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Fine initial alignment is vital to the Inertial Navigation System (INS) before the launching of
a missile. The existing initial alignment methods are mainly performed on a stationary base
after the missile has been erected to the vertical state. However, these methods consume extra
alignment time and some state variables have poor degrees of observability, thus losing the
rapidity of alignment. In order to solve the problem, a fast fine initial self-alignment method of
a missile-borne INS is proposed, which is performed during the erecting process on a stationary
base. The convected Euler angle error is modelled to optimise the erecting manoeuvre which can
prevent large Euler angle errors and improve the system observability. The fine initial alignment
model is established to estimate and correct the initial misalignment. Several experiments verify
that the proposed method is effective for improving the rapidity of the fine initial alignment for
a missile-borne INS.
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1. INTRODUCTION. The Inertial Navigation System (INS) achieves high precision
navigation through continuous integral computation based on angular velocity and accel-
eration, and is an essential component of a long-range missile (Chang et al., 2015; Cheng
and Li, 2013; Liu et al., 2015; Lu et al., 2009). The initial alignment is one of the key
technologies of a missile-borne INS. Its rapidity and precision are the two most important
parameters which determine the launching preparation time and the navigation precision of
the missile, respectively (Wang et al., 2012).

Normally, the initial alignment process is divided into two phases, coarse and fine align-
ment. The purpose of coarse alignment is to provide a desirable initial condition for the
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fine alignment (Li et al., 2012; Chang et al., 2015; Wu et al., 2010). Some fine initial
alignment methods have been investigated in the last few decades. These methods are
mainly performed on a stationary base after the missile has been erected along the X-axis
from the horizontal state to the vertical state with the pitch angle varying by 90◦ (Lu et al.,
2016; Li et al., 2015). For instance, the most common optical alignment method adopts
some optical instruments to obtain the initial attitude angle, which is the Euler angle of the
INS. However, the optical alignment method is complex and time consuming, and cannot
meet the requirement of rapidity (Li et al., 2015). Usually, a fine self-alignment method
using a Kalman filter is adopted (Wu et al., 2014). It is performed on a stationary base
after the missile has been erected to the vertical state. The extra time is devoted to the fine
self-alignment method, and some unobservable state variables are difficult to accurately
estimate quickly (Gao et al., 2015; Wu et al., 2012). Therefore, the rapidity of fine initial
alignment will be severely influenced (Cho et al., 2013; Wu et al., 2011). How to improve
the rapidity of fine initial alignment has become an urgent problem for missile-borne INS
development.

In order to solve the aforementioned problem, a fast fine initial self-alignment method
for a missile-borne INS is proposed, which is performed during the erecting process on
a stationary base. According to the proposed convected Euler angle error model, the
erecting manoeuvre can be optimised to prevent the large Euler angle errors. The fine ini-
tial alignment model is established to estimate and correct the initial misalignment. The
observability degree analysis indicates that the system observability can be improved. The
proposed method may not only share the erecting manoeuvre, but also improve the system
observability so that the alignment time can be reduced. Several experiments have been
carried out, and verify that the proposed method is effective for improving the rapidity of
the fine initial alignment for a missile-borne INS.

This paper is organised as follows. In Section 2, the convected Euler angle error is
modelled to optimise the erecting manoeuvre. Section 3 presents the fine initial alignment
model. The observability degree is analysed in Section 4. Section 5 introduces the fine
alignment experiment and finally, conclusions are drawn in Section 6.

2. MODELLING CONVECTED EULER ANGLE ERROR TO OPTIMISE ERECTING
MANOEUVER. For the INS, the digital computational platform is theoretically equiva-
lent to the local level navigation frame. Gyroscope outputs are used to maintain the digital
computational platform. Accelerometer outputs are obtained and then integrated to acquire
velocity and position. It is vital to determine the body attitude matrix, which represents a
coordinate system transformation relation of the body frame with respect to the navigation
frame.

The angular velocity from the body frame to the navigation frame is denoted in the body
frame, which can be calculated by:

ωb
nb = ωb

ib − Cb
nω

n
in = ωb

ib − Cb
n(ωn

ie + ωn
en) (1)

where ωb
ib is an angular velocity vector of the body frame with respect to the inertial frame

denoted in the body frame, and can be directly measured by gyroscopes. ωn
in is the angular

velocity vector of the navigation frame with respect to the inertial frame denoted in the
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Figure 1. Euler angles transformation relation for INS.

navigation frame, which can be written as:

ωn
in = ωn

ie + ωn
en =

⎡
⎢⎢⎣

0

ωie cos(L)

ωie sin(L)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

−VN /(RM + h)

VE/(RN + h)

VE tan(L)/(RN + h)

⎤
⎥⎥⎦ (2)

where ωn
ie is the angular velocity vector of the Earth frame with respect to the inertial frame

denoted in the navigation frame. ωn
en is the angular velocity vector of the navigation frame

with respect to the Earth frame denoted in the navigation frame. VE and VN are the velocity
in east and north directions. RM and RN are the transverse and meridian radii of curvature.
L and h represent latitude and height respectively.

As shown in Figure 1, to accurately derive the Euler angle error differential equation,
the transformation relation between the angular velocity of the body frame with respect
to the navigation frame denoted in the body frame and the Euler angle velocities, can be
expressed as:

⎡
⎢⎢⎣

ωb
nbx

ωb
nby

ωb
nbz

⎤
⎥⎥⎦

b

=

⎡
⎢⎢⎣

cos(γ ) 0 −sin(γ )

0 1 0

sin(γ ) 0 cos(γ )

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0

0 cos(θ ) sin(θ )

0 −sin(θ ) cos(θ )

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0

0

ϕ̇

⎤
⎥⎥⎦

n

+

⎡
⎢⎢⎣

cos(γ ) 0 −sin(γ )

0 1 0

sin(γ ) 0 cos(γ )

⎤
⎥⎥⎦

⎡
⎢⎢⎣

θ̇

0

0

⎤
⎥⎥⎦

1

+

⎡
⎢⎢⎣

0

γ̇

0

⎤
⎥⎥⎦

2
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=

⎡
⎢⎢⎣

−sin(γ ) cos(θ ) cos(γ ) 0

sin(θ ) 0 1

cos(γ ) cos(θ ) sin(γ ) 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ϕ̇

θ̇

γ̇

⎤
⎥⎥⎦ (3)

where ωb
nbi is the angular velocity of the body frame with respect to the navigation frame

denoted in body frame along the i axis. The Euler angle differential equation induced by
the angular velocities of the body frame with respect to the navigation frame denoted in the
body frame can be written as:⎡

⎢⎢⎣
ϕ̇

θ̇

γ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−sin(γ ) cos(θ ) cos(γ ) 0

sin(θ ) 0 1

cos(γ ) cos(θ ) sin(γ ) 0

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

ωb
nbx

ωb
nby

ωb
nbz

⎤
⎥⎥⎦

b

=
1

cos(θ )

⎡
⎢⎢⎣

−sin(γ ) 0 cos(γ )

cos(θ ) cos(γ ) 0 cos(θ ) sin(γ )

sin(θ ) sin(γ ) cos(θ ) −sin(θ ) cos(γ )

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ωb
nbx

ωb
nby

ωb
nbz

⎤
⎥⎥⎦

b

=

⎡
⎢⎢⎢⎢⎣

− sin(γ )
cos(θ )

ωb
nbx +

cos(γ )
cos(θ )

ωb
nbz

cos(γ )ωb
nbx + sin(γ )ωb

nbz

tan(θ ) sin(γ )ωb
nbx + ωb

nby − tan(θ ) cos(γ )ωb
nbz

⎤
⎥⎥⎥⎥⎦ (4)

The differentiation errors of the Euler angle between the azimuth ϕc, pitch θ c, roll γ c with
respect to the computational frame ocxcyczc and azimuth ϕ, pitch θ and roll γ with respect
to the navigation frame onxnynzn, can be expressed as:⎡

⎢⎢⎣
δϕ̇

δθ̇

δγ̇

⎤
⎥⎥⎦ =

⎡
⎢⎣

ϕ̇c

θ̇ c

γ̇ c

⎤
⎥⎦ −

⎡
⎢⎣

ϕ̇

θ̇

γ̇

⎤
⎥⎦ (5)

Using Equations (4) and (5), the differential equations of Euler angle error in azimuth,
pitch and roll can be obtained. The differential equation of pitch angle error is written as:

δθ̇ = θ̇ c − θ̇ = cos(γ c)ωb
nbx + sin(γ c)ωb

nbz − [
cos(γ c − δγ )ωb

nbx + sin(γ c − δγ )ωb
nbz

]
(6)

By Taylor expansion, we have sin(δγ ) ≈ δγ , cos(δγ ) ≈ 1; ignoring the terms as small
as the second order, the differential equation of pitch error can be rewritten as:

δθ̇ ≈ [
cos(γ c)ωb

nbz −sin(γ c)ωb
nbx

]
δγ (7)

The differential equation of roll angle error can be obtained as:

δγ̇ = γ̇ c − γ̇ = tan(θ c)
[

sin(γ c)ωb
nbx −cos(γ c)ωb

nbz

]
+ ωb

nby

− tan(θ c − δθ )
[

sin(γ c − δγ )ωb
nbx −cos(γ c − δγ )ωb

nbz

] − ωb
nby (8)

Based on Taylor expansion, we have sin(δθ ) ≈ δθ , tan(θ c − δθ ) = tan(θ c) − sec2(θ c)δθ ;
ignoring the terms as small as the second order, the differential equation of the roll angle
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error can be rewritten as:

δγ̇ = tan(θ c)
[

cos(γ c)ωb
nbx + sin(γ c)ωb

nbz

]
δγ + sec2(θ c)

[
sin(γ c)ωb

nbx −cos(γ c)ωb
nbz

]
δθ

(9)
The differential equation of azimuth angle error can be written as:

δϕ̇ = ϕ̇c − ϕ̇ = − 1
cos(θ c)

[
sin(γ c)ωb

nbx −cos(γ c)ωb
nbz

]
+

1
cos(θ c − δθ )

[
sin(γ c − δγ )ωb

nbx −cos(γ c − δγ )ωb
nbz

]
(10)

Based on Taylor expansion, assuming sin(δθ ) ≈ δθ , sin(δγ ) ≈ δγ , cos(δθ ) ≈ cos
(δγ ) ≈ 1, sec(θ c − δθ ) ≈ sec(θ c) − sec(θ c) tan(θ c)δθ , ignoring the terms as small as the
second order, the differential equation of azimuth angle error can be rewritten as:

δϕ̇ ≈ sec(θ c)

{[
cos(γ c)ωb

nbz −sin(γ c)ωb
nbx

]
tan(θ c)δθ

−[
cos(γ c)ωb

nbx + sin(γ c)ωb
nbz

]
δγ

}
(11)

According to Equations (7), (9) and (11), the differential equation of convected Euler
angle error caused by the erecting manoeuvre can be obtained as:

⎡
⎢⎢⎣

δθ̇

δγ̇

δϕ̇

⎤
⎥⎥⎦ =

1
cos(θ c)

⎡
⎢⎢⎣

0

sec(θ c)
(

sin(γ c)ωb
nbx −cos(γ c)ωb

nbz

)
sec(θ c) sin(θ c)

( −sin(γ c)ωb
nbx + cos(γ c)ωb

nbz

)

−cos(θ c) sin(γ c)ωb
nbx + cos(θ c) cos(γ c)ωb

nbz 0

sin(θ c) cos(γ c)ωb
nbx + sin(θ c) sin(γ c)ωb

nbz 0

−cos(γ c)ωb
nbx −sin(γ c)ωb

nbz 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

δθ

δγ

δϕ

⎤
⎥⎥⎦ (12)

The convected Euler angle error equation can be obtained as:

⎡
⎢⎢⎣

δθ

δγ

δϕ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

δθ0 +
∫ t

t0 δθ̇dt

δγ0 +
∫ t

t0 δγ̇ dt

δϕ0 +
∫ t

t0 δϕ̇dt

⎤
⎥⎥⎦ (13)

where δϕ0 , δθ0, δγ0 are errors of initial azimuth, pitch and roll of INS calculated by ana-
lytical coarse alignment, respectively. The convected Euler angle error equation is related
to the motion of the missile-borne INS and aimed to optimise the erecting manoeuvre. It
is distinct from the traditional error equation of INS which is the misalignment angle error
equation and is applied to analyse the error of INS in navigation computation.

In the normal erecting manoeuvre, the missile body is rotated 90◦ along the X-axis from
the horizontal state to the vertical state. From Equations (12) and (13), it can be found that
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the convected Euler angle errors will gradually increase with the pitch angle. Moreover,
the convected Euler angle errors of a missile-borne INS can be affected by the angular
velocities of the body frame with respect to the navigation frame denoted in the body frame
along X-and Z-axes ωb

nbx, ωb
nbz, except Y-axis ωb

nby . Therefore, the missile-borne INS should
be erected from horizontal to the vertical state along the Y-axis instead of the X-axis. The
optimised erecting manoeuvre can prevent the larger Euler angle errors, and can be shared
with the fine initial alignment. In this way, the rapidity of the fine initial alignment can be
improved.

3. FINE INITIAL ALIGNMENT MODEL.
3.1. State equation modelling of the fine initial alignment. A Kalman filter is

designed to estimate and correct the initial misalignment in real-time. According to the
error equation of INS, the state equation of system is expressed by:

Ẋ = FX + GW (14)

where X is the state vector of Kalman filter, that is a fifteen-dimensional state variable.
X = [ φE φN φU δVE δVN δVU δL δλ δh εE εN εU ∇E ∇N ∇U ]T

where φi, δVi, εi and ∇i are misalignment, velocity error, gyroscope drift and accelerometer
bias along the i axis in the navigation frame and δL, δλ and δh are the errors of lati-
tude, longitude and altitude. W is system noise, W = [wεE wεN wεU w∇E w∇N w∇U ]T

which includes gyroscope random errors and accelerometer random errors. F is a 15 × 15
dimensional state transformation matrix, and can be expressed as:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 F3 Cn
b 03×3

F4 F5 F6 03×3 Cn
b

03×3 F7 F8 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

where every submatrix Fi is described (Han and Fang, 2013). G is a 15 × 6 dimensional
process noise matrix, and can be expressed as:

G =

⎡
⎢⎢⎣

C n
b 03×3

03×3 C n
b

09×3 09×3

⎤
⎥⎥⎦ (16)

where C n
b is an attitude transformation matrix from the body frame to the navigation frame.

3.2. Measurement and measurement equation modelling of the fine initial alignment.
The missile launching system includes the launching vehicle, missile with INS, and erect-
ing mechanism as shown in Figure 2. The position of the launching location can be obtained
through the Global Navigation Satellite System (GNSS) receiver of the launching vehicle.
After coarse alignment, the missile will be erected from the horizontal to the vertical state.
Since the launching vehicle is static, the measurements including positions and velocities
can be calculated by modelling the lever arm. The lever arm Rb

I = [XI YI ZI ]T, refers to the
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Figure 2. The missile launching system mainly include launching vehicle, missile with INS and erection
mechanism.

spatial vector between the rotating centre of erecting mechanism Oo and the sensing centre
of the missile-borne INS Ob in the body frame ObXbYbZb. The positions and velocities of
the missile-borne INS sensing centre Ob relative to erecting mechanism rotating centre Oo
are time-varying.

The missile can be erected from the horizontal to the vertical state as shown in Figure 2.
The position measurement of the missile-borne INS centre can be calculated by modelling
of the lever arm. Compared with the rotating centre of the erecting mechanism Oo, the
relative position vector calculated by the lever arm can be expressed as:


Pn
I = Cn

bRb
I (17)

Using the lever arm model, the position measurement vector in the sensing centre of the
missile-borne INS can be calculated in real-time:

Pn
S = Pn

O + ��Pn
I = Pn

O + �Cn
bRb

I (18)

where Pn
O represents the position vector in the rotating centre of the erecting mechanism

Oo in the navigation frame, Pn
O = [Lo λo ho]T. � represents a matrix which can transform

a position vector from the navigation frame to the Earth frame. The position measurement
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of fine alignment in the erecting process can be further expressed as:

⎡
⎢⎢⎣

Ls

λs

hs

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Lo

λo

ho

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

1
RM + h

0 0

0
sec L

RN + h
0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

T11 T21 T31

T12 T22 T32

T13 T23 T33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

XI

YI

ZI

⎤
⎥⎥⎦ (19)

where Tij is an element of attitude transformation matrix C n
b with i, j = 1, 2, 3.

When the launching vehicle stops at the launching location, the velocity of the rotating
centre of the erecting mechanism, Vn

O can be assumed as Vn
O = [0 0 0]T. The velocity

measurement in the sensing centre of the missile-borne INS can be calculated in real-time:

Vn
S = Vn

O + �Vn
I = Vn

O + Cn
b(ωb

nb × Rb
I ) = Cn

b(ωb
nb × Rb

I ) (20)

where ωb
nb is an angular velocity vector of the missile-borne INS body frame with respect

to the navigation frame denoted in the missile-borne INS body frame, and has been given
in Equation (1). The angular velocity vector ωb

nb can be further expressed as:

⎡
⎢⎢⎣

ωb
nbx

ωb
nby

ωb
nbz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ωb
ibx

ωb
iby

ωb
ibz

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− VN

RM + h

ωie cos L +
VE

RN + h

ωie sin L +
VE tan L
RN + h

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(21)

where VE , VN , VU are the velocities in east, north and up directions, which can
be updated in real-time by fine alignment. RM = R0(1 − e2)/(1 − e2 sin2 L)3/2, RN = R0/

(1 − e2 sin2 L)1/2 with R0 is the radius of the Earth. e is the flat ratio of the navigation
system. ωie is the Earth angular rate. The velocity measurement of the missile-borne INS
sensing centre can be further expressed as:⎡

⎢⎢⎣
Vn

SE

Vn
SN

Vn
SU

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

T11 T21 T31

T12 T22 T32

T13 T23 T33

⎤
⎥⎥⎦

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 −ωb
nbz ωb

nby

ωb
nbz 0 −ωb

nbx

−ωb
nby ωb

nbx 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

XI

YI

ZI

⎤
⎥⎥⎦

⎞
⎟⎟⎠ (22)

where Vn
SE , Vn

SN and Vn
SU are the velocity measurements of the fine initial alignment along

east, north and up directions respectively. These measurements can be obtained by the
modelling of the lever arm, which are independent of external equipment, ensuring the
accuracy of measurement for fine alignment.

Taking the difference in the measurements obtained by the modelling of the lever arm
and the positions and velocities of the INS as measurement quantities of fine alignment Z ,
the measurement equation of the filter can be written as:

Z = HX + v (23)

where v = [vδL vδλ vδh vVE vVN vVU ]T is the measurement noise matrix. H is a
measurement matrix which represents the transformation relationship between the state
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quantities and the measurement quantities. According to Equations (16) and (19), the
measurement quantities Z can be further calculated by:

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δVE

δVN

δVU

δL

δλ

δh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

VE

VN

VU

L

λ

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vn
SE

Vn
SN

Vn
SU

Ls

λs

hs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

VE

VN

VU

L − Lo

λ − λo

h − ho

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T11(ωb
nbyZI − ωb

nbzYI ) + T21(ωb
nbzXI − ωb

nbxZI ) + T31(ωb
nbxYI − ωb

nbyXI )

T12(ωb
nbyZI − ωb

nbzYI ) + T22(ωb
nbzXI − ωb

nbxZI ) + T32(ωb
nbxYI − ωb

nbyXI )

T13(ωb
nbyZI − ωb

nbzYI ) + T23(ωb
nbzXI − ωb

nbxZI ) + T33(ωb
nbxYI − ωb

nbyXI )

T11XI + T21YI + T31ZI

RM + h
sec L(T12XI + T22YI + T32ZI )

RN + h

T13XI + T23YI + T33ZI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

where L, λ and h are latitude, longitude and altitude calculated by the missile-borne INS in
real-time. The measurement matrix H can be expressed as:

H = [H V H P]T (25)

H P = [03×6 diag (RM + h, (RN + h) cos L, 1) 03×6] (26)

H v = [03×3 diag(1, 1, 1) 03×9] (27)

Using these models, the fine initial alignment of the missile-borne INS can be realised
through the Kalman filter.

4. OBSERVABILITY DEGREE ANALYSIS. Observability is important to the fine ini-
tial alignment, which requires careful investigation. Since the system is a time-varying
system, its observability can be analysed according to the observability analysis of a Piece-
wise Linear Constant System (PWCS) theory (Ma et al., 2014). The PWCS theory can
determine whether the system is completely observable or not, but it cannot analyse the
observability degree. The observability degree for every state can be computed by means
of the Singular Value Decomposition (SVD) method (Pei et al., 2014).

According to the PWCS theory, the matrix H and F are constant for every time segment
j , but they may vary from segment to segment. Stripped Observability Matrix (SOM) is
defined as the following equation:

Qj =
[
(H j )T (H j Fj )T · · · (H j Fn−1

j )T
]T

(28)
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Table 1. Observability degree corresponding to misalignment angles in different time segments.

State variable j = 1 j = 45 j = 90 j = 100

φE 13·9459 93·5955 132·2353 139·2000
φN 13·9459 93·6309 132·0633 139·3861
φU 2·6185 × 10−19 0·1017 0·1508 0·1516

According to the SVD theorem, each Qj of every segment is decomposed through
singular value decomposition:

Q = USVT =
[
u1 u2 · · · um

] [
�r×r 0

0 0

] [
v1 v2 · · · vr

]T (29)

where � = diag(σ1 σ2 · · · σr). σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0 are singular values of the
matrix. Every state variable has a corresponding singular value in each time segment. The
greater the singular value, the higher the observability degree of state variable.

The erecting manoeuvre is performed within 100 s. According to PWCS theory, the
erecting process is divided into 100 segments. Each time segment lasts for 1 s. Table 1
shows the observability degree corresponding to misalignment angles in different time
segments.

The misalignment angles φE and φN are totally observed through the whole process. In
the first time segment, the observability degree of φU is less than 1, which is unobservable,
and its degree of observability is very low; in the 100th time segment, the observability
degree of φU improvement has been obviously improved, increasing from 2·6185 × 10−19

to 0·116. The results of observability degree analysis show that the erecting manoeuvre
is conducive to enhancing the observability degree of some state variables, especially φU.
The results of observability degree analysis show that the erecting manoeuvre is conducive
to improving the system observability.

5. FINE ALIGNMENT EXPERIMENT.
5.1. Experiment equipment and operation. To validate the proposed fine initial align-

ment method, three erecting experiments of a missile-borne INS were carried out. A high
precision INS is developed with gyroscope drift and accelerometer bias which is better than
0·01◦/h and 50 µg, respectively (Li et al., 2014). The missile-borne INS is installed in a
simulated missile with its Y-axis as the rotation axis of the erecting mechanism. When the
launching vehicle arrived at the known launching location, it was stopped and attempted
to be kept horizontal. The position vector of the rotating centre of the erecting mechanism
Oo in the navigation frame can be obtained through the GNSS receiver of the launching
vehicle, which is Pn

o = [Lo λo ho]T = [39·797810◦ 116·410779◦ 46·426m]T.
According to Equations (16) and (19), the lever arm vector is used to calculate the

position and velocity measurements, and must be obtained before erecting alignment.
The lever arm vector Rb

I is measured by the laser total station instrument, and Rb
I =

[9·161 m −0·317 m 0·700 m]T. The lever arm is considered as a rigid lever arm and
the length of the lever arm is unchanged during the whole experiment.

First, the initial attitude matrix of the missile-borne INS can be calculated by an ana-
lytical coarse alignment for ten seconds. Then, the fine alignment is performed during the
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Figure 3. The measurement of position.

Figure 4. The measurement of velocity.

erecting process. Using the erecting mechanism, the missile-borne INS is rotated 90◦ clock-
wise to the vertical state along the Y-axis within 100 s. The existing fine initial alignment
method is performed on a stationary base after the missile-borne INS has been erected to
the vertical state along the X-axis. The two alignment methods can be compared with each
other. A set of optical measurement equipment including a laser tracker and a theodolite

https://doi.org/10.1017/S037346331700090X Published online by Cambridge University Press

https://doi.org/10.1017/S037346331700090X


708 J . LI AND OTHERS VOL. 71

Table 2. Parameters of Kalman filter used in the fine initial alignment.

The existing The proposed
Parameters method method

Latitude (m) 0·05 0·10
Longitude (m) 0·05 0·10

R matrix Height (m) 0·05 0·10
(Measurement precision) East Velocity (m/s) 0·005 0·01

North Velocity (m/s) 0·005 0·01
Up Velocity (m/s) 0·005 0·01

X Gyroscope (◦/h) 0·01 0·01
Y Gyroscope (◦/h) 0·01 0·01

Q matrix Z Gyroscope (◦/h) 0·01 0·01
(Measuring precision) X Accelerometer (ug) 50 50

Y Accelerometer (ug) 50 50
Z Accelerometer (ug) 50 50

Latitude (m) 0·05 0·10
Longitude (m) 0·05 0·10

Height(m) 0·05 0·01
East Velocity (m/s) 0·005 0·01

North Velocity (m/s) 0·005 0·01
Up Velocity (m/s) 0·005 0·01

Azimuth (◦) 0·2 1
P matrix Pitch (◦) 1/120 0·06
(Initial precision) Roll (◦) 1/120 0·06

X Gyro bias (◦/h) 0·02 0·02
Y Gyro bias (◦/h) 0·02 0·02
Z Gyro bias (◦/h) 0·02 0·02

X Accelerometer bias (ug) 100 100
X Accelerometer bias (ug) 100 100
X Accelerometer bias (ug) 100 100

are used to measure the azimuth of the missile-borne INS in real time, and the result can be
regarded as a reference for fine alignment.

5.2. Experiment results and analysis. The measurement equation of the proposed
dynamic model is established through modelling and compensation of the lever arm effect.
The position and velocity measurements are obtained in real time. According to Equations
(18) and (20), measurements of the missile-borne INS can be calculated by three gyroscope
outputs, the lever arm vector Rb

I and the attitude matrix of INS Cn
b, which is independent of

external equipment. The velocity and position measurements are given in Figures 3 and 4.
The measurement equation of the existing method is available from the model of traditional
self-alignment on a stationary base, and the measurements are constant.

For the fine initial alignment, the Kalman filter parameters must be determined. Accord-
ing to the specifications of the missile-borne INS, the filter parameters can be obtained, as
shown in Table 2.

Based on these filter parameters, three group fine initial alignment experiments have
been carried out. Taking the azimuth measured by optical instruments as a reference, the
azimuth errors obtained by the proposed method and the existing alignment method are
given in Figure 5. Both alignment methods can obviously reduce the azimuth errors by a
Kalman filter estimation to the requirement of precision which is δϕ = 0·05◦.
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Figure 5. Azimuth errors operated by the proposed method and the existing method compared with the
reference obtained by optical instruments.

Table 3. Times consumed by two alignment methods (unit: s).

Number of experiment 1 2 3 Mean value

The existing method 270 282 315 289
The proposed method 102 120 122 115

Compared with existing methods, the proposed method may not only share the erect-
ing manoeuvre, but also improve the system observability. Therefore, the rapidity of the
proposed alignment method is significantly better than the existing alignment method.
Time consumption of the two fine initial alignment methods is given in Table 3. When
the azimuth accuracy is better than 0·05o, time consumed by using the proposed alignment
method is 115 s for three experiments, which is far less than 289 s consumed in the existing
method. The experiment results prove that the proposed alignment method is faster and
provides a valid solution.

6. CONCLUSIONS. In this paper, a fast fine initial self-alignment method of a missile
INS is proposed, which is performed during the erecting process on a stationary base. The
convected Euler angle error is modelled to optimise the erecting manoeuvre scheme which
can prevent the large Euler angle error. Then, the fine alignment model is established to
estimate and correct the initial misalignment. The observability degree was analysed by
PWCS theory and SVD theory, which indicates the improvement of system observability.
The proposed method may not only share the erecting manoeuvre, but also improves the
system observability so that the alignment time can be reduced. The fine initial alignment
experiments show that the rapidity of the proposed alignment method is significantly better
than the existing alignment method, and proves the validity of the proposed method. It can
contribute to the fast fine initial alignment of a missile-borne INS.
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