
Robotica (2019) volume 37, pp. 691–707. C© Cambridge University Press 2018
doi:10.1017/S0263574718001261

A Novel Framework for Multi-Agent
Systems Using a Decentralized Strategy
Mehmet Serdar Güzel†∗, Vahid Babaei Ajabshir†,
Panus Nattharith‡, Emir Cem Gezer† and Serhat Can†
†Computer Engineering Department, Ankara University, Ankara, Turkey.
E-mails: vahid.babaei@ankara.edu.tr, emir.cem.gezer@ogrenci.ankara.edu.tr,
serhat.can@ogrenci.ankara.edu.tr
‡Faculty of Engineering, Naresuan University, Phitsanulok 65000, Thailand.
E-mail: panusn@nu.ac.th

(Accepted November 01, 2018. First published online: December 4, 2018)

SUMMARY
This work addresses a new framework that proposes a decentralized strategy for collective and col-
laborative behaviours of multi-agent systems. This framework includes a new clustering behaviour
that causes agents in the swarm to agree on attending a group and allocating a leader for each group,
in a decentralized and local manner. The leader of each group employs a vision-based goal detection
algorithm to find and acquire the goal in a cluttered environment. As soon as the leader starts mov-
ing, each member is enabled to move in the same direction by staying coordinated with the leader
and maintaining the desired formation pattern. In addition, an exploration algorithm is designed and
integrated into the framework so as to allow each group to be able to explore goals in a collaborative
and efficient manner. A series of comprehensive experiments are conducted in order to verify the
overall performance of the proposed framework.

KEYWORDS: Multi-agent systems; Decentralized architecture; Vision for navigation; Swarm
intelligence; Pattern formation.

1. Introduction
Swarm intelligence is a scientific discipline, inspired by the behaviours of social animals. This disci-
pline incorporates the fields of swarm intelligence and collective robotics to organize and coordinate
robots to complete challenging tasks within a reasonable time. Multi-agent systems are considered
to be aggregations of autonomous agents, resembling the swarm intelligence field in some ways.1, 2

Consequently, both concepts will be considered together in this study. Collective behaviours of multi-
agent systems can be categorized into three functional groups, namely collective decision making,
navigation, and spatial organizing behaviours.1, 3, 4 Aggregation (or clustering) is a vital and critical
spatial organizing behaviour that allows a group of agents to get close one other, and includes inter-
action and collective movements.3 Aggregation is a common behaviour and can be used for various
tasks in nature, such as by ants, fish, bees, so on.4, 5 Probabilistic finite state machines (PFSMs) are
a conventional and widespread approach used for aggregation behaviour, ensuring that only a single
aggregate is formed at the end of the process. Each unregistered robot in the environment aims to
find other robots in order to register itself with a group. When other robots are observed, the unregis-
tered robot decides whether to join (register) or leave (stay unregistered) the aggregate in a stochastic
manner.1, 6 A comprehensive review paper regarding to similar problems in swarm robotics and their
applicability in various tasks can also be seen in ref. [7].

∗ Corresponding author. E-mail: mguzel@ankara.edu.tr

https://doi.org/10.1017/S0263574718001261 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001261
mailto:vahid.babaei@ankara.edu.tr
mailto:emir.cem.gezer@ogrenci.ankara.edu.tr
mailto:serhat.can@ogrenci.ankara.edu.tr
mailto:panusn@nu.ac.th
mailto:mguzel@ankara.edu.tr
https://doi.org/10.1017/S0263574718001261


692 A novel framework for multi-agent systems

An artificial evolution approach has alternatively been described for the automatic estimation of
aggregation (clustering) behaviour.8 Flocking, the coordinated motion of animals, essentially allows
species to move in a coordinated way, inspired by fish and flocks of birds.9 In multi-agent sys-
tems, this coordinated motion behaviour, designed based on a virtual physics-based scheme, allows
smoother and safer navigation for a group of robots while keeping a static or adaptable distance from
one another.5

One of the critical studies in this area utilizes virtual heading sensors (VHS), which allow a robot
to receive the relative headings of nearby robots without needing an accurate goal direction. Using
the VHS system, the swarm robots gain the ability to move in a coordinated manner while evading
obstacles.10

A further study using VHS proves that it is possible to attach some “informed” robots, which know
the goal direction, to a multi-agent system so as to steer the other “non-informed” robots towards the
goal direction.11 Alternatively, another comprehensive study in the coordinated motion field allows
robots to change both their angular and forward speeds with respect to the resultant force direction,
without demanding an explicit orientation rule.12 There is a huge interest on decentralized method-
ologies for swarm robots, especially in recent years. For instance, a recent study suggests a new
decentralized navigation controller to steer a group of robots towards a desired goal. The control
architecture of this system consists of two loops that one of them is responsible for crowd dynamics
whereas the second loop, internal control loop, transforms velocity and acceleration parameters.13

Besides, in an alternative study, authors propose a new method based on decentralized approach to
navigate mobile robot. They claim that the proposed method ensures both collision free path and
global network connectivity in large and complex environments.14 In an interesting study, authors
propose a method for formation problem of mobile robots based on a decentralized control law that
robots can move a desired geometric configuration from their initial positions.15 In another recent
study, a stochastic approach is proposed to control swarms of independent robots towards a tar-
get distribution in a bounded domain.16 Robots are only allowed to measure a scalar field that is
essentially employed to deduce the desired local swarm density. Authors claim that the algorithm
is scalable and applicable for large swarm systems. A probabilistic framework designed based on
decentralized observable Markov decision processes was presented in ref 17. This framework aims
to provide a cooperation between a group of robots to optimize a shared objective in the presence of
uncertainty. Other relevant studies can be seen in refs. [18–25].

This paper proposes a decentralized architecture for the goal-based navigation problem of multi-
agent systems. The hypothesis, tested in this research, is that “it is possible to develop a decentralized
strategy for collective and collaborative behaviours of multi-agent systems for goal-based navigation
problem”. A novel system is designed and several experiments are carried out so as to test this
hypothesis. The goal-based navigation problem for a multi-agent system essentially aims to approxi-
mate to the optimum strategy for matching the working environment and the tasks. Accordingly, the
goal-based navigation problem for a multi-agent system can be expressed as follows:

π∗ : S → B. (1)

Here, n robots, R = {r1, r2,. . . ., rn}, m tasks, B = {b1, b2,. . . ., bm}, and also each state in the working
environment is defined as st ∈ S. The optimum strategy for the goal-based navigation problem for
a multi-agent system mainly aims to complete all tasks by minimizing total navigation time while
preventing collision with obstacles.

G = min {g1, g2, . . . ., gn}. (2)

Here gi = time required for allocation of task bi .
The flowchart of the overall system is presented in Fig. 1. The architecture is designed based on

PFSMs and utilizes a virtual-physics-based approach to assign each robot to a group and to auto-
matically allocate a leader for each group using a decentralized strategy. This is in contrast to the
conventional aggregation behaviour of social animals, in that instead of forming a single cluster,
agents are grouped according to their physical position relative to each other, and a leader is selected
using a completely decentralized strategy.18 A classification module was designed and integrated
into the overall architecture which basically separates obstacles from nearby robots. Leader robots
possess image recognition skills that can detect a goal using an appearance-based method and can
estimate the robot’s relative distance from the goal.26 In addition, each group uses a pattern formation
behaviour that allows them to keep a certain distance between group members during the navigation
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Fig. 1. Flowchart of the overall system.

process. This behaviour allows member robots to effectively navigate with a coordinated motion
to a specific goal, following the leader while avoiding obstacles. One of the critical issues within
this study is the optimization of force law parameters, which is essential for multi-agent systems to
learn to navigate within a complex environment in a coordinated manner. The aforementioned figure
essentially illustrates the layers of overall system architecture that the first layer presents the classi-
fication behaviour of the randomly located robots. Within this layer, robots perform a force analysis
and initialize clustering behaviour, respectively, in a decentralized manner. Once the classification
layer is completed, the grouping behaviour is activated and the robots move the direction of the total
attractive force so as to form groups. This grouping procedure is completely decentralized and will
be detailed in the following sections. This is followed by a new leader assignment procedure without
requiring a direct communication. The details of this behaviour and the pseudo code of the clustering
algorithms can be seen in Section 2. The second layer also includes an efficient exploration behaviour
that divides the exploration space into sub-spaces for each group. Each group then starts exploration
within its corresponding sub-space which essentially reduces the overall exploration time. Besides,
this behaviour also assigns tasks to each group. The details of this exploration behaviour can be
seen in Section 2.4. The final layer of the architecture proposes a pattern formation and coordinated
motion behaviours based on a goal-based navigation strategy. According to which, once the forma-
tion of the groups is generated, this formation behaviour is reserved during the navigation process.
The group is able to move towards the goal using a vision-based approach while avoiding obstacles
and keeping the formation pattern in partially cluttered environments. This paper is organized as fol-
lows: Section 2 details the proposed collective behaviour architecture and introduces corresponding
strategies and methodologies, while Section 3 discusses the implementation of the proposed system
and evaluates the overall performance of the systems based on realistic scenarios. Finally, the conclu-
sion is presented in Section 4. Part of this study was presented at the Second International Conference
on Mechatronics and Robotics Engineering (ICMRE-2016).18

2. Collective Behaviour Architecture
This section presents some essential knowledge related to the proposed collective architecture work,
including generic grouping and the leader assignment module, pattern formation, and collective
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movement behaviours. In addition, a goal-based navigation approach using the exploration module
is described. The following sub-sections will address each of the steps involved.

2.1. Force analysis and classification modules
A force analysis module mainly aims to group robots using a decentralized strategy. Accordingly,
it is expected that robots are randomly located and have no direct communication. There are two
assumptions in this algorithm. The first is that each robot is equipped with a standard range finder,
with a 360◦ field of view. The second is that all robots have the same mass. Within these assumptions,
the universal gravitational force (Eq. 3) applied to each robot in the swarm is calculated, in order to
estimate the overall attractive force applied to each of them. The law states that a force arises between
two agents is proportional to the product of their masses and inversely proportional to the square of
the distance between them, as shown in Eq. (3).

F = G × m1 × m2

r2
. (3)

Here F represents force, m1 and m2 are the masses of each agent, G is a constant value, and r is the
distance between the centres of m1 and m2.

Also each robot employs the range finder data to calculate the relative position of each surrounding
robot. Consequently, ith robot can estimate both the direction and magnitude of the force applied
on it by surrounding robots. The distance r parameter and the direction of the applied force θ are
calculated as follows:

r =
√
(xr1 − xr2)

2 + (yr1 − yr2)
2. (4)

θ= arctan2(yr1 − yc1, xr1 − xc1). (5)

Here (xr1, yr1) and (xr2, yr2) illustrate the coordinates of the central points of two robots, respectively.
The total attractive force applied to the ith robot (Ri A) in the swarm is defined as follows:

Ri A =
∑n

j=1
�Fj . (6)

Arbitrarily located robots in the environment start to apply force and attract each other based on
Eq. (2). Due to these attractive forces, robots start moving in the direction of the resultant force so as
to approach each other; each robot remains moving until the applied attractive force exceeds a certain
limit. This limit essentially determines the distance between the current robot and the closest robot
applying an attractive force. With this force-based behaviour, robots get close to each other to form
a group in a decentralized manner without requiring any direct communication. It should be noted
again that each robot is influenced by the total attractive force within the limits of its range finder
which allows robots to move the direction of the resultant vector to join a group in a reasonable
acceleration. As well as, the maximum gravitational force is limited with a predefined parameter
in order to avoid unexpected collisions, which essentially allows a robot to join a group in a safe
and reliable manner. The details of this approach can be seen in the corresponding author’s previ-
ous study.18 However, the main drawback of this approach is that it is unable to separate obstacles
from robots. To overcome this drawback, a neural network (NN)-based approach was designed and
integrated into this module, which separated robots from obstacles. A range finder returns a point
for each unit of angular resolution, which indicates the distance between the robot and any object
that the range finder senses. The output of the range finder is first simplified by classifying the field
of view into n clusters (Cn) where, for this problem, the range finder has a 360◦ field of view; each
cluster is therefore responsible for a 360◦

n field of view.

D = N (S),where D = [o]T , S = [C1, C2, C3, . . . ., Cn]T , (7)

Here “o” refers influence of object, which is the output of the NN and is used to assign the type of
sensed object. Besides, the range data cluster obtained from the laser sensor Cn is used as input layer
to the proposed NN. Equation (3) essentially refers the mapping function between the object type
and the range finder data output “S” based on an NN structure.
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Fig. 2. Training module, output signal and training scenario using Gazebo.

Fig. 3. Force-based clustering behaviour.

A range finder simulator module was designed and added into previously developed robotic
simulator software.27 Figure 2 illustrates an example screenshot, depicting an example training
scenario.

The classification module is designed based on identifying range finder responses. As can be
seen from the corresponding figure (Fig. 2), when obstacles and robots are represented with differ-
ent geometrical shapes, different range finder responses are obtained. Following this, a multi-layer
feed-forward NN using a backpropagation learning algorithm was employed with these data during
the training phase (Fig. 3). This capability allows the robots to separate obstacles from nearby robots
during the grouping and leader selection behaviours. The training samples, given in Fig. 3, especially
includes three geometrical shapes, a cone (main obstacle used in experiments), a rectangle (alterna-
tive obstacle), and a circular shape, referring the robots. Each of those shapes generates a different
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pattern, as shown in Fig. 3, and the network is trained in order to map the range finder data and the
corresponding object using those patterns.

2.2. Grouping algorithm and leader assignment
Due to characteristics of the proposed clustering (grouping) strategy, a number of robots for each
group are not previously defined. Instead, each robot moves the direction of the total attractive force
until joining a group. For each iteration, each robot is also checked whether it joins a cluster or not
by calculating the distance between the robot and its closest neighbour.

Essentially, once a robot gets close enough to any of its surrounding robot it completes the group-
ing behaviour and is accepted to join a group. Figure 3 illustrates an example scenario that includes
two groups. According to the corresponding figure, robots move the direction of the applied total
attractive force direction until getting close to one of its surrounding robots. Once this strategy runs
for a while, all robots will join a group. However, if a robot cannot be sensed by range finder sensors
of other robots, it will stay isolated and will move individually. For the experimental section, a time
constant is set for the grouping behaviour that robots are considered to complete within this constant.
This constant is estimated by considering maximum range of the range finder and average velocity
of robots. The pseudo code of the decentralized clustering algorithm is also given below.

Decentralized Grouping algorithm:
Requires Randomly located robots, N robot numbers, Ri is the ith robot and Rk is the kth robot
Ensures Decentralized Clustering of robots
Procedure Clustering Behaviour

While(Clustering time limit is not exceeded)
for i = 1: N
initialize Ri F;

for k = 1:N
if i �= k then

if Rk is visible to Ri

Calculate Force F between Ri and Rk

Ri F = Ri F + F
endif

endif
endfor

endfor
for i = 1: N

Calculate the distance between Ri and its closest neighbour Rk

if min_dist < clustering threshold
Ri has finished clustering

else
Ri moves the attractive force direction (Ri F)

endif
endfor

EndWhile
EndProcedure

As aforementioned, each robot draws close to nearby robots due to the resultant attractive force
vector. Essentially, each of them keeps moving until the resultant-applied attractive force exceeds
a certain threshold value. A unique, decentralized leader assignment procedure is applied to these
groups of robots. The details of this study are given in the authors’ previous work.18 The proposed
decentralized algorithm states that each robot first calculates the relative position of each of the
nearby robots via a force-based scheme (see Section 2.1). After this, each robot considers itself as
the origin of its local coordinate system, without any outer interference, and detects other robots’
locations in order to estimate in which quadrants they are positioned in the coordinate system.18 This
process allows a calculation of the positions of nearby robots and the obstacles near each robot.
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Fig. 4. Example scenario; the leader is selected (using Gazebo).

Fig. 5. Example scenario; the group moves to generate a formation pattern (using Gazebo).

Fig. 6. Example scenario; a pattern has almost been formed by the group (using Gazebo).

A robot is only assigned as the leader of its group when it detects the maximum number of member
robots located in the same quadrant. This procedure provides flexibility for the group and separates
the leader from the rest of its group. The only exception to this algorithm occurs when all the robots
are located along the same line. In order to prevent this situation, an assumption is made that robots
cannot initially be located along the same line. An example scenario regarding grouping and leader
selection is illustrated in Figs. 4–6. Each robot registered to a group runs the developed algorithm to
assign a leader for the group, without requiring any direct communication or using a central decision
mechanism, as illustrated in Fig. 4. The decision mechanism of the algorithm for the given scenario
reveals that only the robot shown in the upper left-hand part of Fig. 4 is able to sense other robots in
the same quadrant (fourth quadrant).
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698 A novel framework for multi-agent systems

Each robot analyses the range finder data individually in order to reveal which is the leader of the
group, and the locations of the leader and other group members. An early version of this algorithm
was designed and tested for groups including at most three robots.18 In the current study, the grouping
size is increased gradually in order to reveal the limits and overall performance of the algorithm. The
results show that the algorithm can handle at most nine robots in each group in a decentralized
manner. There is rarely more than one robot fulfilling the requirements to be registered as the leader,
especially as the maximum group size is increased. In these circumstances, one of these leaders is
selected as the only leader of the group in a stochastic manner (randomly). Figures 5 and 6 illustrate
an example of how a group generates a pattern formation; the details are discussed in the next section.

2.3. Pattern formation algorithm
Pattern formation is a critical and challenging research field, especially in areas related to swarm
robotics and multi-agent systems. This field essentially aims to form a complex system by eval-
uating the interaction and cooperation between robots.27 A strong pattern formation algorithm is
designed and implemented in this study, facilitating the overall success of the system. Part of this
section also appeared in the authors’ previous study.13 Pattern formation can be considered as a self-
organization behaviour that utilizes local interaction between the members of the system instead
of external sources. In the proposed system, the pattern formation algorithm is executed after the
grouping and leader selection steps are completed; the algorithm allows the swarm to perform a cir-
cle formation behaviour autonomously, regardless of the size of the swarm. Based on this algorithm,
the leader robot first estimates the location of all member robots using the range finder data, and then
calculates the position of the centre of gravity (COG) of the group. Subsequently, the leader generates
an artificial vector CL from its position to the COG in order to estimate the exact position of the mem-
ber robots (R1–Rn) relative to the COG. This, in essence, allows the leader to generate a vector for
each member robot with respect to the COG. As soon as the artificial vectors (CR1,CR2, . . . ,CRN)
of the member robots have been obtained, the leader sorts the member robots according to the angle
they make with the COG, using the CL vector as the start point and moving in a counter-clockwise
direction. Afterwards, the leader conveys the critical parameters to each member, including the posi-
tion of the COG, formation role number (FRN), formation radius, which determines the size of the
circular pattern, and number of robots (n). This allows member robots to move towards a potential
position and to generate a circular pattern according to Eqs. (4) and (5):

posx = cx + fr ∗ cos

((
2π

n

)
× frn + cdiff

)
. (8)

posy = cy + fr ∗ cos

((
2π

n

)
× frn + cdiff

)
. (9)

Here n the number of robots, frn formation role number, c position of the COG, fr : formation radius
value, and cdiff difference between the robot and the x-axis. Once posx and posy values are calculated
by each robot using the abovementioned equations, each robot moves the corresponding position with
respect to the COG point based on the potential field algorithm. This algorithm allows each robot to
reach its formation position while preventing collision. The potential filed method is an efficient
and powerful approach for local navigation problem. According to which, the attractive potential is
calculated for the goal position while a repulsive potential is also calculated for each of the obstacles
located in the environment. Overall, the scalar potential field value “P” can be defined as follows:

P = Patt + Prep. (10)

Here, Patt and Prep indicate attractive and repulsive forces, respectively.
The vector field of forces F (q) is given as follows:

Fq = −∇ Patt + ∇ Prep. (11)

The details of the potential field algorithm can be seen in refs. [13, 14]. The proposed system
essentially has a local and global obstacle avoidance strategy based on the potential field algorithm
and formation behaviour. As previously mentioned, each robot possesses the conventional potential
field algorithm that once any of the group member encounters an obstacle, which is a repulsive force,
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Fig. 7. Robot 0 encounters an obstacle group.

Fig. 8. Robot 0 avoids the obstacle and COG is shifted.

it performs a manoeuvre to defeat the obstacle. This local avoidance behaviour also triggers the
global obstacle avoidance manoeuvre. For instance, once a robot performs an avoidance manoeuvre,
it may be lead from its formation role position to any other position. This manoeuvre both breaks the
formation of the swarm and shifts the COG point. Due to this change, other group members must
be relocated in an adaptive manner so as to keep the formation. This adaptive formation behaviour
may enable the robots to navigate along the obstacle-free path. An example scenario including this
avoidance behaviour is illustrated in Figs. 7–9. Especially, when the leader robot encounters an obsta-
cle and prevents collision by employing its local obstacle avoidance behaviour, member robots are
relocated adaptively that probably decreases the probability of those robots to encounter the same
obstacle or nearby obstacles. The pattern formation algorithm is designed completely dynamically,
so that even if a robot is forced to make a sharp manoeuvre due to the sudden appearance of an
unexpected obstacle, which will probably disrupt the shape of the formation pattern, the formation
pattern is reorganized and regenerates the circular formation. This is because the status of the pattern
is checked at short intervals by the leader.

2.4. Exploration module
The exploration of a large space within a reasonable period of time is a challenging problem for
mobile robot-based navigation systems, including swarm robots and multi-agent systems, especially
when the goals are unknown to the swarm and vision is used as the main sensor for detecting
goals. To reduce the overall exploration time, a simple but efficient exploration algorithm is designed
for the proposed system. The algorithm basically divides the exploration space into sub-spaces for
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Fig. 9. Other robots are repositioned according to the new COG point.

Fig. 10. Exploration module example for three groups, illustrating the first group search space (yellow area).

each group. Each group then starts exploration within its corresponding sub-space. Thus, a collabo-
rative behaviour is provided by the swarm groups both to detect goals in efficient manner and also
to complete tasks in a shorter time span. Each group communicates with the others via the leaders.
The corresponding algorithm is designed for three or more groups of swarm robots. Based on the
exploration algorithm, the COG point of each group is first calculated. Next, an artificial vector is
generated from the position of the COG to the leader robot for each group. Following this, each
leader learns the ID of the left- and right-hand neighbouring groups. Each robot calculates the partial
COG points considering its left- and right-hand neighbours. Equation (6) illustrates this partial COG
calculation for the group and its left-hand neighbour; the same equation is applied to calculate the
right-hand neighbour, as shown in Fig. 10.

partialleftx =
(
COGleftx + COGx

)
2

, partiallefty =
(
COGlefty + COGy

)
2

. (12)

Here, COGleftx is x-coordinate of the left neighbour, and COGlefty is y-coordinate of the left
neighbour.

The leader (the active group) draws two artificial vectors from the positions of the COG of all

groups to the calculated partial COG points, namely
−→
CPr and

−→
CPl . Following this, α and β angles

are calculated, indicating the angles of the
−→
CPr and

−→
CPl vectors, respectively, with the x-axis (see

Fig. 6). Figure 6 illustrates an example scenario in which there are three individual swarm groups;
the position of the COG of each group is illustrated with a circle. The large cross (“X”) illustrates
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the position of the COG obtained from all groups, while the small crosses (“×”) illustrate the partial
COG points obtained from the neighbouring groups. The corresponding figure also illustrates the
search space for the first group (yellow area for the first robot group). Consequently, for each group
a random search position is calculated based on Eq. (13):

posx = COGx + cos(rand (α, β) x (rand (0, r)), posy = COGy + sin(rand (α, β) x (rand (0, r)).
(13)

Here, COGx refers x-coordinate of the position of the COG, and COGy refers y-coordinate of the

position of the COG. As well as, α is the angle of
−→
CPr with respect to the x-axis, β is the angle of−→

CPl with respect to the x-axis, and r refers the maximum allowed search radius.

2.5. Vision for goal detection
An appearance-based approach is employed to detect the unknown goals in this study. The vision
module of the system detects the goal using an appearance-based method and estimates the robot’s
relative distance from and orientation to the goal. The vision-based goal detection algorithm has
previously been discussed in ref. [26], and the pseudo-code is shown below.

Vision-based goal detection algorithm:
Requires Red Green Blue (RGB) image, scale of the object, pixels numbers and focal length
Ensures Distance and orientation to the goal
Procedure Detect the goal

Load image and initialize parameters
Convert the image from RGB to Hue, Saturation, Value (HSV) color space
Pre-processing for image enhancement (smoothing)
Apply morphological operators to refine image (dilate and erode operators)
while_completed

Read image pixel by pixel
Detect and extract contours from the image

Select the largest contour
Calculate the rectangle with the largest contour

end_while
Calculate the distance, d, (Eq. 14) and the orientation angle, θ , (Eq. 15)
EndProcedure

Distance to goal = focal length (mm) ∗ image height (pixels)

object height (pixels) ∗ sensor height (mm)
. (14)

θ = a tan

(
yt − yc

xt − xc

)
. (15)

Here, yt is the height of the contour centre in pixels, yc is initial height of the camera centre in pixels,
xt is width of the contour centre in pixels, and xc is the initial width of the camera centre in pixels.

The algorithm is initialized by converting the image from RGB color space to HSV. This is because
HSV images can tolerate variations in lighting and noise better than RGB images. A Gaussian-based
smoothing filter is also applied to reduce noise effects, and a series of morphological operators are
applied afterwards in order to improve the overall image quality (dilate and erode). The gradients
of the enhanced image are then calculated, which is followed by employing a connected component
labelling algorithm (CCL).14 In essence, the CCL algorithm groups image pixels according to their
pixel connectivity and is utilized to extract contours from binary images. It is considered that the con-
tour with the largest area must be related to the goal. The approximate height and width parameters
are calculated from the rectangular area surrounding the goal.

Once the goal is detected, Eqs. (8) and (9) are then employed to estimate both the distance to
the goal and the orientation of the robot with respect to the goal. Figure 11 illustrates an example
scenario, illustrating the monocular-based goal detection system using Gazebo.
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Fig. 11. A scenario illustrating the vision-based goal detection system using Gazebo.

3. Experimental Section
This experimental section has two parts; the first addresses the implementation details of the proposed
navigation system and corresponding evaluation parameters, while the second part illustrates the
experimental results.

3.1. Implementation of the system
The proposed navigation framework designed for multi-agent systems was extensively tested in a
comprehensive and realistic simulation environment in order to verify its applicability. The system
was implemented using the Gazebo 3D simulation environment supported by the ROS platform under
Linux Ubuntu (14.04) (see Fig. 8). The overall system was installed on a machine with a 2.2-GHz
Intel Core i7 processor with 8-GB RAM. Several different evaluation parameters were utilized either
to assess the performance of overall system or the performance success of individual behaviours,
such as pattern formation and exploration modules. The following evaluation parameters are defined
and used to verify the performance of the proposed navigation system.

Total navigation time (ts): This parameter shows the navigation duration in seconds. Lower values
indicate faster navigation.

Total travel distance (dm): This parameter indicates the distance travelled by a robot from its
starting position to complete the task. Lower values indicate more optimized solutions.

Change in angular velocity (��): This parameter indicates the average change in angular veloc-
ity (in deg/s2) during the robot’s navigation. Lower values show a more reliable angular velocity and
smoother movement of the robot, which is shown as follows:

��= 1

n−1

∑n

i=2

|�(i)− �(i−1)|
lc(i−1)

. (16)

Here, �(i) is the angular velocity at the ith cycle and lc(i − 1) and the length of the decision cycle.
Precision (pv): This indicates the fraction of properly retrieved instances, including the total

number of true and false matches obtained from an experiment, which is given as follows:

pv = correct matches

correct matches + false match
. (17)

3.2. Experimental results
As mentioned above, due to the modular structure of the proposed navigation framework, the essen-
tial modules entailing different behaviours were tested. Four different test scenarios were designed
to evaluate the performance of the system in the experiments, each of which was conceived with an
increased level of complexity. These scenarios are described below:
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Fig. 12. Pattern formation behaviour of robots avoiding obstacles: (a) tracked paths of all robots; (b) simulation
environment for S1.

Fig. 13. Pattern formation behaviour of robots completing the goal: (a) tracked paths of all robots; (b) simulation
environment for S1.

3.2.1. Scenario 1 (S1). This scenario illustrates the experimental results of pattern formation
behaviour with respect to varying numbers of robot. An example of a pattern formation sub-
scenario with eight robots is shown in Figs. 12 and 13. The results show that the proposed algorithm
achieves good formation manoeuvres, even in complex environments. The most important point for
this scenario is that as the number of robots increases, the formation radius value should be increased
to give the expected better formation behaviour. For the given simulation environment and config-
urations, the maximum allowed number of robots in a group is eight. Part of this section was also
presented in the authors’ previous work.14 Figures 12 and 13 illustrate a sub-scenario for circular
pattern formation behaviour of a swarm with eight robots. Figure 12 illustrates an instance from a
scenario in which robots are both trying to defeat obstacles and to stay in a circular formation pattern;
Fig. 13 indicates the final position of the swarm and the path followed during the navigation process.
The average performance measurement for robots using the aforementioned evaluation parameters
for S1 is illustrated in Table I. Each sub-scenario test was repeated five times due to the randomized
parameters of the simulation environment, and the average was determined for each robot for each
performance parameter.

The results indicate the proportional relationship between the swarm size and the behaviours
of swarm robots based on the parameters of distance travelled (dm), navigation time (ts), and
change in angular velocity (��). When the number of robots in a group increases, the performance
of each robot generally decreases gradually. In addition, no collisions were recorded during the
experiments.
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Table I. Performance measures for S1.

No. of robots ts (s) dm (m) �� (deg/s2) Collision

4 102.5 47.45 15.87 No
5 103.6 47.74 24.57 No
6 103.7 49.51 18.28 No
7 100.3 47.23 22.34 No
8 108.3 49.31 18.85 No

Table II. Performance measures for S2.

Gno: 3 ts (s) “Total” ts (s) “Explore” dm (m) “Total” �� (deg/s2)

Rno: 4 28.01 12.99 12.7 44.69
Rno: 4 16.64 0.68 9.1 29.22
Rno: 3 26.4 14.32 11.87 22.45

Fig. 14. Exploration behaviour of robots searching for and navigating to the goal: (a) tracked paths of all robots;
(b) simulation environment for S2.

3.2.2. Scenario 2 (S2). This scenario demonstrates the exploration behaviour of the robots and the
navigation process of the robots. Figure 14 illustrates a sub-scenario where three groups of robots
with varying numbers of members start exploring the goal using the goal detection algorithm (see
Section 2.5). Each leader detects the goal using a simple appearance-based approach, while member
robots, on the other hand, move in the direction of the leader to retain their formation.

Due to the complexity and vagueness of this scenario, member robots especially need to make
sharp manoeuvres in order to retain their formation, which results in changes in the angular velocity
(��) parameter. Table II illustrates the performance measures of this sub-scenario, which is shown
in Fig. 14. The term Gno refers to the total number of groups, while Rno denotes the number of robots
in each corresponding group. Unlike the previous scenario, exploration time (meaning the overall
time consumed in the goal-seeking problem) is also considered as a parameter. When the goal can be
seen by the leader of a group, or is close to it, the total time consumed by the exploration behaviour
becomes trivial, as shown in the third column of Table III.

3.2.3. Scenario 3 (S3). The third scenario involves a complex environment for swarm robots that
includes a long corridor and a significant number of obstacles obscuring the robots’ path, as shown
in Fig. 15. The first group successfully retains the circular formation while passing the corridor safely
and finally attains the goal. This group successfully passes along the corridor in a smooth manner.
The width of corridor is set to 8 m in this scenario, and the formation radius is also set to a larger
value of 1.8 m. This is because during the pattern formation behaviour, robots may consider other
members as obstacles, which results in unexpected manoeuvres and robots ultimately departing from
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Table III. Performance measures for S3.

S3 Conf.∗ ts (s) dm (m) �� (deg/s2)

S31 Gno: 1 Rno: 4 71.06 33.21 17.18
Gno: 2 Rno: 4 68.12 32.7 13.75
Gno: 3 Rno: 3 71.48 33.39 10.37

S32 Gno: 1 Rno: 5 71.2 33.59 22.4
Gno: 2 Rno: 4 68.08 31.7 12.9
Gno: 3 Rno: 3 71.44 33.33 9.96

S33 Gno: 1 Rno: 6 71.24 34.03 29.6
Gno: 2 Rno: 4 68.37 31.67 13.07
Gno: 3 Rno: 3 71.52 33.09 9.88

∗Conf. = Configuration

Fig. 15. Navigation behaviour of robots for a complex scenario: (a) tracked paths of all robots; (b) simulation
environment for S3.

the group. It has been proved that the proposed architecture is able to steer robots safely towards
unknown goals in a collaborative and decentralized manner. Table III illustrates the average perfor-
mance evaluation results of swarm robots for S3, involving three sub-scenarios. The term S31 refers
to the first sub-scenario, Gno denotes the group number, and Rno represents the number of robots in
the corresponding group. Depending on the increase in robot numbers, the swarm architectures show
a minor increase in the parameters of total distance travelled and navigation time. The first group
passing along the corridor aims to retain the formation and avoid collisions along the corridor. This
behaviour causes more manoeuvres in order to retain the formation safely but also results in more
changes in angular velocity, which means that the robot group follows a less smooth path.

3.2.4. Scenario 4 (S4). The fourth scenario also involves a complex environment including a signifi-
cant number of obstacles obscuring the robots’ path, as illustrated in Fig. 16. This scenario essentially
illustrates a simple maze that the robot groups are aiming to pass the maze in a collaborative and
decentralized manner. The first group starts its navigation, successfully defeats obstacles, and finally
reaches its goal position. The second and the third groups move towards each other while trying to
attain their goals. Both groups first pass each other in a smooth manner by avoiding any collision to
each other. Afterwards, both handle the obstacles located into their paths successfully by retaining
the triangular formation. In conclusion, all groups achieve to complete their tasks by avoiding obsta-
cles and keeping the triangular formation pattern. Table IV demonstrates the average performance
evaluation results of swarm robots for S4. While the term, Gno denotes the group number, Rno rep-
resents the number of robots in the corresponding group. The first group achieves to pass the maze
in a reasonable amount of time while keeping the formation and avoiding obstacles. However, the
second and third groups try to attain their goals which are located at farther locations. Owing to this
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Table IV. Performance measures for S4.

Gno: 3 ts (s) “Total” dm (m) “Total” �� (deg/s2)

Rno: 3 131 58.9 22.69
Rno: 3 184 81.2 59.22
Rno: 3 223 102.7 67.45

Fig. 16. Navigation behaviour of robots for a complex scenario: (a) tracked paths of all robots; (b) simulation
environment for S4.

distance, both groups reach their goal positions by travelling more distance with a greater change in
their angular velocity as expected and shown in Table IV. This scenario illustrates both the local and
global obstacle avoidance skills of the proposed system. According to which, a robot can both indi-
vidually defeat obstacles and also group’s COG-based global obstacle avoidance behaviour allows
the swarm to overcome obstacles by performing smoother manoeuvre even in complex and partially
cluttered environments.

4. Conclusions
This study introduces a new framework for the collective and collaborative behaviour of multi-agent
systems in particularly cluttered environments. This framework is mainly designed based on a novel
decentralized strategy, relying on vision as the primary sensor for goal detection, with range finder
sensors for grouping, pattern formation, and obstacle avoidance behaviours. The grouping behaviour
is designed based on a force-based strategy, allowing robots to get close to each other and to select an
appropriate leader to steer the group towards specific locations. Once the grouping is completed, each
group generates a formation pattern, which is completely dynamic and allows robots to defeat obsta-
cles and reorganize their circular formation pattern quickly. The framework also proposes a global
goal-based exploration algorithm that divides the exploration space dynamically into sub-spaces; this
aims to prevent collisions between groups of robots during exploration behaviour and allows robots
to detect goals in a shorter time interval. A series of comprehensive experiments, including different
configurations of robots and challenging environments, were conducted. The results verified the effi-
ciency and reliability of the proposed framework. Future development will focus on integrating the
proposed framework using low-cost physical robots in order to assess the performance and robustness
of the proposed method in real physical operation conditions.
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