∈ σ(ank − e) for every k. Hence,

∣λnk − 1∣ ≤ r(ank − e) ≤ ∥ank − e∥ < ε,

for every k. Since ((nk)k≥0 , ε) is a Jamison pair, we obtain that λ = 1. hus,
σ(a) = {1}.

In a Banach algebra it is possible to deûne the logarithm (principal branch) of some
elements x ∈ A by the holomorphic functional calculus. In particular, for x ∈ A with
∥x − e∥ < 1, we have

ln(x) =
∞

∑
j=1

(−1) j−1

j
(x − e) j .

As ∥ank − e∥ < ε, we can write

ln(ank) =
∞

∑
j=1

(−1) j−1

j
(ank − e) j ,

and thus

∥ln(ank)∥ ≤
∞

∑
j=1

1
j
∥(ank − e) j∥ ≤

∞

∑
j=1

1
j
∥ank − e∥ j(3.3)

≤
∞

∑
j=1
ε
j ≤ ε

1 − ε

for every k. he principal branch of the logarithm satisûes the identity

ln(z j) = j ln(z) whenever − π

j
< Arg(z) ≤ π

j
,
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where Arg(z) ∈ (−π, π). Since σ(a) = {1}, we have ln(znk) = nk ln(z) in a neighbor-
hood of the spectrum of a. By the classical properties of the holomorphic functional
calculus in a Banach algebra, we have ln(ank) = nk ln(a). herefore, using (3.3),

nk∥ln(a)∥ = ∥ln(ank)∥ ≤ ε

1 − ε

for every k. hus, ln(a) = 0. Denoting by exp the exponential function, we have
exp(ln x) = x whenever ∥x − e∥ < 1. herefore, a = exp(0) = e. his proves that
(A, (nk)k≥0 , ε) is NSS. ∎

3.2 Explicit Constants for Sequences with Bounded Quotients

A generalization of the result of Chernoò quoted in the introduction has been proved
by Gorin [18]. It runs as follows: Suppose that A is a unital normed algebra, 0 < ε < 1
and the sequence (nk)k≥0 veriûes

nk+1

nk
< π − arcsin(ε/2)

arcsin(ε/2) for every k ≥ 0.

hen (A, (nk)k≥0 , ε) is NSS; see also the paper [27] by Kalton, Montgomery-Smith,
Oleszkiewicz, and Tomilov. As a consequence of heorem 2.4, we retrieve Gorin’s
result, as well as the following variant which was stated (in a slightly diòerent form)
and proved in [27, Corollary 4.2].

Corollary 3.1 (Explicit Constants [27]) Let A be a complex normed algebra and let

(nk)k≥0 be an increasing sequence of positive integers with n0 = 1 and

sup
k≥0

nk+1

nk
≤ c.

hen the triplet (A, (nk)k≥0 , min(2 sin(π/(c+1)), 1)) is NSS for complex normed alge-

bras. hus, the triplet (A, (nk)k≥0 , 2 sin(π/(c+1))) is NSS for c ≥ 5 and (A, (nk)k≥0 , 1)
is NSS whenever c < 5.

Proof he proof follows from heorem 2.4 and Proposition 1.4. ∎

3.3 Spectral Characterizations of Jamison Sequences

he following result, which is in part a strengthening of heorem 2.4, provides other
spectral characterizations of Jamison sequences. If T is a bounded operator on a com-
plex Banach space X, we denote by σ(T) the spectrum of T , and by σp(T) its point

spectrum (i.e. the set of its eigenvalues). he set σp(T) ∩ T of all eigenvalues of T of
modulus 1 is called the unimodular point spectrum of T .

heorem 3.2 (Spectral Characterizations) Let (nk)k≥0 be a sequence of integers with

n0 = 1. he following assertions are equivalent:

(i) (nk)k≥0 is a Jamison sequence;
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(ii) here exists ε ∈]0, 1] such that for every complex normed algebra A with unit e,

we have

sup
k≥0

∥ank − e∥ < εÔ⇒ a = e;

(iii) here exists ε ∈]0, 1] such that for every complex Banach algebra Awith unit e we

have

sup
k≥0

∥ank − e∥ < εÔ⇒ σ(a) is countable;

(iv) here exists ε ∈]0, 1] such that for any bounded operator T on a complex separable

Banach space X, we have

sup
k≥0

∥Tnk − I∥ < εÔ⇒ σ(T) is countable;

(v) here exists ε ∈]0, 1] such that for any bounded operator T on a complex separable

Hilbert space H, we have

sup
k≥0

∥Tnk − I∥ < εÔ⇒ σ(T) is countable;

(vi) here exists ε ∈]0, 1] such that for any bounded operator T on a complex separable

Hilbert space H, we have

sup
k≥0

∥Tnk − I∥ < εÔ⇒ σp(T) is countable;

(vii) here exists ε ∈]0, 1] such that for any bounded operator T on a complex separable

Hilbert space H, we have

sup
k≥0

∥Tnk − I∥ < εÔ⇒ σp(T) ∩T is countable.

3.4 Proof of Theorem 3.2

Let (nk)k≥0 be a Jamison sequence and let ε ∈]0, 1] be such that ((nk)k≥0 , ε) is a
Jamison pair. It was proved inheorem2.4 that (A, (nk)k≥0 , ε) isNSS for any complex
normed algebra A. his shows the implication (i)⇒ (ii). he implications (ii)⇒ (iii)
⇒ (iv)⇒ (v)⇒ (vi)⇒ (vii) are obvious.

Suppose now that (vii) holds true for some constant ε ∈ (0, 1]; that is, for every
T ∈ B(H), we have that

sup
k≥0

∥Tnk − I∥ ≤ εÔ⇒ σp(T) is countable.

We want to show that (nk)k≥0 is a Jamison sequence; the proof is a modiûcation of
a construction in [14]. Suppose, for the sake of contradiction, that (nk)k≥0 is not a
Jamison sequence. Denote by (en)n≥1 the canonical basis of ℓ2(N). It was proved in
[14,heorem 2.1] that there exists an operator T on ℓ2(N)with uncountable unimod-
ular point spectrum such that supk≥0 ∥Tnk∥ < +∞. More precisely, T has the form
T = D + B, where D is a diagonal operator and B is a weighted backward shi� with
respect to the basis (en)n≥1. We have Den = λnen for every n ≥ 1, where the λn ’s
are distinct complex numbers with ∣λn ∣ = 1, and Be1 = 0, Ben = αn−1en−1, n ≥ 2,
where the αn ’s are certain positive weights. he diagonal coeõcients λn are chosen
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using the fact that (nk)k≥0 is a non-Jamison sequence, and belong to a perfect com-
pact subset K of T. Notice that what we denote here by K is called K′ in [14] and
that it is proved in [14] that this subset is separable for the metric on T deûned by
d(nk)(λ, µ) = supk≥0 ∣λnk − µnk ∣, λ, µ ∈ T.

Let ε > 0 be an arbitrarily small number. Although it is not used in the proof of
[14,heorem 2.1], one can suppose without loss of generality that d(nk)(λ, 1) < ε/2 for
every λ ∈ K. hus, supk≥0 ∣λ

nk
n −1∣ < ε/2 for every n ≥ 1, so that supk≥0 ∥Dnk −I∥ < ε/2.

Moreover, the proof of [14, heorem 2.1] shows that the construction can be carried
out in such a way that supk≥0 ∥Tnk −Dnk∥ < ε/2. Putting these two estimates together
yields that supk≥0 ∥Tnk − I∥ < ε.

We have thus shown that if (nk)k≥0 is not a Jamison sequence, for every ε > 0
there exists a Hilbert space operator T with σp(T) ∩T uncountable such that supk≥0
∥Tnk − I∥ < ε. his contradiction shows that (nk)k≥0 has to be a Jamison sequence.

3.5 Jamison Sets of Real Numbers

Some of the results presented thus far have analogues for Jamison sequences (or sets)
in other semigroups than N. We now present a consequence of heorem 2.4 for
Jamison sets in [0,+∞).

Deûnition 3.3 Let E be a set of nonnegative real numbers. We say that E is a Jamison

set in R if for every separable complex Banach space X and for every C0-semigroup
(Tt)t≥0 of bounded linear operators on X (with inûnitesimal generator A) that is par-
tially bounded with respect to the set E (that is, supt∈E ∥Tt∥ < +∞), the set σp(A)∩ iR
is countable.

Observe that a Jamison subset of [0,+∞) is necessarily unbounded. We can, with-
out any loss of generality, suppose that 0 ∈ E. Since a Jamison set is unbounded, E
contains a nonzero element. By dividing with this number we can, without any loss
of generality, suppose also that 1 ∈ E. We recall now a characterization, obtained
in [13, Lemma 3.8 and heorem 3.9], of Jamison sets of positive real numbers. Let
F = {⌊t⌋ ∶ t ∈ E}, where ⌊x⌋ denotes the largest integer less or equal to the real
number x. Since {0, 1} ⊂ E, both F/{0} and F + 1 ∶= { f + 1 ∶ f ∈ F} are sets of
positive integers containing 1. It therefore makes sense to speak about Jamison sets
in N for these two sets: we say, for instance, that F + 1 is a Jamison set (in N) if the
strictly increasing sequence of its elements, (nk)k≥0, starting from n0 = 1, is a Jamison
sequence.

heorem 3.4 (Characterization of Jamison Sets in R [13]) Let E ⊂ [0,+∞) be a set

of real numbers such that {0, 1} ⊂ E. he following assertions are equivalent:

(i) E is a Jamison set in R;
(ii) F/{0} is a Jamison set in N;
(iii) F + 1 is a Jamison set in N.

Our aim is now to prove the following result, which gives a strong property of
Jamison subsets E ⊂ [0,+∞) that contain a neighborhood of 0 in [0,+∞). Without
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any loss of generality we can suppose that [0, 1] ⊂ E.
If E is a Jamison set with [0, 1] ⊂ E ⊂ [0,+∞), let 0 < εF ≤ 1 denote a Jamison

constant for the sequence (nk)k≥0 , with F+ 1 = {1, n1 , n2 , . . .}. We have the following
result.

heorem 3.5 (Jamison Sets and C0-semigroups) Suppose that [0, 1] ⊂ E ⊂ [0,+∞)
and that E is a Jamison set in R. Let ε > 0 be such that ε < min(εF/3, 1/3). Let X be a
complex Banach space and let (Tt)t≥0 be a C0-semigroup of bounded linear operators

on X such that

(3.4) ∥Tt − I∥ ≤ ε for every t ∈ E .
hen Tt = I for every t ≥ 0.

Proof of Theorem 3.5 Since [0, 1] is a subset of E, (3.4) implies that supt∈[0,1] ∥Tt−I∥
≤ ε. By the triangle inequality, supt∈[0,1] ∥Tt∥ ≤ 1 + ε ≤ 2. Using the notation {t} =
t − ⌊t⌋ for the fractional part of t, we have ∥T1−{t}∥ ≤ 2 for every t ≥ 0. Indeed, we
have 1 − {t} ∈ [0, 1]. Also, we have

∥T⌊t⌋+1 − I∥ = ∥Tt+1−{t} − I∥ = ∥T1−{t}(Tt − I) + T1−{t} − I∥
≤ ∥T1−{t}∥ . ∥Tt − I∥ + ∥T1−{t} − I∥ ≤ 3ε

for every t ≥ 0. So ∥Tn
1 − I∥ = ∥Tn − I∥ ≤ 3ε for every n ∈ F + 1, where F = {⌊t⌋ ∶

t ∈ E}. Since F + 1 is a Jamison set in N and 3ε < min(εF , 1), we obtain T1 = I by
heorem 2.4. herefore, Tn = I for each n ∈ N and Tt = T{t} for every t ≥ 0. Since
supt∈[0,1] ∥Tt − I∥ ≤ ε, it follows that supt≥0 ∥Tt − I∥ ≤ ε. We deduce that, for any ûxed
t ≥ 0, we have supk≥0 ∥T k+1

t − I∥ < ε. Since ((k + 1)k≥0 , 1) is a Jamison pair, it follows
from heorem 2.4 that Tt = I for every t. ∎

4 NSS Sequences in Lie Groups

We begin this section with the proof of heorem 2.2.

Proof of Theorem 2.2 Suppose that (nk)k≥0 is a Jamison sequence with n0 = 1.
According to Corollary 2.5, which follows directly from heorem 2.4, the sequence
(nk)k≥0 is NSS for the class of linear Banach–Lie groups. We now want to show that
(nk)k≥0 is NSS for a Lie group G, that is, that there exists an open neighborhood
V of the identity element e of G such that, if gnk ∈ V for every k ≥ 0, then g = e.
Without loss of any generality, we can assume that G is connected. We denote by
Ad ∶ G ↦ GL(E) the adjoint representation of G on E = Te(G), the tangent space at
e of G. Using heorem 2.4, we obtain the existence of an open neighborhoodW in
GL(E) of the identity I such that, for every M ∈ GL(E), the following implication
holds true: if Mnk ∈W for every k ≥ 0, then M = I. Consider

W
′ = Ad−1(W) = {g ∈ G ∶ Ad(g) ∈W},

which is an open neighborhood of e in G. An element g ∈ G satisfying gnk ∈ W ′ for
every k has the property that Ad(gnk) ∈W for every k. As the adjoint representation
is a group morphism, we have that M ∶= Ad(g) satisûes Mnk ∈ W for every k, and
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thus Ad(g) = M = I. As the kernel of the adjoint representation is the center of
the group, Z(G), we infer that g ∈ Z(G) (recall that the center of G is the set of all
elements commuting with all elements of the group G).

he center Z(G) is an abelian locally compact group and it is a closed subgroup
of the Lie group G. herefore, Z(G) is an abelian Lie group. Consider the connected
component G0 of Z(G) containing the identity element e. It is a connected, abelian
Lie group, and it is hence isomorphic, as a Lie group, to a group of the form Kn/Γ
where Γ is a lattice in Kn . Here, K = R or C, depending on whether G is a real or
complex Lie group. he lattice Γ has the form Γ = Zu1 + ⋅ ⋅ ⋅ + Zur , where u1 , . . . , ur
are R-independent vectors in Kn and 0 ≤ r ≤ n ifK = R, while 0 ≤ r ≤ 2n ifK = C.

Let ∥ ⋅ ∥ be a norm onKn , and let ε > 0. Let E = spanR [u1 , . . . , ur], and let F ⊆ Kn

be a real subspace such that Kn = E ⊕ F. Let x ∈ Kn , which we write as x = u + v =
∑r

i=1 α iu i+v, u ∈ E, v ∈ F, α1 , . . . , αr ∈ R. Suppose that dist(nkx , Γ) = inf γ∈Γ ∥nkx−γ∥
< ε for every k ≥ 0. Denote by P the projection ofKn on F along E. We have nk∥v∥ =
∥nkPx∥ ≤ ∥P∥ε for every k. Hence v = 0, and so x = u ∈ E. hen

inf
a1 , . . . ,ar∈Z

∥
r

∑
i=1

(nkα i − a i)u i∥ < ε

for every k ≥ 0. For every i = 1, . . . , r, let Pi denote the projection of E onto the span of
the vector u i along the space span [u j ; j ≠ i]. hen inf a i∈Z ∣nkα i − a i ∣ < ε∥Pi∥. If ε > 0
is so small that ε∥Pi∥ is less than the Jamison constant of the sequence (nk)k≥0 for
every i = 1, . . . , r, we get that α i ∈ Z for every i; i.e., that u ∈ Γ. Hence the class of x in
the quotient Kn/Γ is 0; i.e., (nk)k≥0 is NSS for the groupKn/Γ. We have thus proved
that Jamison sequences are NSS for connected abelian Lie groups, in particular for
G0.

Let V0 be an open neighborhood of e in G0, of the form V0 = V1 ∩ Z(G), with V1
an open neighborhood of e inG, such that, for every g ∈ Z(G), we have the following
implication: If gnk ∈ V0 for every k, then g = e. Let V = V1 ∩W ′, which is an open
neighborhood of e. If g ∈ G is such that gnk ∈ V for every k, then gnk ∈ Z(G)∩V1 = V0,
and so g = e. ∎

Remark 4.1 We do not know whether the proof above can be generalized to show
that Jamison sequences are NSS for Banach–Lie groups. he theory of Banach–Lie
groups diòers from that of (ûnite-dimensional) Lie groups in several aspects. For in-
stance, contrary to the case of Lie groups, closed subgroups of Banach–Lie groups are
not necessarily Banach–Lie groups (see for instance [24, p. 110]). Also, the description
of connected abelian Lie groups used above is speciûc to Lie groups (see [32, 37] for
extensions to much more general settings).

It should be also be mentioned that, according to [30] (see also [5]), a connected
(ûnite-dimensional, real) Lie group G has a continuous faithful embedding into the
group of invertible elements of some Banach algebra with its norm topology if and
only if G is a linear Lie group.

Remark 4.2 We present here an elementary proof, using the Jordan canonical form
of a matrix, that if (nk)k≥0 is a Jamison sequence, then (nk)k≥0 is NSS for the class
of compact Lie groups. Let ε ∈ (0, 1) be such that ((nk)k≥0 , ε) is a Jamison pair. It
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is known (see for instance [8, Section II]) that every compact Lie group is a matrix
group. Let A be a n × n matrix such that ∥Ank − I∥ ≤ ε for every k. hen ∥Ank∥ ≤ 1+ ε
and thus σ(A) ⊂ D = {λ ∈ T; ∣λ∣ ≤ 1}. An estimate similar to the one in equation
(3.2) shows that A is invertible and that σ(A−1) ⊂ D. hus, σ(A) ⊂ T. In fact, the
only possible eigenvalue of A is 1. Indeed, if z is an eigenvalue for A, with normalized
eigenvector x, then ∣z∣ = 1 and ∣znk − 1∣ = ∣znk − 1∣ ∥x∥ = ∥Ank x − x∥ ≤ ε for every k.
Since ((nk)k≥0 , ε) is a Jamison pair, we obtain that z = 1.

Now let L be an invertible matrix such that J = L−1AL is the Jordan canonical form
of A; that is, J = L−1AL has ones on the diagonal, zeros and ones on the superdiagonal,
and zeros elsewhere. Suppose k is a positive integer between 1 and n − 1 such that the
(k, k+1) entry of the Jordan canonical form J is 1. hen, as a simple proof by induction
shows, the (k, k+1) entry of J p is p for every positive integer p. his is in contradiction
to the fact that the sequence of the norms (∥Jnk∥)k≥0 is bounded. hus, J = L−1AL is
the identity matrix, and so the same is true for A. herefore, (nk)k≥0 is NSS for the
class of compact Lie groups.
A more direct argument can be given using a particular case of Gelfand’s theorem

(see [15] or [47]): a compact Lie group is isomorphic to a subgroup of a unitary group
and the only unitary matrix U whose spectrum is the singleton {1} is the identity
matrix.

We now move over to the proof of heorem 2.9.

5 Proof of Theorem 2.9

5.1 Proof of Theorem 2.9 for Banach–Lie Groups

he proof that sequences with bounded quotients are NSS for Banach–Lie groups is
a generalization of the classical proof that Lie groups are NSS, see for instance [24,
Proposition 2.17] or [34, heorem 2.7]; for the convenience of the reader we brie�y
sketch the argument. Let G be a Banach–Lie group and let g be the corresponding
Banach–Lie algebra. Let (nk)k≥0 be a sequence of integers with n0 = 1 and

sup
k≥0

nk+1

nk
≤ c.

Without loss of generality, we can suppose that c ≥ 2. Let B be an open neighborhood
of 0 in g for the Campbell–Hausdorò topology (see [24] for the deûnitions) such that
there is an exponential function exp that is an homeomorphism from B onto on open
neighborhood V of e in G, and is such that whenever X ∗Y belongs to B, exp(X ∗Y)
= exp(X) exp(Y). In other words, B is a local Banach–Lie group with respect to
Hausdorò multiplication. Set U = exp( 1

c B), which is an open neighborhood of e in
G, and let h /= e belong to U . We wish to show that there exists k such that hnk does
not belong to U . Let x̃ ∈ 1

c B be such that h = exp(x̃). Since h /= e, x̃ /= 0. Let us
show that there exists a k such that nk x̃ ∈ B/ 1

c B. We have n1 x̃ ∈ n1
c B = n1

n0

1
c B ⊂ B. If

n1 x̃ /∈ 1
c B, we are done. Otherwise, n1 x̃ ∈ 1

c B, and n2 x̃ ∈ n2
n1

1
c B ⊂ B, so if n2 x̃ /∈ 1

c B, we
are also done. We continue in this fashion. Since we cannot have nk x̃ ∈ B for every k,
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we deduce that there exists a k such that nk x̃ ∈ B/ 1
c B. he properties of B and of the

exponential function imply that hnk = exp(nk x̃) ∈ V/U , and this proves our claim.

5.2 Proof of Theorem 2.9 for Groups with a Minimal Metric

he proof of heorem 2.9 for groups with a minimal metric will be based upon two
auxiliary results. Recall that we denote by e the identity element of the group G.

Lemma 5.1 ([41]) Let G be a topological group with a minimal metric d. hen there

exist a > 0 and K ≥ 1 such that, for f , g ∈ G and any positive integer n, the following

statements are true:

(i) (A quantitative NSS condition) Ifmax{d(g i , e) ∶ 1 ≤ i ≤ n} < a, then

d(g , e) ≤ 1
n
⋅

(ii) (he weak Gleason property) Ifmax{d(g i , e) ∶ 1 ≤ i ≤ n} < a, then

(5.1) nd(g , e) ≤ Kd(gn , e).

(iii) (Multiplication is locally Lipschitz) Ifmax{d( f , e), d(g , e)} < a, then

(5.2) d( f g , e) ≤ K(d( f , e) + d(g , e)).

Proof he results follow from conditions (ii) and (iii) of [41, heorem 3] and from
[41, Observation 10]. ∎

Lemma 5.2 (Trapping Property) Let a and K be the constants from Lemma 5.1. Let
b > 0. If h ∈ G, n is a positive integer and

(5.3) max{d(h i , e) ∶ 1 ≤ i ≤ n} < a and d(hn , e) < b,

then

max{d(h i , e) ∶ 1 ≤ i ≤ n} ≤ min(a,Kb).

Proof Suppose that h is an element ofG such that (5.3) is true. Using (5.1), we obtain
that

d(h, e) ≤ Kd(hn , e)
n

≤ Kb

n
≤ Kb.

Suppose that n ≥ 2. Since d is a le�-invariant metric, we obtain

d(h2 , e) ≤ d(h2 , h) + d(h, e) = 2d(h, e) ≤ 2Kb
n

≤ Kb.

A similar proof shows that

d(h i , e) ≤ iKb

n
≤ Kb

for every 1 ≤ i ≤ n, which proves Lemma 5.2. ∎
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Proof of Theorem 2.9 for groups with a minimal metric Let G be a group with a
minimal metric d. Suppose that nk+1/nk ≤ c. Without loss of any generality we can
assume that c is a positive integer.

Now let x ∈ G be such that

(5.4) sup{d(xn j , e) ∶ j ≥ 1} < δ ∶= a

2K(K + c) ⋅

hus, all the n j-powers of x belong to the neighborhood Bd(e , δ). We want to show
that x = e. Set W = Bd(e ,Kδ). We will prove the following claim by induction:

For every integer k ≥ 0, all the elements x , x2 , x3 , . . . , xnk belong
to W.

(5.5)

his is surely true for k = 0, since d(x , e) < δ ≤ Kδ. Suppose that (5.5) is true for
a ûxed k ≥ 0 and consider an integer i such that nk < i ≤ nk+1. hen we can write i

as i = qnk + r for some positive integer q and for some integer r with 0 ≤ r < nk . We
have

q = i − r

nk
≤ nk+1 − r

nk
≤ c.

Using that multiplication is locally Lipschitz, i.e., condition (5.2), and the induction
hypothesis, we obtain

d(x i , e) = d(xqnk x
r , e) ≤ K(qd(xnk , e) + d(x r , e)) ≤ K(cδ + Kδ) = a

2
< a

(we have d(xqnk , e) ≤ qd(xnk , e) < cε < a, so that (5.2) can be applied). As a par-
ticular case of (5.4), we have d(xnk+1 , e) < δ. It follows from the trapping property of
Lemma 5.2 that

max{d(x i , e) ∶ 1 ≤ i ≤ nk+1} ≤ Kδ.
herefore, all the elements x , x2 , x3 , . . . , xnk+1 belong to W . By induction, the prop-
erty (5.5) holds for every k. herefore, the neighborhoodW of e contains all the ele-
ments x p , p ≥ 0. Since a topological group with a minimal metric is NSS by condition
(i) of Lemma 5.1(i), we obtain that x = e, which completes the proof. ∎

Remark 5.3 Constructing weak Gleason metrics for NSS locally compact groups
is an essential step in proving that every NSS locally compact group is isomorphic to
a Lie group. Condition (5.1) is the so-called escape property of weak Gleason met-
rics, as introduced in [43, p. 103 ò]. It is proved in [43, heorem 5.2.1] that, in the
locally compact setting, every weak Gleason metric is actually Gleason, meaning that
it satisûes a further estimate on commutators.

6 Proofs of Theorems 2.10, 2.11 and of Corollary 6.1

Since the proofs of the two theorems are similar, we only give the proof of
heorem 2.11.

Proof of Theorem 2.11 Let us ûrst prove that statements (ii) and (iii) ofheorem2.11
are equivalent. Suppose that (ii) is true; that is, every complex number c with Re cnk ≥
0 for every k ≥ 0 satisûes c ≥ 0. Let λ ∈ T be such that ∣λnk − 1∣ ≤

√
2 for every k. hen

2Re(λnk) = 2− ∣λnk − 1∣2 ≥ 0 for every k. Using (ii), we obtain that λ is a positive real
number. As ∣λ∣ = 1, λ = 1.
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Suppose now that (iii) is true. Let c be a non-zero complex number such that
Re cnk ≥ 0 for every k ≥ 0. Let λ = c/∣c∣. hen ∣λ∣ = 1 and Re(λnk) ≥ 0. herefore,
∣λnk − 1∣2 = 2−2Re(λnk) ≤ 2. Using (iii), we get λ = 1 and thus c = ∣c∣ is a nonnegative
real number.
Clearly, (i) implies (ii). In order to show that (ii) implies (i), we need to introduce

some notation and to recall some results about the numerical range and fractional
powers of operators. hese results go back to a 1962 paper byMatsaev and Palant [31];
see also [6, 29] and the references therein.

An interlude on fractional powers of operators Recall that the numerical range of
the operator T is the set

W(T) = {⟨Tx , x⟩ ∶ ∥x∥ = 1}

and that the closure of W(T) always contains the spectrum σ(T) of T . What we
will need in the proof that (ii) implies (i) are the following results, which follow, for
instance, from [29, heorems 1.2 and 2.8] (this paper deals with fractional powers
of elements of more general Banach algebras, with or without an involution). Let
T ∈ B(H) be a Hilbert space operator such thatW(T) does not contain any negative
real number. Note that, by convexity of the numerical range, this implies that W(T)
is included in a certain sector centered in the origin and of opening no greater than
π. Let m ≥ 2 be an integer.

(Existence) Under the above hypotheses, T has an m-root, S, in B(H) such that
Sm = T and the numerical range of S lives inside the sector Σ(π/m) centered in
the origin and of opening 2π/m, namely

W(S) ⊂ Σ(π/m) ∶= {re iθ ∶ r ≥ 0, ∣θ∣ ≤ π

m
}.

(Unicity) Moreover, if R ∈ B(H) is another operator such that Rm = T and
σ(R) ⊂ Σ(π/m), then R = S.

We shall use the notation T 1/m for the unique m-root of T .
Let us now go back to the proof of heorem 2.11.

Proof of Theorem 2.11, continued Assume that (ii) holds true and letAbe aHilbert
space operator such that ReAnk ≥ 0 for all k ≥ 0. hen the numerical range of Ank is
in the closed right half-plane C+ = {z ∈ C ∶ Re z ≥ 0}. In particular, W(Ank) does
not contain any negative real number.

Let c ∈ σ(A). hen, by the spectral mapping theorem, cnk ∈ σ(Ank), so cnk be-
longs to the closure ofW(Ank). hus, Re cnk ≥ 0 for every k. herefore, (ii) implies
that σ(A) ⊂ [0,+∞); in particular, the spectrum of A is included in all the sectors
Σ(π/(nk)). By the unicity result of fractional powers, we have

(Ank)1/nk = A for every k ≥ 0.

By the existence part we obtain W(A) ⊂ Σ(π/nk) for every k ≥ 0. herefore,W(A)
is a subset of the positive real axis. hus, A is self-adjoint, and in fact positive, since
ReA ≥ 0. his completes the proof. ∎
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Some generalizations are possible by considering a sequence of sectors, S(n), cen-
tered in the origin and replacing (ii) by the condition “cnk ∈ S(nk) for every k”. he
situation considered in heorem 2.11 corresponds to the case where all the sectors
S(n) are the closed right half-planeC+ ∶= {z ∈ C ∶ Re z ≥ 0}. his problem, as well as
the corresponding vectorial problem (a), have been addressed for matrices in several
papers [20–22]. We decided not to pursue this topic here.

We also obtain the following corollary, generalizing [35, heorem 1].

Corollary 6.1 Let (nk)k≥0 be a sequence of integers with n0 = 1 such that the only

complex number λ ∈ T with supk≥0 ∣λnk − 1∣ ≤
√

2 is λ = 1. hen, for a Hilbert space

operator A ∈ B(H), the following two statements are equivalent:

(i) supk≥0 ∥Ank − I∥ ≤ 1;
(ii) 0 ≤ A ≤ I.

Proof If 0 ≤ A ≤ I, then 0 ≤ An ≤ I for every n ≥ 1 and thus ∥I − An∥ ≤ 1 for every
n ≥ 1.

Suppose now that ∥I−Ank∥ ≤ 1 for every k ≥ 1. Let x ∈ H be a unit vector. We have

∣1 − ⟨Ank x , x⟩∣ = ∣⟨(I − Ank)x , x⟩∣ ≤ ∥I − Ank∥∥x∥2 ≤ 1.

his implies that z = ⟨Ank x , x⟩ satisûes Re(z) ≥ ∣z∣2 /2 ≥ 0. herefore, the numerical
range of Ank is in the right closed half-plane for every k ≥ 1. Using heorem 2.10 we
obtain that A is (self-adjoint and) positive.

Now let λ ∈ σ(A). hen λ ≥ 0 and λnk − 1 is in σ(Ank − I) for all k. herefore,
∣λnk − 1∣ ≤ ∥Ank − I∥ ≤ 1. his implies ∣λnk ∣ ≤ 2 for all k; hence, ∣λ∣ ≤ 1. hus, σ(A) ⊂
[0, 1] and 0 ≤ A ≤ I. ∎

Corollary 6.1 applies for instance to every Jamison sequence with Jamison constant
<
√
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