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SUMMARY
This paper examines the problem of link position tracking
control of robot manipulators with bounded torque inputs.
An adaptive, full-state feedback controller and an exact
model knowledge, output feedback controller are designed
to produce semi-global asymptotic link position tracking
errors. Simulation results are provided to validate the
theoretical concepts, and a comparative analysis demon-
strates the benefits of the proposed controllers.
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1. INTRODUCTION
The standard tracking control problem for torque input,
rigid-link robot manipulators has been the subject of much
research during the last twenty years. A common assump-
tion in most of the previously designed controllers is that the
robot’s link actuators are able to generate the necessary
level of torque inputs. In practice, robotic actuators have
physical constraints that limit the amplitude of the available
torques. Possible problems that could result from the
implementation of controllers based on the unlimited
available torque assumption include: (i) degraded link
position tracking, and (ii) thermal or mechanical failure.
With this conundrum in mind, several researchers have
proposed robot controllers which are amplitude limited.1–6

Most of the previous work on the design of robot
controllers with bounded torque inputs has been targeted at
the setpoint control problem. For example, in reference 6,
Santibáñez and Kelly proposed a controller composed of a
saturated proportional derivative (PD) feedback loop plus
feedforward gravity compensation which provided global
asymptotic regulation. In reference 5, the same authors
explicitly characterized a general class of regulations that
solve the same control problem as in reference 6. Loria et
al.3 provided an output feedback† (OFB) extension of the

full-state feedback (FSFB) control design given in reference
5. In references 1 and 2, Colbaugh et al. designed bounded
full-state and output feedback controllers that achieve
global asymptotic regulation while compensating for robot
uncertainties. From a review of the literature, it seems that
the more general tracking control problem has received less
attention. To the best of our knowledge, the only work that
addresses the tracking problem with bounded torque inputs
is found in reference 4. In this work, Loria and Nijmeijer
designed an exact model knowledge OFB controller which
yielded semi-global asymptotic link position tracking.

In this paper, we consider the link position tracking
control problem of robot manipulators with bounded torque
inputs under either the obstacles of parametric uncertainty
or output measurements. Specifically, in Section 3, we
develop: (i) an adaptive FSFB controller to compensate for
the unknown, constant mechanical parameters and (ii) an
exact model knowledge OFB controller that eliminates the
need for velocity measurements by incorporating a “sat-
urated” version of the filter proposed in references 7 and 8.
Both controllers are shown to produce semi-global asymp-
totic link position tracking while maintaining the torque
inputs at prescribed amplitudes. In addition, we explicitly
determine the sufficient conditions on the control gains
which ensure semi-global asymptotic link position tracking.
In Section 4, we provide simulation results as verification of
the proposed controllers. In Section 5, we demonstrate the
practical advantages of our proposed controller through
comparative simulations. Specifically, we compare the
performance of standard robot controllers to the proposed
controllers. This comparison illustrates the fact that with
equal gain values and initial conditions our controller
achieves similar tracking performance with less control
energy required. Concluding remarks are presented in
Section 6.

2. ROBOT MODEL
The system model for a rigid n-link, serially connected,
direct-drive robot is assumed to be of the following form9

M(q)q̈+Vm(q, q̇)q̇+G(q)+F d q̇=t (1)

where q(t), q̇(t), q̈(t) P Rn denote the link position, velocity,
and acceleration vectors, respectively, M(q) P Rn3 n repre-
sents the link inertia matrix, Vm(q, q̇) P Rn3 n represents
centripetal-Coriolis matrix, G(q) P Rn represents gravity
effects, Fd is the constant, viscous friction coefficent matrix,
and t (t) P Rn represents the torque input vector.

* This work was supported in part by the U.S. National Science
Foundation Grants DMI-9457967, DDM-931133269, DMI-
9622220, the Office of Naval Research Grant URI-3139-YIP01,
DOE SCUREF Fellowship, the Square D Corporation, the Union
Camp Corporation, the AT&T Foundation, and the National
Research Council-CNPq, Brazil.
† Here, we use the term output feedback to mean that only link
position measurements are available while the term full-state
feedback is used to mean that both link position and velocity are
available for measurement.
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The dynamic equation of (1) has the following properties9

that will be used later in the controller development and
analysis

Property 1: The inertia matrix M(q) is symmetric and
positive definite, and satisfies the following inequalities

m1 ij i 2 ≤ j TM(q)j ≤ m2 ij i 2 ;jPRn (2)

where m1, m2 are known positive constants, and i · i is the
standard Euclidean norm.

Property 2: The inertia and centripetal-Coriolis matrices
satisfy the following skew symmetric relationship

j T S 1
2

Ṁ(q)2Vm(q, q̇)Dj =0 ;jPRn (3)

where Ṁ(q) is the time derivative of the inertia matrix.

Property 3: The dynamic equation of (1) can be linear
parameterized as

Yd(qd, q̇d, q̈d)u =M(qd)q̈d +Vm(qd, q̇d)q̇d +G(qd)+F d q̇d (4)

where uPRp contains the constant system parameters, and
the desired regression matrix Yd(qd, q̇d, q̈d)PRn3 p contains
known functions of the desired link position, velocity, and
acceleration, qd(t), q̇d(t), q̈d(t)PRn, respectively.

Property 4: The centripetal-Coriolis, gravity, and friction
terms in (1) can be bounded in the following manner

iVm(q, q̇) i ≤ z c i q̇ i, iG(q) i ≤ z g, iFd i ≤ z f (5)

where zc, zg, and z f are positive bounding constants.

Property 5: The centripetal-Coriolis matrix satisfies the
following relationship

Vm(q, j)n = Vm(q, n)j ;j, nPRn. (6)

3. CONTROL FORMULATION
The control objective is to design amplitude-limited, link
position tracking controllers for the aforementioned robot
model. Two controllers will be described in the subsequent
sections: (i) an adaptive FSFB controller and (ii) an exact
model knowledge OFB controller. We quantify the control
objective by defining the link position tracking error
e(t)PRn as follows

e = qd 2q (7)

where qd(t) was defined in property 3. We assume that qd(t)
and its first two time derivatives are bounded time functions
such that

iqd(t) i ≤ zdp, i q̇d(t) i ≤ zdv, i q̈d(t) i ≤ z da (8)

where zdp, zdv, and zda are positive bounding constants. We
also assume that each of the constant system parameters
defined in (4) can be lower and upper bounded as follows

u i < u i < ū i (9)

where u i denotes the i-th component of the vector u, and u i,
ū i denote known, constant bounds for each unknown
parameter.

Remark 1 To aid the subsequent control design and
analysis, we define the vector Tanh(·)PRn and the matrix
Cosh(·)PRn3 n as follows

Tanh(j )=[tanh(j 1), . . . , tanh(jn)]T (10)

and

Cosh(j) = diag{cosh(j1), . . . , cosh(jn)} (11)

where j =[j1, . . . , jn]
T PRn. Based on the definition of

(10), it can be shown that the following inequalities hold for
;jPRn

ij i ≥ iTanh(j) i,

ij i 2 ≥ On

i=1

ln(cosh(j i)) ≥ ln(cosh( ij i )) ≥
1
2

tanh2( ij i ),

j T Tanh(j) ≥ TanhT(j)Tanh(j) ) = iTanh(j) i 2 ≥ tanh2( ij i ),

ij i +1 ≥
ij i

tanh( ij i )
. (12)

3.1 Adaptive FSFB controller
To facilitate the design of the adaptive FSFB controller, we
define the filtered tracking error r(t)PRn as follows10

r= ė+aTanh(e) (13)

where ė(t) is the time derivative of the position tracking
error defined in (7), aPRn3 n is a constant, diagonal,
positive-definite control gain matrix and Tanh(·) was
defined in (10). Since the control objective in this subsection
is to be met under the constraint of parametric uncertainty,
the controller will contain an adaptation law to estimate the
unknown system parameters; hence, the difference between
the actual and estimated parameters will be denoted as

ũ =u2û (14)

where ũ(t)PR p represents the parameter estimation error
vector, and û(t)PRp is the dynamic estimate of u defined in
(4).

We begin the development of the controller by first
ascertaining the open-loop dynamics of r(t). To this end, we
take the time derivative of (13), multiply both sides of the
equation by M(q), and use (1) in the resulting equation to
yield

M(q)ṙ=2Vm(q, q̇)r+Yu 2t (15)

where the linear parameterization Y(e, r, t)u is defined as

Y(e, r, t)u =M(q)(q̈d +aCosh 22(e)ė)+Vm(q, q̇)

(q̇d +aTanh(e))+G(q)+Fdq̇. (16)

To obtain the final expression for the open-loop dynamics of
r(t), the term Ydu, defined in (4) is added and subtracted to
the right-hand side of (15) to produce

M(q)ṙ =2Vm(q, q̇)r+Ydu2t+Ỹ (17)

where Ỹ(e, r, t)PRn denotes the mismatch between the
actual and desired linear parameterization, and is defined
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as

Ỹ = Yu2Ydu. (18)

Remark 2 By exploiting Properties 1, 4, and 5 of the robot
dynamics, the first inequality of (12) and the definition of
(13), is easy to show by using the results given in reference
11 that

i Ỹ i ≤ z0 ie i +z1 ir i (19)

where z 0 and z 1 are some positive bounding constants that
depend on the physical properties of the robot (e.g. link
masses, link lengths, friction coefficients, etc.), the desired
trajectory bounds given by (8), and the control gain matrix
a defined in (13).

Based on the form of (17) and on the subsequent stability
analysis, we design the torque input, adaptive FSFB
controller as follows

t = Ydû + KpTanh(e)+KyTanh(r) (20)

where Kp, Ky PRn3 n are constant, diagonal, positive-
definite, control gain matrices. The parameter estimate
vector û (t) is generated on-line according to the following
adaptation algorithm

˙̂u (t)=Proj(GY T
dr) (21)

where GPRp3 p is a constant, diagonal, positive-definite,
adaptation gain matrix, and Proj(·) denotes a projection
algorithm utilized to guarantee û(t) stays within the known
region of u as prescribed by (9) (e.g., see reference 12 for
details). After substituting (20) into (17), we can form the
closed-loop dynamics of r(t) as given below

M(q)ṙ=2Vm(q, q̇)r+Y dũ 2Kp Tanh(e)2Ky Tanh(r)+Ỹ
(22)

where ũ(t) was defined in (14).

Theorem 1. Given the robot dynamics of (1), the adaptive
FSFB controller composed of (20) and (21) ensures semi-
global asymptotic link position tracking in the sense that

lim
t→∞

e(t)=0 (23)

provided the control gain matrix Ky defined in (20) satisfies
the following sufficient condition

lmin{Ky} > z1 (cosh21(exp(
l2

l1
iz (0) i 2))+1)2

+
z 2

0

4lmin{Kpa}
(cosh21(exp (

l2

l1
iz(0) i 2))+1)4

(24)

where z(t)PR3n is defined as

z=[eT rT ũT]T , (25)

and l1, l2 are positive scalar constants given by

l1 = minHlmin{Kp},
m1

2 J ,

l2 = maxHlmax{Kp},
m2

2
, 

1
2

lmax {G 21}J (26)

with lmin {·} and lmax {·} denoting the minimum and
maximum eigenvalues of a matrix, respectively, and m1, m2

being defined in (2).

Proof: To prove Theorem 1, we first define the following
non-negative function*

V(t)=
1
2

r T (t)M(q)r(t)+ On

i=1

kpi ln(cosh(ei(t)))

+
1
2

ũT (t)G21 ũ (t) (27)

where kpi is the i-th diagonal element of the control gain
matrix K p defined in (20), and ei(t) is the i-th element of the
vector e(t) defined in (7). Based on (12), it is easy to show
that V(t) can be bounded as

1

2
l1 tanh2 ( iy i ) ≤ l1 ln (cosh( iy i )) ≤ V ≤ l2 iz i 2 (28)

where y(t)PR2n is given by

y = [eT rT]T, (29)

and z(t), l1, and l2 were defined in (25) and (26).
After taking the time derivative of (27), we have

V̇ =
1
2

rT Ṁ (q)r+rT M(q)Ġ + TanhT(e)K pė2ũ T G 21 ˙̂u (30)

where we have used the fact that ˙̃u (t)=2 ˙̂u (t). After
substituting (22) for M(q)ṙ(t), substituting (13) for ė(t),
utilizing Property 2, and cancelling common terms, we
obtain

V̇ = 2TanhT(e)KpaTanh(e)2rT Ky Tanh(r)

+ rT Ỹ+ ũ TSY T
d r2G21 ˙̂uD . (31)

After substituting (21) for ˙̂u , the last term of (31) can be
shown to be less than or equal to zero for all time (see
reference 12 for details); hence, the inequalities of (12) can
be used to formulate the following upper bound for (31)

V̇ ≤ 2lmin {Kpa}tanh2( ie i )

2lmin{Ky } tanh2( ir i ) + ir ii Ỹi . (32)

As a sidenote, we can utilize (19) to upper bound the last
term of (32) as follows

ir ii Ỹi ≤ z0 ie i ir i +z1 iri2

= z0

ie i
tanh( ie i)

ir i
tanh( ir i)

tanh( ie i) tanh( ir i)

+ z1

ir i2

tanh2( ir i)
tanh2( ir i); (33)

hence, V̇(t) can be further upper bounded as

* Note that the ln(cosh(·)) part of V(t) in (27) is similar to that
used in reference 4.
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V̇ ≤ 2xTQx (34)

where x(t)PR2 and Q(e, r)PR23 2 are explicitly defined as
follows

x = [tanh( ie i ) tanh( ir i )]T (35)

and

Q =
lmin {Kpa}

2
z0

2
ie i r i

tanh( ie i )tanh( ir i )

2
z0

2
ie i r i

tanh( ie i )tanh( ir i )

lmin {Ky}2z1

ir i 2

tanh2( ir i )

. (36)

For the matrix Q(e, r) above to be positive-definite, the
following conditions must be satisfied

lmin{Kpa}>0, (37)

lmin{Ky} > z 1

ir i2

tanh2( ir i )
, (38)

and

z2
0

4

ie i2 ir i 2

tanh2( ie i )tanh2( ir i)
< lmin {Kpa}lmin{Ky}

2lmin {Kpa}z1

ir i2

tanh2( ir i )
. (39)

After using (25) and the last inequality of (12), we can
easily develop the following sufficient condition for (38)
and (39)

lmin {Ky} > z 1( iy i + 1)2 +
z 2

0

4lmin{Kpa}
( iy i+ 1) 4 (40)

where y(t) was defined in (29). We can now utilize the first
lower bound on V(t) from (28) to state that

iy i ≤ cosh21SexpS V
l1
DD; (41)

hence, a sufficient condition for (40) can be obtained as
follows

lmin{Ky} > z1Scosh21SexpS V
l1
DD+1D2

+
z 2

0

4lmin{Kpa} Scosh21SexpS V
l1
DD+1D4

.
(42)

If condition* (42) is satisfied, then we can state from (34)
and (12) that

V̇ ≤ 2b ix i 2 ≤ 2b tanh2( iy i) (43)

where b is some positive constant. From (43), we know
V̇(t) ≤ 0, and hence,

V(z(t), t) ≤ V(z(0), 0) ≤ l2 iz(0) i 2 ; t ≥ 0 (44)

where the upper bound from (28) has been utilized.
Therefore, by the use of (44), a final sufficient condition for
(42) can be written as in (24).

If (24) is satisfied, a direct implication of (27), (28), and
(43) is that V(t) is bounded, and thus, r(t), e(t), and ũ(t) are
bounded. Since e(t) and r(t) are bounded, it follows from
(13) that ė(t) is bounded. A consequence of e(t) and ė(t)
being bounded is that q(t) and q̇(t) are bounded due to the
boundedness of the desired link trajectory. From the above
boundedness statements, we know from (22) that ṙ(t) is also
bounded. It is now obvious from (29) that ẏ(t) is bounded;
hence y(t) is uniformly continuous (UC). Since y(t) is UC,
we know iy(t) i is UC which implies tanh( iy(t) i) is also
UC. Now, from the boundedness of V(t) and the form of
(43), we can state that tanh( iy(t) i) is square integrable;
hence, application of Barbalat's Lemma10 yields that lim

t→∞

tanh( iy(t) i )=0 which implies that lim
t→∞

iy(t) i =0. This

directly leads to the result of Theorem 1 given in (23) due to
the definition of (29). u

Remark 3 An important feature of the adaptive FSFB
controller given by (20) and (21) is its applicability to the
case where constraints exist on the available actuator
torques. Note that the control law (20) is bounded since we
can explicitly obtain the following upper bound on the norm
of the required torque input

it i ≤ zyzp +lmax {Kp}+lmax {Ky} (45)

where zy, zp are positive constants defined as follows

zy = sup
t

iYd(t) i, zp = sup
t

i û(t) i (46)

which exist due to the boundedness of qd(t), q̇d(t), q̈d(t) and
the use of a projection algorithm to generate û(t).

3.2 Exact model knowledge OFB controller
In this subsection, we will design a controller for the
dynamics of (1) under the constraint that link velocity
measurements are not available for measurement; however,
we now assume that exact knowledge of the system
parameters is available. Since link velocity is assumed to be
unmeasureable, we first introduce a filter that generates a
suitable surrogate signal for the link velocity tracking error.
The filter is given by the following dynamic relationship

H ṗ=2 (k+1)Tanh(2ke+p)2 (k21)tanh(e)

ef =2ke+p
(47)

where ef (t)PRn is the output of the filter, p(t)PRn is an
auxiliary variable, k is a positive scalar control gain, and
Tanh(·) was defined in (10).

We start the controller development by obtaining the
* Note that condition (37) is automatically satisfied due to the
definitions of Kp and a in (20) and (13), respectively.

Tracking control of robot124

https://doi.org/10.1017/S0263574799001228 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001228


dynamics of the filter output ef (t). Specifically, we take the
time derivative of the bottom equation (47) and then
substitute the right-hand side of the top equation of (47) for
ṗ(t) to produce

ėf =2Tanh(ef)+Tanh(e)2kh (48)

where h(t)PRn represents a filtered tracking error-like
variable defined as follows

h = Tanh(e)+Tanh(ef)+ ė. (49)

It should be noted that (49) can be rearranged as follows

ė=2Tanh(e)2Tanh(ef)+h (50)

to provide the dynamics of e(t).
To design the exact model knowledge OFB controller, we

require the dynamics of h(t). To this end, we take the time
derivative of (49) and substitute (1) for q̈(t) to yield.

ḣ=V(e, ef, t)+Cosh 22(e)h2kCosh22(ef)h

+M 21(q)(V m(q, q̇)q̇+G(q)+F d q̇2t) (51)

where V(·)PRn is a measurable auxiliary variable given
by

V= q̈d +Cosh 22(e)(2Tanh(ef)2Tanh(e))

+Cosh 22(ef)(2Tanh(ef)+Tanh(e)), (52)

and Cosh(·) was defined in (11). Based on the form of (51)
and on the subsequent stability analysis, we propose the
following torque input

t=M(q)(V(e, ef, t)2ka0Tanh(ef)+a0Tanh(e))

+V m(q, q̇d)q̇d +G(q)+Fdq̇d (53)

where k is the same control gain defined in (47), and a0 is
a positive, scalar control gain. Substituting (53) into (51)
yields the following closed-loop dynamics for h(t)

ḣ = 2kCosh 22(ef)h+x(e, ef, h, t)+ka0 Tanh(ef)

2a0 Tanh(e) (54)

where x(·)PRn is an unmeasurable auxiliary variable
defined as

x=Cosh22(e)h+M 21 (Vm(q, q̇)q̇2Vm(q, q̇d)q̇d 2Fdė). (55)

Remark 4. In a similar fashion described in Remark 2, it is
easy to show that

ix i ≤ z0 ix i +z1 ix i2 (56)

where z0, z1 are some positive bounding constants that
depended on the robot parameters and the desired motion
trajectory, and x(t)PR3n is defined as

x=[TanhT(e) TanhT(ef) h
T]T. (57)

Theorem 2. Given the robot dynamics of (1), the exact
model knowledge OFB controller composed of (47) and (53)
ensures a semi-global asymptotic link position tracking
error in the sense that

lim
t→∞

e(t)=0 (58)

provided the control gains a0 and k defined in (53) and (47)

satisfy the following sufficient conditions

a0 >max{1, z0 +z1Ï4a0 iy(0) i} (59)

k > a0 exp(4a0 iy(0) i2) (60)

where y(t)PR3n is now defined as follows

y=[eT eT
f hT]T, (61)

and z0, z1 were defined in (56).

Proof: To begin the proof of Theorem 2, we define the
following non-negative function

V(t)=a0 On

i=1

ln(cosh(ei(+)))

+a0 On

i=1

ln(cosh(efi
(t)) +

1
2

hT(t)h(t) (62)

where a0 is the same control gain defined in (53), and ei(t),
efi

(t) are the i-th elements of the vectors e(t) and ef(t) defined
in (7) and (47), respectively. Upon utilizing the second
inequality of (12), it is evident that (62) can be bounded as
follows

l1 ix i2 ≤ l2(ln(cosh( ie i ))+ ln(cosh( ief i))+ ih i2)

≤ V ≤ l3 iy i2 (63)

where x(t) and y(t) were defined in (57) and (61),
respectively, and

l1 =
1

2
minHa0, 

1
2J, l2 = minHa0, 

1
2J, l3 = maxHa0, 

1
2J,

(64)

After taking the time derivative of (62), substituting (48),
(50), and (54) into the resulting expression, and cancelling
common terms, we obtain the following upper bound on
V̇(t)

V̇ ≤ 2a0 iTanh(e) i2 2a0 iTanh(ef) i2

2kmin{cosh22( uefi
u )} ih i2 + ih i (z0 ix i + z1 ix i2)

(65)

where (56) has been used. Now, note that if

kmin{cosh22( uefi
u )} > a0, (66)

then an upper bound can be placed on (65) as follows

V̇ ≤ 2 (a0 2z0 2z1 ix i) ix i2 (67)

Hence, if a0 is chosen such that

a0 > z0 +z1 ix i (68)

then (67) can be expressed as

V̇ ≤ 2b ix i2 (69)

where b is some positive constant.
Provided that the conditions (68) and (66) are satisfied,

we can see from (69) that V̇(t) is non-positive; hence, we
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know V(t) is decreasing or constant. This fact leads to the
following inequality

V(y(t), t) ≤ V(y(0), 0) ≤ l3 iy(0) i2 ;t ≥ 0 (70)

where the upper bound on V(t) from (63) has been utilized.
If

a0 > 1, (71)

then we have from (63) and (70) that

ix(t) i ≤ Ï4V(t) ≤ Ï4a0 iy(0) i , (72)

and, as a consequence, a sufficient condition for (68) and
(71) is given by (59). Due to the properties of the cosh (·)
function, it is easy to see that (66) can be rewritten as

k > a0 min{cosh2 uefi
u}=a0 cosh2(max uefi

u ); (73)

hence, a sufficient condition for (73) is as follows

k > a0 cosh2( ief i ). (74)

From (63) and (71), we can state that

ln(cosh( ief i )) ≤ 2V (75)

or, after solving for ief i,we have

ief i ≤ cosh21(exp(2V)) ≤ cosh21(exp(2a0 iy(0) i2)) (76)

where (72) has been utilized. After utilizing (76), we can
develop a sufficient condition for (74) as given in (60).

Finally, we use (12) and the definition of x(t) given by
(57) to formulate the final upper bound for (69) as follows

V̇ ≤ 2b iTanh(y) i2 ≤ 2b tanh2( iy i ) (77)

where y(t) was defined in (61). From (77), similar
arguments as those used in the proof of Theorem 1 can be
followed to prove the boundedness of all closed-loop signals
and the result given by (58).

Remark 5. The exact model knowledge OFB controller
proposed in this subsection also possesses the characteristic
of being applicable to robot manipulator systems with
limited actuator torques. From (53) and (52), an explicit
bound on the required torque can be obtained as follows

it i ≤ m2(zda +4+ka0 +a0)+zcz
2
dv +zg +z f zdv (78)

where m2, zda, zdv, zc, zg, and z f were defined in (2), (5), and
(8).

4 SIMULATION RESULTS
The two controllers developed in this paper were simulated
based on the 2-link, Integrated Motion Inc. (IMI) direct-
drive robot manipulator which has the following
dynamics13

F t1

t2
G=F p1 +2p3c2

p2 +p3c2

p2 +p3c2

p2
GF q̈1

q̈2
G

+F 2p3s2q̇2

p3s2q̇1

2p3s2(q̇1 + q̇2)
0 GF q̇1

q̇2
G

+F fd1

0
0
fd2
GF q̇1

q̇2
G (79)

where p1 =3.473 kg · m2, p2 =0.193 kg · m2,
p3 =0.242 kg · m2, fd1 =5.3 Nm.sec, fd2 =1.1 Nm · sec, c2 rep-
resents cos(q2), and s2 represents sin(q2). Based on (79) and
(4), the parameter vector u (required in the adaptive FSFB
controller) was constructed as

u=[p1 p2 p3 fd1 fd2]
T.

The desired position trajectories for links 1 and 2 for all
simulations in this section were selected as follows

qd1(t)=1.57 sin(2t)(12e20.05t3) rad, (80)

qd2(t)=1.2 sin(3t)(12e20.05t3) rad.

For the adaptive FSFB controller simulation, the actual
link positions and velocities were initialized to zero, and the
control and adaptation gains were chosen as

a=diag{1.0, 1.0}, Kp =diag{1.0, 1.0}, Ky =diag{1.0, 1.0},
G=diag{0.5, 5.03 1023, 1.83 1022, 8.0, 1.0}.

(81)

The position tracking errors for links 1 and 2 are shown in
Figure 1. The control torque inputs and the feedback terms
of the torque inputs (i.e. the second and third terms of (20))
are depicted in Figure 2. Figure 3 illustrates the parameter
estimates. For the exact model knowledge OFB controller,
we set q(0)=[2.0, 22.0]T and q̇(0)=[0, 0]T while the control
gains were selected as

a0 =1.0, k=1.0.

Figure 4 shows the link position tracking errors. The control
torque inputs and the feedback terms of the torque inputs
(i.e. the second and third terms of (53)) are shown in Figure
5.

5 COMPARATIVE ANALYSIS
In order to demonstrate the performance of our controller
over recently proposed controllers, we now compare the
simulation results from the proposed adaptive FSFB
controller with a standard unsaturated version given by
Slotine.10 In addition, we compare the proposed exact model

Fig. 1. Adaptive FSFB controller: (a) link 1 tracking error and (b)
link 2 tracking error.
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knowledge controller with a version of the controller that
does not include the saturation functions. In order to give an
accurate comparison between the controllers, all gains, and
initial conditions were chosen exactly the same. Specifically

the gains for the adaptive and exact model knowledge
controllers were selected as follows.

a=diag{1.0, 1.0}, Kp =diag{0.5, 0.5}, Ky =diag{0.5, 0.5},

G=diag{0.1, 3.03 1023, 1.03 1022, 0.5, 0.5} (82)

and

a0 =1.0, k=5.0 (83)

respectively, with the following desired trajectory

qd1(t)=1.57sin(t) rad,

qd2(t)=1.57 sin (t) rad. (84)

and initial conditions

q(0)=[21.0, 1.0]T and q̇(0)=[0, 0]T. (85)

From Figure 6, it is straightforward to see that the steady-
state error is practically the same for both controllers. (Note
that the proposed controller exhibits superior transient

Fig. 2. Adaptive FSFB controller: (a) link 1 control torque input,
(b) link 2 control torque input, (c) link 1 feedback terms, and (d)
link 2 feedback terms.

Fig. 3. Adaptive FSFB controller: parameter estimates.

Fig. 4. Exact model knowledge OFB controller: (a) link 1
tracking error and (b) link 2 tracking error.

Fig. 5. Exact model knowledge OFB controller: (a) link 1 control
torque input, (b) link 2 control torque input, (c) link 1 feedback
terms, and (d) link 2 feedback terms.

Fig. 6. Adaptive FSFB link position tracking error comparison for
Slotine’s controller: (a) link 1, (b) link 2, and proposed adaptive
controller (c) link 1, and (d) link 2.
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performance in comparison to Slotine’s10 controller; how-
ever, it may be possible to tune the controllers to achieve
different transient results.) Likewise, similar transient/
steady-estate error results are apparent for the exact model
knowledge comparison given in Figure 8. In addition to the
improved tracking results, it is evident from the plots of the
feedback portion of the input control torque given in Figure
7 and Figure 8, that our controllers require less control
energy than equivalent unsaturated counterparts. Hence, the
steady-state error is on the same order of magnitude,
however the proposed controllers take into account the
possibility of actuator torque limits.

Remark 6. Note that the feedbacks terms in Figure 2,
Figure 5, Figure 7 and Figure 9 do not exhibit “hard”
saturation effects since the tanh( · ) is a “slow” saturation
function. That is “hard” saturation effects would only be
apparent if the tracking error became very large for a
substantial interval of time.

Remark 7. It is important to note that the conditions given
in (24), (59), and (60) are sufficient conditions. Thus it is not
surprising that asymptotic tracking is obtained even though
the controller gains do not satisfy the aforementioned

conditions. In fact, gains as low as 0.01 were chosen and the
error was observed to still equal zero after some time.

6 CONCLUSION
This paper presented the development of two bounded,
torque input, tracking controllers for robot manipulators
with constraints on the available actuator torques. Specifi-
cally, an adaptive, full-state feedback controller and an exact
model knowledge, output feedback controller were designed
and shown to produce semi-global asymptotic link position
tracking. Simulation results were utilized to demonstrate the
controllers’ tracking performance. Furthermore, a simula-
tion-based comparison demonstrated the practical
advantages of the proposed controllers over standard robot
controllers. Future work will target the investigation of the
proposed control techniques for Rigid-Link Flexible-Joint
Robots, and other mechanical systems.
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6. V. Santibáñez and R. Kelly, “Global Regulation for Robot
Manipulators Under SP-SD Feedback”, Proc. IEEE Int. Conf.
Robotics and Automation, Minneapolis, MN (Apr., 1996)
pp. 927–932.

7. M. de Queiroz, D. Dawson and T. Burg, “Reexamination of

Fig. 7. Adaptive FSFB feedback terms comparison for Slotine’s
controller: (a) link 1, (b) link 2, and the proposed adaptive
controller (c) link 1, and (d) link 2.

Fig. 8. Exact model knowledge OFB link position tracking error
comparison for the unsaturated controller: (a) link 1, (b) link 2 and
the proposed exact model knowledge controller (c) link 1, and (d)
link 2.

Fig. 9. Exact model knowledge OFB feedback terms comparison
for the unsaturated controller: (a) link 1, (b) link 2, and the
proposed exact model knowledge controller (c) link 1, and (d)
link 2.

Tracking control of robot128

https://doi.org/10.1017/S0263574799001228 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001228


the DCAL Controller for Rigid Link Robots”, Robotica 14,
41–49 (1996).

8. T. Burg, D. Dawson, J. Hu and M. Queiroz, “An Adaptive
Partial State Feedback Controller for RLED Robot Manip-
ulators”, IEEE Trans. Automatic Control 41, No. 7,
1024–1030 (July, 1996).

9. F. Lewis, C. Abdallah and D. Dawson, Control of Robot
Manipulators (MacMillan Publishing Co., New York, 1993).

10. J.J.E. Slotine and W. Li, Applied Nonlinear Control (Prentice
Hall, NJ: Englewood Cliff 1991).

11. N. Sadegh and R. Horowitz, “Stability and Robustness
Analysis of a Class of Adaptive Controllers for Robotic
Manipulators”, Int. J. Robot. Res. 9, 9 74–92 (June, 1990).

12. M.M. Bridges, D.M. Dawson and C.T. Abdallah, “Control of
Rigid-Link, Flexible-Joint Robots: A Survey of Backstepping
Approaches”, J. Robotic Systems 12, No. 3, 199–215 (March,
1995).

13. Direct Drive Manipulator Research and Development Pack-
age Operations Manual (Integrated Motion Inc., Berkeley,
CA, 1992).

Tracking control of robot 129

https://doi.org/10.1017/S0263574799001228 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001228

