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Abstract

We show that an irreducible family S of complex n X n matrices satisfies Paz’s conjecture if it contains
a rank-one matrix. We next investigate properties of families of rank-one matrices. If R is a linearly
independent, irreducible family of rank-one matrices then (i) R has length at most n, (ii) if all pairwise
products are nonzero, R has length 1 or 2, (iii) if R consists of elementary matrices, its minimum spanning
length M is the smallest integer M such that every elementary matrix belongs to the set of words in R of
length at most M. Finally, for any integer k dividing n — 1, there is an irreducible family of elementary
matrices with length k + 1.
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1. Introduction

If V is a finite-dimensional vector space over a field F, a family F of linear
transformations on V is called irreducible if the only linear subspaces of V that
are invariant under all of the elements of ¥ are (0) and V. Burnside’s well-known
theorem (see [4], [ 13, Theorem 1.2.2]) states that the only irreducible algebra of linear
transformations on a vector space, over an algebraically closed field and of finite
dimension greater than one, is the algebra of all linear transformations on the space.

For any family S of complex n X n matrices and any natural number &, denote by
Vi(S) the linear span of the words in S of length at most k, where the word of length
zero (the ‘empty word’) is taken to be the identity. If S is finite and irreducible, thanks
to Burnside’s theorem, writing V. for V(S),

CIZ(V()C(Vlc(Vzc"'C(VL_lC(VLZM,,(C),

for some natural number L, called the length of S.

For such a family S (different from {0} if n = 1) and for any positive integer &, let
V(S), or simply V/, be the linear span of the words in S of positive length at most k.
Again thanks to Burnside’s theorem,

VicVyc--- V), V)= M),
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for some positive integer M, called the minimum spanning length (msl) of S. The idea
of the msl of a finite irreducible family S first arose in [5].

Clearly V; =V} +Cl, for every k € Z*. It is clear that L < M < L + 1, that is,
L=MorM-1.1t1e€V, thenV;, =V, =M,(C),soM<Land M=L1IfI1¢YV],
then V; # M,(C),so L < M and L = M + 1. Summarising: the length L of S is equal
to the msl M of S or the msl plus one according as to whether / € V} or not.

We will investigate below the ideas of ‘irreducibility’, ‘length’ and ‘minimum
spanning length’ as they apply to families of n X n complex matrices which contain,
or are entirely made up of, rank-one matrices. Notice that, as far as these ideas are
concerned, we may restrict our investigation to linearly independent families. Indeed,
if S is any family of n X n complex matrices and Sy is any subset of S which is a basis
for the linear span of S, then S is irreducible if and only if Sy is, and then the length
of § and the length of Sy are equal. This is because, for every k € N, the linear span of
the words in S of length at most k equals the linear span of the words in Sy of length
at most k. That S and Sy have the same minimum spanning lengths follows similarly.

Every rank-one matrix R € M,(C) is of the form R = e ® f, where e, f € C" are
nonzero vectors, and where Rx = (xle) f, for all x € C", and ‘(-]-)’ denotes the usual
inner product. If A, B € M,(C) we have ARB = A(e ® f)B = (B*e¢) @ (Af), where **’
denotes adjoint.

For 1 <i, j < n,let E; ; denote the usual n X n elementary matrix. Then E; ; = ¢; ® e;.
Notice that E; jEy; = 6 E;;, where 6 is the Kronecker delta function.

2. Irreducible families containing a rank-one matrix

In [12] Paz conjectures that the length L of an irreducible finite family S of
(complex) n X n matrices satisfies L < 2n — 2. Much work has been done on this
conjecture (see references [1—11, 13, 14]), but it is still unresolved. We show that
such an S will satisfy Paz’s conjecture if it contains at least one rank-one matrix.

THeOREM 2.1. If 8 = {A1, Az, ..., Ac} U{R} is an irreducible family of n X n matrices
and R has rank one, then the set

U{(Vj,l(ﬂ)R(Vi,l(ﬂ) (1<i,j<n, 3G, )) #®mn)UV,1(S)

spans M,(C), where V,(A) denotes the linear span of the words of length at most u
in A=1{A1,Ay,..., A}, including the empty word. Consequently, the length of S is at
most 2n — 2.

Proor. Let R = e ® f, where e, f € C", and, for every u € N, let V,, = V,,(S). If x € C"
is any nonzero vector, V,_;x = C" since

xXy=VoxcVixcVyxc---CVixCVx =V, x=C"

for some r < n — 1. If G denotes the unital algebra generated by A then Gf is invariant
under each element of A and R, so Gf = C". Since

() =Vo(Af cVI(Af V(AT CV (A CV(AS = V1 (ASf
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228 W. E. Longstaft [3]

for some s, it follows that V(A)f = Gf = C" and that the dimension of V(A)
is at least s + 1. Thus n > s+ 1 and so V,_;(A)f = C". Applying this result to
S* ={A]LA%,...,A;} U{R"} yields V,_(A")e = C". Thus the set of matrices

Vi t(AORV, 1 (A) ={U e@ V[ : UV eV, (A)}

contains every n X n rank-one matrix and so spans M, (C).

Choose a basis {f1, f2,. .., fa} such that f; € V;_((A)f, for j=1,2,...,n. Similarly,
choose a basis {e;, es,...,e,} such that e¢; € V,_i(A*)e, for i=1,2,...,n. Then
{e;® fj: 1 <1, j<n}isabasis for M,(C) for which e¢; ® f; € V;,;_1. All of these basis
elements belong to ({V -1 (A)RV,_1(A) : 1 <, j < n, (i, j) # (n,n)} with the possible
exception of e, ® f,,. We complete the proof by showing that

en® fi € span | (Ve GORVii (0 1 1 0. <,y # (1.} U Vi )

If T € M,(C) is any matrix, it can be written as 7 = }} j=1 1ij(e; ® f;) for some

scalars {f;;: 1 <i,j<n}. If {e],e5,...,e,} is the basis dual to {e,es,...,e,} and
{15 15>+, f,} is the basis dual to {f1, f2,..., fu}, then 7; ; = (Te;.“|f;‘), for all i and j.
Now V,_je;, = C", so there exists W € V,_; such that (We}|f;) = 1. Then

W= (ea fi) € span( {_J(Vioi GORViA(A) 1 < <G ) # 0.}
Thus,
en® fi € span |V GORViA (@) 1 1< <G ) # 0} U V1)

as required. This completes the proof. O

Remark 2.2. The inequality in the statement of the preceding theorem is sharp, that is,
the length of S = {A1,A,, ..., A} U {R} can be 2n — 2. If we take A = {J}, the upper
triangular Jordan matrix, and R = J*"~!, the length of S is 2n — 2. This was observed
in [5].

3. Irreducible families of rank-one matrices

In the remainder of the paper, we will be concerned only with irreducible families
consisting entirely of rank-one matrices. We first consider the case where all pairwise
products are nonzero.

TueorEM 3.1. If n > 2 and R ={R, Ry, ..., Ry} is a linearly independent, irreducible
family of rank-one matrices satisfying RiR; # 0, for 1 <1, j <k, thenn <k < n?, where
both inequalities are sharp, and the length of R is 1 or 2. Indeed,

() ifk <n®—1, the length of R is 2;

(i) for k = n?, the length of R is 1;

(iii) fork=n?— 1, the length of R can be 1 or 2 and both possibilities actually occur.
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Proor. It is clear, by linear independence, that k < n?. Since, by irreducibility, the
linear span of | J{range(R;) : 1 <i < k}is C", we have k > n. Note that, for 1 <i,j<k
and every matrix X, there exists a scalar A such that R;XR; = AR;R;. It follows that the
length of R is 1 or 2. If k < n*> — 1, the length cannot be 1 so it is 2. If m = n?, then
clearly length(R) = 1. The following examples (I) and (II) show that k can equal nor
n?, and examples (IIT) and (IV) show that the length of R can be 1 and it can be 2 when
k=n>-1.

() (k can be n?) First, observe that the vector e = (1, 1,1,..., 1) is a cyclic vector
for A = diag(1,2,3,...,n). Let f; = A/"le,1 < j <n.PutR;; = ¢; ® f;j, where {e;} are
the standard basis vectors. Then R; R, = (file;)(es; ® f;) # 0, since every component
of f; is nonzero. The set R ={R;;: 1 <i, j <n} is linearly independent since {e;}}
and {f;}] are linearly independent. It is also irreducible. For, let M be a nonzero
(common) invariant subspace of R. Let O # x € M. Then (xle;,) # 0 for some iy. Thus

Ri,jx = (xle;,)fj € M, forevery 1 < j<n.So M =C".

(ID) (k can be n) For 1 < j<n, let f; = Zl | €» Where {e;}| are the standard basis

vectors. Put R; = f; ® fj, for 1 < j < n. Since (fj|f;) = min {i, j} # O for every i, j, it
follows that R;R; = (f|f)(f; ® fi) # 0, forevery i, j. Let {f }1 be the basis dual to {f;}].
If 35— AuRp = 0, where {A,,}] are scalars then, for every j, (Zm:1 AmR) fJ =0=4; f],
so A; = 0. Thus R is linearly independent. Irreducibility is proved as follows. Clearly
{fj: 1< j<n}spans C". Let M be a nonzero (common) invariant subspace of R. Let
0 # x € M. Then (x|fj,) # O for some jo. Thus R, x = (x|f},)fj, € M. So fj, € M and
therefore R; f;, = (fj,|f)fi € M for1 < j<n.Thus M = C".

() (k =n®> -1 and length equal to 1) Let R be as in (I). We claim that
ey ¢ span{fs, fs,..., fu}. Suppose that e¢; = Z”_l a;A’e. Then e = A(Z”_1 a/Ai‘le)
and, since the unique solution to Ax = e is x = ey, it follows that e = '~ La JATe
Comparing coefficients in the latter to those in e; = Z;;ll a jAfe gives @,-1 =0 =q)
and aj = a;_ for2 < j<n - 1. Hence a; = 0 for every j. This contradicts e; # 0.

It now follows that I ¢ span({R; ; : (i, j) # (1, 1)}), since the first column of I does
not belong to the span of the first columns of those R; ; with (7, j) # (1, 1). Since R is
linearly independent, so is Ry = {R;; : (i, j) # (1, 1)}. It follows that R; U {I} is a basis
for M, (C) and that the length of R; is 1

(IV) (k=n?> -1 and length equal to 2) Let R and { fil] be as in (I). Since
ey ¢ span{fs, f3,..., fu} we have e| + f, ¢ span{f>, f3,..., fu}. Let g1 = fo + e, and
let g; = f; if j# 1. Then {g;}] is a basis for C". Define R, ={e;® g;: 1 <i, j <n}.
Clearly ¢; ® e; € span(Ra\{e; ® g3}), for every i, so I € span (Ry\{e; ® g3}). It follows
that the length of R, is 2. O

The simplest families of rank-one matrices are those that arise as subsets of the set
of elementary matrices {E;; : 1 < i, j < n}, where E; ; = ¢; ® ¢; and {¢;}] is the standard
basis for C". All such families are linearly independent, but not necessanly irreducible.
We use these families to provide simple examples of what the length of an irreducible,
linearly independent family of rank-one matrices can be. First we consider the question
of irreducibility. In the following, we interpret span(| J{range(R) : R € 0}) as {0} and
N{ker(R) : R € 0} as C".
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TueorEM 3.2. A family R of rank-one n X n matrices is irreducible if and only if

(1) span(| {rangeR : R € R}) = C" and ({kerR : R € R} = {0},

(ii) if & is a proper, nonempty subset of R such that span(| J{range E : E € &}) # C",
there exist R € & and S € R\E such that range S ¢ span(| J{range E : E € &}) and
SR #0.

Proor. If R is a rank-one matrix, the subspace M of C" is invariant under R if and only
if range R € M or M C kerR.

First, let R be irreducible. Since span(| J{range R : R € R}) is invariant under R and
is not {0}, it must be C". Also, since ({ker R : R € R} is invariant under R and is not
C", it must be {0}.

Let & be a subset of R which is neither @ nor R with span(| J{range E : E € &}) # C".
Suppose that SR =0 for every R € & and every S € R\E satisfying the condition
range S ¢ span(| J{range E : E € &}). The subspace M = span(| J{range E : E € &}) is
invariant under R, as is readily verified. Since M # {0} or C", this contradicts the
irreducibility of R.

Conversely, suppose that conditions (i) and (ii) are satisfied. Suppose that R has
a proper, nontrivial invariant subspace, M, say. Let & = {E € R : range E C M}. By
condition (i), & is a proper and nonempty subset of R. Let Re€ & and S ¢ &. Then
range S € M so M CkerS. Butrange R C M sorangeR € M CkerS and so SR =0.
This contradicts condition (ii). This completes the proof. O

Cororrary 3.3. Let {e;}| and {f;}] be bases for C". The set of rank-one matrices

{e;® fj : 1 <, j < n}is linearly independent. A nonempty subset D of this set of rank-

one matrices is irreducible if and only if

() span(UJ{f;: e;® f; € D for some i}) = span(|{e; : ¢; ® f; € D for some j}) = C",
and

(1) for every proper, nonempty subset & of D with span(|J{range E : E € &}) # C"

there exist R€ & and S € D\E such that range S € span(| J{range E : E € &))
and SR # 0.

Proor. Let {e}}] be the basis dual to {e;}]. Suppose ZZ, =1 A j(ex ® fj) = 0, where the
Ay, are scalars. Applying the left-hand side to e} gives Z?zl Aijfj =0.Hence 4;; = 0,
for every i and j. This proves linear independence. The remainder of the proof follows
from Theorem 3.2. O

Applying Corollary 3.3 to families of elementary matrices gives the following
result.

CorOLLARY 3.4. Let D be a nonempty subset of {1,2,...,n} X {1,2,...,n}. The family
of elementary matrices {E; j : (i, j) € D} is irreducible if and only if

(1) for every i with 1 <i < n, there exists j such that (i, j) € D (that is, every row
intersects D), and
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(i1) forevery jwith 1 < j < n, there exists i such that (i, j) € D (that is, every column
intersects D), and

(iii) for every proper, nonempty subset & of D, satisfying span(|{e; : (i, j) € &) # C"
there exist i, j, k such that (i, j) € &, (k,i) € D\&E and (k,m) ¢ Efor | <m < n.

We next turn to the question of length for linearly independent, irreducible families
of rank-one matrices. In the following theorem we use two elementary facts about
rank-one matrices:

(a) ifR,X,Y € M,(C)and XRY = 0 where R has rank one, then XR = 0 or RY = 0;
(b) ifE=e® fand M = span({f1, f2,.--, fi}), then E does not leave M invariant if
and only if f ¢ span({f1, f>,. .., f;}) and Ef; # 0, for some s.

THeEOREM 3.5. Let n > 2 and let R={R|,R,,...,R:} be a linearly independent,
irreducible family of n X n rank-one matrices given by R, =¢; ® f; for 1 <i<k.
Then for 1 < j <k, there exist integers iy,iy,...,i,—1 in {1,2,...,k} such that
{fi> fiis firs - > fir)) s a basis for C" and, for each s with 1 < s <n— 1, there exists
a nonzero word in R, of length at most s + 1, beginning with R; and ending with R;.
Consequently, the length of R is at most n.

Proor. Let 1 < j < k. By irreducibility (taking & = {R;} in Theorem 3.2) there exists
ip with 1 <i; <k such that {fj, f;} is linearly independent and R; R; # 0. If n =2,
the theorem is proved. Otherwise, if n > 3 (taking & = {R;,, R;}), there exists i, with
1 <ip <k such that {fj, f;, f;,} is linearly independent and R;,R;, # 0 or R;,R; # 0. If
R;,R;, # 0, then R, R; R; # 0 since R; R; # 0. If n = 3 the proof is complete.

Continuing in this way, after m steps, we construct a linearly independent set
{fj> firs fir»--->» fi,,} and, for every s with 1 < s < m, there is a nonzero word in R
beginning with R; and ending with R; of elements of R and of length less than or
equal to s + 1. If m + 1 < n we can continue to the next step. The process stops when
we have a basis {fj, fi,, fi,,- - -» fi,» fir,,) Of C" and, for 1 < s <n — 1, a nonzero word
in R beginning with R; and ending with R; of length less than or equal to s + 1.

Let 1 < j < n and continue the notation as in the preceding paragraph. For any
n X n matrix X and for 1 < s <n -1, we have R; XR; = y(e; ® f;,) for some scalar .
If R; XR; # 0 then y # 0. It follows that ¢; ® f; € V,, for s =1,2,...,n— 1. Since
ej®fieV,wegete;®f eV, forevery f € C" Since M{kerR;: 1< j<k}={0},
it follows that {e}, es, ..., e} spans C*, so e ® f € V, for all vectors e, f € C". Thus
YV, = M,(C), so the length of R is at most n. O

Tueorem 3.6. Let n > 2 and let {e;}],{f;}] be bases for C". Let D be an irreducible
subset of {e; ® f; : 1 < i, j < n}. There is a positive integer k < n with the property that
every rank-one matrix e; ® f;, 1 < i, j <n, belongs to the set of scalar multiples of
words in D of length at most k.

The msl M of D is equal to the least such positive integer k (and the length L of D
is M or M — 1 according as I €V} or not).
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Proor. Using the preceding theorem, we find that n will serve as a k. Denote the least
such k by K. We have Vi = M,,(C), so M < K. We next show that V._, # M,(C).
Since K — 1 will not serve as a k, there exists (i, j) such that there is a nonzero word
W of length K with W € span(e; ® f;), but V ¢ span(e; ® f;) for every nonzero word
V of length at most K — 1. If {e{}7, { fq* }] are the dual bases, since every word in D
of length at most K — 1 is of the form y(e, ® f,) for some scalar y and some p, g, it
follows that (Ve f;‘) = 0, for every word of length at most K — 1. Hence W ¢ V} _,

(since (Wej.‘lf;‘) #0),s0 K =M. O

Examples below show some of the values that the length of an irreducible, linearly
independent family of rank-one matrices can be. Attention is restricted to families of
elementary matrices. Recall that E; ;E;; = 6, E;;, where ¢ is the Kronecker delta
function. For 1 < 5,7 < n — 1, define the sets A, A_; by

ASZ{E,"H_SZlSiSn—S} and A_,={Ei,,'_tll’+lﬁl.$l’l}.

(So Ay is the set of elementary matrices in sth diagonal positions and A_, is the set
of elementary matrices in —tth diagonal positions.) Also, if & and F are families of
complex matrices we define their #-product (‘hash product’), E#F, to be the set of all
products (XY : X e E, Y e FlU{YX: X & YeF}.

Itis clear that, if 1 < |s],|f] < n — 1 then A#A, C Ay, U {0}. In more detail, we have,
and will frequently use, the following facts. Let | < s,# <n — 1. Then

P) A#N =A; U0}, if s+1<n—1;

Q) A#A ={0},if s+t>n—-1,

R) A_#A,=A(nU{0}Lifs+r<n—1;
S) A#HA_, =A,_,U{0},if s+1<n.

ExampLE 3.7. In the following, all the examples are on the space C", where n > 2 and
‘a word of length m’ means ‘the matrix which arises as a word of length m’.
(1) Length 2. The length of {E; ; : 1 <, j < nj\A¢ is 2, since Aj#A_; = Ay U {0}.
(2) Length n. Let & = A,—1 U A_y. This set of elementary matrices is obviously
linearly independent. It is also irreducible since it contains J* = Y {E;; : E;; € A_y},
the lower triangular Jordan matrix. It is well known that J* and E; , = J"! have no
common nontrivial invariant subspaces. The set of words of length one in &, is

Wi =81 ={Ey1,E30,Es3,..., Epnoi} ULE 4}
If n > 3 the set of words of length two is
Wr={Exn,E31,E42,...,Epp2, E1 o1} U{0} = A, o UA, U {0}

It is easily proved my induction that, given n > 3, the set of words of length m is given
by

W,=A_n UA_,U{0} for2<m<n-1.
Thus, V,—i = span({E;;: 1 <1i, j<n, (i, J) ¢ Ao}) + CI for n > 2. Now Ay € ‘W, since
A#A_1 = Ay U {0}, so the length of &, is n.
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(3) Length n — 1. Let © = A; U A_;. This set of elementary matrices is obviously
linearly independent. It is also irreducible since the upper triangular Jordan matrix
J ={E;;: E;; € A} has no reducing subspaces. Here the set of words of length one
is W) = Ay UA_ and, for words of length 2 and 3, W, = A UA_, UAgU {0} ifn >3
and W3 = A3 UA_3 UA; UA_; U{0}if n > 4. We prove by induction that, if n > 3

U«%:(UAuuA,u)quu{O} for2<v<n-—1. 3.1)
u=1

u=1

We have observed that (3.1) is true for v = 2, so there is no more to be proved if n = 3.
Assume that n > 4 and that (3.1) is true for all integers v satisfying 2 < v < m, where
2 <m < n— 2. We shall show that (3.1) is true for v = m + 1. Since

m+1

gwu:(gwu)u(wmﬂ\gwu)

and
W,, = (wm\ U] fwu) U (wm n U w,,) — (AnUA_)U (wm n @l (wu),
u=1 u=1 u=1

it follows that

(WmH\ O (Wu = ((Wl#(wm)\ LmJ Wu = ((Wl#(Am U AN\ O (Wu-
u=1 u=1

u=1

The induction proof is completed by showing that
m
Wit 0 AN [ W) = Bt UA -
u=1

Noticing that
A#A, = Ay U {O}, A#A_, = A U {O}a
A i#A, = Ay U{0},  A#A, = A_(py1) U {0}

gives

(Wit (A U A\ | W = (MDA #(A, U A\ W,
u=1 u=1

= Apr1 UA_Gusy.

Since (3.1) is true for 2 < v < n — 1, it follows that V,_, # M,(C) and V,_; = M,,(C).
Hence D has length n — 1. If n = 2, we have ‘W, = Ag U {0}, so D has length n = 2.

THeOREM 3.8. Letn > 2 andn — 1 = pk where p,k € Z*. The set of elementary matrices
&y = (Ug’;,t_p Ay U (L_Jf:1 A_,) is linearly independent, irreducible and has length
k+1.
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Proor. The set &, is clearly linearly independent. Because of an earlier example it
is also irreducible since it contains A_; and A,_; and we may suppose that p > 2.
Moreover, by an earlier example, we can also suppose that k > 2 (so n > 5).

LetP = J'Z)_ » Asandlet N =" A, so that &, = P U N. The set of words in
& of length one is W =P U N. The set of words of length two is

Wy = WiH#W, = (PHP) U (N#N) U (PEN).

We simplify this as follows

i) P#r =z » A#U pAy)=1{0}, since s+ >n-1if 55 €
[n— p,n— 1] (because 2p < n — 1).

(i) N#N = (U2, AU _ Ay) = (Uw— A_p)U {0}, since t+¢ <n—-1if
Lt €[1,pl.

(iii) PH#N. We claim that PHN = (Ui, AJ#UL, A-) = (U2, 5, Av) U {0}
Clearly PN C J"2 , Ay U{0},since s —t € [n—2p,n—2]if s € [n— p,n— 1] and
t € [1, p]. We show that Ay U {0} CPH#N, for 5" € [n —2p,n - 2].

First, letre[l,p—1]andput s=n—1—-¢. Thense[n—p,n—1] and s + ¢ < n,
and so A#A_; = A,_, U {0} C P#N. This shows that

Ay U{O}CPHN ifs'e{n—-3,n-5,....n-2p+ 1}

Secondly, let r € [1, p] and put s =n —¢. Then s € [n— p,n— 1] and s + ¢ < n. Thus
A#HA_; = Ay U{0} CPHN,sothat Ay U{O} CPEN if s e{n—-2,n—4,...,n—-2p}.
It now follows that Ay U{0} C SD#N if s/ €[n—2p,n-2].

Thus W, = (UI,,_ A_) U (Y Ay) U {0}. For 1 < m <k, define

§'=n-2p
n—(m—1)p-1 mp
Pu= ) A, ad N,= ] AL
Sp=n—mp tw=(m—-1)p+1
Then W, =P UN;and Wi UW, =P,UNUP, U N2 {0}. Moreover, the sets
{Pm UNy, 1 1 <m <k} are pairwise disjoint with union {E; ; : 1 < i, j < n}\Ao.

We prove by induction that

U‘WM:U(PMUNM)U{O} for2 <v <k,

u=1

where W, denotes the words of length u in &,. We have already seen that the result
is true for v =2. Let 2 <m < k — 1 and suppose that the result is true for all v with
2 <v < m. We show that it is true for m + 1.

Observe that »
U W, = (Uwu) U ((Wm+1\ U(Wu)
u=1 u=1

u=1

and

Wi\ U W = (WP U N\ U W = (P1 U NP U N\ U W,

u=1 u=1 u=1
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‘We show that

((P1U NP U N\ Wa = Pt U N

u=1

We simplify (P U ND# P, U Ny) = (P1#P) U (P1#EN,) U (NTH#P,) U (N1#N,).

(1) PP = (UM, AORUT ST ALY = {0}, since sy + 5, > n— 1 if
si€m—p,n—1]and s, € [n —mp,n— (m— 1)p — 1] (because m + 1)p <n—1).

@) Ni#N = (U AR et Aen) = (U201 s Ao U O, since
h+ty,<n-1,if g e [1 p]l and t,, € [(m — 1)p + 1, mp]. Thus, using the induction
assumption,

NN\ W = Ny,
u=1
3) Ni#P = (U AU S A = (U002 A, U {0, since if
Sm € [m—mp,n—(m—1)p—1]and t; € [1, p], then we have s,, + t; <nand s,, — 1] €
[n—(m+ 1)p,n— (m — 1)p —2]. Thus, using the induction assumption,

NP\ W = P
u=1

@) PHN = (Ui AU oy Do) S (UL 002  A,,) UAO), and
0 (PHNm\(Ueg W) € Prusr-

We have shown that (P U N)#Pm U NNy W) = Pt U Nosr, and it
follows by induction that

Uw U(so UN)U{0), for2<v<k.
Thus J,_; W, ={E;;: 1<, j<n}\Ap and so V # M,(C) since Vy is the linear span

of(Uﬁ=l W,) U{l}. Since A;#A_1 = Ay U {0} and since Ay C Py C Ul;zl Ww,, it follows
that &, has length k + 1. This completes the proof. O

Remark 3.9. With notation as in the preceding proof, we have the chain
Cl=VycV,C--- Vi1 CVi C Vi1 = My(C),

where V,, = span{lJ"_; (P, U N} + CI , for 1 <m < k. Itis perhaps interesting to note
that here the dimension d,, of V,, is d,, = mnp + 1 for 1 < m < k, so that the differences
in dimension d,,+; — d, all equal np for 0 <m <k — 1. Also, dy+; —d, =n — 1. The
msl spanning length of &, is also k + 1.

Finally, notice that the product |E,| X (Length(E,) — 1) = n(n — 1), which gives
precision to the intuitive idea that length is inversely proportional to cardinality.
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