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Abstract

We show that an irreducible family S of complex n × n matrices satisfies Paz’s conjecture if it contains
a rank-one matrix. We next investigate properties of families of rank-one matrices. If R is a linearly
independent, irreducible family of rank-one matrices then (i) R has length at most n, (ii) if all pairwise
products are nonzero, R has length 1 or 2, (iii) if R consists of elementary matrices, its minimum spanning
length M is the smallest integer M such that every elementary matrix belongs to the set of words in R of
length at most M. Finally, for any integer k dividing n − 1, there is an irreducible family of elementary
matrices with length k + 1.
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1. Introduction

If V is a finite-dimensional vector space over a field F, a family F of linear
transformations on V is called irreducible if the only linear subspaces of V that
are invariant under all of the elements of F are (0) and V. Burnside’s well-known
theorem (see [4], [13, Theorem 1.2.2]) states that the only irreducible algebra of linear
transformations on a vector space, over an algebraically closed field and of finite
dimension greater than one, is the algebra of all linear transformations on the space.

For any family S of complex n × n matrices and any natural number k, denote by
Vk(S) the linear span of the words in S of length at most k, where the word of length
zero (the ‘empty word’) is taken to be the identity. If S is finite and irreducible, thanks
to Burnside’s theorem, writingVk forVk(S),

CI =V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ VL−1 ⊂ VL = Mn(C),

for some natural number L, called the length of S.
For such a family S (different from {0} if n = 1) and for any positive integer k, let

V′k(S), or simplyV′k, be the linear span of the words in S of positive length at most k.
Again thanks to Burnside’s theorem,

V′1 ⊂ V
′
2 ⊂ · · · ⊂ V

′
M−1 ⊂ V

′
M = Mn(C),
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for some positive integer M, called the minimum spanning length (msl) of S. The idea
of the msl of a finite irreducible family S first arose in [5].

Clearly Vk = V′k + CI, for every k ∈ Z+. It is clear that L ≤ M ≤ L + 1, that is,
L = M or M − 1. If I ∈ V′L then V′L =VL = Mn(C), so M ≤ L and M = L. If I <V′L,
thenV′L , Mn(C), so L < M and L = M + 1. Summarising: the length L of S is equal
to the msl M of S or the msl plus one according as to whether I ∈ V′L or not.

We will investigate below the ideas of ‘irreducibility’, ‘length’ and ‘minimum
spanning length’ as they apply to families of n × n complex matrices which contain,
or are entirely made up of, rank-one matrices. Notice that, as far as these ideas are
concerned, we may restrict our investigation to linearly independent families. Indeed,
if S is any family of n × n complex matrices and S0 is any subset of S which is a basis
for the linear span of S, then S is irreducible if and only if S0 is, and then the length
of S and the length of S0 are equal. This is because, for every k ∈ N, the linear span of
the words in S of length at most k equals the linear span of the words in S0 of length
at most k. That S and S0 have the same minimum spanning lengths follows similarly.

Every rank-one matrix R ∈ Mn(C) is of the form R = e ⊗ f , where e, f ∈ Cn are
nonzero vectors, and where Rx = (x|e) f , for all x ∈ Cn, and ‘(·|·)’ denotes the usual
inner product. If A, B ∈ Mn(C) we have ARB = A(e ⊗ f )B = (B∗e) ⊗ (A f ), where ‘∗’
denotes adjoint.

For 1 ≤ i, j ≤ n, let Ei, j denote the usual n × n elementary matrix. Then Ei, j = e j ⊗ ei.
Notice that Ei, jEk,l = δ j,kEi,l, where δ j,k is the Kronecker delta function.

2. Irreducible families containing a rank-one matrix

In [12] Paz conjectures that the length L of an irreducible finite family S of
(complex) n × n matrices satisfies L ≤ 2n − 2. Much work has been done on this
conjecture (see references [1–11, 13, 14]), but it is still unresolved. We show that
such an S will satisfy Paz’s conjecture if it contains at least one rank-one matrix.

Theorem 2.1. If S = {A1, A2, . . . , Ak}
⋃
{R} is an irreducible family of n × n matrices

and R has rank one, then the set⋃
{V j−1(A)RVi−1(A) : 1 ≤ i, j ≤ n, (i, j) , (n, n)} ∪ Vn−1(S)

spans Mn(C), where Vu(A) denotes the linear span of the words of length at most u
inA = {A1, A2, . . . , Ak}, including the empty word. Consequently, the length of S is at
most 2n − 2.

Proof. Let R = e ⊗ f , where e, f ∈ Cn, and, for every u ∈ N, letVu =Vu(S). If x ∈ Cn

is any nonzero vector,Vn−1x = Cn since

〈x〉 =V0x ⊂ V1x ⊂ V2x ⊂ · · · ⊂ Vr−1x ⊂ Vr x =Vr+1x = Cn

for some r ≤ n − 1. If G denotes the unital algebra generated byA then G f is invariant
under each element ofA and R, so G f = Cn. Since

〈 f 〉 =V0(A) f ⊂ V1(A) f ⊂ V2(A) f ⊂ · · · ⊂ Vs−1(A) f ⊂ Vs(A) f =Vs+1(A) f
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for some s, it follows that Vs(A) f = G f = Cn and that the dimension of Vs(A)
is at least s + 1. Thus n ≥ s + 1 and so Vn−1(A) f = Cn. Applying this result to
S∗ = {A∗1, A

∗
2, . . . , A

∗
k} ∪ {R

∗} yieldsVn−1(A∗)e = Cn. Thus the set of matrices

Vn−1(A)RVn−1(A) = {U∗e ⊗ V f : U,V ∈ Vn−1(A)}

contains every n × n rank-one matrix and so spans Mn(C).
Choose a basis { f1, f2, . . . , fn} such that f j ∈ V j−1(A) f , for j = 1,2, . . . ,n. Similarly,

choose a basis {e1, e2, . . . , en} such that ei ∈ Vi−1(A∗)e, for i = 1, 2, . . . , n. Then
{ei ⊗ f j : 1 ≤ i, j ≤ n} is a basis for Mn(C) for which ei ⊗ f j ∈ Vi+ j−1. All of these basis
elements belong to

⋃
{V j−1(A)RVi−1(A) : 1 ≤ i, j ≤ n, (i, j) , (n, n)} with the possible

exception of en ⊗ fn. We complete the proof by showing that

en ⊗ fn ∈ span
(⋃
{V j−1(A)RVi−1(A) : 1 ≤ i, j ≤ n, (i, j) , (n, n)} ∪ Vn−1

)
.

If T ∈ Mn(C) is any matrix, it can be written as T =
∑n

i, j=1 ti, j(ei ⊗ f j) for some
scalars {ti, j : 1 ≤ i, j ≤ n}. If {e∗1, e

∗
2, . . . , e

∗
n} is the basis dual to {e1, e2, . . . , en} and

{ f ∗1 , f ∗2 , . . . , f ∗n } is the basis dual to { f1, f2, . . . , fn}, then ti, j = (Te∗i | f
∗
j ), for all i and j.

NowVn−1e∗n = Cn, so there exists W ∈ Vn−1 such that (We∗n| f
∗
n ) = 1. Then

W − (en ⊗ fn) ∈ span
(⋃
{V j−1(A)RVi−1(A) : 1 ≤ i, j ≤ n, (i, j) , (n, n)}

)
.

Thus,

en ⊗ fn ∈ span
(⋃
{V j−1(A)RVi−1(A) : 1 ≤ i, j ≤ n, (i, j) , (n, n)} ∪ Vn−1

)
as required. This completes the proof. �

Remark 2.2. The inequality in the statement of the preceding theorem is sharp, that is,
the length of S = {A1, A2, . . . , Ak} ∪ {R} can be 2n − 2. If we take A = {J}, the upper
triangular Jordan matrix, and R = J∗n−1, the length of S is 2n − 2. This was observed
in [5].

3. Irreducible families of rank-one matrices

In the remainder of the paper, we will be concerned only with irreducible families
consisting entirely of rank-one matrices. We first consider the case where all pairwise
products are nonzero.

Theorem 3.1. If n ≥ 2 and R = {R1,R2, . . . ,Rk} is a linearly independent, irreducible
family of rank-one matrices satisfying RiR j , 0, for 1 ≤ i, j ≤ k, then n ≤ k ≤ n2, where
both inequalities are sharp, and the length of R is 1 or 2. Indeed,

(i) if k < n2 − 1, the length of R is 2;
(ii) for k = n2, the length of R is 1;
(iii) for k = n2 − 1, the length of R can be 1 or 2 and both possibilities actually occur.
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Proof. It is clear, by linear independence, that k ≤ n2. Since, by irreducibility, the
linear span of

⋃
{range(Ri) : 1 ≤ i ≤ k} is Cn, we have k ≥ n. Note that, for 1 ≤ i, j ≤ k

and every matrix X, there exists a scalar λ such that RiXR j = λRiR j. It follows that the
length of R is 1 or 2. If k < n2 − 1, the length cannot be 1 so it is 2. If m = n2, then
clearly length(R) = 1. The following examples (I) and (II) show that k can equal n or
n2, and examples (III) and (IV) show that the length of R can be 1 and it can be 2 when
k = n2 − 1.

(I) (k can be n2) First, observe that the vector e = (1, 1, 1, . . . , 1) is a cyclic vector
for A = diag(1, 2, 3, . . . , n). Let f j = A j−1e, 1 ≤ j ≤ n. Put Ri, j = ei ⊗ f j, where {ei}

n
1 are

the standard basis vectors. Then Ri, jRs,t = ( ft |ei)(es ⊗ f j) , 0, since every component
of f j is nonzero. The set R = {Ri, j : 1 ≤ i, j ≤ n} is linearly independent since {ei}

n
1

and { f j}
n
1 are linearly independent. It is also irreducible. For, let M be a nonzero

(common) invariant subspace of R. Let 0 , x ∈ M. Then (x|ei0 ) , 0 for some i0. Thus
Ri0 jx = (x|ei0 ) f j ∈ M, for every 1 ≤ j ≤ n. So M = Cn.

(II) (k can be n) For 1 ≤ j ≤ n, let f j =
∑ j

i=1 ei, where {ei}
n
1 are the standard basis

vectors. Put R j = f j ⊗ f j, for 1 ≤ j ≤ n. Since ( f j| fi) = min {i, j} , 0 for every i, j, it
follows that RiR j = ( f j| fi)( f j ⊗ fi) , 0, for every i, j. Let { f ∗j }

n
1 be the basis dual to { f j}

n
1.

If
∑n

m=1 λmRm = 0, where {λm}
n
1 are scalars then, for every j, (

∑n
m=1 λmRm) f ∗j = 0 = λ j f j,

so λ j = 0. Thus R is linearly independent. Irreducibility is proved as follows. Clearly
{ f j : 1 ≤ j ≤ n} spans Cn. Let M be a nonzero (common) invariant subspace of R. Let
0 , x ∈ M. Then (x| f j0 ) , 0 for some j0. Thus R j0 x = (x| f j0 ) f j0 ∈ M. So f j0 ∈ M and
therefore R j f j0 = ( f j0 | f j) f j ∈ M for 1 ≤ j ≤ n. Thus M = Cn.

(III) (k = n2 − 1 and length equal to 1) Let R be as in (I). We claim that
e1 < span{ f2, f3, . . . , fn}. Suppose that e1 =

∑n−1
j=1 α jA je. Then e1 = A(

∑n−1
j=1 α jA j−1e)

and, since the unique solution to Ax = e1 is x = e1, it follows that e1 =
∑n−1

j=1 α jA j−1e.
Comparing coefficients in the latter to those in e1 =

∑n−1
j=1 α jA je gives αn−1 = 0 = α1

and α j = α j−1 for 2 ≤ j ≤ n − 1. Hence α j = 0 for every j. This contradicts e1 , 0.
It now follows that I < span({Ri, j : (i, j) , (1, 1)}), since the first column of I does

not belong to the span of the first columns of those Ri, j with (i, j) , (1, 1). Since R is
linearly independent, so is R1 = {Ri, j : (i, j) , (1, 1)}. It follows that R1 ∪ {I} is a basis
for Mn(C) and that the length of R1 is 1.

(IV) (k = n2 − 1 and length equal to 2) Let R and { f j}
n
1 be as in (I). Since

e1 < span{ f2, f3, . . . , fn} we have e1 + f2 < span{ f2, f3, . . . , fn}. Let g1 = f2 + e1, and
let g j = f j if j , 1. Then {g j}

n
1 is a basis for Cn. Define R2 = {ei ⊗ g j : 1 ≤ i, j ≤ n}.

Clearly ei ⊗ ei ∈ span(R2\{e1 ⊗ g3}), for every i, so I ∈ span (R2\{e1 ⊗ g3}). It follows
that the length of R2 is 2. �

The simplest families of rank-one matrices are those that arise as subsets of the set
of elementary matrices {Ei, j : 1 ≤ i, j ≤ n}, where Ei, j = e j ⊗ ei and {ei}

n
1 is the standard

basis for Cn. All such families are linearly independent, but not necessarily irreducible.
We use these families to provide simple examples of what the length of an irreducible,
linearly independent family of rank-one matrices can be. First we consider the question
of irreducibility. In the following, we interpret span(

⋃
{range(R) : R ∈ ∅}) as {0} and⋂

{ker(R) : R ∈ ∅} as Cn.
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Theorem 3.2. A family R of rank-one n × n matrices is irreducible if and only if

(i) span(
⋃
{range R : R ∈ R}) = Cn and

⋂
{ker R : R ∈ R} = {0};

(ii) if E is a proper, nonempty subset of R such that span(
⋃
{range E : E ∈ E}) , Cn,

there exist R ∈ E and S ∈ R\E such that range S * span(
⋃
{range E : E ∈ E}) and

S R , 0.

Proof. If R is a rank-one matrix, the subspace M of Cn is invariant under R if and only
if range R ⊆ M or M ⊆ ker R.

First, let R be irreducible. Since span(
⋃
{range R : R ∈ R}) is invariant under R and

is not {0}, it must be Cn. Also, since
⋂
{ker R : R ∈ R} is invariant under R and is not

Cn, it must be {0}.
Let E be a subset of R which is neither ∅ nor R with span(

⋃
{range E : E ∈ E}) , Cn.

Suppose that S R = 0 for every R ∈ E and every S ∈ R\E satisfying the condition
range S * span(

⋃
{range E : E ∈ E}). The subspace M = span(

⋃
{range E : E ∈ E}) is

invariant under R, as is readily verified. Since M , {0} or Cn, this contradicts the
irreducibility of R.

Conversely, suppose that conditions (i) and (ii) are satisfied. Suppose that R has
a proper, nontrivial invariant subspace, M, say. Let E = {E ∈ R : range E ⊆ M}. By
condition (i), E is a proper and nonempty subset of R. Let R ∈ E and S < E. Then
range S * M so M ⊆ ker S . But range R ⊆ M so range R ⊆ M ⊆ ker S and so S R = 0.
This contradicts condition (ii). This completes the proof. �

Corollary 3.3. Let {ei}
n
1 and { f j}

n
1 be bases for Cn. The set of rank-one matrices

{ei ⊗ f j : 1 ≤ i, j ≤ n} is linearly independent. A nonempty subsetD of this set of rank-
one matrices is irreducible if and only if

(i) span(
⋃
{ f j : ei ⊗ f j ∈ D for some i}) = span(

⋃
{ei : ei ⊗ f j ∈ D for some j}) = Cn,

and
(ii) for every proper, nonempty subset E of D with span(

⋃
{range E : E ∈ E}) , Cn

there exist R ∈ E and S ∈ D\E such that range S * span(
⋃
{range E : E ∈ E})

and S R , 0.

Proof. Let {e∗i }
n
1 be the basis dual to {ei}

n
1. Suppose

∑n
k, j=1 λk, j(ek ⊗ f j) = 0, where the

λk, j are scalars. Applying the left-hand side to e∗i gives
∑n

j=1 λi, j f j = 0. Hence λi, j = 0,
for every i and j. This proves linear independence. The remainder of the proof follows
from Theorem 3.2. �

Applying Corollary 3.3 to families of elementary matrices gives the following
result.

Corollary 3.4. Let D be a nonempty subset of {1, 2, . . . , n} × {1, 2, . . . , n}. The family
of elementary matrices {Ei, j : (i, j) ∈ D} is irreducible if and only if

(i) for every i with 1 ≤ i ≤ n, there exists j such that (i, j) ∈ D (that is, every row
intersectsD), and
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(ii) for every j with 1 ≤ j ≤ n, there exists i such that (i, j) ∈ D (that is, every column
intersectsD), and

(iii) for every proper, nonempty subset E ofD, satisfying span(
⋃
{ei : (i, j) ∈ E}) , Cn

there exist i, j, k such that (i, j) ∈ E, (k, i) ∈ D\E and (k,m) < E for 1 ≤ m ≤ n.

We next turn to the question of length for linearly independent, irreducible families
of rank-one matrices. In the following theorem we use two elementary facts about
rank-one matrices:

(a) if R, X,Y ∈ Mn(C) and XRY = 0 where R has rank one, then XR = 0 or RY = 0;
(b) if E = e ⊗ f and M = span({ f1, f2, . . . , ft}), then E does not leave M invariant if

and only if f < span({ f1, f2, . . . , ft}) and E fs , 0, for some s.

Theorem 3.5. Let n ≥ 2 and let R = {R1, R2, . . . , Rk} be a linearly independent,
irreducible family of n × n rank-one matrices given by Ri = ei ⊗ fi for 1 ≤ i ≤ k.
Then for 1 ≤ j ≤ k, there exist integers i1, i2, . . . , in−1 in {1, 2, . . . , k} such that
{ f j, fi1 , fi2 , . . . , fin−1} is a basis for Cn and, for each s with 1 ≤ s ≤ n − 1, there exists
a nonzero word in R, of length at most s + 1, beginning with Ris and ending with R j.
Consequently, the length of R is at most n.

Proof. Let 1 ≤ j ≤ k. By irreducibility (taking E = {R j} in Theorem 3.2) there exists
i1 with 1 ≤ i1 ≤ k such that { f j, fi1} is linearly independent and Ri1 R j , 0. If n = 2,
the theorem is proved. Otherwise, if n ≥ 3 (taking E = {Ri1 ,R j}), there exists i2 with
1 ≤ i2 ≤ k such that { f j, fi1 , fi2} is linearly independent and Ri2 Ri1 , 0 or Ri2 R j , 0. If
Ri2 Ri1 , 0, then Ri2 Ri1 R j , 0 since Ri1 R j , 0. If n = 3 the proof is complete.

Continuing in this way, after m steps, we construct a linearly independent set
{ f j, fi1 , fi2 , . . . , fim} and, for every s with 1 ≤ s ≤ m, there is a nonzero word in R
beginning with Ris and ending with R j of elements of R and of length less than or
equal to s + 1. If m + 1 < n we can continue to the next step. The process stops when
we have a basis { f j, fi1 , fi2 , . . . , fin−2 , fin−1} of Cn and, for 1 ≤ s ≤ n − 1, a nonzero word
in R beginning with Ris and ending with R j of length less than or equal to s + 1.

Let 1 ≤ j ≤ n and continue the notation as in the preceding paragraph. For any
n × n matrix X and for 1 ≤ s ≤ n − 1, we have Ris XR j = γ(e j ⊗ fis ) for some scalar γ.
If Ris XR j , 0 then γ , 0. It follows that e j ⊗ fis ∈ Vn, for s = 1, 2, . . . , n − 1. Since
e j ⊗ f j ∈ Vn we get e j ⊗ f ∈ Vn, for every f ∈ Cn. Since

⋂
{ker R j : 1 ≤ j ≤ k} = {0},

it follows that {e1, e2, . . . , ek} spans Cn, so e ⊗ f ∈ Vn for all vectors e, f ∈ Cn. Thus
Vn = Mn(C), so the length of R is at most n. �

Theorem 3.6. Let n ≥ 2 and let {ei}
n
1, { f j}

n
1 be bases for Cn. Let D be an irreducible

subset of {ei ⊗ f j : 1 ≤ i, j ≤ n}. There is a positive integer k ≤ n with the property that
every rank-one matrix ei ⊗ f j, 1 ≤ i, j ≤ n, belongs to the set of scalar multiples of
words inD of length at most k.

The msl M of D is equal to the least such positive integer k (and the length L of D
is M or M − 1 according as I ∈ V′L or not).
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Proof. Using the preceding theorem, we find that n will serve as a k. Denote the least
such k by K. We have V′K = Mn(C), so M ≤ K. We next show that V′K−1 , Mn(C).
Since K − 1 will not serve as a k, there exists (i, j) such that there is a nonzero word
W of length K with W ∈ span(ei ⊗ f j), but V < span(ei ⊗ f j) for every nonzero word
V of length at most K − 1. If {e∗s}

n
1, { f

∗
q }

n
1 are the dual bases, since every word in D

of length at most K − 1 is of the form γ(ep ⊗ fq) for some scalar γ and some p, q, it
follows that (Ve∗i | f

∗
j ) = 0, for every word of length at most K − 1. Hence W <V′K−1

(since (We∗i | f
∗
j ) , 0), so K = M. �

Examples below show some of the values that the length of an irreducible, linearly
independent family of rank-one matrices can be. Attention is restricted to families of
elementary matrices. Recall that Ei, jEk,l = δ j,kEi,l, where δ j,k is the Kronecker delta
function. For 1 ≤ s, t ≤ n − 1, define the sets ∆s,∆−t by

∆s = {Ei,i+s : 1 ≤ i ≤ n − s} and ∆−t = {Ei,i−t : t + 1 ≤ i ≤ n}.

(So ∆s is the set of elementary matrices in sth diagonal positions and ∆−t is the set
of elementary matrices in −tth diagonal positions.) Also, if E and F are families of
complex matrices we define their #-product (‘hash product’), E#F , to be the set of all
products {XY : X ∈ E,Y ∈ F } ∪ {YX : X ∈ E,Y ∈ F }.

It is clear that, if 1 ≤ |s|, |t| ≤ n − 1 then ∆s#∆t ⊆ ∆s+t ∪ {0}. In more detail, we have,
and will frequently use, the following facts. Let 1 ≤ s, t ≤ n − 1. Then

(P) ∆s#∆t = ∆s+t ∪ {0}, if s + t ≤ n − 1;
(Q) ∆s#∆t = {0}, if s + t > n − 1;
(R) ∆−s#∆−t = ∆−(s+t) ∪ {0}, if s + t ≤ n − 1;
(S) ∆s#∆−t = ∆s−t ∪ {0}, if s + t ≤ n.

Example 3.7. In the following, all the examples are on the space Cn, where n ≥ 2 and
‘a word of length m’ means ‘the matrix which arises as a word of length m’.

(1) Length 2. The length of {Ei, j : 1 ≤ i, j ≤ n}\∆0 is 2, since ∆1#∆−1 = ∆0 ∪ {0}.
(2) Length n. Let E1 = ∆n−1 ∪ ∆−1. This set of elementary matrices is obviously

linearly independent. It is also irreducible since it contains J∗ =
∑
{Ei, j : Ei, j ∈ ∆−1},

the lower triangular Jordan matrix. It is well known that J∗ and E1,n = Jn−1 have no
common nontrivial invariant subspaces. The set of words of length one in E1 is

W1 = E1 = {E2,1, E3,2, E4,3, . . . , En,n−1} ∪ {E1,n}.

If n ≥ 3 the set of words of length two is

W2 = {E2,n,, E3,1, E4,2, . . . , En,n−2, E1,n−1} ∪ {0} = ∆n−2 ∪ ∆−2 ∪ {0}.

It is easily proved my induction that, given n ≥ 3, the set of words of length m is given
by

Wm = ∆n−m ∪ ∆−m ∪ {0} for 2 ≤ m ≤ n − 1.

Thus,Vn−1 = span({Ei, j : 1 ≤ i, j ≤ n, (i, j) < ∆0}) + CI for n ≥ 2. Now ∆0 ⊆Wn since
∆1#∆−1 = ∆0 ∪ {0}, so the length of E1 is n.
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[8] Irreducible families of complex matrices 233

(3) Length n − 1. Let D = ∆1 ∪ ∆−1. This set of elementary matrices is obviously
linearly independent. It is also irreducible since the upper triangular Jordan matrix
J =

∑
{Ei, j : Ei, j ∈ ∆1} has no reducing subspaces. Here the set of words of length one

isW1 = ∆1 ∪ ∆−1 and, for words of length 2 and 3,W2 = ∆2 ∪ ∆−2 ∪ ∆0 ∪ {0} if n ≥ 3
andW3 = ∆3 ∪ ∆−3 ∪ ∆1 ∪ ∆−1 ∪ {0} if n ≥ 4. We prove by induction that, if n ≥ 3

v⋃
u=1

Wu =

( v⋃
u=1

∆u ∪ ∆−u

)
∪ ∆0 ∪ {0} for 2 ≤ v ≤ n − 1. (3.1)

We have observed that (3.1) is true for v = 2, so there is no more to be proved if n = 3.
Assume that n ≥ 4 and that (3.1) is true for all integers v satisfying 2 ≤ v ≤ m, where
2 ≤ m ≤ n − 2. We shall show that (3.1) is true for v = m + 1. Since

m+1⋃
u=1

Wu =

( m⋃
u=1

Wu

)
∪

(
Wm+1\

m⋃
u=1

Wu

)
and

Wm =

(
Wm\

m−1⋃
u=1

Wu

)
∪

(
Wm ∩

m−1⋃
u=1

Wu

)
= (∆m ∪ ∆−m) ∪

(
Wm ∩

m−1⋃
u=1

Wu

)
,

it follows that

Wm+1\

m⋃
u=1

Wu = (W1#Wm)\
m⋃

u=1

Wu = (W1#(∆m ∪ ∆−m))\
m⋃

u=1

Wu.

The induction proof is completed by showing that

(W1#(∆m ∪ ∆−m))\
( m⋃

u=1

Wu

)
= ∆m+1 ∪ ∆−(m+1).

Noticing that

∆1#∆m = ∆m+1 ∪ {0}, ∆1#∆−m = ∆−m+1 ∪ {0},
∆−1#∆m = ∆m−1 ∪ {0}, ∆−1#∆−m = ∆−(m+1) ∪ {0}

gives

(W1#(∆m ∪ ∆−m))\
m⋃

u=1

Wu = ((∆1#∆−1)#(∆m ∪ ∆−m))\
m⋃

u=1

Wu

= ∆m+1 ∪ ∆−(m+1).

Since (3.1) is true for 2 ≤ v ≤ n − 1, it follows thatVn−2 , Mn(C) andVn−1 = Mn(C).
HenceD has length n − 1. If n = 2, we haveW2 = ∆0 ∪ {0}, soD has length n = 2.

Theorem 3.8. Let n ≥ 2 and n − 1 = pk where p, k ∈ Z+. The set of elementary matrices
Ep = (

⋃n−1
s=n−p ∆s) ∪ (

⋃p
t=1 ∆−t) is linearly independent, irreducible and has length

k + 1.
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Proof. The set Ep is clearly linearly independent. Because of an earlier example it
is also irreducible since it contains ∆−1 and ∆n−1 and we may suppose that p ≥ 2.
Moreover, by an earlier example, we can also suppose that k ≥ 2 (so n ≥ 5).

Let P =
⋃n−1

s=n−p ∆s and let N =
⋃p

t=1 ∆−t, so that Ep = P ∪ N . The set of words in
Ep of length one isW1 = P ∪N . The set of words of length two is

W2 =W1#W1 = (P#P) ∪ (N#N) ∪ (P#N).

We simplify this as follows.
(i) P#P = (

⋃n−1
s=n−p ∆s)#(

⋃n−1
s′=n−p ∆s′) = {0}, since s + s′ > n − 1 if s, s′ ∈

[n − p, n − 1] (because 2p ≤ n − 1).
(ii) N#N = (

⋃p
t=1 ∆−t)#(

⋃p
t′=1 ∆−t′) = (

⋃2p
t′′=2 ∆−t′′) ∪ {0}, since t + t′ ≤ n − 1 if

t, t′ ∈ [1, p].
(iii) P#N . We claim that P#N = (

⋃n−1
s=n−p ∆s)#(

⋃p
t=1 ∆−t) = (

⋃n−2
s′=n−2p ∆s′) ∪ {0}.

Clearly P#N ⊆
⋃n−2

s′=n−2p ∆s′ ∪ {0}, since s − t ∈ [n − 2p, n − 2] if s ∈ [n − p, n − 1] and
t ∈ [1, p]. We show that ∆s′ ∪ {0} ⊆ P#N , for s′ ∈ [n − 2p, n − 2].

First, let t ∈ [1, p − 1] and put s = n − 1 − t. Then s ∈ [n − p, n − 1] and s + t ≤ n,
and so ∆s#∆−t = ∆s−t ∪ {0} ⊆ P#N . This shows that

∆s′ ∪ {0} ⊆ P#N if s′ ∈ {n − 3, n − 5, . . . , n − 2p + 1}.

Secondly, let t ∈ [1, p] and put s = n − t. Then s ∈ [n − p, n − 1] and s + t ≤ n. Thus
∆s#∆−t = ∆s−t ∪ {0} ⊆ P#N , so that ∆s′ ∪ {0} ⊆ P#N if s′ ∈ {n − 2, n − 4, . . . , n − 2p}.
It now follows that ∆s′ ∪ {0} ⊆ P#N if s′ ∈ [n − 2p, n − 2].

ThusW2 = (
⋃2p

t′′=2 ∆−t′′) ∪ (
⋃n−2

s′=n−2p ∆s′) ∪ {0}. For 1 ≤ m ≤ k, define

Pm =

n−(m−1)p−1⋃
sm=n−mp

∆sm and Nm =

mp⋃
tm=(m−1)p+1

∆−tm .

ThenW1 = P1 ∪ N1 andW1 ∪W2 = P1 ∪ N1 ∪ P2 ∪ N2 ∪ {0}. Moreover, the sets
{Pm ∪ Nm : 1 ≤ m ≤ k} are pairwise disjoint with union {Ei, j : 1 ≤ i, j ≤ n}\∆0.

We prove by induction that
v⋃

u=1

Wu =

v⋃
u=1

(Pu ∪ Nu) ∪ {0} for 2 ≤ v ≤ k,

whereWu denotes the words of length u in Ep. We have already seen that the result
is true for v = 2. Let 2 ≤ m ≤ k − 1 and suppose that the result is true for all v with
2 ≤ v ≤ m. We show that it is true for m + 1.

Observe that
m+1⋃
u=1

Wu =

( m⋃
u=1

Wu

)
∪

(
Wm+1\

m⋃
u=1

Wu

)
and

Wm+1\

m⋃
u=1

Wu = (W1#(Pm ∪ Nm))\
m⋃

u=1

Wu = ((P1 ∪ N1)#(Pm ∪ Nm))\
m⋃

u=1

Wu.
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We show that

((P1 ∪ N1)#(Pm ∪ Nm))\
m⋃

u=1

Wu = Pm+1 ∪ Nm+1.

We simplify (P1 ∪N1)#(Pm ∪Nm) = (P1#Pm) ∪ (P1#Nm) ∪ (N1#Pm) ∪ (N1#Nm).
(1) P1#Pm = (

⋃n−1
s1=n−p ∆s1 )#(

⋃n−(m−1)p−1
sm=n−mp ∆sm ) = {0}, since s1 + sm > n − 1 if

s1 ∈ [n − p, n − 1] and sm ∈ [n − mp, n − (m − 1)p − 1] (because (m + 1)p ≤ n − 1).
(2) N1#Nm = (

⋃p
t1=1 ∆−t1 )#(

⋃mp
tm=(m−1)p+1 ∆−tm ) = (

⋃(m+1)p
tm+1=(m−1)p+2 ∆−tm+1 ) ∪ {0}, since

t1 + tm ≤ n − 1, if t1 ∈ [1, p] and tm ∈ [(m − 1)p + 1,mp]. Thus, using the induction
assumption,

(N1#Nm)\
m⋃

u=1

Wu = Nm+1.

(3) N1#Pm = (
⋃p

t1=1 ∆−t1 )#(
⋃n−(m−1)p−1

sm=n−mp ∆sm ) = (
⋃n−(m−1)p−2

sm+1=n−(m+1)p ∆sm+1 ) ∪ {0}, since if
sm ∈ [n − mp, n − (m − 1)p − 1] and t1 ∈ [1, p], then we have sm + t1 ≤ n and sm − t1 ∈
[n − (m + 1)p, n − (m − 1)p − 2]. Thus, using the induction assumption,

(N1#Pm)\
m⋃

u=1

Wu = Pm+1.

(4) P1#Nm = (
⋃n−1

s1=n−p ∆s1 )#(
⋃mp

tm=(m−1)p+1 ∆−tm ) ⊆ (
⋃n−(m−1)p−2

sm+1=n−(m+1)p ∆sm+1 ) ∪ {0}, and
so (P1#Nm)\(

⋃m
u=1Wu) ⊆ Pm+1.

We have shown that ((P1 ∪ N1)#(Pm ∪ Nm))\(
⋃m

u=1Wu) = Pm+1 ∪ Nm+1, and it
follows by induction that

v⋃
u=1

Wu =

v⋃
u=1

(Pu ∪ Nu) ∪ {0}, for 2 ≤ v ≤ k.

Thus
⋃v

u=1Wu = {Ei, j : 1 ≤ i, j ≤ n}\∆0 and soVk , Mn(C) sinceVk is the linear span
of (

⋃k
u=1Wu) ∪ {I}. Since ∆1#∆−1 = ∆0 ∪ {0} and since ∆1 ⊆ Pk ⊆

⋃k
u=1Wu, it follows

that Ep has length k + 1. This completes the proof. �

Remark 3.9. With notation as in the preceding proof, we have the chain

CI =V0 ⊂ V1 ⊂ · · · ⊂ Vk−1 ⊂ Vk ⊂ Vk+1 = Mn(C),

whereVm = span{
⋃m

u=1(Pu ∪Nu)} +CI , for 1 ≤ m ≤ k. It is perhaps interesting to note
that here the dimension dm ofVm is dm = mnp + 1 for 1 ≤ m ≤ k, so that the differences
in dimension dm+1 − dm all equal np for 0 ≤ m ≤ k − 1. Also, dk+1 − dk = n − 1. The
msl spanning length of Ep is also k + 1.

Finally, notice that the product |Ep| × (Length(Ep) − 1) = n(n − 1), which gives
precision to the intuitive idea that length is inversely proportional to cardinality.
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