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We report a systematic study of spatial variations of the probability density function
(PDF) P(δT) for temperature fluctuations δT in turbulent Rayleigh–Bénard convection
along the central axis of two different convection cells. One of the convection
cells is a vertical thin disk and the other is an upright cylinder of aspect ratio
unity. By changing the distance z away from the bottom conducting plate, we
find the functional form of the measured P(δT) in both cells evolves continuously
with distinct changes in four different flow regions, namely, the thermal boundary
layer, mixing zone, turbulent bulk region and cell centre. By assuming temperature
fluctuations in different flow regions are all made from two independent sources,
namely, a homogeneous (turbulent) background which obeys Gaussian statistics and
non-uniform thermal plumes with an exponential distribution, we obtain the analytic
expressions of P(δT) in four different flow regions, which are found to be in good
agreement with the experimental results. Our work thus provides a unique theoretical
framework with a common set of parameters to quantitatively describe the effect of
turbulent background, thermal plumes and their spatio-temporal intermittency on the
temperature PDF P(δT).
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1. Introduction

Mixing of a passive scalar field, such as temperature or concentration, by a chaotic
velocity field is a common phenomenon in nature and technology. It is relevant to
many practical applications ranging from transport and chemical reactions to design
and operation of mixing equipment in various industrial processes of polymers,
minerals, fine chemicals, paints, cosmetics, food, water and waste water treatment
(Ottino 1989; Paul, Atiemo-Obeng & Kresta 2004; Dimotakis 2005). When the
fluid motion is turbulent, the repeated action of advection and stretching is known
to create convoluted spatial structures, characterized by elongated lamellae (in two
dimensions) or sheets (in three dimensions) with a wide range of self-similar scales,
which promote mixing for diffusive transfer at the smallest length scale and reduction
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of mixing times (Ottino 1989; Sreenivasan, Ramshankar & Meneveau 1989; Procaccia
et al. 1991; Villermaux 2012). In the past decades, there has been a large number
of theoretical (Procaccia & Zeitak 1989, 1990; She & Orszag 1991; Sreenivasan
1991; Grossmann & Lohse 1992; Benzi et al. 1993; Grossmann & Lohse 1993; She
& Léveque 1994; Chertkov et al. 1995; Gawȩdzki & Kupiainen 1995; Shraiman
& Siggia 1995a,b; Cao & Chen 1997; Ching & Chau 2001; Ching 2007; Arnèodo
et al. 2008), numerical (Cao, Chen & Sreenivasan 1996; Kerr 1996; Calzavarini,
Toschi & Tripiccione 2002; Camussi & Verzicco 2004; Ching, Guo & Lo 2008) and
experimental (Wu et al. 1990; Procaccia et al. 1991; Solomon & Gollub 1991; Tong
& Shen 1992; Benzi et al. 1994; Cioni, Ciliberto & Sommeria 1995; Takeshita et al.
1996; Ashkenazi & Steinberg 1999; Zhou & Xia 2001; Skrbek et al. 2002; Mashiko
et al. 2004) studies of small-scale velocity and temperature fluctuations in turbulent
flows. Details about these studies have been reviewed by Sreenivasan (1991), Siggia
(1994), Warhaft (2000), Biferale & Procaccia (2005), Ishihara, Gotoh & Kaneda
(2009), Lohse & Xia (2010), Chillá & Schumacher (2012).

Many experimental studies focused on the structure functions, 〈δTn
r 〉, of temperature

increment δTr = T(x+ r)− T(x) between two points separated by a distance r, aimed
at testing the anomalous scaling (He, Shang & Tong 2014). Some of the experiments
were carried out in turbulent Rayleigh–Bénard convection (RBC) (Siggia 1994;
Kadanoff 2001; Lohse & Xia 2010), in which a confined fluid layer of thickness H
is heated from below and cooled from the top with a constant vertical temperature
gradient parallel to gravity. When the temperature difference 1T across the fluid
layer or its dimensionless expression, the Rayleigh number Ra, is sufficiently large,
the bulk fluid becomes turbulent and heat is transported predominantly by convection.
In addition to the study of the intermittent behaviour of temperature increment
δTr, the study of amplitude fluctuations of the local temperature at a fixed point is
also of great interest. For example, an intriguing feature of RBC is the continuing
appearance of large fluctuations in the temperature field, which do not follow the
Gaussian statistics (Kadanoff 2001). Instead, the measured probability density function
(PDF) P(δT) of temperature fluctuations δT from the local mean value was found to
have an exponential tail, which falls off much slower than a Gaussian (see figure 5d).
Such an exponential PDF was observed in a wide dynamic range with Ra varied from
4× 107 up to 1015 and in various convecting fluids, such as low-temperature helium
gas (Castaing et al. 1988; Sano, Wu & Libchber 1989; Niemela et al. 2000), mercury
(Gollub et al. 1991), sulphur hexafluoride gas (Belmonte, Tilgner & Libchaber 1994),
fluorocarbon FC72 (Wei & Ahlers 2016) and water (Du & Tong 2001; Zhou & Xia
2002; He, Tong & Xia 2007).

In a more recent experiment, He, Wang & Tong (2018) showed with solid
experimental evidence that the exponential PDF in RBC is generated by the thermal
plumes, which can be uniquely characterized by the local thermal dissipation rate
ε(t) ≡ κ[∇T(t)]2. The thermal plumes are intermittently emitted from the thermal
boundary layers (BLs) and carry temperature fluctuations from the BLs to the
bulk region of the flow (Siggia 1994; Kadanoff 2001). Because of rapid mixing
and advection of warm and cold plumes passing through the central region of the
convection cell, the local thermal dissipation rate has a broad distribution f (ε) (He &
Tong 2009). Owing to this dynamic heterogeneity in ε, the temperature PDF P(δT)
can be written as

P(δT)=
∫
∞

0
G(δT|ε)f (ε) dε, (1.1)
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where G(δT|ε) is the conditional PDF of temperature fluctuations when ε is held
constant. The measured G(δT|ε) was found to be of Gaussian form

G(δT|ε)=
1

√
2πσT(ε)

e−δT
2/[2σ 2

T (ε)], (1.2)

and its variance σ 2
T for different values of ε follows an exponential distribution. The

convolution of the two distribution functions gives rise to the exponential PDF P(δT).
This work thus provided a direct link between the coherent structures in the convective
flow (thermal plumes) and statistics of local temperature fluctuations.

In this paper, we report a systematic study of spatial variations of the temperature
PDF P(δT) in two different closed convection cells, which provide a unique spatial
distribution of thermal plumes neither homogeneous nor isotropic (Shang et al. 2003).
This steady-state distribution of thermal plumes and the resulting large-scale velocity
field with a single-rotation-roll symmetry allow us to probe distinct changes of the
functional form of P(δT) in four different flow regions, namely, the thermal boundary
layer, mixing zone, turbulent bulk region and cell centre, by moving the temperature
probe from the bottom to the centre of the convection cell along its central axis.
A central finding of this investigation is that temperature fluctuations in the four flow
regions are all made from two independent sources, namely,

δT(t)= δTB(t)+ δTP(t), (1.3)

where δTB(t) denotes temperature fluctuations from the (turbulent) background, which
obeys Gaussian statistics, and δTP(t) represents those resulting from the thermal
plumes with an exponential distribution. As a result, the temperature PDF P(δT)
is well described by a convolution of the two modes of fluctuations with a relative
strength, which varies among the four different flow regions. While the decomposition
of fluctuation modes has been proposed in various forms in previous studies (Procaccia
et al. 1991; Naert et al. 1998; Grossmann & Lohse 2004; Wilczek 2016; Le Borgne
et al. 2017; He et al. 2018), it is the first time that these ideas are systematically
tested in a well-characterized turbulent system with a solid experimental support.

The remainder of the paper is organized as follows. We first describe the
experimental methods in § 2. Experimental results are presented in § 3. Further
theoretical analyses are given in § 4. Finally, the work is summarized in § 5.

2. Experiment
The experimental apparatus and procedures used in this experiment are similar to

those described previously (He & Tong 2009; Wang, He & Tong 2016; Wang et al.
2018b), and here we only mention some key points. The experiment is conducted in
two convection cells with different geometries. One of them is a vertical thin disk with
its circular cross-section aligned parallel to gravity, as shown in figure 1(a). The cell
has a diameter D = 188 mm and thickness L = 20 mm, and thus the corresponding
aspect ratio is Γ ≡ L/D' 0.1. The top and bottom 1/3 of the circular side wall are
made of copper of 8 mm in thickness. The surface of the copper plates in contact with
the convecting fluid is electroplated with a thin layer of nickel. The remaining 1/3 of
the side wall on both sides is made of transparent Plexiglas of 18 mm in thickness.
The two flat end walls of the cell are also made of the same type of Plexiglas. Two
silicon rubber film heaters connected in parallel are sandwiched on the back side
of the bottom conducting plate to provide constant and uniform heating. The top
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FIGURE 1. Sketch of the experimental set-up for the measurement of local temperature
fluctuations at different locations along the central axis of (a) the vertical thin disk and
(b) the Γ = 1 upright cylinder. The black arrows indicate the direction of the large-scale
circulation.

copper plate is in contact with a cooling chamber consisting of two water channels.
The temperature of the top plate is maintained by a temperature-controlled circulator
(NESLAB, RTE740), which circulates cooling water with a temperature stability of
10 mK. The temperature of the top and bottom plates is measured at a rate of 2 Hz
by calibrated thermistors with an accuracy of 5 mK. They are embedded in each plate
at a distance of 1 mm away from the surface of the conducting plate. This cell was
used in the previous convection experiments (Song, Villermaux & Tong 2011; Wang
et al. 2016, 2018a,b).

The second cell is an upright cylinder, as shown in figure 1(b). The inner diameter
of the cell is Dup= 19.0 cm and its height is H= 19.0 cm. The corresponding aspect
ratio of the cell is Γ ≡Dup/H= 1. The side wall of the cell is made of a transparent
Plexiglas ring with a wall thickness of 6 mm. The top and bottom plates of the cell
are made of brass and their surfaces are electroplated with a thin layer of gold. The
Plexiglas ring side wall is sandwiched between the two plates and is sealed to the
top and bottom plates via two rubber O-rings. Except for the difference in shape, all
other aspects of the cell, such as the heating (cooling) of the bottom (top) plate and
temperature measurement of the conducting plates, remain the same as those for the
vertical thin disk. The temperature standard deviation of the top and bottom plates is
found to be within 1 % of 1T used in the experiment. This cell was also used in
previous convection experiments (He & Tong 2009; He, Ching & Tong 2011; Wang
et al. 2018b).

In the experiment, the entire convection cell is placed inside a square thermostat
box, whose temperature matches the mean temperature of the bulk fluid (maintained
at 40 ± 0.1 ◦C), in order to prevent heat exchange between the convecting fluid
and the surroundings. The Rayleigh number Ra for the thin disk is defined as
Ra ≡ ψg1TD3/(νκ), where g is the gravitational acceleration, 1T is the vertical
temperature difference across the cell and ψ , ν and κ are, respectively, the thermal
expansion coefficient, viscous and thermal diffusivity of the convecting fluid. For the
upright cylinder, the cell height H is used to replace D. The Prandtl number Pr is
defined as Pr ≡ ν/κ . Two working fluids are used in the experiment. For the thin
disk, a 20 wt. % aqueous solution of glycerin with Pr= 7.6 is used. For the upright

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

40
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.405


Turbulent temperature fluctuations in a closed thermal convection cell 267

cylinder, both distilled water with Pr = 4.4 and the 20 wt. % aqueous solution of
glycerin with Pr= 7.6 are used. In the experiment, the temperature Tb of the bottom
heating plate is varied in the range 42.4 . Tb . 60.2 ◦C, and the temperature Tt of
the top cooling plate is varied in the range 13.8 . Tt . 37.8 ◦C. Correspondingly, Ra
is varied in the range 9 × 108 . Ra . 1.2 × 1010 and Pr is fixed for a given fluid.
The black arrows in figure 1 show the direction of the large-scale circulation (LSC).
To pin down the azimuthal motion of the LSC in the upright cylinder, the cylindrical
cell is tilted slightly at a small angle (<1◦) by adjusting the levelling plate of the
cell. It has been shown (Ahlers, Brown & Nikolaenko 2006a) that such a small tilt
to the Γ = 1 upright cylinder does not affect the convective flow very much, as the
single-roll structure of the LSC is quite stable in the Γ = 1 cell (Qiu & Tong 2001).
The LSC structure in the Γ = 0.5 upright cylinder, however, is more sensitive to the
cell tilt and so are the temperature fluctuations (Chillá et al. 2004).

The local fluid temperature is measured using a glass-encapsulated thermistor of
diameter 0.17 mm with an accuracy of 5 mK (AB6E3-B05KA202R). Details about
the temperature calibration and measurements have been reported elsewhere (He &
Tong 2009). To guide the two thermistors into the thin disk, we install a horizontal
and a vertical stainless steel tube in the cell, as shown in figure 1(a). The horizontal
tube is fixed to measure the mean temperature T0 at the cell centre. The vertical tube
is used to measure the temperature time series data T(t) with varying distance z away
from the centre of the bottom plate. The vertical tube is mounted on a translational
stage, which is controlled by a stepping motor with a position resolution of 50 µm.
The measurements of T0 and T(t) are made, respectively, at the sampling rates of
2 Hz and 15 Hz. Typically, we take 1 h long time series data (5.4× 104 data points)
at each location of z for the measurement of T(t). The measurement of temperature
fluctuations in the upright cylinder is made in a similar way, except that a vertical
tube is installed to measure T0, as shown in figure 1(b).

3. Experimental results
3.1. Turbulent temperature fluctuations in the thin disk

Figure 2(a) shows the evolution of the measured local temperature variations T(t) for
four different values of distance z away from the centre of the bottom plate, and at
a fixed value of Ra= 5.3× 109 and Pr= 7.6 in the thin disk. Figure 2(b) shows the
corresponding PDFs of the measured T(t) in figure 2(a). In a recent experiment and
direct numerical simulation, we have shown that there is a well-developed thermal BL
near the bottom (top) conducting plate of the thin disk cell. A typical value of the BL
thickness δ at this Ra is δ ' 0.55 mm. Heat transport inside the BL is accomplished
mainly by thermal diffusion, which establishes a large mean temperature gradient
across the BL. In the region outside the BL, however, heat transport is dominated
by turbulent convection and the mean temperature along the central axis of the bulk
region is approximately constant. At z= 0.2 mm which is in the inner region of the
BL, the measured T(t) (black curve in figure 2a) reveals large symmetric fluctuations,
and thus their PDF (black squares in figure 2b) has a symmetric shape with a broad
width. In addition, the measured mean temperature 〈T〉 at this location is much larger
than that at the other three positions.

At z= 4.9 mm which is outside the BL and in the mixing zone (Wang et al. 2016),
the measured T(t) (red curve in figure 2a) reveals large temperature spikes in one
direction, resulting from warm thermal plumes passing through the measuring position.
These warm plumes are intermittently emitted from the bottom BL. In addition to the
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FIGURE 2. (Colour online) (a) Evolution of the measured local temperature variations T(t)
for 4 different values of distance z away from the centre of the bottom plate (bottom to
top): z= 0.2 mm (black curve), z= 4.9 mm (red curve), z= 61.6 mm (green curve) and
z = 94.0 mm (blue curve). The measurements are made in the thin disk at Ra = 5.3 ×
109 and Pr= 7.6 (20 wt. % aqueous solution of glycerin). (b) Corresponding PDFs of the
measured T(t) in (a) at z=0.2 mm (black squares), z=4.9 mm (red circles), z=61.6 mm
(green up triangles) and z= 94.0 mm (blue down triangles).

hot spikes, the measured T(t) also shows small continuous fluctuations resulting from
the turbulent background. As shown in figure 2(b), the intermittent temperature spikes
in the time series T(t) give rise to an exponential tail in the corresponding temperature
PDF P(T) (red circles with T & 41 ◦C). The small background fluctuations, on the
other hand, produce a symmetric peak in the measured P(T).

By increasing z further into the turbulent bulk region, the warm plumes are mixed
and dissipated by the flow field. As a result, the intermittent spikes in T(t) and
the asymmetric tail in the resulting P(T) gradually diminish. The green curve in
figure 2(a) and green up triangles in figure 2(b) show an example at z = 61.8 mm.
In addition, the standard deviation of temperature fluctuations also decreases with
increasing z. Finally, at the cell centre (z = 94.0 mm), the standard deviation of
temperature fluctuations becomes the smallest (blue curve in figure 2a), and the
resulting P(T) shows the smallest width (blue down triangles in figure 2b). Because
of the reflection symmetry at the cell centre, the measured P(T) has a symmetric
shape as expected. An interesting feature shown in figure 2(b) is that once outside
the thermal BL, both the peak position and left side of the peak of all the measured
P(T) remain unchanged with z. This result suggests that temperature fluctuations in
the bulk region outside the BL have a fairly uniform turbulent background (Zhou &
Xia 2013).

Figure 3 shows a sketch of the four flow regions in the thin disk cell, as discussed
above. In particular, the BL can be further divided into two sub-regions: inner and
outer regions. In the inner region of the BL (z . 0.6δ), the mean value of the local
temperature decreases linearly with distance z and heat is transported primarily by
diffusion. In the outer region of the BL (0.6δ . z . 2δ), the mean value of the local
temperature gradually approaches a constant value and thermal plumes start to form.
These thermal plumes are emitted intermittently into the mixing zone (0.01 . z/D .
0.1) outside the BL and then are carried away by the LSC (as marked by the black
arrow in figure 3). Because of turbulent mixing and thermal dissipation, the thermal
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Mixing zone

Bottom heating plate

Turbulent bulk

Centre

z

BL

FIGURE 3. (Colour online) Sketch of the four flow regions in the thin disk cell, namely,
boundary layer (BL, z. 2δ), mixing zone (0.01. z/D. 0.1), turbulent bulk (0.1. z/D6
0.5) and cell centre (z/D= 0.5). The vertical dashed line shows the central z-axis of the
cell. The BL can be further divided into an inner region (z . 0.6δ) and an outer region
(0.6δ . z . 2δ), in which thermal plumes start to form. The black arrow indicates the
direction of the large-scale circulation.

plumes in the turbulent bulk region (0.1. z/D. 0.5) become less energetic and fewer
in number compared with those in the mixing zone.

We now discuss the scaling properties of the measured PDF P(δT) of temperature
fluctuations δT from the mean value with varying values of z and Ra. Here δT =
T(t)−〈T〉 with 〈T〉 being the local mean temperature. It is found that the temperature
PDFs obtained at a fixed value of z and different values of Ra can all be brought into
coincidence, by normalizing δT by its root mean square (r.m.s.) value σT . Plots of
P(δT) versus δT/σT remain unchanged in the Ra range studied and only σT changes
with Ra. Figure 4 shows the measured P(δT) as a function of δT/σT for different
values of Ra in four regions of z. It is seen that the measured P(δT) in each region
of z has a unique functional form independent of Ra.

Figure 4(a) shows the measured P(δT) as a function of normalized temperature
fluctuations δT/σT when z is in the inner region of the BL with z/δ . 0.62, where
the mean temperature gradient is almost constant. It is seen that all of the measured
PDFs P(δT) can be well described by a Gaussian function (dashed line)

P(δT)=
1

√
2πσT

e−δT
2/(2σ 2

T ), (3.1)

and only σT changes with z. For RBC in an rectangular cell, the measured P(δT)
inside the BL was also found to have a similar Gaussian form (Zhou & Xia 2013).
In the outer region of the BL with 0.62. z/δ. 2, while plots of P(δT) versus δT/σT
remain unchanged with Ra at a fixed value of z/δ, the shapes of the measured P(δT)
for different values of z start to show systematic deviations from the Gaussian function.
These deviations cause the measured P(δT) to become asymmetric and skewed toward
the positive side of δT/σT with the skewness increasing with z.

When z moves beyond the BL region (z/δ& 2 or equivalently z/D & 0.01), the BL
thickness δ is no longer the scaling length. Instead, the normalized variance profile
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Eq. (4.8)
Gaussian
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Ra = 5.3 ÷ 109

Ra = 4.1 ÷ 109

Ra = 2.6 ÷ 109

Eq. (4.6)
Gaussian

Ra = 8.7 ÷ 109
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Eq. (4.11)
Gaussian

Ra = 8.7 ÷ 109

Ra = 1.1 ÷ 1010

Ra = 6.8 ÷ 109

Ra = 5.3 ÷ 109

Ra = 4.1 ÷ 109

Ra = 2.6 ÷ 109
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Gaussian
z/∂ = 0.62, Ra = 1.1 ÷ 1010

z/∂ = 0.14, Ra = 1.1 ÷ 1010

z/∂ = 0.48, Ra = 6.8 ÷ 109
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z/∂ = 0.26, Ra = 1.7 ÷ 109

FIGURE 4. (Colour online) Measured PDF P(δT) of the normalized temperature
fluctuation δT/σT for different values of Ra with a fixed value Pr= 7.6 (20 wt. % aqueous
solution of glycerin). The measurements are made in the thin disk and in four different
regions of distance z away from the bottom plate: (a) z/δ. 0.62 (inner region of the BL),
(b) z/D' 0.026 (mixing zone), (c) z/D' 0.33 and (d) z/D= 0.5 (cell centre). The dashed
lines in (a–d) show the Gaussian function given in (3.1). The solid line in (b) shows a
fit of (4.8) to the data points with α1 = 0.25± 0.05 and β = 0.1± 0.03. The solid line in
(c) shows a fit (4.6) to the data points with α1 = 1.1± 0.2. The solid line in (d) is a fit
of (4.11) to the data points with α = 1.7± 0.3.

σ 2
T (z)/(σ

2
T )0, with (σ 2

T )0 being the maximal value of σ 2
T , was found to scale with z/D

in the range 0.01 . z/D . 0.1 (mixing zone) (Wang et al. 2016, 2018b). Figure 4(b)
shows an example of the measured P(δT) in the mixing zone for different values of
Ra. The measurements are made at approximately the same position with z/D' 0.026.
All of the PDFs collapse onto a single curve, which has a Gaussian-like main portion
(dashed line) for small temperature fluctuations (δT/σT .1) and a long exponential tail
for large temperature fluctuations (δT/σT &2). As shown in figure 2(a) (red curve), the
long exponential tail is caused by the warm plumes, which are intermittently emitted
from the bottom BL and pass through the measuring position. For other values of z
in the mixing zone, the measured PDFs P(δT) retain the same characteristic shape as
that shown in figure 4(b), but they vary slightly with z so that plots of P(δT) versus
δT/σT do not overlap with each other.

As z is further moved to the bulk region, with the values of z being larger than the
cell thickness (0.1 . z/D . 0.4), the shape of the measured PDFs P(δT) changes to
another form due to the strong mixing in this region. Figure 4(c) shows an example
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of the measured P(δT) in this region for different values of Ra. The measurements are
made at approximately the same position with z/D' 0.33. All of the PDFs collapse
onto a single curve, which has a Gaussian-like main portion (dashed line) for small
temperature fluctuations (δT/σT . 1.5) and an asymmetric tail which smoothly evolves
to an exponential shape for large temperature fluctuations (δT/σT & 2.5).

As z moves toward the central region of the cell (0.4 . z/D . 0.5), temperature
fluctuations become more and more symmetric and so does the measured P(δT).
Figure 4(d) shows the measured PDFs P(δT) at the cell centre with different values
of Ra. Again, all of the measured PDFs collapse onto a single curve, which is
symmetric and has a Gaussian cap (dashed line) for small temperature fluctuations
−2.5 . δT/σT . 2.5 and an exponential-like tail which falls off slower than a
Gaussian.

3.2. Turbulent temperature fluctuations in the Γ = 1 upright cylinder
We now examine the scaling properties of the measured P(δT) in the Γ = 1 upright
cylinder. Similar to the situation in the thin disk, once δT is normalized by its r.m.s.
value σT , the temperature PDFs obtained at a fixed value of z and different values
of Ra all fall onto a single master curve. Figure 5 shows the measured P(δT) as
a function of δT/σT for different values of Ra with fixed Pr = 4.4 (water). The
measurements are made in four representative regions of distance z away from the
bottom plate. In each region of z, the measured P(δT) has a unique functional form,
which remains unchanged with Ra in the Ra range studied. In the inner region of the
BL with z/δ . 0.46, the measured P(δT), as shown in figure 5(a), can also be well
described by the Gaussian function given in (3.1) (dashed line).

In a recent experiment, Wang et al. (2018b) reported that a mixing zone exists
outside the BL in the Γ = 1 upright cylinder in the range of 0.04 . z/H . 0.3 for
Pr = 4.4 and 0.06 . z/H . 0.3 for Pr = 7.6. Two characteristic forms of P(δT) are
observed in the mixing zone. Figure 5(b) shows a characteristic form of P(δT) in the
inner region of the mixing zone (0.04 . z/H . 0.07) for different values of Ra and
Pr' 4.4. The shape of the measured P(δT) in this region is similar to that in the thin
disk, namely, all the PDFs have a Gaussian-like main portion (dashed line) for small
temperature fluctuations (δT/σT . 1) and a long exponential tail for large temperature
fluctuations (δT/σT & 2). In the outer region of the mixing zone (0.1. z/H . 0.3), the
measured P(δT) has a new characteristic form, which is not observed in the thin disk.
Figure 5(c) shows an example of the measured P(δT) in this region. All of the PDFs
for different values of Ra collapse onto a single curve, which has a Gaussian cap
(dashed line) for small temperature fluctuations (−1. δT/σT . 1) and two asymmetric
exponential tails for larger temperature fluctuations. For the tail with δT/σT .−1, it
smoothly connects to the Gaussian cap and we believe that it results from the cold
plumes passing through the measuring position. There is an abrupt change in the local
slope of the measured P(δT) between the Gaussian cap and the exponential tail with
δT/σT & 2. This result indicates that the properties of the cold and warm plumes in
the outer region of the mixing zone are different.

When z moves into the bulk region (0.3 . z/H . 0.5), the measured P(δT) has
a small Gaussian cap with two smooth but asymmetric exponential tails (not shown
here). As z moves toward the cell centre (z/H= 0.5), the asymmetry between the two
exponential tails reduces and finally vanishes at the cell centre. Figure 5(d) shows the
measured PDFs P(δT) at the cell centre for different values of Ra. Except for a small
round-off near the origin, all of the PDFs are symmetric and have a long exponential
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FIGURE 5. (Colour online) Measured PDF P(δT) of the normalized temperature
fluctuation δT/σT for different values of Ra with a fixed value Pr = 4.4 (water). The
measurements are made in the Γ = 1 upright cylinder and in four representative regions
of distance z away from the bottom plate centre: (a) z/δ. 0.46 (inner region of the BL),
(b) z/H= 0.05 (inner mixing zone), (c) z/H= 0.16 (outer mixing zone) and (d) z/H= 0.5
(cell centre). The dashed lines in (a–c) show a Gaussian function given in (3.1). The solid
line in (b) shows a fit of (4.8) to the data points with α1=0.31±0.06 and β=0.18±0.05.
The solid line in (c) shows a fit of (4.13) to the data points with α1 = 0.33 ± 0.06,
α2 = 0.92± 0.15 and β = 0.18± 0.05. The solid line in (d) is a fit of (4.11) to the data
points with α = 0.30± 0.06.

tail (solid line) on each side of the distribution with its amplitude varied by more
than 4 decades, which falls off much slower than a Gaussian (Kadanoff 2001). The
exponential PDF P(δT) was also observed in the previous convection experiments with
Ra varied in a wide range from 4× 107 up to 1015 and in various convecting fluids
(Castaing et al. 1988; Sano et al. 1989; Gollub et al. 1991; Solomon & Gollub 1991;
Belmonte et al. 1994; Niemela et al. 2000; Du & Tong 2001; Zhou & Xia 2002; He
et al. 2007; Wei & Ahlers 2016).

Figure 6 shows P(δT) as a function of δT/σT for different values of Ra with
fixed Pr = 7.6 (20 wt. % aqueous solution of glycerin). It is seen that the measured
PDFs P(δT) in the four representative regions of z for the 20 wt. % glycerin solution
have similar behaviours to those as shown in figure 5 for water. At a fixed location
z, the measured PDFs P(δT) with different values of Ra all fall onto a single
master curve, which remains unchanged with Ra in the Ra range studied. The shape
of P(δT) continuously evolves with z, from a Gaussian form in the inner region
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FIGURE 6. (Colour online) Measured PDF P(δT) as a function of δT/σT for different
values of Ra with a fixed value Pr = 7.6 (20 wt. % aqueous solution of glycerin). The
measurements are made in the Γ = 1 upright cylinder and in four representative regions of
distance z away from the bottom plate: (a) z/δ. 0.52 (inner region of the BL), (b) z/H=
0.062 (inner mixing zone), (c) z/H = 0.18 (outer mixing zone) and (d) z/H = 0.5 (cell
centre). The dashed lines in (a–c) show a Gaussian function given in (3.1). The solid line
in (b) shows a fit of (4.8) to the data points with α1 = 0.24± 0.04 and β = 0.10± 0.03.
The solid line in (c) shows a fit of (4.13) to the data points with α1 = 0.30± 0.05, α2 =

1.05± 0.2 and β = 0.10± 0.03. The solid line in (d) is a fit of (4.11) to the data points
with α = 0.20± 0.04.

of the BL to an exponential form at the cell centre. For the two working fluids
used in the experiment, previous studies (Wu & Libchaber 1991; Zhang, Childress
& Libchaber 1997; Chillá et al. 2004; Ahlers et al. 2006b) have shown that the
non-Oberbeck–Boussinesq (NOB) effect of distilled water is very weak. The 20 wt. %
aqueous solution of glycerin, on the other hand, has a stronger NOB effect, as its
viscosity depends sensitively on the fluid temperature. It is seen from figures 5 and 6
that the four distinct forms of the measured P(δT) in the four flow regions remain
approximately the same in the two working fluids, suggesting that the characteristic
behaviours of the measured P(δT) are not influenced very much by the NOB effect.

4. Further theoretical analysis
Based on the above experimental results, we now derive expressions of the

temperature PDF P(δT) in different regions. We assume that temperature fluctuations
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in the convecting fluid are made from two independent sources, as shown in (1.3). The
turbulent background is assumed to be homogeneous, so that δTB(t) is homogeneous
both in space and time and has a Gaussian distribution

PB(δTB)=
1

√
2πσB

e−δT
2
B/(2σ

2
B ), δTB ∈ (−∞,+∞), (4.1)

where σB is the r.m.s. value of δTB(t). Because thermal plumes have a non-uniform
spatial distribution in the convection cell, δTP(t) can be further divided into δTh

P(t)
for warm plumes near the bottom conducting plate and δTc

P(t) for cold plumes
near the top conducting plate. As mentioned in Introduction, the conditional PDF for
temperature fluctuations resulting from thermal plumes alone has a simple exponential
form (He et al. 2018). Therefore, the PDFs for δTh

P(t) and δTc
P(t) can be expressed,

respectively, as

Ph(δTh
P)=

1
σh

e−δT
h
P/σh, δTh

P ∈ [0,+∞) (4.2)

and

Pc(δTc
P)=

1
σc

eδT
c
P/σc, δTc

P ∈ (−∞, 0], (4.3)

where σh and σc are, respectively, the r.m.s. value of δTh
P(t) and δTc

P(t). The condition
δTh

P > 0 applies for warm plumes and δTc
P 6 0 applies for cold plumes, which state

that the thermal plumes are fluid particles with their temperature warmer (or colder)
than the surroundings.

In the lower half of the bulk region, one finds more warm plumes than cold plumes.
In this case, the local temperature fluctuation can be expressed as

δT(t)' δTB(t)+ δTh
P(t), (4.4)

and its PDF is a convolution of (4.1) and (4.2) with

P(δT) =
∫
+∞

0
PB(δT − δTh

P)Ph(δTh
P) d(δTh

P)

=
1

2σh
e[(1/2)(σB/σh)

2
−δT/σh−1]erfc

(
σ 2

B/σh − δT − σh
√

2σB

)
, (4.5)

where erfc(x) is the complementary error function. Similar convolution was also used
in the study of scaler mixing (Le Borgne et al. 2017). In (4.5), we have dropped off
the mean value of δT so that P(δT) has a zero mean. The mean value of δT represents
the contribution of thermal plumes to the mean temperature field, which is small but
spatially heterogeneous. As the focus of this paper is on local temperature fluctuations,
we will not consider the local mean value of δT in the rest of our analysis. From (4.5),
one can show that P(δT) has a r.m.s. value of σT = (σ

2
B + σ

2
h )

1/2. With the normalized
variable ξ = δT/σT , equation (4.5) can be rewritten as

P(ξ ; α1)= σTP(σTξ)=

√
1+ α2

1

2
e[α

2
1/2−ξ
√

1+α2
1−1]erfc

(
α2

1 − ξ
√

1+ α2
1 − 1

√
2α1

)
, (4.6)
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FIGURE 7. (Colour online) Comparison of the measured power spectra PT( f ) of local
temperature fluctuations δT(t) in three representative regions of distance z away from the
bottom plate: z/D= 0.026 (mixing zone, black curve), z/D= 0.33 (bulk region, red curve)
and z/D= 0.5 (cell centre, blue curve). The measurements are conducted at Ra= 5.3× 109

and Pr= 7.6 in the thin disk. For clarity, the measured PT( f ) is shifted vertically.

where α1= σB/σh. The solid line in figure 4(c) shows a fit of (4.6) to the data points
with α1 = 1.1± 0.2 as a fitting parameter. Excellent agreement is found between the
theoretical prediction and experimental data. The obtained value of α1 = 1.1 suggests
that the two fluctuation sources have comparable r.m.s. values in the bulk region of
the thin disk.

In the above, the two signals δTB(t) and δTh
P(t) are assumed to be continuous in

time. However, this is not always the case. For example, it was reported (Song et al.
2011) that warm plumes emit periodically from the lower BL to the mixing zone, so
that δTh

P(t) in this region is not continuous in time. Figure 7 shows a comparison
of the measured power spectra PT( f ) of δT(t) in three representative regions of the
thin disk cell. It is seen that in the mixing zone (z/D= 0.026), the measured PT( f )
(black curve) reveals a peak at f ' 0.02 Hz, indicating a periodic emission of warm
plumes from the lower BL (Song et al. 2011). The frequency peak in PT( f ) gradually
diminishes with increasing z and eventually vanishes in the bulk region (red curve)
and at the cell centre (blue curve), as a result of turbulent mixing and plume–plume
interactions, which smear out the coherence of plume emission. This finding suggests
that at certain times t, δTh

P(t) ' 0 and δT(t) ' δTB(t). To characterize this temporal
intermittency in the mixing zone, we introduce two duty cycle parameters with β

being used to describe the probability for δT(t)= δTB(t)+ δTh
P(t) and 1− β for the

probability that δT(t)= δTB(t). In this case, the PDF of δT(t) can be written as

P(δT) = (1− β)PB(δT)+ β
∫
+∞

0
PB(δT − δTh

P)Ph(δTh
P) d(δTh

P)

=
1− β
√

2πσB
e[−(δT+βσh)

2/(2σ 2
B )] +

β

2σh
e[(1/2)(σB/σh)

2
−δT/σh−β]erfc

(
σ 2

B/σh − δT − βσh
√

2σB

)
.

(4.7)
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In (4.7) P(δT) has a r.m.s. value σT = (σ
2
B + (2β − β

2)σ 2
h )

1/2. With the normalized
variable ξ = δT/σT , equation (4.7) can be rewritten as

P(ξ ; α1, β)=
(1− β)γ
√

2πα1
e[−(β+γ ξ)

2/(2α2
1)] +

βγ

2
e[α

2
1/2−γ ξ−β]erfc

(
α2

1 − γ ξ − β
√

2α1

)
, (4.8)

where γ = (α2
1 + 2β − β2)1/2.

It is found that the theoretical prediction given in (4.8) can well describe the
experimental results in the mixing zone of both the thin disk cell and upright
cylinder. The solid line in figure 4(b) shows a fit of (4.8) to the data points with
α1 = 0.25 ± 0.05 and β = 0.1 ± 0.03 as two fitting parameters. The solid line in
figure 5(b) shows a fit of (4.8) to the data points in the inner mixing zone of
the Γ = 1 upright cylinder filled with water (Pr = 4.4) using α1 = 0.31 ± 0.06 and
β= 0.18± 0.05 as two fitting parameters. Similarly, the solid line in figure 6(b) shows
a fit of (4.8) to the data points in the inner mixing zone of the Γ = 1 upright cylinder
filled with the 20 wt. % aqueous solution of glycerin (Pr= 7.6) using α1= 0.24± 0.04
and β = 0.1± 0.03.

When the measuring position z moves to the cell centre, both warm and cold plumes
contribute to temperature fluctuations. In this case, the local temperature fluctuation
can be expressed as

δT(t)= δTB(t)+ δTh
P(t)+ δT

c
P(t), (4.9)

and its PDF can be written as

P(δT) =
∫ 0

−∞

∫
+∞

0
PB(T − δTh

P − δT
c
P)Ph(δTh

P)Pc(δTc
P)d(δT

h
P) d(δTc

P)

=
1

4σP
e(σB/σP)

2/2

[
eδT/σPerfc

(
σ 2

B + δTσP
√

2σPσB

)
+ e−δT/σPerfc

(
σ 2

B − δTσP
√

2σPσB

)]
,

(4.10)

where σP ≡ σh = σc, because the system is symmetric at the cell centre. In (4.10),
P(δT) has a r.m.s. value σT = (σ

2
B + 2σ 2

P)
1/2. With the normalized variable ξ = δT/σT ,

equation (4.10) can be rewritten as

P(ξ ; α) =

√
α2 + 2

4
eα

2/2

[
eξ
√
α2+2erfc

(
α2
+ ξ
√
α2 + 2

√
2α

)

+e−ξ
√
α2+2erfc

(
α2
− ξ
√
α2 + 2

√
2α

)]
, (4.11)

where α = σB/σP. Equation (4.11) is a symmetric function of ξ with the exponential
distribution (α = 0) and Gaussian distribution (α = +∞) being its two asymptotic
forms.

It is found that the theoretical prediction given in (4.11) can well describe the
experimental results at the centre of both convection cells. The solid line in figure 4(d)
shows a fit of (4.11) to the data points in the thin disk with α= 1.7± 0.3 as a fitting
parameter. The solid line in figure 5(d) shows a fit of (4.11) to the data points at the
centre of the Γ = 1 upright cylinder filled with water (Pr= 4.4) using α= 0.30± 0.06.
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FIGURE 8. (Colour online) Measured temperature PDF P(δT) as a function of δT/σT
for different values of Ra and at a fixed value of Pr = 4.4 (a) and Pr = 7.6 (b). The
measurements are conducted at the centre of the Γ = 1 upright cylinder, and the data in
(a) and (b) are the same as those shown in figure 5(d) and figure 6(d), respectively. For
clarity, the measured PDFs are plotted on a linear scale showing an expanded view of
the round-off cap region near δT/σT ' 0. The solid lines are the fits of (4.11) to the data
points with α= 0.30± 0.06 (a) and α= 0.20± 0.04 (b). The horizontal dashed line shows
the expected peak value 1/

√
2π for a normalized Gaussian distribution, and the horizontal

dotted line shows the expected peak value 1/
√

2 for a normalized exponential distribution.

Similarly, the solid line in figure 6(d) shows a fit of (4.11) to the data points at the
centre of the Γ = 1 upright cylinder filled with the 20 wt. % aqueous solution of
glycerin (Pr= 7.6) using α = 0.20± 0.04.

While the effect of background fluctuations at the cell centre is relatively small,
it nevertheless provides a measurable mixing effect to smear out the distribution of
thermal plumes. Mathematically, a pure exponential distribution has a normalized form,
P(ξ)= (1/

√
2) exp(−

√
2|ξ |), so that its peak value at ξ = 0 is Pmax = 1/

√
2' 0.707.

On the other hand, the peak value of a normalized Gaussian distribution is Pmax =

1/
√

2π ' 0.399. Figure 8 shows a magnified view of the measured P(δT) near the
origin. It is seen that all the measured values of Pmax for different values of Ra and Pr
are in between 1/

√
2 (dotted lines) and 1/

√
2π (dashed lines), indicating the existence

of a Gaussian component. In a physical system, this Gaussian component at the origin
precludes the non-analytic sharp peak of the exponential distribution (Wei & Ahlers
2016).

Equation (4.11) can well describe the temperature PDFs obtained not only from
the above experiments but also from previous experiments (Wu & Libchaber 1992;
Du & Tong 2001). Figure 9 shows the measured P(δT) as a function of δT/σT for a
low-temperature (5 K) helium gas (Pr= 0.7) over a range of Ra. The measurements
were conducted at the centre of a Γ = 0.5 upright cylinder (Wu & Libchaber 1992).
The solid line shows a fit of (4.11) to the data points with α = 1.2± 0.2 as a fitting
parameter. Similar measurements at the centre of a Γ = 6.7 upright cylinder with
Pr= 0.7 (Wu & Libchaber 1992) are also found to be well described by (4.11) with
α= 1.5± 0.3 (not shown here). These results further confirm that our model is quite
general and can be used to describe temperature PDFs in a closed convection cell with
different aspect ratios and filled with a working fluid with different values of Ra and
Pr.
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Finally, we consider a general case described in (4.9), in which δTh
P(t) is intermittent

with its duty ratio being β. The corresponding PDF P(δT) is given as

P(δT) = (1− β)
∫ σc

−∞

PB(δT − δTc
P)Pc(δTc

P) d(δTc
P)

+β

∫ σc

−∞

∫
+∞

−σh

PB(δT − δTh
P − δT

c
P)Ph(δTh

P)Pc(δTc
P) d(δTh

P) d(δTc
P)

=
1− β
2σc

e[(σB/σc)
2/2+(δT+βσh)/σc−1]erfc

(
σ 2

B + (δT + βσh − σc)σc
√

2σBσc

)
+

β

2(σh + σc)
e[(σB/σh)

2/2−(δT−σc)/σh−β]erfc
(
σ 2

B − (δT + βσh − σc)σh
√

2σBσh

)
+

β

2(σh + σc)
e[(σB/σc)

2/2+(δT+βσh)/σc−1]erfc
(
σ 2

B + (δT + βσh − σc)σc
√

2σBσc

)
.

(4.12)

In (4.12), P(δT) has a r.m.s. value σT = (σ 2
B + σ 2

c + (2β − β2)σ 2
h )

1/2. With the
normalized variable ξ = δT/σT , equation (4.12) can be rewritten as

P(ξ ; α1, α2, β) =
(1− β)γ2

2
e[α

2
2/2+γ2ξ+βα2/α1−1]erfc

(
α2

2 + γ2ξ + βα2/α1 − 1
√

2α2

)
+

βα1γ2

2(α1 + α2)
e[α

2
1/2−γ1ξ+α1/α2−β]erfc

(
α2

1 − γ1ξ + α1/α2 − β
√

2α1

)
+

βα1γ2

2(α1 + α2)
e[α

2
2/2+γ2ξ+βα2/α1−1]erfc

(
α2

2 + γ2ξ + βα2/α1 − 1
√

2α2

)
,

(4.13)

with α1 = σB/σh, α2 = σB/σc, γ1 = (α
2
1 + α

2
1/α

2
2 + 2β − β2)1/2 and γ2 = (α

2
2 + (2β −

β2)α2
2/α

2
1 + 1)1/2.

Equation (4.13) is the most general form of P(δT/σT) and includes the asymptotic
cases given by (4.6), (4.8) and (4.11). In the case α2=+∞ and β= 1, equation (4.13)
reduces to (4.6). In the case α2 =+∞, equation (4.13) reduces to (4.8). In the case
α1 = α2 = α and β = 1, equation (4.13) reduces to (4.11). It is found that (4.13) can
well describe the measured P(δT) in the outer mixing zone of the Γ = 1 upright
cylinder, in which cold plumes are continuous (far away from the upper cooling plate
and thus lose their intermittency) and warm plumes are highly intermittent (close to
the lower heating plate). The solid line in figure 5(c) shows a fit of (4.13) to the
data points in the outer mixing zone of the Γ = 1 upright cylinder filled with water
(Pr = 4.4) using α1 = 0.33 ± 0.06, α2 = 0.92 ± 0.15 and β = 0.18 ± 0.05. Similarly,
the solid line in figure 6(c) shows a fit of (4.13) to the data points in the outer
mixing zone of the Γ = 1 upright cylinder filled with the 20 wt. % aqueous solution
of glycerin (Pr= 7.6) using α1 = 0.30± 0.05, α2 = 1.05± 0.2 and β = 0.10± 0.03.

Table 1 gives a summary of the final fitting results obtained in the two convection
cells. It is seen that the fitted values of α1 = σB/σh in the thin disk cell increase
monotonically, as the measuring position z moves from the mixing zone to the cell
centre (see figure 3). This result suggests that the contribution of warm plumes to the
local temperature fluctuations decreases with increasing z, as expected. However, the
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FIGURE 9. (Colour online) Measured temperature PDF P(δT) as a function of δT/σT at
the centre of a Γ = 0.5 upright cylinder (red line). The measurements were conducted at
a fixed value of Pr= 0.7 (a low-temperature helium gas) in the Ra range from 4× 109 to
6× 1014. The data are taken from figure 1(b) in Wu & Libchaber (1992). The solid line
shows a fit of (4.11) to the data points with α = 1.2± 0.2. The dashed and dotted lines
show, respectively, a simple exponential distribution function and a Gaussian distribution
function for comparison.

fitted values of α1 in the upright cylinder do not change much in the three different
flow regions. The fitted values of α1 in the turbulent bulk region and at the centre
of the upright cylinder are much smaller than those obtained in the thin disk. These
findings indicate that the effect of thermal plumes in the upright cylinder is much
larger than that in the thin disk. This is because the quasi-two-dimensional LSC in
the thin disk is more stable than the LSC in the upright cylinder, which gives rise to
a more organized spatial distribution of thermal plumes, reducing their probabilities to
go through the bulk region. Such an aspect-ratio-dependent P(δT) at the cell centre
was also reported previously by Solomon & Gollub (1991).

It is also seen that the fitted value of β at Pr = 7.6 is β = 0.1, which indicates
that the warm plumes are active for only 10 % of the measuring time, so that they
are highly intermittent in the mixing zone. The fact that the obtained value of β
in the thin disk is the same as that in the upright cylinder suggests that the fitted
value of β = 0.1 is not sensitive to the changes of cell geometry and Ra. Table 1
also reveals that the fitted values of α1 and β in the upright cylinder decrease slightly
with increasing Pr. This is because the thermal plumes in the mixing zone become
more coherent with increasing Pr. Here ‘coherent’ has two meanings. First, because
the warm plumes at larger Pr have a longer lifetime, they are relatively hotter than
the warm plumes at lower Pr (at the same position z). As a result, the plume-induced
temperature fluctuations have a larger amplitude, leading to a smaller value of α1 at
larger Pr. Second, because the thermal plumes at larger Pr are more localized in
space (less thermal diffusion) and move faster (more buoyant), they have a shorter
time passing through the temperature probe and thus a smaller value of β.

5. Summary
We have carried out a systematic study of spatial variations of the PDF P(δT)

for temperature fluctuations δT in turbulent Rayleigh–Bénard convection. The local
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temperature measurements were made along the central axis of two closed convection
cells: one is a thin circular disk cell and the other is an upright cylinder of aspect ratio
unity. In the experiment, the Rayleigh number Ra was varied in the range between
9 × 108 and 1.2 × 1010 with two fixed Prandtl numbers Pr = 4.4 and Pr = 7.6. The
measured P(δT) reveals distinct changes in four different flow regions in the lower
half of the cell, namely, the thermal BL near the bottom conducting place, mixing
zone outside the BL, lower turbulent bulk region and cell centre. Because of the
symmetry of the cell shape, one expects that similar regions exist in the upper half
of the cell. These distinct changes in the functional form of P(δT) remain unchanged
for different values of Ra and Pr, once the normalized temperature fluctuation δT/σT
is used as the scaling variable. Here σT is the r.m.s. value of δT .

In the inner region of the BL, where the mean temperature gradient remains
approximately constant, the measured P(δT) has a Gaussian form in both convection
cells. In the mixing zone outside the BL, the measured P(δT) in the thin disk cell
has a Gaussian shape in the main body but with an exponential tail for large positive
values of δT/σT . Such an exponential tail is caused by the periodic emission of warm
plumes from the bottom BL, which also gives rise to an abrupt change in the local
slope of the measured exponential tail of P(δT). A similar P(δT) is also found in
the upright cylinder. In the outer region of the mixing zone, the measured P(δT) in
the upright cylinder evolves to a new shape containing two asymmetric exponential
tails for large absolute values of δT/σT . This new shape of P(δT) is not observed
in the thin disk cell. In the lower turbulent bulk region of both convection cells, the
abrupt change in the local slope of the measured exponential tail of P(δT) disappears,
suggesting that the effect of the periodic emission of thermal plumes is diminished.
In this case, the measured P(δT) in the thin disk has a Gaussian shape in the main
body and a smooth exponential tail for large positive values of δT/σT . The measured
P(δT) in the upright cylinder has a Gaussian cap and two asymmetric but smooth
exponential tails for large absolute values of δT/σT . At the centre of both convection
cells, because of the symmetry of the convection cell, the measured P(δT) has a
symmetric shape with a Gaussian cap for small absolute values of δT/σT and two
long exponential tails for large absolute values of δT/σT .

Based on the above experimental findings, we proposed a theoretical model which
assumes that temperature fluctuations in different regions of the convection cell
are all made from two independent sources, namely, a homogeneous background
which obeys Gaussian statistics and non-uniform thermal plumes with an exponential
distribution. As a result, the temperature PDF P(δT) is uniquely described by a
convolution of the two modes of fluctuations with a relative strength, which varies
among the four different flow regions. The predicted analytic expressions of P(δT),
as shown in (4.6), (4.8), (4.11) and (4.13), agree well with the experimental results
obtained in the present experiment and also in previous experiments. Our model
thus provides a unique theoretical framework with a common set of parameters to
quantitatively describe the effect of turbulent background, thermal plumes and their
spatio-temporal intermittency on the temperature PDF P(δT). Such an understanding
of turbulent fluctuations with decomposition of fluctuation modes based on the
coherent structures in the flow is very useful not only for the study of temperature
fluctuations in turbulent thermal convection but also for the understanding of turbulent
mixing problems of practical interest.
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