
 Robotica (1997) volume 15 ,  pp 41 – 48 .   ÷   1997 Cambridge University Press

 Object-oriented robot programming
 Cezary Zielin ́  ski
 Warsaw Uni y  ersity of Technology , Institute of Control and Computation Engineering , ul . Nowowiejska  1 5 / 1 9 ,
 0 0 - 6 6 5   Warsaw  ( POLAND ) . e - mail :   C . Zielinski ê ia .pw .edu .pl

 SUMMARY
 The paper presents an object-oriented approach to the
 implementation of a software library (MRROC 1 ) which
 contains building blocks for the construction of
 multi-robot system controllers tailored to meet specific
 demands of a task at hand .  Moreover ,  the paper supplies
 a brief overview of robot programming methods .
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 1 .  INTRODUCTION
 Methods of robot programming can be assigned to two
 broad classes :  on-line and of f-line programming methods .
 On-line programming  utilizes the robot while the
 program is being created .   Of f-line programming  does not
 use the robot to write the program .

 1 .1 .  On-line programming
 On-line programming is based on teaching a robot the
 trajectories it has to follow .   Teaching  is done by leading
 the robot arm through a sequence of motions and
 recording these motions ,  so that later they can be
 replayed automatically .  The arm during teaching can be
 propelled either manually (i . e .  the operator uses his
 muscles to shift the arm from one position to the other)
 or by its drives (i . e .  the operator uses the joystick ,  the
 keyboard of the teach pendant ,  or a scaled down replica
 of the manipulator to command the drives to appropriate
 positions) .  Regardless of the way of propelling the arm
 during teaching ,  there are two ways of recording the
 trajectory of the arm motion .  In the PTP (Point To
 Point) method the arm is transferred to each
 characteristic point of the trajectory ,  stopped there ,  and
 by pressing a special button on the control panel ,  this
 position is memorized by the control system .  During
 playback the robot arm goes through these points using
 some form of interpolation between them .  In the CP
 (Continuous Path) method ,  as the arm is transferred ,  the
 positions are being recorded automatically at constant
 intervals of time .  As the points are very near each other
 no special interpolation routines are necessary .
 Moreover ,  the motions can be played back with dif ferent
 speeds by changing the time base (the interval of time
 allowed for reaching the next point) .

 The main advantage of teaching is its simplicity ,  so
 that even an operator with virtually no qualifications can
 do it .  The main drawbacks of this method ,  in its pure
 form ,  are that :  it is very dif ficult to incorporate the data
 gathered by sensors ,  no documentation of the program is

 created ,  it is easier to create a new program than to
 modify an old one ,  and last but not least ,  during teaching
 the robot is occupied by the programming and not by the
 production task .

 1 .2 .  Of f-line programming
 Of f-line programming is based on textual means of
 expressing the task that the robot system has to
 accomplish .  The task is expressed in a  robot program-
 ming language  ( RPL ) .  This can be either a specially
 defined language for robots or a universal  computer
 programming language  ( CPL ) .  The advantage of using
 RPLs is associated with making the robot more
 productive (e . g .  it is not used for programming) ,  the ease
 of utilization of sensor data ,  and creation of program
 documentation .

 To make a robot more productive ,  the phase in which
 it is required for programming has to be as short as
 possible .  In other words ,  robot programming has to be
 made independent of the robot .  The program is
 developed of f-line and later only loaded to the control
 system for execution .  The problem with this approach is
 that although currently manufactured robots feature high
 repeatability ,  they exhibit low accuracy .  This necessitates
 the calibration of the program created of f-line .  As the
 solution to this is an open research problem 1 ,  the
 industrial robots used currently cannot be programmed
 strictly of f-line .  Nevertheless ,  RPLs draw quite a lot of
 attention .  The solution to the calibration problem is one
 cause of this and the other is the simplification of coding
 programs in these languages .  In addition ,  only RPLs fully
 solve the problem of sensor integration .

 Every programming language operates on specific
 abstract concepts .  An instruction of a language is
 composed of one or more keywords and zero or more
 arguments .  These arguments express abstract concepts .
 Computer languages operate on variables of dif ferent
 types .  The values of these variables describe the state of
 certain abstract notions .  The instructions ,  and therefore
 the languages ,  are classified according to the abstract
 notions they refer to .

 The main instructions of RPLs are the ones causing
 the motion of the ef fectors ,  i . e .   motion instructions .  The
 abstract notions that these instructions refer to are :  the
 manipulator joints ,  the end-ef fector or the objects of the
 work space .  These notions are used to express the state
 of the ef fectors .

 Each of the enumerated notions creates a certain
 virtual environment ,  in which the instructions of the

https://doi.org/10.1017/S0263574797000064 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000064


 42  Robot programming

 language operate .  The  virtual environment  is a model of
 a robot system as perceived by the programmer through
 the programming language he uses .  In other words ,  those
 elements which had been considered important were
 selected from the real environment to constitute the
 virtual environment .  Only some elements of the real
 environment (including the robot) are the basis for
 creating abstract notions that compose the virtual
 environment .  The virtual environment is a simplified
 model of the real environment .  On the degree of this
 simplification and on the abstract notions that were
 chosen to make up the virtual environment depends the
 complexity of the control system of a robot .  The
 programmer through each level of the control structure
 perceives the real environment as a simplified model—he
 perceives the virtual environment .  In the case of RPLs
 the above-mentioned abstract concepts are hierarchically
 related and so these languages can be classified into
 levels . 2  It should be noted that the virtual environment is
 a certain abstraction of the robot system .

 The languages of the lowest level are called  joint le y  el
 languages .  The instructions of those languages cause the
 generation of sequences of signals controlling the drives
 of the manipulator .  Hence ,  in this case the manipulator
 joints form the virtual environment .  The design of a
 control system accepting these instructions is quite
 routine ,  but to forecast how the tool will behave when all
 the drives are in motion is not as simple .  For
 simplification of the design we have to pay the price of
 the programming complexity .  Because of the dif ficulties
 associated with using such languages they are no longer
 implemented .

 The languages of the next level free the users from this
 disadvantage (e . g .   AML 3 , 4 , RCCL 5 , 6 , KALI 7 , 8 , RORC 9–11 ) .
 The main concept of the virtual environment of this level
 is the manipulator’s end-ef fector ,  so these languages are
 called the  manipulator le y  el languages .  Although it is
 easy to predict the trajectory of the robot tool when
 using languages of this level ,  the programmer still has to
 be concerned with the description of all the motions of
 the manipulator instead of simply stating what actions
 have to be performed to accomplish the task .

 The instructions of  object le y  el languages  (e . g .   AL , 12 , 13

 RAPT , 13 , 14  TORBOL , 9 , 13 , 15 , SRL , 4   PASRO 4 , 16 ) operate
 in virtual environments composed of models of objects
 existing in the work space .  The programmer states only
 which objects should be transferred ,  so that the task will
 be accomplished .  The robot control system ,  using its
 knowledge of the objects and the relations between
 them ,  will relocate the manipulator in such a way so as to
 complete the job .  From this level onward the
 programmer does not have to busy himself with the
 motions of the robot arm ,  but can concentrate on the
 operations that have to be executed .

 On the fourth level ,  the  task level ,  instead of
 specifying all operations ,  only a general description of
 the goal should suf fice (e . g .   AUTOPASS 1 7 ) .  In this case
 the control system has to generate the plan of actions ,
 and later carry it out .  The prime dif ference between the
 third and fourth level languages is that to express tasks in

 the former we supply the plan of actions and in the latter
 the plan is generated automatically .

 1 .3 .  Hybrid programming
 The drawbacks of pure of f-line and on-line programming
 methods caused an intensive search for solutions of the
 afore-mentioned problems .  One of the solutions consists
 in enhancing teaching by a textual method of
 programming— hybrid programming .  In this case the
 control system is equipped with an interpreter of a
 language and only the arguments of motion instructions
 are supplied by teaching .  In many cases the program can
 be created of f-line and only these arguments are supplied
 on the factory floor .  This solution partially eliminates the
 problems of handling sensors and program calibration ,
 but still the robot is not productive during tecahing .  In
 this case program documentation is obtained too .

 VAL II 1 8  can be treated as a hybrid robot
 programming language ,  because besides the possibility of
 supplying numeric arguments to the motion instructions
 (e . g .   MOVE , MOVES ) ,  the location to which the arm is
 commanded can be taught-in .  The arm is transferred to
 the goal location by the teach-pendant .  This location will
 be stored as an argument of the motion instruction when
 it is typed in .  Usually ,  not many of such locations have to
 be taught-in .  The remaining locations that the robot arm
 must attain either do not have to be stated very precisely
 or can be specified in relation to the exact ones that have
 been taught-in .

 Until the calibration problem has been solved
 satisfactorily ,  some form of ‘‘calibration by teaching’’ will
 have to exist ,  so the hybrid programming will be used
 rather than the pure of f-line method .  Nevertheless ,  the
 of f-line component of programming will be dominating ,
 especially due to the tendency of incorporating sensors
 into modern robotic systems .

 1 .4 .  Open structure programming systems
 Till now over a hundred robot programming languages
 have been implemented .  Partial surveys of  RPLs  can be
 found in references 4 and 9 .  Unfortunately ,  most of
 RPLs have only single-site implementations ,  and their
 manuals are unavailable .

 Quite a considerable ef fort has been concentrated on
 developing new robot programming languages ,  both
 specially defined for robots , 4 , 13 , 15  and computer program-
 ming languages enhanced by libraries of robot specific
 procedures . 4 , 5 , 11 , 19  Specialised languages exhibit a closed
 structure .  If new hardware is to be added to the system ,
 usually some changes to the language itself have to be
 done .  Especially ,  if new sensors are to be incorporated
 this problem arises ,  both because the hardware specific
 software has to be supplied and because the method of
 sensor reading utilisation in motion control has to be
 coded .  Those changes have to be reflected in the
 language and this brings about the necessity of modifying
 the language compiler or interpreter .  Obviously we can
 try to make the language very universal by taking into
 account as many types of robots and sensors as possible ,
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 but then most of the capabilities of the language will
 remain unused when programming a stable configuration
 system and will render the language dif ficult to master
 and implement .  Because of this ,  robot programming
 languages / libraries submerged in universal computer
 programming languages are currently favored by robotics
 research community .  Such programming systems have an
 open structure .  Whenever the robot system has to be
 enhanced new hardware specific procedures are ap-
 pended to the library / language and the universal
 language compiler remains unaltered .

 This paper shows how such an open structure system
 can be designed and programmed on an example of a
 controller made for a new robot prototype .  Once
 it is made certain that an open structure
 control / programming system has to be designed ,  one has
 to decide what programming methodology will be used
 and hence what implementation language platform to
 apply .  This choice has to be made very carefully in the
 case of open structure systems ,  because not only is the
 language platform the means of implementing the
 library ,  but also it will be used by the future
 programmers as a means of expressing the tasks that the
 system will have to execute .  Wrong choice made here
 can result either in dif ficulties with the implementation of
 the library or dif ficulties in programming future tasks or
 both .  The most frequently utilised language platform has
 been either  Pascal , C  or  C 1 1  very recently .  Large
 libraries of robot specific procedures for the creation of
 both single- and multi-robot controllers have been
 designed ,  e . g .  in  C :   RCCL , 5   ARCL , 1 9   RCI , 6   KALI , 7 , 8 , 20

 RORC ; 9–11  MRROC ; 9 , 21  in  Pascal :   PASRO , 4   ROPAS 22 :
 in an object-oriented version of  Pascal :   ROOPL ; 2 3  and
 in  C 1 1 :   ZERO 1 1 . 2 4

 While designing a controller for a new experimental
 manipulator with an arm of serial-parallel structure 2 5

 exhibiting a very rigid structure ,  the following assump-
 tions were made :

 $  the controller should have an open structure
 facilitating any robot control investigations ,  e . g .
 external sensor incorporation and utilisation ,  trajectory
 planning and generation ,  research of servo-control
 algorithms ,

 $  the controller should treat the new manipulator as one
 of many it will control ,

 $  it should have a user-friendly operator interface ,
 $  it should be easy to create a controller tailored exactly

 to a research task at hand by building it of ready
 library blocks (objects) or new procedures and
 processes that can be easily coded .

 To fulfil the above requirements it was decided that
 object oriented programming methodology (not to be
 mistaken with object level RPLs) will be most suitable
 for the task ,  so a concurrent version of  C 1 1  running on
 top of a multi-computer real-time operating system
 QNX-4  was chosen as an implementation platform .  A
 formal approach to designing such controllers presented
 in reference 9 ,  11 and 21 has been followed .  The paper
 shows the formal design approach followed ,  the obtained

 generic structure of the controller and how this structure
 is implemented by  C 1 1  classes ,  objects ,  methods and
 processes ,  i . e .  object-oriented programming paradigm .

 2 .  STRUCTURE OF MULTI-ROBOT SYSTEMS
 An open multi-robot system containing cooperating
 devices and equipped with diverse sensors is considered .
 No assumption is made as to what tasks will be
 performed by the system .

 A multi-robot system is composed of three subsystems :
 ef fectors  (manipulator arm or arms ,  tool and the devices
 cooperating with the robot) ,   receptors—real sensors ,  and
 the  control subsystem  (i . e .  memory :  variables ,  program
 and program execution control) .  The state  s  P  S  of such a
 system is denoted in the following way :

 s  5  k e ,  r ,  c l ,  s  P  S ,  e  P  E ,  r  P  R ,  c  P  C ,  (1)

 where :

 s  —the state of the system ,
 e  —the state of the ef fectors ,
 r  —the state of the real sensors ,
 c  —the control subsystem state ,

 S  —the system state space ,
 E  —the ef fector state space ,
 R  —the real sensor reading space ,
 C  —the control subsystem state space .

 Since the data supplied by hardware sensors cannot
 directly be utilised in motion control it has to be
 processed to obtain an aggregate that can be used for
 trajectory modification or generation .  This aggregate is
 named the virtual sensor reading .

 f  5  f y  ( r ,  e ,  c )  (2)

 where :   e  is the state of ef fectors ,   r  is the state of
 receptors (hardware sensors) and  c  is the state of the
 control subsystem .

 The control subsystem is responsible for computing
 motion trajectories for the ef fectors using its internally
 stored data ,  current state of the ef fectors and the virtual
 sensor readings .

 The system state  s  is decomposed by taking into
 account several distinct ef fectors and that rather
 aggregated sensor readings  v  than real sensor readings  r
 are used by the control subsystem to compute a motion
 trajectory .

 s  5  k e 1  ,  .  .  .  ,  e n e
 ,  y  1  ,  .  .  .  ,  y  n y

 ,  c l  (3)

 where :   n e   is the number of distinct ef fectors in the system
 ( e  5  k e 1  ,  .  .  .  ,  e n e

 l ) and  n y   is the number of virtual sensors
 ( v  5  k y  1  ,  .  .  .  ,  y  n y

 l ) .  For the purpose of this paper the
 subsystems and their state are denoted by the same
 symbols .

 To calculate the next ef fector state some computations
 have to be done .  Those computations are done by the
 control subsystem .  Obviously they can be done by a
 single centralised control subsystem ,  but a much better
 and clearer structure is obtained ,  if the state of the
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 control subsystem  c  is partitioned into  n e  1  1 parts .  As a
 result the following is obtained :

 c  5  k c 0  ,  c 1  ,  .  .  .  ,  c n e
 l  (4)

 Each subsystem  c l  , l  5  1 ,  .  .  .  ,  n e  ,  is responsible for
 controlling an ef fector associated with it ,  and the
 subsystem  c 0  is responsible for the coordination of all
 ef fectors .  Hence ,  with each of the ef fectors  e l  ,
 l  5  1 ,  .  .  .  ,  n e   an Ef fector Control Process is associated .
 Its state is expressed by  c l  , l  5  1 ,  .  .  .  ,  n e .  The
 coordinating process is called the Master Process (MP)
 and its state is expressed by  c 0  .

 Each control subsystem part  c l   in conjunction with the
 part  c 0  is responsible for calculating the next state  e c l

 (calculated state) of the ef fector  e l   (current state) and
 causes  e l   to become equal to  e c l

 ,  i . e .  executes a motion
 step .  Treating the system as a discrete time system ,  the
 next state of each of the ef fectors can be computed by a
 transfer function  f e l

 :

 e i 1 1
 c l

 5  f e l
 ( e i

 l ,  y  i
 1 ,  .  .  .  ,  y  i

 n y
 ,  c i

 0 ,  c i
 l ) ,  l  5  1 ,  .  .  .  ,  n e  (5)

 The Master Process and each ECP are responsible for
 computing adequate transfer functions  f e l

   and executing
 the related motions .  The state of each part of the control
 subsystem ,  is the following :

 c i 1 1
 0  5  f c 0

 ( e i
 1 ,  .  .  .  ,  e i

 n e
 ,  y  i

 1 ,  .  .  .  ,  y  i
 n y

 ,  c i
 0 ,  c i

 1 ,  .  .  .  ,  c i
 n e

 )

 c i 1 1
 l  5  f c l

 ( e i
 l ,  y  i

 1 ,  .  .  .  ,  y  i
 n y

 ,  c i
 0 ,  c i

 l ) ,  (6)

 Relationships (6) and (5) (the lists of function arguments
 exactly) show the interactions between the parts of the
 system and hence point out what communication links
 have to be established between the subsystems .

 Each virtual sensor  y  p  , p  5  1 ,  .  .  .  ,  n y   is implemented
 as a process running concurrently to other Virtual Sensor
 Processes and the Ef fector Control Processes .  In
 consequence of (2)

 y  i
 p  5  f y  p

 ( r i ,  e i
 l ,  c i

 0 ,  c i
 l )  (7)

 is obtained ,  where  e l   is the state of the  l - th  ef fector (the

 Fig .  1 .  Hierarchical structure of a multi-robot controller .

 one associated with  y  p ) .  Here it is assumed that only a
 single ef fector influences directly a virtual sensor ,
 because only this ef fector can directly change the state
 (or rather the configuration) of the real sensors that are
 mounted on it .  It is envisaged here that real sensors fixed
 to dif ferent ef fectors will not form a single virtual sensor .
 Usually  f y  p

   depends only on  r i .
 The above mentioned theoretical considerations

 suggest not only the components of the system but also
 the connections between them (Figure  1) .  This structure
 has to be implemented ef fectively by using the resources
 supplied by the real-time operating system and the
 implementation language .  In the case of the multi-robot
 system in Warsaw University of Technology the structure
 has been implemented in the following way .  Each
 Ef fector Control Process creates Virtual Sensor Proc-
 esses according to the needs of control of motion .  The
 Ef fector Control Processes in each step  i  obtain data
 from the Virtual Sensor Processes .  Both kinds of
 processes can be treated as device dependent drivers .  In
 this way ,  if only one component of the system is changed
 the remaining components remain unaltered .

 The processes communicate through messages .  The
 communication of each Ef fector Control Process with the
 Virtual Sensor Processes it uses can be of two kinds :
 interactive (Figure  2) and non-interactive (Figure  3) .  In
 the case of interactive communication the Ef fector
 Control Process sends a data request message to an
 adequate Virtual Sensor Process .  The Virtual Sensor
 Process reads the real sensors ,  aggregates the obtained
 data and sends the result to the Ef fector Control Process .
 In the case of non-interactive communication the Virtual
 Sensor Process reads the real sensors ,  aggregates data
 and leaves the resulting reading in a buf fer without any
 request from any Ef fector Control Process .  An Ef fector
 Control Process can access sensor data immediately by
 reading the buf fer where the aggregated data is stored .

 A more elegant structure of the software component
 of the system can be obtained ,  if each Ef fector Control
 Process is partitioned into ECP proper and the Ef fector
 Driver Process EDP .  The Ef fector Driver is responsible
 for :

 $  transformation of end-ef fector coordinates into joint
 coordinates and vice versa ,

 $  transformation of joint coordinates into motor control
 increments and vice versa ,

 $  transmission of the set-values to the servo-drives ,
 $  transmission of servo status to upper levels of control

 structure ,
 $  computation of the servo-control algorithm .

 The ECP proper ,  in this case ,  is responsible for trajectory
 generation ,  when the robots loosely interact or are not
 related to each other .  In the case of cooperative action of
 the robots ,  the ECP proper simply transmits the
 commands of the Master Process ,  which acts as a
 coordinator .  This structure was utilised in the Multi-
 Robot Research-Oriented Controller MRROC 1
 (Figure  4) .  Large portions of MRROC 1  have been
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 Fig .  2 .  Interactive method of reading sensor data .

 implemented using object oriented programming
 methodology .

 3 .  OBJECT ORIENTED PROGRAMMING—OOP
 Object-oriented programming (OOP) methodology
 evolved from structured programming .   Structured
 programming  is a method of describing a programming
 task in a hierarchy of modules ,  each describing the task
 in increasing detail ,  until the final stage of coding is
 reached (programming by step-wise refinement) .  Strict
 adherence to modules renders GOTO instructions
 unnecessary ,  in ef fect exhibiting a clear program
 structure .  Nevertheless ,  initially structured programming
 treated data and algorithms operating on this data as two
 separate entities— procedural programming .  The  object-
 oriented programming  paradigm integrates data and
 procedures .  An  object  is a collection of  data  (variables of
 appropriate type ,  which should be treated as  fields  of a
 record )   and  procedures  and  functions ,  which are called
 methods ,  operating on these variables .  Several properties
 characterise an  object - oriented programming language  : 2 6

 $  encapsulation —treating  data  and  code  operating on it
 as one entity—an  object .

 $  inheritance —defining a hierarchy of  objects  in which
 each  descendant object  acquires all the properties of
 the  ancestor objects  (access to  data  and  code  of the
 ancestors )   and receives some new properties specific to
 the newly created  object .

 $  polymorphism —using the same name for an action
 that is carried out on dif ferent objects related by
 inheritance .  The action is semantically similar ,  but it is
 implemented in a manner appropriate to each of the
 individual  objects of the hierarchy .

 $  exceptions —separate code for ordinary situations and
 for error handling .

 Fig .  3 .  Non-interactive method of reading sensor data .

 $  o y  erloading —change of operator semantics for new
 data types .

 OOP methodology assumes that certain abstract  objects
 will be defined by the programmer .  These  objects  have
 their properties ( data ) and exhibit behaviours ( methods ) .
 The program is written in terms of  objects  behaving in
 such a way so as to change their properties ,  i . e .  applying
 methods  to change  data .

 A  class  is a template of  objects  having the same
 structure (i . e .   data fields  and  methods ) . Objects  are
 instances of  classes .  Many objects can be instances of the
 same  class  and so will have the same properties ,  but
 usually a dif ferent state (e . g .  values of data fields) .  The
 relationship between  objects  and  classes  is similar to the
 relationship between  y  ariables  and  data types .

 At this point the misunderstanding which can arise
 from the traditional use of the term ‘ object ’ in ‘ object
 le y  el robot programming languages ’ and in ‘ object -
 oriented programming languages ’ (this time  CPLs ) has to
 be clarified .  In the case of  RPLs  the notion of an ‘ object ’
 pertains to the real objects that are located in the robot’s
 environment or to abstract models of these objects
 represented in a  RPL .  In the case of the  CPLs  the term
 ‘ object ’   represents an abstract notion ,  which encapsulates
 data  and  code ,  and possesses the properties of  inheritance
 and  polymorphism .

 This paper describes the application of OOP
 methodology to the creation of a manipulator level  RPL
 ( object  library to be strict) .  For this purpose  C 1 1
 language was used .

 Fig .  4 .  Structure of  MRROC 1 .
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 4 .  OOP IMPLEMENTATION OF  MRROC 1
 The overall structure of the system is dictated by
 theoretical considerations of section 2 which resulted in
 the division of the system into independent processes
 running concurrently either on separate computers
 connected into a network or on a single computer in a
 time-sharing fashion or both .  The choice is made by the
 programmer implementing a specific task .  The OOP
 paradigm can be used only within the scope of each
 process separately .  Nevertheless the communication
 buf fers treated as  classes  can be shared by two processes
 communicating with each other .  Each process has to do a
 job of its own and has to communicate with its neighbors
 obtaining data from them and in return delivering the
 results of its processing .  This will be examplified by
 explaining in more detail the functioning of the Ef fector
 Driver Process EDP which itself is composed of several
 sub-processes (Figure  5) .

 The EDP receives commands from its corresponding
 ECP .  The commands are (Figure  6) :

 $  synchronise the robot ,
 $  SET :  tool definition ,  arm pose ,  outputs ,
 $  GET :  tool definition ,  arm pose ,  inputs ,
 $  SET and GET simultaneously .

 SETting an end-ef fector pose results in an arm motion
 and GETting the arm pose results in reading its current
 position and orientation .  The tool definition can be
 specified in several ways :  homogeneous transformation ,
 X ,  Y ,  Z coordinates in relation to the wrist flange and
 several sets of orientation angles (e . g .  Euler) or by using
 an angle and axis notation .  The arm pose can be
 specified in the above manner too and moreover using

 Fig .  5 .  Internal structure of the Ef fector Driver Process .

 Fig .  6 .  List of EDP commands .

 joint variables and motor increments .  The coordinates
 can be relative or absolute .

 This variety of command argument combinations
 causes the inter-process message to have variable
 structure .  Since at both ends of the communication
 channel the message buf fer has to have the same
 structure its definition has to be shared by both
 communicating processes ,  so a single  class  is defined for
 both .  On both ends of the communication channel
 dif ferent actions are performed on the buf fer (one
 process loads it and the other unloads it and interprets its
 contents) ,  so the buf fer is enclosed in another  class  that is
 specific to each of the processes .  Moreover each process
 performs its specific actions on the obtained data .  This
 data and the actions ( methods ) are contained in a process
 specific  class .  Actually this  class  is the only one that the
 future user might want to alter .  This would happen in a
 rather unusual case for a stable configuration system
 when ,  for example ,  a servo-controller would have to be
 changed ,  but when a new robot is added to the system a
 new EDP has to be written and so the joint
 servo-regulators and coordinate transformer for a
 dif ferent kinematic structure of the arm would have to be
 coded .  The OOP methodology enabled the accumulation
 of the code and data that has to be altered into two
 classes  (e . g .   transformer  and  regulator ) rendering the
 inclusion of a new robot in the system relatively simple .

 Finally a single  class  is derived from the three classes ,
 i . e . :  process specific class ,  input and output buf fer classes .
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 Hence ,  within a process single  object  exists which inherits
 its properties from all of the three component  classes .
 This method of coding has been replicated for :
 EDP – MASTER ,  READING – BUFFER and all of the
 SERVO processes (Figure  7) .  In the case of EDP –
 MASTER the transformer  class  is responsible for all
 coordinate transformations and in the case of SERVO
 processes the  regulator  class  stores control data and
 computes the servomotor control algorithm .  The derived
 classes  are responsible for the inter-process
 communication .

 For a number of reasons errors can occur during
 computations .  Three types of errors can occur :
 $  non-fatal errors ,
 $  robot fatal errors and
 $  system fatal errors .
 A reaction to each type of errors has to be dif ferent due
 to dif ferent causes of errors and possible remedies .
 Non-fatal errors are due to invalid parameters of
 commands external to the driver and result in
 computation errors .  Robot fatal errors are due to
 improper functioning of robot hardware .  From the above
 mentioned errors the controller must be able to recover
 and continue functioning .  System fatal errors are caused
 by improper functioning of the computer network or are
 due to errors in the EDP software itself .  In this case the
 operator has to be informed about the cause of the
 problem and the system has to be halted .  In  MRROC 1
 the first two kinds of errors are treated as  exceptions  and
 adequate  exception handlers  deal with them separately .
 Separation of the code dealing with errors from the code
 handling normal operation again greatly simplifies
 programming ,  rendering the code more reliable and
 easier to debug and modify .  Error handling depends not
 only on the cause of error but also on the place in code
 that the error has been detected .  The same error
 occurring in dif ferent system states might need dif ferent
 actions .  The OOP error handling capability is especially
 well suited to this purpose .

 5 .  CONCLUSIONS
 The proposed method of coding has several advantages .
 The change of the robot or of a servomotor brings about
 only the change in internal functioning of coordinate
 transformer  or  regulator  class  without changing the
 inter-process communication .  In this way ,  assessment of
 the results of changes in the robot arm kinematic
 structure ,  servo-control algorithms or a type of an
 actuator ,  forces the investigator to change a relatively
 small portion of the overall controller code ,  well

 localised at that ,  and without unexpected interactions .
 This feature is due to proper structuring of the code and
 utilisation of OOP methodology .  The structure of the
 system resulted from formal considerations which took
 into account the fact that each distinct component of the
 system should be controlled by its own process ,  thus
 limiting inter-process communication and reducing
 implementation code dependencies .  As  classes  contain
 data  and  methods  operating on it in one entity the formal
 parameter lists for  methods  are usually empty ,  what
 greatly simplifies coding and reduces possibilities of
 errors .

 Out of the properties of OOP methodology enumer-
 ated in section 3 encapsulation ,  inheritance and
 exception handling proved instrumental in the im-
 plementation of the control system .  It is envisaged that
 polymorphism will be useful in recording ECP and MP
 (currently they are written in C) ,  e . g .  using the same
 name for an action performed by dif ferent robots or
 sensors .  Overloading of operators was successfully
 utilised 2 4  in  ZERO 11  to implement robot specific infix
 mathematical expressions based on homogeneous
 transformations .

 Summarising ,  the experiment with implementing a
 multi-process concurrent controller for a multi-robot
 system proved that utilisation of OOP paradigm
 significantly simplifies both the initial programming ef fort
 and reduces the time needed for modifying the code
 when adding robots of a new type to the system .
 Currently the upper layer of the controller structure ,  i . e .
 ECP and MP ,  are being recoded using OOP methodol-
 ogy .  Although OOP is limited ,  to a great extent ,  only to
 each process ,  the clarity of code and its simplification due
 to proper structuring prove beneficial .  Currently the
 system contains two IRb-6 robots (one mounted on a
 track) ,  conveyor belt ,  vision system ,  force / torque sensor ,
 ultrasonic and infra-red proximity sensors .  The latest
 addition to this system is the prototype of the rigid
 robot , 2 5  which is currently thoroughly investigated by
 using the described controller .

 It is quite probable that the two methods of
 implementing  RPLs ,  i . e .  specialised languages versus
 submerged languages (libraries) ,  will be used in
 conjunction .  The system will be designed as an open
 structure one with a library of processes ,  procedures or
 objects defined for programming purposes .  If the system
 applications are known beforehand the class of tasks it
 will execute is known ,  so a specialised language for
 coding them can be defined .  By using a compiler
 compiler a translator of that language can be obtained

 Fig .  7 .  Class inheritance within the SERVO and EDP – MASTER processes .
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 relatively quickly .  The produced translator would
 generate code invoking library routines and processes .
 Currently research of such specialised languages for the
 description of a limited class of tasks is under way .  The
 future will show if it is a step in the right direction
 towards really user-friently robot programming methods .
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