Bull. Aust. Math. Soc. 102 (2020), 226–236 doi:10.1017/S0004972719001448

IRREDUCIBLE FAMILIES OF COMPLEX MATRICES CONTAINING A RANK-ONE MATRIX

W. E. LONGSTAFF[®]

(Received 15 September 2019; accepted 14 November 2019; first published online 16 January 2020)

Abstract

We show that an irreducible family S of complex $n \times n$ matrices satisfies Paz's conjecture if it contains a rank-one matrix. We next investigate properties of families of rank-one matrices. If \mathcal{R} is a linearly independent, irreducible family of rank-one matrices then (i) \mathcal{R} has length at most n, (ii) if all pairwise products are nonzero, \mathcal{R} has length 1 or 2, (iii) if \mathcal{R} consists of elementary matrices, its minimum spanning length M is the smallest integer M such that every elementary matrix belongs to the set of words in \mathcal{R} of length at most M. Finally, for any integer k dividing n - 1, there is an irreducible family of elementary matrices with length k + 1.

2010 *Mathematics subject classification*: primary 15A30. *Keywords and phrases*: irreducible, rank one, elementary matrices.

1. Introduction

If \mathcal{V} is a finite-dimensional vector space over a field \mathbb{F} , a family \mathcal{F} of linear transformations on \mathcal{V} is called *irreducible* if the only linear subspaces of \mathcal{V} that are invariant under all of the elements of \mathcal{F} are (0) and \mathcal{V} . Burnside's well-known theorem (see [4], [13, Theorem 1.2.2]) states that the only irreducible algebra of linear transformations on a vector space, over an algebraically closed field and of finite dimension greater than one, is the algebra of all linear transformations on the space.

For any family S of complex $n \times n$ matrices and any natural number k, denote by $\mathcal{V}_k(S)$ the linear span of the words in S of length at most k, where the word of length zero (the 'empty word') is taken to be the identity. If S is finite and irreducible, thanks to Burnside's theorem, writing \mathcal{V}_k for $\mathcal{V}_k(S)$,

$$\mathbb{C}I = \mathcal{V}_0 \subset \mathcal{V}_1 \subset \mathcal{V}_2 \subset \cdots \subset \mathcal{V}_{L-1} \subset \mathcal{V}_L = M_n(\mathbb{C}),$$

for some natural number L, called the *length* of S.

For such a family S (different from {0} if n = 1) and for any positive integer k, let $\mathcal{V}'_k(S)$, or simply \mathcal{V}'_k , be the linear span of the words in S of positive length at most k. Again thanks to Burnside's theorem,

$$\mathcal{V}'_1 \subset \mathcal{V}'_2 \subset \cdots \subset \mathcal{V}'_{M-1} \subset \mathcal{V}'_M = M_n(\mathbb{C}),$$

^{© 2020} Australian Mathematical Publishing Association Inc.

for some positive integer M, called the *minimum spanning length (msl)* of S. The idea of the msl of a finite irreducible family S first arose in [5].

Clearly $\mathcal{V}_k = \mathcal{V}'_k + \mathbb{C}I$, for every $k \in \mathbb{Z}^+$. It is clear that $L \leq M \leq L + 1$, that is, L = M or M - 1. If $I \in \mathcal{V}'_L$ then $\mathcal{V}'_L = \mathcal{V}_L = M_n(\mathbb{C})$, so $M \leq L$ and M = L. If $I \notin \mathcal{V}'_L$, then $\mathcal{V}'_L \neq M_n(\mathbb{C})$, so L < M and L = M + 1. Summarising: the length L of S is equal to the msl M of S or the msl plus one according as to whether $I \in \mathcal{V}'_L$ or not.

We will investigate below the ideas of 'irreducibility', 'length' and 'minimum spanning length' as they apply to families of $n \times n$ complex matrices which contain, or are entirely made up of, rank-one matrices. Notice that, as far as these ideas are concerned, we may restrict our investigation to linearly independent families. Indeed, if S is any family of $n \times n$ complex matrices and S_0 is any subset of S which is a basis for the linear span of S, then S is irreducible if and only if S_0 is, and then the length of S and the length of S_0 are equal. This is because, for every $k \in \mathbb{N}$, the linear span of the words in S of length at most k equals the linear span of the words in S_0 of length at most k. That S and S_0 have the same minimum spanning lengths follows similarly.

Every rank-one matrix $R \in M_n(\mathbb{C})$ is of the form $R = e \otimes f$, where $e, f \in \mathbb{C}^n$ are nonzero vectors, and where Rx = (x|e)f, for all $x \in \mathbb{C}^n$, and '($\cdot|\cdot$)' denotes the usual inner product. If $A, B \in M_n(\mathbb{C})$ we have $ARB = A(e \otimes f)B = (B^*e) \otimes (Af)$, where '*' denotes adjoint.

For $1 \le i, j \le n$, let $E_{i,j}$ denote the usual $n \times n$ elementary matrix. Then $E_{i,j} = e_j \otimes e_i$. Notice that $E_{i,j}E_{k,l} = \delta_{j,k}E_{i,l}$, where $\delta_{j,k}$ is the Kronecker delta function.

2. Irreducible families containing a rank-one matrix

In [12] Paz conjectures that the length L of an irreducible finite family S of (complex) $n \times n$ matrices satisfies $L \le 2n - 2$. Much work has been done on this conjecture (see references [1–11, 13, 14]), but it is still unresolved. We show that such an S will satisfy Paz's conjecture if it contains at least one rank-one matrix.

THEOREM 2.1. If $S = \{A_1, A_2, ..., A_k\} \bigcup \{R\}$ is an irreducible family of $n \times n$ matrices and R has rank one, then the set

$$\bigcup \{\mathcal{V}_{j-1}(\mathcal{A}) R \mathcal{V}_{i-1}(\mathcal{A}) : 1 \le i, j \le n, (i, j) \ne (n, n)\} \cup \mathcal{V}_{n-1}(\mathcal{S})$$

spans $M_n(\mathbb{C})$, where $\mathcal{V}_u(\mathcal{A})$ denotes the linear span of the words of length at most u in $\mathcal{A} = \{A_1, A_2, \dots, A_k\}$, including the empty word. Consequently, the length of S is at most 2n - 2.

PROOF. Let $R = e \otimes f$, where $e, f \in \mathbb{C}^n$, and, for every $u \in \mathbb{N}$, let $\mathcal{V}_u = \mathcal{V}_u(S)$. If $x \in \mathbb{C}^n$ is any nonzero vector, $\mathcal{V}_{n-1}x = \mathbb{C}^n$ since

$$\langle x \rangle = \mathcal{V}_0 x \subset \mathcal{V}_1 x \subset \mathcal{V}_2 x \subset \cdots \subset \mathcal{V}_{r-1} x \subset \mathcal{V}_r x = \mathcal{V}_{r+1} x = \mathbb{C}^n$$

for some $r \le n - 1$. If \mathcal{G} denotes the unital algebra generated by \mathcal{A} then $\mathcal{G}f$ is invariant under each element of \mathcal{A} and R, so $\mathcal{G}f = \mathbb{C}^n$. Since

$$\langle f \rangle = \mathcal{V}_0(\mathcal{A}) f \subset \mathcal{V}_1(\mathcal{A}) f \subset \mathcal{V}_2(\mathcal{A}) f \subset \cdots \subset \mathcal{V}_{s-1}(\mathcal{A}) f \subset \mathcal{V}_s(\mathcal{A}) f = \mathcal{V}_{s+1}(\mathcal{A}) f$$

for some *s*, it follows that $\mathcal{V}_s(\mathcal{A})f = \mathcal{G}f = \mathbb{C}^n$ and that the dimension of $\mathcal{V}_s(\mathcal{A})$ is at least s + 1. Thus $n \ge s + 1$ and so $\mathcal{V}_{n-1}(\mathcal{A})f = \mathbb{C}^n$. Applying this result to $\mathcal{S}^* = \{A_1^*, A_2^*, \dots, A_k^*\} \cup \{R^*\}$ yields $\mathcal{V}_{n-1}(\mathcal{A}^*)e = \mathbb{C}^n$. Thus the set of matrices

$$\mathcal{V}_{n-1}(\mathcal{A})R\mathcal{V}_{n-1}(\mathcal{A}) = \{U^*e \otimes Vf : U, V \in \mathcal{V}_{n-1}(\mathcal{A})\}$$

contains every $n \times n$ rank-one matrix and so spans $M_n(\mathbb{C})$.

Choose a basis $\{f_1, f_2, ..., f_n\}$ such that $f_j \in \mathcal{V}_{j-1}(\mathcal{A})f$, for j = 1, 2, ..., n. Similarly, choose a basis $\{e_1, e_2, ..., e_n\}$ such that $e_i \in \mathcal{V}_{i-1}(\mathcal{A}^*)e$, for i = 1, 2, ..., n. Then $\{e_i \otimes f_j : 1 \le i, j \le n\}$ is a basis for $M_n(\mathbb{C})$ for which $e_i \otimes f_j \in \mathcal{V}_{i+j-1}$. All of these basis elements belong to $\bigcup \{\mathcal{V}_{j-1}(\mathcal{A}) R \mathcal{V}_{i-1}(\mathcal{A}) : 1 \le i, j \le n, (i, j) \ne (n, n)\}$ with the possible exception of $e_n \otimes f_n$. We complete the proof by showing that

$$e_n \otimes f_n \in \operatorname{span}\left(\bigcup \{\mathcal{V}_{j-1}(\mathcal{A}) R \mathcal{V}_{i-1}(\mathcal{A}) : 1 \leq i, j \leq n, (i, j) \neq (n, n)\} \cup \mathcal{V}_{n-1}\right).$$

If $T \in M_n(\mathbb{C})$ is any matrix, it can be written as $T = \sum_{i,j=1}^n t_{i,j}(e_i \otimes f_j)$ for some scalars $\{t_{i,j} : 1 \le i, j \le n\}$. If $\{e_1^*, e_2^*, \dots, e_n^*\}$ is the basis dual to $\{e_1, e_2, \dots, e_n\}$ and $\{f_1^*, f_2^*, \dots, f_n^*\}$ is the basis dual to $\{f_1, f_2, \dots, f_n\}$, then $t_{i,j} = (Te_i^*|f_j^*)$, for all *i* and *j*. Now $\mathcal{V}_{n-1}e_n^* = \mathbb{C}^n$, so there exists $W \in \mathcal{V}_{n-1}$ such that $(We_n^*|f_n^*) = 1$. Then

$$W - (e_n \otimes f_n) \in \operatorname{span}\left(\bigcup \{\mathcal{V}_{j-1}(\mathcal{A}) R \mathcal{V}_{i-1}(\mathcal{A}) : 1 \le i, j \le n, (i, j) \ne (n, n)\}\right).$$

Thus,

$$e_n \otimes f_n \in \operatorname{span}\left(\bigcup \{\mathcal{V}_{j-1}(\mathcal{A}) | \mathcal{R}\mathcal{V}_{i-1}(\mathcal{A}) : 1 \le i, j \le n, (i, j) \ne (n, n)\} \cup \mathcal{V}_{n-1}\right)$$

as required. This completes the proof.

REMARK 2.2. The inequality in the statement of the preceding theorem is sharp, that is, the length of $S = \{A_1, A_2, ..., A_k\} \cup \{R\}$ can be 2n - 2. If we take $\mathcal{A} = \{J\}$, the upper triangular Jordan matrix, and $R = J^{*n-1}$, the length of S is 2n - 2. This was observed in [5].

3. Irreducible families of rank-one matrices

In the remainder of the paper, we will be concerned only with irreducible families consisting entirely of rank-one matrices. We first consider the case where all pairwise products are nonzero.

THEOREM 3.1. If $n \ge 2$ and $\mathcal{R} = \{R_1, R_2, ..., R_k\}$ is a linearly independent, irreducible family of rank-one matrices satisfying $R_i R_j \ne 0$, for $1 \le i, j \le k$, then $n \le k \le n^2$, where both inequalities are sharp, and the length of \mathcal{R} is 1 or 2. Indeed,

- (i) if $k < n^2 1$, the length of \mathcal{R} is 2;
- (ii) for $k = n^2$, the length of \mathcal{R} is 1;
- (iii) for $k = n^2 1$, the length of \mathcal{R} can be 1 or 2 and both possibilities actually occur.

PROOF. It is clear, by linear independence, that $k \le n^2$. Since, by irreducibility, the linear span of \bigcup {range(R_i) : $1 \le i \le k$ } is \mathbb{C}^n , we have $k \ge n$. Note that, for $1 \le i, j \le k$ and every matrix X, there exists a scalar λ such that $R_i X R_j = \lambda R_i R_j$. It follows that the length of \mathcal{R} is 1 or 2. If $k < n^2 - 1$, the length cannot be 1 so it is 2. If $m = n^2$, then clearly length(\mathcal{R}) = 1. The following examples (I) and (II) show that k can equal n or n^2 , and examples (III) and (IV) show that the length of \mathcal{R} can be 1 and it can be 2 when $k = n^2 - 1$.

(I) (*k* can be n^2) First, observe that the vector e = (1, 1, 1, ..., 1) is a cyclic vector for A = diag(1, 2, 3, ..., n). Let $f_j = A^{j-1}e$, $1 \le j \le n$. Put $R_{i,j} = e_i \otimes f_j$, where $\{e_i\}_1^n$ are the standard basis vectors. Then $R_{i,j}R_{s,t} = (f_t|e_i)(e_s \otimes f_j) \ne 0$, since every component of f_j is nonzero. The set $\mathcal{R} = \{R_{i,j} : 1 \le i, j \le n\}$ is linearly independent since $\{e_i\}_1^n$ and $\{f_j\}_1^n$ are linearly independent. It is also irreducible. For, let M be a nonzero (common) invariant subspace of \mathcal{R} . Let $0 \ne x \in M$. Then $(x|e_{i_0}) \ne 0$ for some i_0 . Thus $R_{i_0j}x = (x|e_{i_0})f_j \in M$, for every $1 \le j \le n$. So $M = \mathbb{C}^n$.

(II) (*k* can be *n*) For $1 \le j \le n$, let $f_j = \sum_{i=1}^{j} e_i$, where $\{e_i\}_1^n$ are the standard basis vectors. Put $R_j = f_j \otimes f_j$, for $1 \le j \le n$. Since $(f_j|f_i) = \min\{i, j\} \ne 0$ for every *i*, *j*, it follows that $R_iR_j = (f_j|f_i)(f_j \otimes f_i) \ne 0$, for every *i*, *j*. Let $\{f_j^*\}_1^n$ be the basis dual to $\{f_j\}_1^n$. If $\sum_{m=1}^n \lambda_m R_m = 0$, where $\{\lambda_m\}_1^n$ are scalars then, for every *j*, $(\sum_{m=1}^n \lambda_m R_m)f_j^* = 0 = \lambda_j f_j$, so $\lambda_j = 0$. Thus \mathcal{R} is linearly independent. Irreducibility is proved as follows. Clearly $\{f_j : 1 \le j \le n\}$ spans \mathbb{C}^n . Let *M* be a nonzero (common) invariant subspace of \mathcal{R} . Let $0 \ne x \in M$. Then $(x|f_{j_0}) \ne 0$ for some j_0 . Thus $R_{j_0}x = (x|f_{j_0})f_{j_0} \in M$. So $f_{j_0} \in M$ and therefore $R_j f_{j_0} = (f_{j_0}|f_j)f_j \in M$ for $1 \le j \le n$. Thus $M = \mathbb{C}^n$.

(III) $(k = n^2 - 1 \text{ and length equal to } 1)$ Let \mathcal{R} be as in (I). We claim that $e_1 \notin \text{span}\{f_2, f_3, \dots, f_n\}$. Suppose that $e_1 = \sum_{j=1}^{n-1} \alpha_j A^j e$. Then $e_1 = A(\sum_{j=1}^{n-1} \alpha_j A^{j-1} e)$ and, since the unique solution to $Ax = e_1$ is $x = e_1$, it follows that $e_1 = \sum_{j=1}^{n-1} \alpha_j A^{j-1} e$. Comparing coefficients in the latter to those in $e_1 = \sum_{j=1}^{n-1} \alpha_j A^j e$ gives $\alpha_{n-1} = 0 = \alpha_1$ and $\alpha_j = \alpha_{j-1}$ for $2 \le j \le n - 1$. Hence $\alpha_j = 0$ for every *j*. This contradicts $e_1 \ne 0$.

It now follows that $I \notin \text{span}(\{R_{i,j} : (i, j) \neq (1, 1)\})$, since the first column of I does not belong to the span of the first columns of those $R_{i,j}$ with $(i, j) \neq (1, 1)$. Since \mathcal{R} is linearly independent, so is $\mathcal{R}_1 = \{R_{i,j} : (i, j) \neq (1, 1)\}$. It follows that $\mathcal{R}_1 \cup \{I\}$ is a basis for $M_n(\mathbb{C})$ and that the length of \mathcal{R}_1 is 1.

(IV) $(k = n^2 - 1 \text{ and length equal to } 2)$ Let \mathcal{R} and $\{f_j\}_1^n$ be as in (I). Since $e_1 \notin \text{span}\{f_2, f_3, \ldots, f_n\}$ we have $e_1 + f_2 \notin \text{span}\{f_2, f_3, \ldots, f_n\}$. Let $g_1 = f_2 + e_1$, and let $g_j = f_j$ if $j \neq 1$. Then $\{g_j\}_1^n$ is a basis for \mathbb{C}^n . Define $\mathcal{R}_2 = \{e_i \otimes g_j : 1 \leq i, j \leq n\}$. Clearly $e_i \otimes e_i \in \text{span}(\mathcal{R}_2 \setminus \{e_1 \otimes g_3\})$, for every *i*, so $I \in \text{span}(\mathcal{R}_2 \setminus \{e_1 \otimes g_3\})$. It follows that the length of \mathcal{R}_2 is 2.

The simplest families of rank-one matrices are those that arise as subsets of the set of elementary matrices $\{E_{i,j} : 1 \le i, j \le n\}$, where $E_{i,j} = e_j \otimes e_i$ and $\{e_i\}_1^n$ is the standard basis for \mathbb{C}^n . All such families are linearly independent, but not necessarily irreducible. We use these families to provide simple examples of what the length of an irreducible, linearly independent family of rank-one matrices can be. First we consider the question of irreducibility. In the following, we interpret span(\bigcup {range(R) : $R \in \emptyset$ }) as {0} and \bigcap {ker(R) : $R \in \emptyset$ } as \mathbb{C}^n . **THEOREM 3.2.** A family \mathcal{R} of rank-one $n \times n$ matrices is irreducible if and only if

- (i) span(\bigcup {range $R : R \in \mathcal{R}$ }) = \mathbb{C}^n and \bigcap {ker $R : R \in \mathcal{R}$ } = {0};
- (ii) if \mathcal{E} is a proper, nonempty subset of \mathcal{R} such that $\operatorname{span}(\bigcup \{\operatorname{range} E : E \in \mathcal{E}\}) \neq \mathbb{C}^n$, there exist $R \in \mathcal{E}$ and $S \in \mathcal{R} \setminus \mathcal{E}$ such that $\operatorname{range} S \nsubseteq \operatorname{span}(\bigcup \{\operatorname{range} E : E \in \mathcal{E}\})$ and $SR \neq 0$.

PROOF. If *R* is a rank-one matrix, the subspace *M* of \mathbb{C}^n is invariant under *R* if and only if range $R \subseteq M$ or $M \subseteq \ker R$.

First, let \mathcal{R} be irreducible. Since span(\bigcup {range $R : R \in \mathcal{R}$ }) is invariant under \mathcal{R} and is not {0}, it must be \mathbb{C}^n . Also, since \bigcap {ker $R : R \in \mathcal{R}$ } is invariant under \mathcal{R} and is not \mathbb{C}^n , it must be {0}.

Let \mathcal{E} be a subset of \mathcal{R} which is neither \emptyset nor \mathcal{R} with span $(\bigcup \{ \text{range } E : E \in \mathcal{E} \}) \neq \mathbb{C}^n$. Suppose that SR = 0 for every $R \in \mathcal{E}$ and every $S \in \mathcal{R} \setminus \mathcal{E}$ satisfying the condition range $S \not\subseteq \text{span}(\bigcup \{ \text{range } E : E \in \mathcal{E} \})$. The subspace $M = \text{span}(\bigcup \{ \text{range } E : E \in \mathcal{E} \})$ is invariant under \mathcal{R} , as is readily verified. Since $M \neq \{0\}$ or \mathbb{C}^n , this contradicts the irreducibility of \mathcal{R} .

Conversely, suppose that conditions (i) and (ii) are satisfied. Suppose that \mathcal{R} has a proper, nontrivial invariant subspace, M, say. Let $\mathcal{E} = \{E \in \mathcal{R} : \text{range } E \subseteq M\}$. By condition (i), \mathcal{E} is a proper and nonempty subset of \mathcal{R} . Let $R \in \mathcal{E}$ and $S \notin \mathcal{E}$. Then range $S \nsubseteq M$ so $M \subseteq \ker S$. But range $R \subseteq M$ so range $R \subseteq M \subseteq \ker S$ and so SR = 0. This contradicts condition (ii). This completes the proof.

COROLLARY 3.3. Let $\{e_i\}_1^n$ and $\{f_j\}_1^n$ be bases for \mathbb{C}^n . The set of rank-one matrices $\{e_i \otimes f_j : 1 \leq i, j \leq n\}$ is linearly independent. A nonempty subset \mathcal{D} of this set of rank-one matrices is irreducible if and only if

- (i) $\operatorname{span}(\bigcup \{f_j : e_i \otimes f_j \in \mathcal{D} \text{ for some } i\}) = \operatorname{span}(\bigcup \{e_i : e_i \otimes f_j \in \mathcal{D} \text{ for some } j\}) = \mathbb{C}^n,$ and
- (ii) for every proper, nonempty subset \mathcal{E} of \mathcal{D} with $\operatorname{span}(\bigcup \{\operatorname{range} E : E \in \mathcal{E}\}) \neq \mathbb{C}^n$ there exist $R \in \mathcal{E}$ and $S \in \mathcal{D} \setminus \mathcal{E}$ such that $\operatorname{range} S \not\subseteq \operatorname{span}(\bigcup \{\operatorname{range} E : E \in \mathcal{E}\})$ and $SR \neq 0$.

PROOF. Let $\{e_i^*\}_{1}^n$ be the basis dual to $\{e_i\}_{1}^n$. Suppose $\sum_{k,j=1}^n \lambda_{k,j}(e_k \otimes f_j) = 0$, where the $\lambda_{k,j}$ are scalars. Applying the left-hand side to e_i^* gives $\sum_{j=1}^n \lambda_{i,j}f_j = 0$. Hence $\lambda_{i,j} = 0$, for every *i* and *j*. This proves linear independence. The remainder of the proof follows from Theorem 3.2.

Applying Corollary 3.3 to families of elementary matrices gives the following result.

COROLLARY 3.4. Let \mathcal{D} be a nonempty subset of $\{1, 2, ..., n\} \times \{1, 2, ..., n\}$. The family of elementary matrices $\{E_{i,j} : (i, j) \in \mathcal{D}\}$ is irreducible if and only if

(i) for every *i* with $1 \le i \le n$, there exists *j* such that $(i, j) \in \mathcal{D}$ (that is, every row intersects \mathcal{D}), and

230

Irreducible families of complex matrices

- (ii) for every j with $1 \le j \le n$, there exists i such that $(i, j) \in \mathcal{D}$ (that is, every column intersects \mathcal{D}), and
- (iii) for every proper, nonempty subset \mathcal{E} of \mathcal{D} , satisfying span $(\bigcup \{e_i : (i, j) \in \mathcal{E}\}) \neq \mathbb{C}^n$ there exist i, j, k such that $(i, j) \in \mathcal{E}, (k, i) \in \mathcal{D} \setminus \mathcal{E}$ and $(k, m) \notin \mathcal{E}$ for $1 \le m \le n$.

We next turn to the question of length for linearly independent, irreducible families of rank-one matrices. In the following theorem we use two elementary facts about rank-one matrices:

- (a) if $R, X, Y \in M_n(\mathbb{C})$ and XRY = 0 where R has rank one, then XR = 0 or RY = 0;
- (b) if $E = e \otimes f$ and $M = \text{span}(\{f_1, f_2, \dots, f_t\})$, then *E* does not leave *M* invariant if and only if $f \notin \text{span}(\{f_1, f_2, \dots, f_t\})$ and $Ef_s \neq 0$, for some *s*.

THEOREM 3.5. Let $n \ge 2$ and let $\mathcal{R} = \{R_1, R_2, ..., R_k\}$ be a linearly independent, irreducible family of $n \times n$ rank-one matrices given by $R_i = e_i \otimes f_i$ for $1 \le i \le k$. Then for $1 \le j \le k$, there exist integers $i_1, i_2, ..., i_{n-1}$ in $\{1, 2, ..., k\}$ such that $\{f_j, f_{i_1}, f_{i_2}, ..., f_{i_{n-1}}\}$ is a basis for \mathbb{C}^n and, for each s with $1 \le s \le n - 1$, there exists a nonzero word in \mathcal{R} , of length at most s + 1, beginning with R_{i_s} and ending with R_j . Consequently, the length of \mathcal{R} is at most n.

PROOF. Let $1 \le j \le k$. By irreducibility (taking $\mathcal{E} = \{R_j\}$ in Theorem 3.2) there exists i_1 with $1 \le i_1 \le k$ such that $\{f_j, f_{i_1}\}$ is linearly independent and $R_{i_1}R_j \ne 0$. If n = 2, the theorem is proved. Otherwise, if $n \ge 3$ (taking $\mathcal{E} = \{R_{i_1}, R_j\}$), there exists i_2 with $1 \le i_2 \le k$ such that $\{f_j, f_{i_1}, f_{i_2}\}$ is linearly independent and $R_{i_2}R_{i_1} \ne 0$ or $R_{i_2}R_j \ne 0$. If $R_{i_2}R_{i_1} \ne 0$, then $R_{i_2}R_{i_1}R_j \ne 0$ since $R_{i_1}R_j \ne 0$. If n = 3 the proof is complete.

Continuing in this way, after *m* steps, we construct a linearly independent set $\{f_j, f_{i_1}, f_{i_2}, \ldots, f_{i_m}\}$ and, for every *s* with $1 \le s \le m$, there is a nonzero word in \mathcal{R} beginning with R_{i_s} and ending with R_j of elements of \mathcal{R} and of length less than or equal to s + 1. If m + 1 < n we can continue to the next step. The process stops when we have a basis $\{f_j, f_{i_1}, f_{i_2}, \ldots, f_{i_{n-2}}, f_{i_{n-1}}\}$ of \mathbb{C}^n and, for $1 \le s \le n - 1$, a nonzero word in \mathcal{R} beginning with R_i and ending with R_j of length less than or equal to s + 1.

Let $1 \le j \le n$ and continue the notation as in the preceding paragraph. For any $n \times n$ matrix X and for $1 \le s \le n - 1$, we have $R_{i_s}XR_j = \gamma(e_j \otimes f_{i_s})$ for some scalar γ . If $R_{i_s}XR_j \ne 0$ then $\gamma \ne 0$. It follows that $e_j \otimes f_{i_s} \in \mathcal{V}_n$, for s = 1, 2, ..., n - 1. Since $e_j \otimes f_j \in \mathcal{V}_n$ we get $e_j \otimes f \in \mathcal{V}_n$, for every $f \in \mathbb{C}^n$. Since $\bigcap \{\ker R_j : 1 \le j \le k\} = \{0\}$, it follows that $\{e_1, e_2, ..., e_k\}$ spans \mathbb{C}^n , so $e \otimes f \in \mathcal{V}_n$ for all vectors $e, f \in \mathbb{C}^n$. Thus $\mathcal{V}_n = M_n(\mathbb{C})$, so the length of \mathcal{R} is at most n.

THEOREM 3.6. Let $n \ge 2$ and let $\{e_i\}_1^n, \{f_j\}_1^n$ be bases for \mathbb{C}^n . Let \mathcal{D} be an irreducible subset of $\{e_i \otimes f_j : 1 \le i, j \le n\}$. There is a positive integer $k \le n$ with the property that every rank-one matrix $e_i \otimes f_j, 1 \le i, j \le n$, belongs to the set of scalar multiples of words in \mathcal{D} of length at most k.

The msl M of \mathcal{D} is equal to the least such positive integer k (and the length L of \mathcal{D} is M or M - 1 according as $I \in \mathcal{V}'_I$ or not).

[6]

PROOF. Using the preceding theorem, we find that *n* will serve as a *k*. Denote the least such *k* by *K*. We have $\mathcal{W}'_K = M_n(\mathbb{C})$, so $M \leq K$. We next show that $\mathcal{W}'_{K-1} \neq M_n(\mathbb{C})$. Since K - 1 will not serve as a *k*, there exists (i, j) such that there is a nonzero word *W* of length *K* with $W \in \text{span}(e_i \otimes f_j)$, but $V \notin \text{span}(e_i \otimes f_j)$ for every nonzero word *V* of length at most K - 1. If $\{e_s^*\}_1^n, \{f_q^*\}_1^n$ are the dual bases, since every word in \mathcal{D} of length at most K - 1 is of the form $\gamma(e_p \otimes f_q)$ for some scalar γ and some p, q, it follows that $(Ve_i^*|f_j^*) = 0$, for every word of length at most K - 1. Hence $W \notin \mathcal{V}'_{K-1}$ (since $(We_i^*|f_j^*) \neq 0$), so K = M.

Examples below show some of the values that the length of an irreducible, linearly independent family of rank-one matrices can be. Attention is restricted to families of elementary matrices. Recall that $E_{i,j}E_{k,l} = \delta_{j,k}E_{i,l}$, where $\delta_{j,k}$ is the Kronecker delta function. For $1 \le s, t \le n - 1$, define the sets Δ_s, Δ_{-t} by

$$\Delta_s = \{ E_{i,i+s} : 1 \le i \le n-s \} \text{ and } \Delta_{-t} = \{ E_{i,i-t} : t+1 \le i \le n \}.$$

(So Δ_s is the set of elementary matrices in *s*th diagonal positions and Δ_{-t} is the set of elementary matrices in -tth diagonal positions.) Also, if \mathcal{E} and \mathcal{F} are families of complex matrices we define their #-product ('hash product'), \mathcal{E} # \mathcal{F} , to be the set of all products { $XY : X \in \mathcal{E}, Y \in \mathcal{F}$ } \cup { $YX : X \in \mathcal{E}, Y \in \mathcal{F}$ }.

It is clear that, if $1 \le |s|, |t| \le n - 1$ then $\Delta_s # \Delta_t \subseteq \Delta_{s+t} \cup \{0\}$. In more detail, we have, and will frequently use, the following facts. Let $1 \le s, t \le n - 1$. Then

- (P) $\Delta_s # \Delta_t = \Delta_{s+t} \cup \{0\}, \text{ if } s+t \le n-1;$
- (Q) $\Delta_s # \Delta_t = \{0\}, \text{ if } s + t > n 1;$
- (R) $\Delta_{-s} # \Delta_{-t} = \Delta_{-(s+t)} \cup \{0\}, \text{ if } s + t \le n 1;$
- (S) $\Delta_s # \Delta_{-t} = \Delta_{s-t} \cup \{0\}, \text{ if } s + t \le n.$

EXAMPLE 3.7. In the following, all the examples are on the space \mathbb{C}^n , where $n \ge 2$ and 'a word of length *m*' means 'the matrix which arises as a word of length *m*'.

(1) Length 2. The length of $\{E_{i,j} : 1 \le i, j \le n\} \setminus \Delta_0$ is 2, since $\Delta_1 \# \Delta_{-1} = \Delta_0 \cup \{0\}$.

(2) Length *n*. Let $\mathcal{E}_1 = \Delta_{n-1} \cup \Delta_{-1}$. This set of elementary matrices is obviously linearly independent. It is also irreducible since it contains $J^* = \sum \{E_{i,j} : E_{i,j} \in \Delta_{-1}\}$, the lower triangular Jordan matrix. It is well known that J^* and $E_{1,n} = J^{n-1}$ have no common nontrivial invariant subspaces. The set of words of length one in \mathcal{E}_1 is

 $\mathcal{W}_1 = \mathcal{E}_1 = \{E_{2,1}, E_{3,2}, E_{4,3}, \dots, E_{n,n-1}\} \cup \{E_{1,n}\}.$

If $n \ge 3$ the set of words of length two is

$$\mathcal{W}_2 = \{E_{2,n}, E_{3,1}, E_{4,2}, \dots, E_{n,n-2}, E_{1,n-1}\} \cup \{0\} = \Delta_{n-2} \cup \Delta_{-2} \cup \{0\}.$$

It is easily proved my induction that, given $n \ge 3$, the set of words of length *m* is given by

$$\mathcal{W}_m = \Delta_{n-m} \cup \Delta_{-m} \cup \{0\} \text{ for } 2 \le m \le n-1$$

Thus, $\mathcal{V}_{n-1} = \operatorname{span}(\{E_{i,j} : 1 \le i, j \le n, (i, j) \notin \Delta_0\}) + \mathbb{C}I$ for $n \ge 2$. Now $\Delta_0 \subseteq \mathcal{W}_n$ since $\Delta_1 \# \Delta_{-1} = \Delta_0 \cup \{0\}$, so the length of \mathcal{E}_1 is n.

(3) Length n - 1. Let $\mathcal{D} = \Delta_1 \cup \Delta_{-1}$. This set of elementary matrices is obviously linearly independent. It is also irreducible since the upper triangular Jordan matrix $J = \sum \{E_{i,j} : E_{i,j} \in \Delta_1\}$ has no reducing subspaces. Here the set of words of length one is $\mathcal{W}_1 = \Delta_1 \cup \Delta_{-1}$ and, for words of length 2 and 3, $\mathcal{W}_2 = \Delta_2 \cup \Delta_{-2} \cup \Delta_0 \cup \{0\}$ if $n \ge 3$ and $\mathcal{W}_3 = \Delta_3 \cup \Delta_{-3} \cup \Delta_1 \cup \Delta_{-1} \cup \{0\}$ if $n \ge 4$. We prove by induction that, if $n \ge 3$

$$\bigcup_{u=1}^{\nu} \mathcal{W}_{u} = \left(\bigcup_{u=1}^{\nu} \Delta_{u} \cup \Delta_{-u}\right) \cup \Delta_{0} \cup \{0\} \quad \text{for } 2 \le \nu \le n-1.$$
(3.1)

We have observed that (3.1) is true for v = 2, so there is no more to be proved if n = 3. Assume that $n \ge 4$ and that (3.1) is true for all integers v satisfying $2 \le v \le m$, where $2 \le m \le n - 2$. We shall show that (3.1) is true for v = m + 1. Since

$$\bigcup_{u=1}^{m+1} \mathcal{W}_u = \left(\bigcup_{u=1}^m \mathcal{W}_u\right) \cup \left(\mathcal{W}_{m+1} \setminus \bigcup_{u=1}^m \mathcal{W}_u\right)$$

and

$$\mathcal{W}_m = \left(\mathcal{W}_m \setminus \bigcup_{u=1}^{m-1} \mathcal{W}_u\right) \cup \left(\mathcal{W}_m \cap \bigcup_{u=1}^{m-1} \mathcal{W}_u\right) = (\Delta_m \cup \Delta_{-m}) \cup \left(\mathcal{W}_m \cap \bigcup_{u=1}^{m-1} \mathcal{W}_u\right),$$

it follows that

$$\mathcal{W}_{m+1}\setminus \bigcup_{u=1}^{m} \mathcal{W}_{u} = (\mathcal{W}_{1} \# \mathcal{W}_{m})\setminus \bigcup_{u=1}^{m} \mathcal{W}_{u} = (\mathcal{W}_{1} \# (\Delta_{m} \cup \Delta_{-m}))\setminus \bigcup_{u=1}^{m} \mathcal{W}_{u}.$$

The induction proof is completed by showing that

$$(\mathcal{W}_1 # (\Delta_m \cup \Delta_{-m})) \setminus \left(\bigcup_{u=1}^m \mathcal{W}_u\right) = \Delta_{m+1} \cup \Delta_{-(m+1)}.$$

Noticing that

$$\Delta_{1} \# \Delta_{m} = \Delta_{m+1} \cup \{0\}, \quad \Delta_{1} \# \Delta_{-m} = \Delta_{-m+1} \cup \{0\}, \\ \Delta_{-1} \# \Delta_{m} = \Delta_{m-1} \cup \{0\}, \quad \Delta_{-1} \# \Delta_{-m} = \Delta_{-(m+1)} \cup \{0\}$$

gives

$$(\mathcal{W}_1 \# (\Delta_m \cup \Delta_{-m})) \setminus \bigcup_{u=1}^m \mathcal{W}_u = ((\Delta_1 \# \Delta_{-1}) \# (\Delta_m \cup \Delta_{-m})) \setminus \bigcup_{u=1}^m \mathcal{W}_u$$
$$= \Delta_{m+1} \cup \Delta_{-(m+1)}.$$

Since (3.1) is true for $2 \le v \le n - 1$, it follows that $\mathcal{V}_{n-2} \ne M_n(\mathbb{C})$ and $\mathcal{V}_{n-1} = M_n(\mathbb{C})$. Hence \mathcal{D} has length n - 1. If n = 2, we have $\mathcal{W}_2 = \Delta_0 \cup \{0\}$, so \mathcal{D} has length n = 2.

THEOREM 3.8. Let $n \ge 2$ and n - 1 = pk where $p, k \in \mathbb{Z}^+$. The set of elementary matrices $\mathcal{E}_p = (\bigcup_{s=n-p}^{n-1} \Delta_s) \cup (\bigcup_{t=1}^p \Delta_{-t})$ is linearly independent, irreducible and has length k + 1.

PROOF. The set \mathcal{E}_p is clearly linearly independent. Because of an earlier example it is also irreducible since it contains Δ_{-1} and Δ_{n-1} and we may suppose that $p \ge 2$. Moreover, by an earlier example, we can also suppose that $k \ge 2$ (so $n \ge 5$).

Let $\mathcal{P} = \bigcup_{s=n-p}^{n-1} \Delta_s$ and let $\mathcal{N} = \bigcup_{t=1}^p \Delta_{-t}$, so that $\mathcal{E}_p = \mathcal{P} \cup \mathcal{N}$. The set of words in \mathcal{E}_p of length one is $\mathcal{W}_1 = \mathcal{P} \cup \mathcal{N}$. The set of words of length two is

$$\mathcal{W}_2 = \mathcal{W}_1 \# \mathcal{W}_1 = (\mathcal{P} \# \mathcal{P}) \cup (\mathcal{N} \# \mathcal{N}) \cup (\mathcal{P} \# \mathcal{N}).$$

We simplify this as follows.

(i) $\mathcal{P}\#\mathcal{P} = (\bigcup_{s=n-p}^{n-1} \Delta_s) \#(\bigcup_{s'=n-p}^{n-1} \Delta_{s'}) = \{0\}, \text{ since } s+s' > n-1 \text{ if } s, s' \in [n-p, n-1] \text{ (because } 2p \le n-1).$

(ii) $\mathcal{N} \# \mathcal{N} = (\bigcup_{t=1}^{p} \Delta_{-t}) \# (\bigcup_{t'=1}^{p} \Delta_{-t'}) = (\bigcup_{t''=2}^{2p} \Delta_{-t''}) \cup \{0\}, \text{ since } t + t' \le n-1 \text{ if } t, t' \in [1, p].$

(iii) $\mathcal{P}\#\mathcal{N}$. We claim that $\mathcal{P}\#\mathcal{N} = (\bigcup_{s=n-p}^{n-1} \Delta_s)\#(\bigcup_{t=1}^p \Delta_{-t}) = (\bigcup_{s'=n-2p}^{n-2} \Delta_{s'}) \cup \{0\}.$ Clearly $\mathcal{P}\#\mathcal{N} \subseteq \bigcup_{s'=n-2p}^{n-2} \Delta_{s'} \cup \{0\}$, since $s - t \in [n - 2p, n - 2]$ if $s \in [n - p, n - 1]$ and $t \in [1, p]$. We show that $\Delta_{s'} \cup \{0\} \subseteq \mathcal{P}\#\mathcal{N}$, for $s' \in [n - 2p, n - 2]$.

First, let $t \in [1, p-1]$ and put s = n - 1 - t. Then $s \in [n - p, n - 1]$ and $s + t \le n$, and so $\Delta_s # \Delta_{-t} = \Delta_{s-t} \cup \{0\} \subseteq \mathcal{P} # \mathcal{N}$. This shows that

$$\Delta_{s'} \cup \{0\} \subseteq \mathcal{P} \# \mathcal{N} \quad \text{if } s' \in \{n-3, n-5, \dots, n-2p+1\}.$$

Secondly, let $t \in [1, p]$ and put s = n - t. Then $s \in [n - p, n - 1]$ and $s + t \le n$. Thus $\Delta_s # \Delta_{-t} = \Delta_{s-t} \cup \{0\} \subseteq \mathcal{P} # \mathcal{N}$, so that $\Delta_{s'} \cup \{0\} \subseteq \mathcal{P} # \mathcal{N}$ if $s' \in \{n - 2, n - 4, \dots, n - 2p\}$. It now follows that $\Delta_{s'} \cup \{0\} \subseteq \mathcal{P} # \mathcal{N}$ if $s' \in [n - 2p, n - 2]$.

Thus $\mathcal{W}_2 = (\bigcup_{t'=2}^{2p} \Delta_{-t''}) \cup (\bigcup_{s'=n-2p}^{n-2} \Delta_{s'}) \cup \{0\}$. For $1 \le m \le k$, define

$$\mathcal{P}_m = \bigcup_{s_m = n - mp}^{n - (m-1)p - 1} \Delta_{s_m}$$
 and $\mathcal{N}_m = \bigcup_{t_m = (m-1)p + 1}^{mp} \Delta_{-t_m}$

Then $W_1 = \mathcal{P}_1 \cup \mathcal{N}_1$ and $W_1 \cup W_2 = \mathcal{P}_1 \cup \mathcal{N}_1 \cup \mathcal{P}_2 \cup \mathcal{N}_2 \cup \{0\}$. Moreover, the sets $\{\mathcal{P}_m \cup \mathcal{N}_m : 1 \le m \le k\}$ are pairwise disjoint with union $\{E_{i,j} : 1 \le i, j \le n\} \setminus \Delta_0$.

We prove by induction that

$$\bigcup_{u=1}^{\nu} \mathcal{W}_u = \bigcup_{u=1}^{\nu} (\mathcal{P}_u \cup \mathcal{N}_u) \cup \{0\} \quad \text{for } 2 \le \nu \le k,$$

where W_u denotes the words of length u in \mathcal{E}_p . We have already seen that the result is true for v = 2. Let $2 \le m \le k - 1$ and suppose that the result is true for all v with $2 \le v \le m$. We show that it is true for m + 1.

Observe that

$$\bigcup_{u=1}^{m+1} \mathcal{W}_u = \left(\bigcup_{u=1}^m \mathcal{W}_u\right) \cup \left(\mathcal{W}_{m+1} \setminus \bigcup_{u=1}^m \mathcal{W}_u\right)$$

and

$$\mathcal{W}_{m+1} \setminus \bigcup_{u=1}^{m} \mathcal{W}_{u} = (\mathcal{W}_{1} # (\mathcal{P}_{m} \cup \mathcal{N}_{m})) \setminus \bigcup_{u=1}^{m} \mathcal{W}_{u} = ((\mathcal{P}_{1} \cup \mathcal{N}_{1}) # (\mathcal{P}_{m} \cup \mathcal{N}_{m})) \setminus \bigcup_{u=1}^{m} \mathcal{W}_{u}.$$

We show that

$$((\mathcal{P}_1 \cup \mathcal{N}_1) # (\mathcal{P}_m \cup \mathcal{N}_m)) \setminus \bigcup_{u=1}^m \mathcal{W}_u = \mathcal{P}_{m+1} \cup \mathcal{N}_{m+1}.$$

We simplify $(\mathcal{P}_1 \cup \mathcal{N}_1) # (\mathcal{P}_m \cup \mathcal{N}_m) = (\mathcal{P}_1 # \mathcal{P}_m) \cup (\mathcal{P}_1 # \mathcal{N}_m) \cup (\mathcal{N}_1 # \mathcal{P}_m) \cup (\mathcal{N}_1 # \mathcal{N}_m).$ (1) $\mathcal{P}_1 # \mathcal{P}_m = (\bigcup_{s_1=n-p}^{n-1} \Delta_{s_1}) # (\bigcup_{s_m=n-mp}^{n-(m-1)p-1} \Delta_{s_m}) = \{0\}$, since $s_1 + s_m > n-1$ if $s_1 \in [n-p, n-1]$ and $s_m \in [n-mp, n-(m-1)p-1]$ (because $(m+1)p \le n-1$).

(2) $\mathcal{N}_1 \# \mathcal{N}_m = (\bigcup_{t_1=1}^p \Delta_{-t_1}) \# (\bigcup_{t_m=(m-1)p+1}^{mp} \Delta_{-t_m}) = (\bigcup_{t_{m+1}=(m-1)p+2}^{(m+1)p} \Delta_{-t_{m+1}}) \cup \{0\}$, since $t_1 + t_m \le n - 1$, if $t_1 \in [1, p]$ and $t_m \in [(m-1)p + 1, mp]$. Thus, using the induction assumption,

$$(\mathcal{N}_1 \# \mathcal{N}_m) \setminus \bigcup_{u=1}^m \mathcal{W}_u = \mathcal{N}_{m+1}.$$

(3) $\mathcal{N}_1 # \mathcal{P}_m = (\bigcup_{t_1=1}^p \Delta_{-t_1}) # (\bigcup_{s_m=n-mp}^{n-(m-1)p-1} \Delta_{s_m}) = (\bigcup_{s_{m+1}=n-(m+1)p}^{n-(m-1)p-2} \Delta_{s_{m+1}}) \cup \{0\}$, since if $s_m \in [n-mp, n-(m-1)p-1]$ and $t_1 \in [1, p]$, then we have $s_m + t_1 \le n$ and $s_m - t_1 \in [n-(m+1)p, n-(m-1)p-2]$. Thus, using the induction assumption,

$$(\mathcal{N}_1 # \mathcal{P}_m) \setminus \bigcup_{u=1}^m \mathcal{W}_u = \mathcal{P}_{m+1}$$

(4) $\mathcal{P}_1 \# \mathcal{N}_m = (\bigcup_{s_1=n-p}^{n-1} \Delta_{s_1}) \# (\bigcup_{t_m=(m-1)p+1}^{mp} \Delta_{-t_m}) \subseteq (\bigcup_{s_{m+1}=n-(m+1)p}^{n-(m-1)p-2} \Delta_{s_{m+1}}) \cup \{0\}, \text{ and }$ so $(\mathcal{P}_1 \# \mathcal{N}_m) \setminus (\bigcup_{u=1}^m \mathcal{W}_u) \subseteq \mathcal{P}_{m+1}.$

We have shown that $((\mathcal{P}_1 \cup \mathcal{N}_1) # (\mathcal{P}_m \cup \mathcal{N}_m)) \setminus (\bigcup_{u=1}^m \mathcal{W}_u) = \mathcal{P}_{m+1} \cup \mathcal{N}_{m+1}$, and it follows by induction that

$$\bigcup_{u=1}^{\nu} \mathcal{W}_u = \bigcup_{u=1}^{\nu} (\mathcal{P}_u \cup \mathcal{N}_u) \cup \{0\}, \quad \text{for } 2 \le \nu \le k.$$

Thus $\bigcup_{u=1}^{\nu} \mathcal{W}_u = \{E_{i,j} : 1 \le i, j \le n\} \setminus \Delta_0$ and so $\mathcal{V}_k \ne M_n(\mathbb{C})$ since \mathcal{V}_k is the linear span of $(\bigcup_{u=1}^k \mathcal{W}_u) \cup \{I\}$. Since $\Delta_1 \# \Delta_{-1} = \Delta_0 \cup \{0\}$ and since $\Delta_1 \subseteq \mathcal{P}_k \subseteq \bigcup_{u=1}^k \mathcal{W}_u$, it follows that \mathcal{E}_p has length k + 1. This completes the proof.

REMARK 3.9. With notation as in the preceding proof, we have the chain

$$\mathbb{C}I = \mathcal{V}_0 \subset \mathcal{V}_1 \subset \cdots \subset \mathcal{V}_{k-1} \subset \mathcal{V}_k \subset \mathcal{V}_{k+1} = M_n(\mathbb{C}),$$

where $\mathcal{V}_m = \operatorname{span}\{\bigcup_{u=1}^m (\mathcal{P}_u \cup \mathcal{N}_u)\} + \mathbb{C}I$, for $1 \le m \le k$. It is perhaps interesting to note that here the dimension d_m of \mathcal{V}_m is $d_m = mnp + 1$ for $1 \le m \le k$, so that the differences in dimension $d_{m+1} - d_m$ all equal np for $0 \le m \le k - 1$. Also, $d_{k+1} - d_k = n - 1$. The msl spanning length of \mathcal{E}_p is also k + 1.

Finally, notice that the product $|\mathcal{E}_p| \times (\text{Length}(\mathcal{E}_p) - 1) = n(n - 1)$, which gives precision to the intuitive idea that length is inversely proportional to cardinality.

[10]

References

- A. E. Guterman, T. Laffey, O. V. Markova and H. Smigoc, 'A resolution of Paz's conjecture in the presence of a nonderogatory matrix', *Linear Algebra Appl.* 543 (2018), 234–250.
- [2] A. E. Guterman, O. V. Markova and V. Mehrmann, 'Length realizability for pairs of quasicommuting matrices', *Linear Algebra Appl.* 568 (2019), 135–154.
- [3] M. S. Lambrou and W. E. Longstaff, 'On the lengths of pairs of complex matrices of size six', *Bull. Aust. Math. Soc.* **80** (2009), 177–201.
- [4] V. Lomonosov and P. Rosenthal, 'The simplest proof of Burnside's theorem on matrix algebras', *Linear Algebra Appl.* 383 (2004), 45–47.
- [5] W. E. Longstaff, 'Burnside's theorem: irreducible pairs of transformations', *Linear Algebra Appl.* 382 (2004), 247–269.
- [6] W. E. Longstaff, 'On minimal sets of 0, 1-matrices whose pairwise products form a basis for $M_n(\mathbb{F})$ ', Bull. Aust. Math. Soc. **98**(3) (2018), 402–413.
- [7] W. E. Longstaff, A. C. Niemeyer and O. Panaia, 'On the lengths of pairs of complex matrices of size at most five', *Bull. Aust. Math. Soc.* 73 (2006), 461–472.
- [8] W. E. Longstaff and P. Rosenthal, 'On the lengths of irreducible pairs of complex matrices', Proc. Amer. Math. Soc. 139(11) (2011), 3769–3777.
- [9] O. V. Markova, 'Length computation of matrix subalgebras of special type', *Fundam. Prikl. Mat.* 13(4) (2007), 165–197; English transl. in: *J. Math. Sci.* (N. Y.) 155(6) (2008), 908–931.
- [10] O. V. Markova, 'The length function and matrix algebras', *Fundam. Prikl. Mat.* 17(6) (2012), 65–173; English transl. in: J. Math. Sci. (N. Y.) 193(5) (2013), 687–768.
- [11] C. J. Pappacena, 'An upper bound for the length of a finite-dimensional algebra', J. Algebra 197 (1997), 535–545.
- [12] A. Paz, 'An application of the Cayley–Hamilton theorem to matrix polynomials in several variables', *Linear Multilinear Algebra* 15 (1984), 161–170.
- [13] H. Radjavi and P. Rosenthal, Simultaneous Triangularization (Springer, New York, 2000).
- Y. Shitov, 'An improved bound for the lengths of matrix algebras', *Algebra Number Theory* 13(6) (2019), 1501–1507; (English summary).

W. E. LONGSTAFF, 11 Tussock Crescent, Elanora, Queensland 4221, Australia e-mail: bill.longstaff@alumni.utoronto.ca [11]