Commutativity, Comeasurability,
and Contextuality in the
Kochen-Specker Arguments

Gabor Hofer-Szabo*t

I will argue that Kochen-Specker arguments do not provide an algebraic proof for quantum
contextuality since, for the argument to be effective, (1) operators must be uniquely asso-
ciated with measurements and (2) commuting operators must represent simultaneous mea-
surements. However, in all Kochen-Specker arguments discussed in the literature either 1
or 2 is not met. Arguments meeting 1 contain commuting operators that do not represent
simultaneous measurements and hence fail to physically justify the functional composition
principle. Arguments meeting 2 associate some operators with more than one measure-
ment and hence need to invoke an extra assumption different from noncontextuality.

1. Introduction: The Main Argument in Brief. The aim of this article is
to challenge the view that Kochen-Specker (KS) arguments provide an al-
gebraic proof for quantum contextuality if noncontextuality is interpreted as
the robustness of a system’s response to a measurement against other simul-
taneous measurements.

As a start, it is worth discerning KS arguments from KS theorems. KS
theorems are simply mathematical theorems in the form of a coloring prob-
lem, while KS arguments are physical arguments devised to prove that quan-
tum mechanics (QM) is contextual. The KS theorems start from a family of
self-adjoint operators arranged on a hypergraph (a generalization of a graph
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where an edge can connect any number of vertices) such that the subsets of
mutually commuting operators define the hyperedges (a nonempty subset of
vertices) of the hypergraph (see, e.g., Abramsky and Brandenburger 2011;
Cabello, Severini, and Winter 2014; Acin etal. 2015). Two examples for such
a hypergraph are the Greenberger, Horne, and Zeilinger (GHZ) graph (fig. 1a)
and the Peres-Mermin graph (fig. 15). Here each hyperedge is depicted by an
unbroken line connecting four collinear vertices on the GHZ graph and three
collinear vertices on the Peres-Mermin graph.

Next, one introduces value assignments on the graph, that is, functions
assigning to each vertex one of the eigenvalues of the operators represented
by the vertex in every quantum state. Since the operators are typically pro-
jections or contractions, the assignments generally yield the numbers 0, +1,
and —1. The value assignments are, however, constrained by the so-called
functional composition principle (FUNC; see Redhead 1989, 121; Held
2018, sec. 4) requiring that if the operators on a given hyperedge stand in
a certain functional relation to one another, then the values assigned to the
operators should also stand in the same functional relation in every quantum
state.! In the case of the GHZ graph, for example, the product of the oper-
ators on every hyperedge is the unit operator +1, except for the horizontal
hyperedge, where the product is —I. In the case of the Peres-Mermin graph
the product of the operators on every hyperedge is +1, except for the third
vertical hyperedge, where itis —I. Since the eigenvalues of each operator on
both graphs are +1, FUNC allows for only such value assignments for which
the product of the assigned numbers on every hyperedge equals the product of
the operators (i.e., +1 or —1) on that hyperedge. It is easy to show that there is
no such value assignment on the two graphs in figure 1. More generally, KS
theorems provide complex hypergraphs of operators such that there is no value
assignment on the graph respecting FUNC. Some KS theorems work only in
specific quantum states; others, across all states. Thus, one can differentiate
state-dependent and state-independent (algebraic) KS theorems.

To proceed from a KS theorem to a KS argument, one needs to provide a
physical interpretation for the KS graph. To this aim, one first assumes that
QM admits an ontological (hidden variable) model. In other words, one assumes
that the quantum states are simply distributions of underlying (dispersion-
free) ontic states. Next, one associates the operators with observables and
measurements. Measurements are “lists of instructions to be implemented
in the laboratory” (Spekkens 2005, 2), and observables are physical magni-
tudes that characterize a given quantum system. In a value-definite (determin-
istic) ontological model, each observable has a well-defined value in every

1. Alternatively, the values assigned to mutually commuting operators are the eigen-
values corresponding to one of the common eigenstates of these operators.
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Figure 1. a, GHZ graph; b, Peres-Mermin graph.

ontic state. Each observable is also associated with a measurement (proce-
dure) such that the outcome of the measurement reveals (faithfully) the value
of the observable. Furthermore, each observable A and the corresponding
measurement a are represented by a self-adjoint operator a such that the val-
ues of the observable and the outcomes of the measurement are just the
eigenvalues of the operator. The exact nature of these associations will be ex-
amined below. Finally, one interprets the quantum probability of an oper-
ator’s spectral projection associated with a given eigenvalue as the probabil-
ity of the corresponding observables having the value associated with that
eigenvalue and also as the conditional probability of the outcome associated
with that value provided the corresponding measurement is performed.

On this interpretation each value assignment on a KS graph represents a
possible distribution of values in a given ontic state that the observables as-
sociated with the operators on the graph can take and that the corresponding
measurements reveal. The constraint FUNC is justified as follows. Mutually
commuting operators on a hyperedge have common eigenstates. If one pre-
pares the system in one of these eigenstates, then the functional relationship
between the operators will be realized as the functional relationship between
the outcomes of the corresponding measurements and also between the val-
ues of the associated observables. Note that to justify FUNC in an eigenstate,
the measurements need not be comeasurable (simultaneously measurable).
But what justifies FUNC in a general quantum state? Here one can come
up with three answers.

First, one can say that any ontic state featuring in the support of a general
quantum state must also show up in the support of at least one eigenstate.>
This answer, however, is not very appealing. After all, why should every
quantum state be composed of the same ontic states as the eigenstates are?

Second, one can say that the mutually commuting operators {a,} of the
graph represent simultaneous measurements {a;}, and on performing these
joint measurements one can directly observe the functional relationship in

2. Maroney and Timpson (2014) call it “operational eigenstate support macrorealism.”
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question between the joint measurement outcomes and hence (assuming
faithful measurement) between the values of the observables. Note that si-
multaneous measurements are understood here in the very physical sense,
namely, as measurements that can jointly be performed at the same time on
the same system. Also note that, although simultaneous measurements get
represented in QM by commuting operators, the converse is not true: from
the mathematical fact that certain measurements are represented by commut-
ing operators, it does not follow that these measurements can be simulta-
neously performed. We come back to this important point below.

Third, one can refer to the mathematical fact that for every set {&; } of mu-
tually commuting operators sitting on a hyperedge there is an operator b and
functions { f;} such that @, = fi(b). Thus, one can say that there is only one
single observable % with a corresponding measurement b, and the set {a;}
of mutually commuting operators simply represents the different functions
{f(#)} of this very observable. Consequently, FUNC holds trivially: it sim-
ply expresses the functional relationship among the different functions of the
outcomes of . Note that in this case the measurements { f(b)} associated with
{a,} can be called “‘simultaneously measurable” only metaphorically since one
performs only one single measurement, namely, b, and applies the functions to
the outcome.

Now we show that these latter two justifications of FUNC lead to two dif-
ferent realizations of a KS graph. To reduce metaphysics and to get closer to
the experimental testability, we eliminate the concept of observable from the
discussion and adopt an operational approach relying purely on operators
and measurements. We call an association of the operators of a KS graph
with measurements a realization of the graph. A realization is unique if each
operator on the graph is associated with only one measurement and non-
unique if some operators are associated with more than one measurement.
A measurement associated with an operator is said to be realizing the oper-
ator. Now, in the third way of justifying FUNC above, a set of operators {a; }
sitting on a hyperedge is realized by one single measurement b since the
functions f; applied to the measurement b are represented by a;. Call a real-
ization hyperedge based if there is at least one hyperedge on the graph that is
realized by (different functions of) one single measurement.

In a unique realization of the Peres-Mermin graph; for example, one has
nine different measurements associated with the nine vertices (operators) of
the graph. In a (maximally) hyperedge-based realization of the same graph,
one has only six measurements associated with the six hyperedges (three
rows or three columns) of the graph. Can this latter realization be unique?
No, it cannot, as the following simple lemma shows:

Lemma. A hyperedge-based realization in which all sets of mutually com-
muting operators represent simultaneous measurements cannot be unique.
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Proof. Let a, be an operator sitting at the intersection of two hyperedges
such that all operators (among them &,) on the one hyperedge are realized
by a measurement b. Suppose a contrario that &, is realized only by b. Now,
since mutually commuting operators represent simultaneous measurements,
the measurements realizing the operators on the other hyperedge must be
comeasurable with at least one measurement realizing @,. But there is only
one measurement realizing a,, namely, b. Therefore, the measurements re-
alizing the operators on the other hyperedge are comeasurable with b. But
then all operators on the two hyperedges either represent functions of b or
measurements that are comeasurable with . Assuming that simultaneous
measurements get represented by commuting operators, this means that all
operators on both hyperedges commute. Contradiction. Consequently, &,
cannot be realized only by b. QED

That is, a realization of a KS graph where all sets of mutually commuting
operators are realized by simultaneous measurements but some such sets
are realized by one single measurement cannot be unique. In other words,
only the above second justification of FUNC can lead to a unique realization;
the third justification always leads to a nonunique realization.

To avoid the no-go result of the KS argument, unique and nonunique re-
alizations follow different strategies. On a unique realization one blocks the
argument by assuming that at least one measurement (associated with an op-
erator sitting at the intersection of two hyperedges) can have different out-
comes in an ontic state depending on whether it is simultaneously performed
with measurements represented by operators on one or the other hyperedge.
On a nonunique realization, however, the argument can also be blocked by
assuming that different measurements represented by the same operator (at
the intersection of two hyperedges) can have different outcomes in a given
ontic state.

These two strategies for avoiding the no-go result represent two different
interpretations of (non)contextuality. On the first interpretation, noncontex-
tuality is the independence of the outcome of a measurement in every ontic
state from other measurements it is simultaneously measured with. On the
second interpretation, noncontextuality is a perfect correlation in every ontic
state between the outcomes of two different measurements represented by
the same operator.® Note that the two interpretations are different and logi-
cally independent.

Historically, the first interpretation of noncontextuality goes back to Bell,
and the second interpretation, to van Fraassen. (For a historical survey of the

3. Both definitions of noncontextuality can be generalized for probabilistic ontological
models by replacing “outcome” by “probability distribution of the outcomes.”
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notion of contextuality, see Hofer-Szabd [2021c].) Bell interprets noncon-
textuality as the “measurement of an observable must yield the same value
independently of what other measurements may be made simultaneously”
(1966/2004, 9). Van Fraassen’s contextuality, however, is based on the in-
sight that “two observables [a and b] are statistically equivalent if they have
the same probability distribution. . . . In that case they are represented in
physics by the same Hermitean operator. . . . But that does not mean that
a = b7 (1979, 158). In other words, two observables can be represented by
the same self-adjoint operator without being the same. But then, one is not
forced to assign the same value to them. Redhead (1989, 135) calls this fact
ontological contextuality.

Many authors working in the operational approach (e.g., Spekkens 2005;
Hermens 2011; Leifer 2014) follow this second interpretation. Spekkens, for
example, writes: “A noncontextual ontological model of an operational the-
ory is one wherein if two experimental procedures are operationally equiv-
alent [i.e., they are represented by the same self-adjoint operator], then they
have equivalent representations in the ontological model” (2005, 1). There
are also experiments devised to test noncontextuality in this second sense
(Mazurek et al. 2016). The general idea behind this understanding of non-
contextuality, once again, is that if two measurements—even if they are not
simultaneous—are represented by the same self-adjoint operator (which, as
van Fraassen rightly says, empirically just means that the outcome statistics
of the two measurement are the same), then it is rational to assume that in ev-
ery ontic state the outcomes (or more generally, the probability distributions
of the outcomes) of the two measurements are also the same.

I do not doubt that this is a reasonable requirement on an ontological
model.* I think, however, that this requirement is more closely related to
the special way in which QM is representing the conditional probabilities
and much less to the very concept of contextuality. If outcomes of different
measurements (defined via different “lists of laboratory instructions”) are
represented by the same projection, as happens in QM, then there might in-
deed seem to be a need for the “context” to dismantle what was put together
by the representation. But this contextuality is simply the consequence of a
special representation that does not discriminate mathematically between
that which is different physically, namely, the outcomes of different mea-
surements. Had this difference been respected by the representation, onto-
logical contextuality would not arise.

If one relies, however, on the everyday usage of the term, then “context”
refers simply to the circumstances in which a certain event, observation, or

4. However, in sec. 13, I show a simple classical ontological model in which this con-
dition is violated.
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measurement occurs. These circumstances are not constitutive in the defini-
tion of the very event or measurement but can significantly influence the oc-
currence of the event or the result of the measurement. The important aspect
ofthese circumstances, however, is that they are simultaneously present with
the event or measurement. A possible context for a measurement in physics
is another measurement that is performed simultaneously with the one in
question. (A nonsimultaneous measurement cannot provide such a context
since it lives in another possible world.) In this sense noncontextuality refers
to a kind of robustness of the definite response to a measurement on a given
system, with respect to simultaneous measurements that are also performed
on the system. I will refer to this kind of noncontextuality as simultaneous
noncontextuality. If we understand noncontextuality in this way, we just ar-
rive at the above first interpretation of noncontextuality.

I'have no objection against using noncontextuality in the second sense as
Spekkens and many others use it. However, in this article I will use noncon-
textuality exclusively in the first sense (i.e., as simultaneous noncontex-
tuality) and refer to the second one as Spekkens’s condition. My aim is to ex-
plore whether the KS arguments can prove that QM is contextual in the first
sense. The challenge is then to construct (1) a unique realization for a KS graph,
that is, to associate each operator of the graph with a different measurement
such that (2) mutually commuting operators represent simultaneous mea-
surements. We stress that points 1 and 2 are both important. Mutually commut-
ing operators must represent simultaneous measurements, otherwise FUNC,
on which the whole KS theorem is based, will not be physically justified. And
the realization must be unique since nonunique realizations realizing certain
operators by more than one measurement need to invoke noncontextuality in
the second sense, that is, Spekkens’s condition. By abandoning Spekkens’s
condition (i.e., by allowing the system to respond differently to different mea-
surements represented by the same operator) one can always block the KS
argument. In short, simultaneous measurability and unique realization are
both sine qua non in proving quantum contextuality.’

I'will proceed as follows. First, I introduce the framework of operational
theories (sec. 2) and ontological (hidden variable) models (sec. 3) and define
(simultaneous) noncontextuality (sec. 4). Then, I accommodate QM in this
framework (sec. 5); pick a simple example, the Peres-Mermin square (sec. 6);
clarify what operational theories would realize it (sec. 7); and show that the
standard spin measurement realization does not do the job (sec. 8). Next, I cat-
egorize KS arguments into three types (sec. 9), investigate the GHZ argument
as an argument of type II (sec. 10), and show that arguments of type III can
be effective only if they switch to nonunique realization (sec. 11) and if they

5. Throughout the article I will use the term “quantum contextuality” as the nonexis-
tence of a noncontextual value-definite ontological model for QM.
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assume Spekkens’s condition (sec. 12). Using a simple toy model, I compare
Spekkens’s condition and noncontextuality (sec. 13). Finally, I contrast the
KS arguments with the Bell-type arguments (sec. 14).

2. Operational Theories. An operational theory is a physical theory spec-
ifying the probability of the outcomes of some measurements performed on
a physical system prepared previously in certain states. Let s,7,... € S be
the possible states or preparations of the system under investigation. Let
a, b, ... € M’ be the basic measurements that can be performed on the sys-
tem yielding the outcomes A, B/, ... (i € 1,j € J, ...), respectively. Suppose
that the measurements are repeatable and we perform them many times and
obtain stable long-run relative frequencies for the outcomes in each state:

#A ' Nans) H#B AbAT)
#ans) = #bar) T

These relative frequencies allow us to introduce the conditional probabilities
of obtaining certain outcomes given that the system has been prepared in cer-
tain states and the appropriate measurements have been performed:

pA'lans), pB'|bar),....
We call a state s € S an eigenstate of the measurement a if
pA'lans)e{0,1} foralliel. (1)

If two measurements, say a and b, can be jointly or simultaneously per-
formed, then the joint frequencies
HA AB NaAbAs)
#anbnAs)

are also well defined, which allows us to introduce the joint conditional
probabilities:

p(A"AB’|lanb As).

Jointly or simultaneously performable measurements are also called
comeasurable.

Whether two measurements are comeasurable is a physical question. One
can measure the width and the length of a table at the same time. But one can-
not jointly check—using Arthur Fine’s example—whether a given piece of
wood is combustible and whether it can float on water. The two measurements
cannot be simultaneously performed; you cannot burn the piece of wood
while in water. Similarly, you are not going to burn the piece of wood along
with throwing it in water—unless you want to test whether the ash floats.
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Let M denote the set of all measurements (basic and joint) physically per-
formable on a system, and let the variables x, y range over the measurements
in M. The outcomes of x and y are denoted by X*and V' (k € K., | € L)), re-
spectively, and the set of outcomes of all measurements is denoted by
O = U{X*}. Similarly, let the variable r range over the preparations s,
t, ... € S of the system. An operational theory is then given by a set of con-
ditional probabilities of the outcomes for the various basic and joint mea-
surements in the various preparations:

p(X*|xAr) forallk e K, xe M, andr € S, (2)

which add up to 1 if we sum up for £.

Measurements that are not jointly measurable are not to be conflated with
disturbing measurements. Consider the following example. In the army one
performs two tests: shooting test (a) and tightrope walking (b). The two tests
are jointly measurable; soldiers can well walk on a thin rope and shoot in the
meanwhile. However, their performance in shooting is heavily influenced by
whether they are walking on a rope while shooting. Thus, two simultaneous
measurements a and b are called nondisturbing if

pAlanbar) = p(Alanr) forallielandr e S. )

p(Blanbar) =pB|bar) foralljeJandreS. 4)

For space-like separated measurements, no disturbance is equivalent to no
signaling.

A nondisturbing operational theory can be characterized in the following
compact way. First, note that there is a natural partial ordering on the mea-
surements of an operational theory that expresses “how joint” the measure-
ments are: a A b is “more joint” than a or b. Call the set of basic measure-
ments {a, b, ...} the basis of a measurement x, if x = a A b A.... Now, for
two measurements x, y € M letx > y if the basis of x is contained in or equal
to the basis of y. Using this partial ordering, an operational theory is
nondisturbing if

p(Xk|xAr) :P(Xkb”\r) forallk e K, r €S,

5
and x,y € M, such thatx > y. )

Denote by M™ the set of maximally joint measurements, that is, the set of
measurements x for which there is no other measurement y such that x > y.
For a nondisturbing operational theory it is enough to specify the conditional
probabilities (2) for all x € M™; all other conditional probabilities will then
be set by (5).
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3. Ontological Models. The role of an ontological model (hidden variable
model; cf. Spekkens 2005) is to account for the conditional probabilities of
an operational theory in terms of underlying realistic entities called ontic
states (hidden variables, elements of reality, beables). An ontological model
defines the preparations of the system in terms of distributions over the ontic
states and specifies the response of the system to the different measurements
in the different ontic states in terms of the so-called response functions. The
ontological model is successful if the conditional probabilities of the opera-
tional theory can be recovered in terms of these distributions and response
functions.

Mathematically, the provision of an ontological model starts with the
specification the set A of ontic states and a variable A running over A. To
make things simple we assume that A is countable.® Next, we associate with
each preparation a probability distribution over the ontic states,

p(\r) forallre S, (6)

and to each measurement and ontic state a set of response functions, that is, a
set of conditional probabilities,

p(X"\x/\)\) forallk €e K,, xe M, and \ € A, (7)

again with the obvious normalization.

One can also impose two natural screening-off conditions expressing the
independence of the preparations, measurements, and ontic states. The first
screening-off condition, called no conspiracy, requires that the probability
distributions do not depend causally, and hence probabilistically, on the mea-
surements performed on the system:

P(Nr) = p(N|rax) forallx € M andr e S. (8)

The second screening-off condition, called N sufficiency, requires that the re-
sponse functions do not depend on the preparations in which the ontic states
are featuring:

p(X"|x/\ N = p(Xk‘x/\)\/\r) forallke K, xe M, Ne A, andr e S. (9)
By means of (8) and (9) and using the theorem of total probability, one obtains
pXF e ar) = pXF|x ANAFP(N]F A X)

A

(10)
= SpX*|x ANp(N|r) forallk € K, x € M, andr € S.
A

6. But nothing hinges on the cardinality of A.
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That is, one recovers the operational theory from the ontological model in
terms of the probability distributions and response functions.
An ontic state N with respect to a measurement x is called value definite if

p(X*|xAN) € {0,1} forall k € K; (11)

otherwise, it is called probabilistic. Recall that one and the same A can be
value definite for the one measurement and probabilistic for the other. An
ontological model is called value definite if (11) holds for all x € M™; oth-
erwise, it is called probabilistic.

4. Noncontextuality. Ontological models, both value definite and probabi-
listic, trivially exist for an operational theory if no further constraints are put
on them. But now we require that the ontological model is noncontextual.

An ontological model is (simultaneous) noncontextual if every ontic state
determines the probability of the outcomes of every measurement inde-
pendently of what other measurements are simultaneously performed; oth-
erwise, it is contextual.

(Simultaneous) noncontextuality can be formally expressed as follows:

pX*|xAN) = pX*|lyaAN) forallk e K,, N € A, ”
and x,y € M, such thatx > y. (12)
In other words, each ontic state uniquely determines the probability of all
outcomes of a given measurement irrespective of what other measurements
are comeasured. A specific consequence of (12) is that the conditional prob-
abilities of all basic measurements will be fixed irrespective of what other
measurements they are comeasured with.

Observe, that noncontextuality (12) is almost the same requirement as no-
disturbance (5), except that the latter is required for the preparations while
the former is required for the ontic states.” Consequently, noncontextuality
provides a neat explanation for why an operational theory is nondisturbing:
if an ontological model for an operational theory satisfies noncontextuality
(12) (and also no-conspiracy [8] and A-sufficiency [9]), then the operational
theory will satisfy no-disturbance (5). Hence, the assumption of noncontex-
tuality is a kind of inference to the best explanation for the nondisturbing
character of an operational theory.

Some notes are in place here.

7. From now on, I drop the qualifier “simultaneous,” but the term “noncontextuality”
will continue to mean “simultaneous noncontextuality” as defined in (12).

https://doi.org/10.1086/712881 Published online by Cambridge University Press


https://doi.org/10.1086/712881

494 GABOR HOFER-SZABO

1) Noncontextuality (12) is a generalization of Shimony’s (1986) pa-
rameter independence for situations when the simultaneous measure-
ments are not necessarily space-like separated.

i) If a value-definite ontological model is noncontextual, then (11) will
hold for all x € M (and not just for x € M™).

iii) Noncontextuality of an ontological model does not generally imply
factorization:

P AY [xayAN) = pXF|x ANPY' |y AN)
forallk e K, leL,, Ne A, andx,y,xAy e M.

(13)

But it does if the ontological model is value definite.

iv) Noncontextuality as defined in (12) resembles the concept of non-
contextuality of Simon, Brukner, and Zeilinger (2001) but differs from
that of Spekkens (2005) and other operationalists. Below I refer to this
latter concept as “Spekkens’s condition.”

5. Quantum Mechanical Representation. On the minimal interpretation
QM is an operational theory that provides conditional probabilities for the
outcomes of different measurements in different states. Thus, the empirical
content of QM could be expressed simply by listing the various conditional
probabilities. However, in the standard formalism these conditional proba-
bilities get represented in a linear algebraic fashion. The physical system is
associated with a Hilbert space; each state r € S is represented by a density
operator p,; each measurement x € M, by a self-adjoint operator X; and the
outcome X* of x, by the orthogonal spectral projection P of % with eigenvalue
X*. The representation is connected to experience by the Born rule:

Tr(p,PY) = p(X*|xAr) forallk e K,, x e M, andr € S, (14)
where Tr is the trace function.
Now, if @ and b are comeasurable, then a A b gets represented in QM by

commuting operators & and b. But if @ and b are commuting, then @ and b
will turn out to be nondisturbing:

pAlanbar) = SpA ABlanbar) = X Tr(pPiP}) = Tr(p,P))
j j
= pA'lanr) forallielandresS
and similarly for p(B’|a A b A 7). Thus, the quantum mechanical represen-
tation of joint measurements implies that QM cannot represent comeasur-

able but disturbing measurements. In other words, only nondisturbing oper-
ational theories can have a quantum mechanical representation.
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Because it is an operational theory, one can search for an ontological model
for QM. The KS arguments are intending to rule out such an ontological model
if it is both value definite and noncontextual.® In the following sections I pick a
special KS theorem, the Peres-Mermin square (Peres 1990; Mermin 1993) and
investigate whether it can be given a unique realization, that is, an operational
theory composed of nine simultaneous measurements that does not admit a
value-definite, noncontextual ontological model.

6. An Example: The Peres-Mermin Square. Consider the following 3 x
3 matrix of self-adjoint operators:

a=501 a=1®6; ¢= 600,
d=1®6 e=601 f=60056
g =000 i1561®63 ;'E(Afz®62

where 6, 65, and 63 are the Pauli operators and 1 is the unit operator on the
two-dimensional complex Hilbert space. The operators in the matrix are ar-
ranged in such a way that two operators are commuting if and only if they are
in the same row or in the same column. Each operator in the matrix has two
eigenvalues, 1. Denote the spectral projections of the operators a, b, ¢, ...
associated with the eigenvalues +1 by PZ, P%, Pz, ..., respectively. Let the
variables X, y, and z range over the operators of the Peres-Mermin square.
Denote the spectral projections of %, y, and z by P4, PX, and P! (j, k, [ =
+1), respectively. The set of states S is represented by the set of density
operators on the two-dimensional complex Hilbert space (which also include
the common eigenstates for each subset of mutually commuting operators).

The quantum probabilities for the spectral projections of the three vertical
and three horizontal commuting triples of operators are given by the trace
formula

Tr(ﬁ,ﬁﬁf’jf’f) for all p, density operators. (15)

Now, it turns out that these quantum probabilities are nonzero only for cer-
tain combinations of spectral projections for a given commuting triple (irre-
spective of the quantum state). More specifically, for the third vertical triple
{¢, f t} the quantum probabilities are nonzero only for those combinations
of projections for which the product of the associated eigenvalues is — 1. For
the other five triples this product must be +1. That is,

8. The restriction to value definiteness is dropped in certain arguments (Mazurek et al.
2016), but here noncontextuality is defined as measurement noncontextuality a la Spek-
kens (2005) and not as in (12).
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o Jokol=—1if{%52} = {ef.i}
Tr(p,P/P;P.) # 0 only if (16)
j-k-1=+1 otherwise.

Note that these admissible combinations of eigenvalues are also associated
with the four common eigenstates of the triplet in question.

Now, these admissible combinations of eigenvalues provide a constraint
on the value assignments, that is, on the functions sending each of the nine
operators of the Peres-Mermin square to one of its eigenvalues, that is, to 1.
The constraint is that the product of the numbers in each row and column
should be +1, except for the third column where it should be —1. It is easy
to see that no such value assignment exists.

But does this no-go result prove that QM does not admit a noncontextual
value-definite ontological model? Not until the Peres-Mermin square is given
a unique physical realization.

7. An Operational Theory Realizing the Peres-Mermin Square. Con-
sider an operational theory with nine basic measurements:

a b ¢
d e f
g h i

The 3 x 3 matrix in which the measurements are arranged is to express now
comeasurability relations: measurements are simultaneously measurable if
and only if they are in the same row or in the same column.

Each measurement can have two outcomes, A%, B*, C*, ... = =£1. Let the
variables x, y, and z range over the basic measurements M”. Denote the out-
comes of x, y, and z by X, Y¥, and Z' (j, k, [ = +£1), respectively. Let the con-
ditional probability of the six different maximally joint measurements be

PXTAY AZ|xAyAzar) forallreS. (17)

Suppose furthermore that the condition probabilities of all other nonmax-
imally joint measurements can be obtained from (17) by marginalization.
Thus, (17) characterizes a nondisturbing operational theory.

Now, suppose that the operational theory (17) is a physical realization of
the Peres-Mermin square in the sense that the quantum probabilities (15)
in the Peres-Mermin square represent just the conditional probabilities (17)
via the Born rule (14). That is,

Tr(p, /PSP = p(X' AY*AZ'|x AyAzAr) forallreS. (18)
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Note that (18) is well defined since the operators on the left-hand side are mu-
tually commuting if and only if the represented measurements on the right-
hand side are comeasurable. Also note that the operational theory (17) is a
unique realization of the Peres-Mermin square, since every operator is as-
sociated with a different measurement. As we saw in the introduction, only
unique realizations can decide on the status of noncontextuality in QM. (In
sec. 11 we will see what nonunique realizations can do.)

From (16) and (18) it follows that the support of the probability distribu-
tions over the outcomes, that is, the set of possible outcomes for each max-
imally joint measurement x A y A z and each preparation » € S, is as follows:

]kl: 71 if{xa%Z} = {Cafvl}(lg
j k-1 = +1 otherwise.

p(X/AY"AZ’|xAy/\z/\r);£Oonlyif{ )
That is, the conditional probability is nonzero only for such joint outcomes
that contain an odd number of +1s and an even number of —1s in each row
and column, except for the last column where the number of + 1s is even and
the number of —1s is odd.

Does the operational theory (17) have a noncontextual value-definite on-
tological model? Assume (contrary to fact) that there is such a model with
response functions:’

PXTAY AZ |xAyanzaN) forall k€ A. (20)
Being noncontextual and value definite, the response functions are factorizing:
PXCANY ANZ | xAyazaN) = p(Xx ANp(Y |y ANp(ZTzAN), (21)

for all A € A. Thus, the ontological model can be characterized by the ex-
tremal conditional probabilities:

p(XF|xAN) € {0,1} forallx € M"and \ € A. (22)

However, the support (19) of the operational theory restricts the possible
extremal conditional probabilities. Namely, for any three simultaneous mea-
surements x, y, and z in M? and N € A, one requires that

Jok-l=—1if {x,yz} = {c.f.i}

(23)
j-k-1= +1 otherwise.

P |x ANP(Y [y ANP(Z' | zAN) = 1 only if {

Otherwise, there could be some ontic states that, if prepared (i.e., p(\|r) # 0
for some r € S), would render at least one conditional probability in (17)
nonzero outside the support (19).

9. Note that for this argument we do not need the probability distributions p(\|r).

https://doi.org/10.1086/712881 Published online by Cambridge University Press


https://doi.org/10.1086/712881

498 GABOR HOFER-SZABO

However, it is easy to see that there is no such set of conditional proba-
bilities (22) that satisfies (23). This is due to the impossibility to fill ina 3 x
3 matrix with #1s such that the product of the numbers in each row and col-
umn is +1, except for the last column where it is —1. Consequently, the
operational theory (17) does not have a noncontextual value-definite onto-
logical model.

Let me briefly reflect on the question of experimental testability of the
above operational theory. Suppose that in a real experiment the support
equation (19) cannot be sharply validated but only up to a fraction 1 — ¢
of all runs. How small should ¢ be so that a noncontextual value-definite on-
tological model for the operational theory can still be ruled out?

Suppose a contrario that the ontological model is noncontextual, and it
conforms to the measurement statistics as much as possible; that is, for all
N\ € A only one of the six constraints (23) is violated. (For example, some
A assigns +1 to all nine measurements, thus violating the constraint of the
third column but respecting the other five, etc.) There are six different triply
joint measurements (of the three rows and three columns); hence—modulo
some conspiracy—there is a 1/6 probability for any A that a certain joint
measurement will pick just that triple for which (23) is violated. Since each
such measurement will contribute to the violation of (19), (19) will be vio-
lated in one-sixth of all runs. Consequently, if in a real experiment ¢ is smaller
than 1/6, then the experiment will rule out a noncontextual value-definite on-
tological model for the operational theory.

This argument is a special case of a general argument provided by Simon
et al. (2001) and Larsson (2002) in the defense of the KS arguments against
the so-called finite precision loophole argument of Meyer (1999) and Clif-
ton and Kent (2000). As Barrett and Kent (2004, sec. 4.3) nicely point out,
the finite precision loophole is effective only if noncontextuality is defined in
terms of operators on a Hilbert space and not operationally in terms of mea-
surements—in short, only if KS arguments are understood as KS theorems.
Thus, the finite precision loophole arguments do not nullify the KS argu-
ments based on the above operational theory.

8. Do Spin Measurements Realize the Peres-Mermin Square? The only
question that remains is thus whether there exists an operational theory phys-
ically realizing the Peres-Mermin square? The first idea that comes to mind
is the standard spin measurements. Suppose that the operator 6, ® 0; (i,
j = 1,2, 3) represents the following measurement: first we perform two spin
measurements by two Stern-Gerlach magnets on a pair of spin-(1/2) parti-
cles in directions ?and]", respectively (Zf € {X,J,Z}; %, ), and Z are mutually
perpendicular), and second we check whether the outcomes of the measure-
ments on the opposite wings are the same (+ 1) ornot (—1). Denote this com-
posite measurement, symbolically, by (s; As,)*. Furthermore, let &, ® 1
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(i=1,2,3)and 1 ® §,(j = 1,2, 3) represent that we perform the spin mea-
surement only on the left and right particle, respectively. Denote these sin-
gular spin measurements, symbolically, by s; A 1 and 1 As;, respectively.
Then, the measurements realizing uniquely the Peres-Mermin square read
as follows:

a=s3A1 b=1As; c=(s3M8)
dEI/\Sl eES[/\l f‘E(SI/\Sl)i
g=(5A8) h=(51A83) i=(5:A8)

Unfortunately, only four of the six commuting subsets of operators rep-
resent simultaneous measurements: the first two rows and the first two col-
umns. Measurements in the third row and in the third column are not comea-
surable. For example, the measurements c, £, and i in the third column, that
is, the spin measurements in directions Z — Z, X — X, and y — ¥, cannot be
simultaneously performed: one cannot turn the Stern-Gerlach magnets in di-
rections Z — Z, X — X, and ¥ — y at the same time. Consequently, although

the left-hand side of (18) exists, the right-hand side is ill defined for the
third column and also for the third row. The quantum probabilities

Tr(p, PP/ P;)
Tr(p, P, P;P))
cannot be interpreted as conditional probabilities
PCAF A |cAf APAF)
PG ANH N |ghhning),
and hence their support is not defined either. So one does not have the constraint

PCle ANPE|f ANpEiaN) =1 onlyifj-k-1=—1, (4
p(Gle ANp(H| f ANpIF|iaN) =1 onlyifj-k-1 =1, (25)

for the ontic states in the third column and third row and hence cannot arrive at
the contradiction outlined above. The whole argument collapses. In short, the
standard spin measurement does not realize the Peres-Mermin square in form
of an operational theory (17) and consequently does not provide a physical
realization for a quantum mechanical scenario for which a noncontextual
value-definite ontological model could be ruled out.

Obviously, the standard realization of the above operators in terms of spin
measurements is not the only possible physical realization. One may well
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come up with another unique realization on which the measurements are
comeasurable if and only if the representing operators are commuting. How-
ever, I know of no such realization. And the burden of proofis on those who
claim that the above arrangement of operators excludes a noncontextual value-
definite ontological model for QM. An uninterpreted formalism cannot prove
anything about the outer world."’

Perhaps it is worth reflecting for a moment on the relation of commuta-
tivity and comeasurability (see Park and Margenau 1968). Comeasurability
is used in two different meanings in quantum physics. First, two measure-
ments are called comeasurable (compatible, simultaneously measurable) if,
performing them one after another, the first measurement does not alter the
outcome statistics of the second one. Obviously, this usage of the term “si-
multaneous” is metaphoric and has no bearing on the KS arguments.

The other meaning is the one we use throughout this article: two measure-
ment are comeasurable if they can physically be performed at the same time on
the same system. Note, however, that this notion of comeasurability and the
notion of commutativity are not synonymous expressions. From the simple fact
that two measurements are represented by commuting operators it does not fol-
low that the measurements are simultaneously performable. Comeasurability is
aphysical question that cannot be simply read from their representation. Simul-
taneous measurements get represented in QM by commuting operators. But the
converse is not true. Not all commuting operators represent simultaneous mea-
surements. Consider the following three pairs of commuting operators:

82,83 =0
[61 ® 03, 63®al} =0
[51 ® 0 ®61,&2®&2®31} =0,

where S, S, and ,, 6, are spin-1 and spin-(1/2) operators, respectively. Each
pair is featuring in one or another renowned KS argument: the first pair in the
original Kochen and Specker (1967) argument; the second in Peres’s (1990)
and Mermin’s (1993) version and also in Cabello’s (1997) version; and the
third in the Greenberger, Horne, and Zeilinger’s (1989) version of the argu-
ment. However, none of them can be interpreted as operators representing si-
multaneous spin measurements on pairs or triples of spin-1 or spin-(1/2) parti-
cles. But in the absence of a unique realization of a KS graph where commuting
operators represent simultaneous measurements, the no-go results do not prove
that QM does not admit a noncontextual value-definite ontological model.
How then do the above KS arguments work?

10. But one might respond: Why not to measure c, f, and i simultaneously by one single
“global” measurement (Reck et al. 1994)? We return to this question in sec. 11.
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9. Three Types of Kochen-Specker Arguments. To see the problem
more clearly, it is worth introducing the following categorization. Suppose
we are given a unique realization, that is, a KS graph and an associated op-
erational theory realizing the operators on the graph in a one-to-one manner.
Now, one can cast the KS arguments into three types according to the num-
ber of subsets of mutually commuting operators (operators on a hyperedge)
that do not represent simultaneous measurements in the associated opera-
tional theory.

Arguments of type I: All commuting subsets represent simultaneous
measurements.

Arguments of type II: All but one commuting subset represents simulta-
neous measurements.

Arguments of type III: More than one commuting subset does not repre-
sent simultaneous measurements.

There is a huge difference in the efficacy of the three types of arguments.

It is only KS arguments of type I that provide a state-independent (alge-
braic) proof for quantum contextuality, since for these arguments FUNC can
be physically justified by the probability distribution of the joint outcomes of
simultaneous measurements. Unfortunately, I am not aware of any argument
of type L. In other words, I am not aware of any unique realization of any
KS graph where all commuting subsets of operators would represent simul-
taneous measurements. Consequently, I am also not aware of any state-
independent argument proving quantum contextuality.

KS arguments of type II do exist, but they provide only a state-dependent
proof for quantum contextuality. An example is the GHZ argument. I return
to this argument in the next section.

Finally, KS arguments of type Il abound. The Peres-Mermin square with
the standard spin realization is one example: the number of commuting sub-
sets not representing simultaneous measurements is two, the three operators
in the third row and the three operators in the third column. Another example
for arguments of type III is the original KS graph with 117 vertices with the
standard spin realization. Here none of the commuting subsets represents si-
multaneous measurements since the spin measurements for three orthogonal
directions cannot be simultaneously performed. In section 11, I argue that
arguments of type III are inconclusive in proving quantum contextuality.
To get a contradiction, they need to flip to a nonunique (hyperedge-based)
realization and invoke Spekkens’s condition. However, by abandoning
Spekkens’s condition the contradiction can be avoided.
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10. Kochen-Specker Arguments of Type II. Let us see first the KS argu-
ments of type II. A prototype of such arguments is the GHZ argument. The
GHZ graph (pentagram) reads as follows:

62@1@1

01Q01®0 R0V 0:Q0®0 01Q0;K0,

—>

iolea @16,

solel

1 ® 0 ® 1 1 ® 0 ® 1

On the standard spin realization of the GHZ graph, all but one subset of the
mutually commuting operators can be interpreted as representing simultaneous
measurements. Measurements represented by commuting operators on four of
the five edges of the GHZ pentagram are comeasurable since they are per-
formed on three space-like separated subsystems. But the measurements rep-
resented by the operators on the fifth, horizontal edge are not comeasurable.

How does then the KS argument work in the GHZ case? The trick to cir-
cumvent the problem of non-comeasurability is to prepare the system in one
of the common eigenstates of the measurements on the horizontal edge."
The outcome for each measurement on the horizontal edge will then be fixed
even if the measurements are not comeasurable. The product of the possible
outcomes of the four different measurements will turn out to be —1 in each
common eigenstate. Now, the measurements on the other four lines of the
GHZ pentagram are comeasurable, and the product of their possible joint
outcomes in all states (among them in the above common eigenstates) will
be +1. This means that each ontic state in the support of these common
eigenstates needs to assign +1 to the individual measurements such that
the product of these numbers is +1 in each line, except in the horizontal line
where it is — 1. Such value assignment, however, is impossible, which rules
out a noncontextual value-definite ontological model for the GHZ scenario.

More generally, KS arguments of type I, where all but one set of commut-
ing operators represent simultaneous measurements, are all state-dependent
arguments. One needs to prepare the system in one of the common eigenstates
of the non-comeasurable measurements to “compensate” for the failure of
comeasurability of these measurements. By doing so one obtains the same
constraint on the response functions (necessary for deriving the contradiction)

11. See (1) for how an eigenstate for a measurement is defined.
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as one would obtain if the measurements were comeasurable. But note that
these argument of type II cannot be transformed into a state-independent
argument. They work only if the system is prepared in one of the common
eigenstates of the operators representing non-comeasurable measurements.

11. Kochen-Specker Arguments of Type III. Finally, let us turn to the
KS arguments of type III, that is, to arguments where there is more than
one commuting subset not representing simultaneous measurements. Here
the strategy outlined in the previous section does not work. Even if one pre-
pares the system in a common eigenstate of a set of operators representing
non-comeasurable measurements, there remains at least one other set of non-
comeasurable measurements for which the joint outcomes are not known.
This blocks the KS argument since the constraint on the ontic state coming
from this very set of measurements will be missing.

One might however raise the question: Why not simply replace a com-
muting subset not representing simultaneous measurements by one single
measurement and apply certain functions on the result? Then the comeasur-
ability problem would be solved.

Well, it is indeed a mathematical fact that for any finite set {4} of mutu-
ally commuting operators there exists an operator b and a set of functions
{f} such thata, = f,(b) (Halmos 1958). Note, however, that from this math-
ematical fact it does not follow that there also is a physical measurement b
represented by the operator b. The existence of such a measurement is a
physical question that does not automatically follow from the existence of
the operator b.

But now suppose that in a KS argument of type Il we replace every sub-
set of non-comeasurable measurements {a,} realizing {a;} by one single
measurement b such that the functions { fi(b)} also realize {a;}. Will it turn
the argument of type III into an argument of type 1?

No, it will not. Replacing non-comeasurable measurements by functions
of one single measurement renders the realization hyperedge based. But then
we face the following problem: to test noncontextuality, we need to provide
a unique realization of the KS graph and guarantee that all subsets of mutu-
ally commuting operators represent simultaneous measurements. However,
as the lemma in the introduction shows, such a realization cannot be hyper-
edge based. So we need to give up the uniqueness of the realization; that is,
we need to associate at least one operator with more than one measurement.
These measurements will be physically different but will be represented by
the same operator. Operationally this means that they have the same distribu-
tion of outcomes in every quantum state. To get the no-go result, however,
one needs to assume more, namely, that they have the same distribution of
outcomes in every ontic state, or in other words, they have the same set
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of response functions. This assumption, however, is an extra assumption,
different from noncontextuality. By abandoning it the KS argument can be
blocked (cf. Hofer-Szabo 2021a, 2021b).

To sum up, KS arguments of type III do not prove quantum contextuality
since FUNC cannot be physically justified for at least one set of mutually
commuting operators in the argument. Replacing non-comeasurable mea-
surements by functions of one single measurement does not solve the prob-
lem since either we stick to a unique realization but then some hyperedges
will not represent simultaneous measurements or we switch to a nonunique
realization but then we need to use an extra assumption in the argument. We
turn to this assumption in the next section.

12. Spekkens’s Condition. Spekkens (2005) introduced a constraint on
ontological models and called it measurement noncontextuality (see also
Liang, Spekkens, and Wisemand 2011; Leifer 2014; Krishna, Spekkens, and
Wolfe 2017). He took it to be a generalization of the quantum mechanical
noncontextuality for operational theories. I share Spekkens’s view that his re-
quirement plays an important role in the KS arguments but, as explained in
the introduction, I contest that it expresses noncontextuality.' Hence, I will
refer to Spekkens’s noncontextuality simply as Spekkens’s condition:

If the probability of an outcome of a measurement is the same as the prob-
ability of an outcome of another measurement in every preparation, then the
probability of the outcomes for the two measurements should also be the
same in all ontic states.

Formally, if for some x, ye M, ke K,,and/ € L,

p(X"|x/\r) =p(Y'|y/\r) forallr € S, (26)
then

pX|xAN) = p(Y'[yAN) forall N € A. (27)

Now, Spekkens’s condition gives rise to a line of counterfactual reason-
ing. If we measure x in a certain run of the experiment and obtain the out-
come X*, then, if the ontological model is value definite with respect to x
and y, we can conclude on the basis of Spekkens’s condition that had we
measured y, we would have obtained Y’. But note that Spekkens’s condition
is not an assumption about possible worlds but a restriction on the ontolog-
ical models for an operational theory.

12. For a criticism of Spekkens’s operational definition of measurement noncontex-
tuality—based on a criticism of operationalism—see Hermens (2011).
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Spekkens’s condition, similarly to noncontextuality (12), is also a kind of
inference to the best explanation: if (27) and also no-conspiracy (8) and A-
sufficiency (9) hold for an ontological model, then we obtain a neat explanation
why (26) holds. The explanandum in the case of noncontextuality is no dis-
turbance; in the case of Spekkens’s condition, it is the statistical match be-
tween outcomes of different measurements.

Note that Spekkens’s condition (26) and (27) is logically independent
from contextuality (12). Spekkens’s condition does not rely on simultaneous
measurability, while contextuality does. If there are no simultaneous mea-
surements in an operational theory, then each ontological model will be
noncontextual since (12) is fulfilled vacuously. Still, the model can violate
Spekkens’s condition (26) and (27) if there are measurements yielding cer-
tain outcomes with the same probability in every state and differing in their
response functions. Conversely, if premise (26) is not satisfied in an oper-
ational theory, then Spekkens’s condition is fulfilled vacuously. But if the
theory is disturbing, the ontological model can still be contextual. In a non-
disturbing operational theory, however, (26) holds for all x and y such that
x > y. Consequently, if Spekkens’s condition holds, noncontextuality will
also hold. In short, in a nondisturbing operational theory (like QM) Spek-
kens’s condition implies noncontextuality.

It is instructive to see what an ontological model that violates Spekkens’s
condition looks like. If (26) holds in an operational theory but (27) does not,
then the distributions of ontic states representing the preparations cannot be ar-
bitrary. Thus, the violation of Spekkens’s condition puts a constraint on the pos-
sible distributions of ontic states: one cannot pick arbitrarily from ontic states
when preparing the system. Preparations must be composed from the underly-
ing ontic states according to a certain pattern that is sensitive to how the ontic
states respond to certain measurements. But note that it is not an a priori truth
that any probability distribution of ontic states represents a physically possible
preparation. There may well be many physical reasons that restrict the possible
preparations of a system, and Spekkens’s condition is only one among those.

As we saw in the previous section, Spekkens’s condition plays a crucial role
in nonunique KS arguments. In these arguments certain operators of the KS
graph will be realized by two different measurements. The two different mea-
surements, however—being represented by the same operator—will have the
same outcome statistics. But this is exactly the antecedent (26) of Spekkens’s
condition. The role of Spekkens’s condition is to ensure the consequent (27),
that is, to ensure that the response functions of the two different measurements
are perfectly correlated. By this assumption the no-go result can be derived.
Thus, nonunique KS arguments heavily rely on Spekkens’s condition."

13. There are exceptions, however. In certain KS arguments, the constraint (27) is not ob-
tained via Spekkens’s condition but through some other (often counterfactual) reasonings. In
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13. A Simple Toy Model. Before concluding, it is worth reflecting once
more on the difference between noncontextuality and Spekkens’s condition
(the first and second interpretations of noncontextuality, as we called them
in the introduction) and illustrating this difference with a simple toy model.
Suppose we fill a box with balls and perform two sorts of basic measurements:
we pull a ball from the box and check its color or its size. The possible out-
comes for the color measurement are black and white; for the size measure-
ment the outcomes are big and small. Repeating the measurement many times
we get long-run relative frequencies for the various measurement outcomes.
The two measurements are comeasurable; hence, the probability distribution
over the joint outcomes can be determined. Suppose furthermore that our op-
erational theory is (1) nondisturbing, and (2) it satisfies the antecedent of the
Spekkens’s condition: for every preparation, that is, for every filling of the
box with balls, the probability of pulling a black ball using color measurement
is the same as the probability of pulling a big ball using size measurement.

We would like to construct an ontological model for our operational theory.
The model is noncontextual if, given an ontic state, the probability of all four
measurement outcomes is independent of whether we produce it by a basic or a
joint measurement. The model satisfies Spekkens’s condition if, given an ontic
state, the probability of the outcome black/white using color measurement is
the same as the probability of the outcome big/small using size measurement.

An ontological model that is both noncontextual and also satisfies Spek-
kens’s condition is as follows: there are just two types of balls in the box: one
type is black and big, and the other type is white and small. Upon measuring
the color of the first type of ball, we invariably get the outcome black inde-
pendently of whether we comeasure the size (and similarly for the other out-
comes). This model neatly explains the above two probabilistic facts, 1 and
2, of the operational theory.

But there are ontological models in which one of the two requirements is
violated. An example of a model satisfying noncontextuality but not Spek-
kens’s condition is as follows: there are now four types of balls in the box:
black and big, black and small, white and big, and white and small. However
(for some physical reason), we can prepare the box only in such a way that
there are exactly as many black and small balls in the box as there are white
and big balls. Consequently, although Spekkens’s condition is violated, we
get black balls using color measurement as often as we get as big balls using
size measurement.

Lapkiewiczetal. (2011), e.g., an experiment is devised to prove the violation of Klyachko
et al.’s (2008) inequality. To get the conclusion (“to close the pentagram”), however, the
authors needed to assume that the response of the system on two not simultaneous mea-
surements (4, and A in the paper) is perfectly correlated. This is just a constraint of

type (27).
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For an ontological model violating noncontextuality but not Spekkens’s
condition we need to change our nondisturbing operational theory into a dis-
turbing one.'* Thus, suppose that there are again two types of balls in the
box: black and big, and white and small. Performing a basic measurement
(color, size), these ontic states invariably provide the corresponding out-
comes. However, for joint measurements (color and size) the outcomes flip:
for the ontic state black and big, for example, the outcome for the joint mea-
surement will be white and small. The model is contextual but satisfies
Spekkens’s condition: the probability of getting a black ball using color mea-
surement is the same as the probability of getting a big ball using size mea-
surement in each preparation—both equal to the relative frequency of black
and big balls in that preparation.

As the toy models attest, noncontextuality and Spekkens’s condition are
different and logically independent assumptions.

14. Conclusion. I have argued that a KS argument can rule out a non-
contextual value-definite ontological model for QM in a state-independent
way only if the KS graph on which the argument is based is (1) given a unique
realization such that (2) mutually commuting operators represent simulta-
neous measurements. If one abandons 1, then—since some operators will
be realized by multiple measurements—one needs to assume Spekkens’s
condition. By giving up Spekkens’s condition, however, the no-go result
can be blocked. If one abandons 2, the constraint FUNC on the value assign-
ments cannot be physically justified. All in all, if noncontextuality is inter-
preted as the robustness of a system’s response to a measurement against
other simultaneous measurements, then KS arguments cannot provide an al-
gebraic for a proof of quantum contextuality.

It is important to note that the main thrust of this negative claim was not to
challenge the view that QM does not admit a noncontextual value-definite
ontological model. It does not. State-dependent arguments (like the GHZ ar-
gument) provide a perfect proof to this effect. The aim of the article was to
challenge the view that KS arguments can prove this fact in a purely algebraic
way based exclusively on measurements and not states (and in this sense the KS
arguments would be stronger than the state-dependent Bell-type arguments).

But how do we know whether commuting operators represent simulta-
neous measurements? Well, the formalism of QM does not give us a definite
answer. One cannot avoid going back to see what kind of measurements
the operators are representing. A special way to ensure comeasurability (in
a somewhat extended meaning) is to perform the measurements on two or

14. Since, as we saw in the previous section, in nondisturbing operational theories
Spekkens’s condition implies noncontextuality.
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more subsystems of a physical system. These subsystems are typically space-
like separated parts of a bigger system. In the case of space-like separated
measurements noncontextuality (12) amounts to a locality requirement, called
parameter independence: measurements performed on a subsystem cannot
influence the response functions of another measurement on a space-like sep-
arated other subsystem.

Noncontextuality as parameter independence plays a crucial role in the
Bell-type arguments. In these arguments simultaneous measurability is guar-
anteed by space-like separation. KS arguments, however, are designed not
specifically against locality but against noncontextuality in general. There-
fore, it would be interesting to see whether there exist such KS arguments
in which simultaneous measurability is not guaranteed by space-like separa-
tion. Obviously, the most baffling form of contextuality is nonlocality. But it
would be instructive to see whether there are other “softer”” versions of con-
textuality with no appeal to locality. To uncover such a contextuality, one
should find a family of simultanecous measurements that are performed on
the same system (and not on space-like separated subsystems) and formu-
late a KS argument based on these measurements. The comeasurability of
these measurements should then be justified by explicitly identifying exper-
imental procedures that can be performed on the same system at the same
time, like measuring the length and width of a table. Such comeasurability
would then not appeal to locality but be justified by the detailed physical de-
scription of the measurement processes. Can we come up with a KS argu-
ment where comeasurability is grounded in such a way? Does there exist a
“genuine” KS argument with no appeal to locality? I do not know the answer.

A similarly open question concerns the lack of KS arguments of type I,
where all sets of commuting operators represent simultaneous measurements
(whether realized by space-like separation or not). Why are there no argu-
ments providing a state-independent proof for quantum contextuality? Is there
a theoretical reason for their nonexistence, or are they simply not found be-
cause they are not looked for hard enough (partly due to the negligence of
the difference between commutativity and comeasurability)? Again, [ have
no answer.
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