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ABSTRACT
Aiming at three-dimensional (3D) terminal guidance problem, a novel guidance model is
established in this paper, in which line-of-sight (LOS) range is treated as an independent
variable, describing the relative motion between the vehicle and the target. The guidance
model includes two differential equations that describe LOS’s pitch and yaw motions in
which the pitch motion is separately decoupled. This model avoids the inaccuracy of
simplified two-dimensional (2D) guidance model and the complexity of 3D coupled guidance
model, which not only maintains the accuracy but also simplifies the guidance law design.
The application of this guidance model is studied for optimal re-entry guidance law with
impact angle constraint, which is presented in the form of normal overload. Compared with
optimal guidance laws based on traditional guidance model, the proposed one based on novel
guidance model is implemented with the LOS range instead of time-to-go, which avoids the
problem of the time-to-go estimation of traditional optimal guidance laws. Finally, the
correctness and validity of the guidance model and guidance law are verified by numerical
simulation. The guidance model and guidance law proposed in this paper provide a new way
for the design of terminal guidance.
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NOMENCLATURE
VM velocity vector of the vehicle
r LOS range
θ azimuth angle of LOS
φ elevation angle of LOS
θM heading angle
φM flight path angle

1.0 INTRODUCTION
Terminal guidance law guides the vehicle towards the target according to their relative motion
with high precision, during which certain path constraints and terminal constraints have to be
satisfied. The design of terminal guidance includes two parts: the guidance model description
(e.g. the relative motion of the vehicle and the target) and the guidance algorithm design, in
which the description of 3-dimensional (3D) guidance model with low complexity and high
accuracy plays a key role in terminal guidance design. On the one hand, the guidance model is
the foundation of the guidance algorithm design, the complexity of which directly determines
the difficulty of the guidance algorithm design. On the other hand, the guidance model is the
mathematical expression of actual relative motion of the vehicle and the target, the accuracy
of which directly determines whether the theoretical precision of resulting guidance law can
be achieved in engineering.

Existing 3D guidance model can be mainly classified into three categories. The first
category is that under conditions of small LOS angle and angular rate, the relative motion
equation with respect to time is linearized about the collision course, and then 3D guidance
model can be simplified into two 2-dimensional (2D) guidance models. According to this
idea, 2D guidance models of the pitch and yaw plane of LOS are established separately in
Refs 1,2 and then optimal guidance law with terminal angle constraint is designed. In Refs
3,4, simplified guidance model of the pitch plane of LOS is established, and then sliding
mode guidance law with disturbance suppression is designed to make LOS angular rate
converges to zero with stability. Based on simplified guidance model of the pitch plane of
LOS, H∞/H2 robust guidance law and Lyapunov-based non-linear guidance law are proposed,
respectively, in Refs. 5,6. Based on simplified 2D guidance model, finite-time convergent
guidance law accounting for autopilot lag are studied in Refs 7–9, theoretically proving that
LOS angular rate converges to zero in finite time. The first category of guidance model
ignores the coupling between the pitch motion and the yaw motion of LOS, which simplifies
the guidance law design, but not strict in theory. When LOS angle and angular rate are large,
the coupling among actual 3D guidance model is serious and the accuracy of simplified 2D
guidance model is poor, for which it is difficult to guarantee the theoretical precision of
resulting guidance law in engineering.

The second category is that the 3D guidance model is established in the body coordinate
system with respect to time, in which different channels are coupled with each other. Based
on 3D-coupled guidance model in the body co-ordinate system, performance of pure pro-
portional navigation guidance law is analysed in Refs 10,11. The third category is that the 3D
guidance model is established in LOS coordinate system with respect to time, in which the
pitch motion and the yaw motion of LOS are coupled with each other. Based on 3D coupled
guidance model in LOS coordinate system, analytical solution and capturability of true
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proportional navigation guidance law are discussed in Refs 12,13. The second and third
categories of guidance model describe the relative motion of the vehicle and the target
accurately, but the models are relatively complex and the coupling among different channels
is serious, for which the performance of resulting proportional navigation guidance laws is
poor when the target escapes with high maneuvering acceleration. In Refs 14–16, 3D coupled
guidance model is linearized using feedback linearization approach, and then robust guidance
laws are designed. To suppress the coupling term of 3D coupled guidance model, non-linear
robust guidance laws are designed in Refs 17–19. Although robust guidance laws can sup-
press the non-linear coupling term and external disturbance of the guidance model, rapidity of
the system is reduced while robustness of the system is improved, for which the resulting
guidance laws are too conservative. In Refs 20–22, extended state observer is introduced to
estimate the coupling term and external disturbance of 3D-coupled guidance model, and then
guidance laws are designed to suppress the coupling term and external disturbance of the
guidance model. But the resulting guidance laws are complex, which is difficult to be
achieved in engineering.

All in all, the first category of guidance model with respect to time ignores the coupling
among different channels so that the design of guidance law is simplified, but the guidance
model is not accurate enough and it is difficult to guarantee the theoretical precision of
resulting guidance laws in engineering. The second and third categories of guidance model
with respect to time take a full consideration of the coupling among different channels so that
the accuracy of the model is guaranteed, but the coupling term of the guidance model is not
convenient for the design of guidance law. In this paper, aiming at describing the relative
motion of the vehicle and the target simply and accurately, a novel guidance model is
established in which LOS range is treated as independent variable. The guidance model
includes two differential equations that describe LOS’s pitch and yaw motions in which the
pitch motion is separately decoupled. The guidance model not only maintains the accuracy
but also simplifies the guidance law design. Then, the application of this guidance model is
studied for optimal re-entry guidance law with impact angle constraint, which is presented in
the form of normal overload. Finally, numerical simulation verifies the correctness and
validity of the guidance model and guidance law.

2.0 NOVEL GUIDANCE MODEL WITH RESPECT TO
LOS RANGE

The vehicle-target engagement geometry in 3D space is shown in Fig. 1, in which M denotes
the mass centre of the vehicle; T denotes the target. L(OL −XLYLZL) is the re-entry co-ordinate
system, where the origin OL is located at the intersection of the earth’s surface and the right
line between the earth centre and the vehicle mass centre at the initial moment of re-entry;
OLXL points to the east in the local horizontal plane; OLZL is located perpendicularly to the
local horizontal plane and points to the above; OLYL along with OLXL and OLZL constitute the
right-hand Cartesian coordinate system. S(M − ereθeϕ) is the LOS co-ordinate system, where
the origin is located at the vehicle mass centre; Mer points to the target along the LOS; Meϕ is
located perpendicularlyly to Mer in the vertical plane of LOS and points to the above; Meθ
along with Mer and Meϕ constitute the right-hand Cartesian coordinate system. A(M −

XAYAZA) is the velocity azimuth coordinate system, where the origin is located at the vehicle
mass centre; MXA coincides with VM; MZA is located perpendicularly to MXA in the vertical
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plane of VM and points to the above; MYA along with MXA and MZA constitute the right-hand
Cartesian co-ordinate system.

What is more, the re-entry co-ordinate system can be transformed to the LOS coordinate
system by rotating θ and −ϕ anti-clockwise around OLZL and OLYL in turn. The re-entry
coordinate system can be transformed to the velocity azimuth co-ordinate system by rotating
θM and −ϕM anti-clockwise around OLZL and OLYL in turn. Δϕ is the included angle between
the velocity vector VM and the vertical plane of OMer; Δθ is the included angle between OMer
and the component of VM in the vertical plane of OMer. The LOS coordinate system can be
transformed to the velocity azimuth coordinate system by rotating Δθ, −Δϕ and Δγ anti-
clockwise around OMeθ, OMeϕ and OMer in turn.

Assume that the vehicle attacks a fix target on the ground, then under the definitions above,
kinematical equations of the relative motion between the vehicle and the target can be
described as

_r=�VMcosΔϕcosΔθ
_ϕ= 1

r VMcosΔϕsinΔθ
_θcosϕ= 1

r VMsinΔϕ

8<
: ⋯(1)

Define _θ, Br, Bϕ, Bθ and VM as follows:

_θ= _θcosϕ
Br = cosΔθ
Bϕ = sinΔθ
Bθ = sinΔϕ
VM =VMcosΔϕ

8>>>><
>>>>:

⋯(2)
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Figure 1. 3D vehicle-target engagement geometry.
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then, (1) can be rewritten as follows:

_r =�VMBr
_ϕ= 1

r VMBϕ
_θ= 1

r VMBθ

8><
>: ⋯(3)

According to the rules of differentiation, we can get

_ϕ= dϕ
dt =�_r dϕ

dð�rÞ
_θ= dθ

dt =�_r dθ
dð�rÞ

(
⋯(4)

First and second derivatives of variable Δ with respect to − r are, respectively, denoted as Δ′ and
Δ″. Now that _r is usually non-zero in the guidance process, then (4) can be rewritten as follows:

ϕ0 =� 1
_r
_ϕ

θ0 =� 1
_r
_θ

(
⋯(5)

Substituting (5) into (3), we have

_r=�VMBr

ϕ0 =� 1
r _r VMBϕ

θ0 =� 1
r _r VMBθ

8<
: ⋯(6)

where θ0 = θ0cosϕ.
Assume that VM is constant, then differentiating (6) with respect to − r, we get

ϕ00� 1
r ϕ

0 = V
2
M

r _r2 ðB′
ϕBr�BϕB′

rÞ
θ00� 1

r θ
0
= VMVM

r _r2 ðB′
θBr�BθB′

rÞ� VMBθBrV
0
M

r _r2

8<
: ⋯(7)

From (2), we can obtain

B0
r =�Δ0

θsinΔθ
B0
ϕ =Δ0

θcosΔθ

B0
θ =Δ0

ϕcosΔϕ

V
0
M =�VMΔ0

ϕsinΔϕ

8>>><
>>>:

⋯(8)

Substituting (2) and (8) into (7), we have

ϕ00� 1
r ϕ

0 = V
2
M

r _r2 Δ
0
θ =

Δ0
θ

rcos2Δθ

θ00� 1
r θ

0
=

Δ0
ϕ

rcos2ΔϕcosΔθ
+ Δ0

θsinΔθsinΔϕ
rcosΔϕcos2Δθ

8<
: ⋯(9)

(9) is the resulting novel guidance model with respect to − r.

Remark 1. The guidance model includes two differential equations that describe LOS’s
pitch and yaw motions in which the pitch motion is separately decoupled. Compared with the
first(1,2) category of guidance model, this guidance model increases the accuracy while
maintaining low complexity, which is more congruent with actual guidance process.
Compared with the second(10,11) and third(12,13) categories of guidance model, this guidance
model reduces the complexity while maintaining the accuracy, which is more convenient for
the guidance law design.
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3.0 APPLICATION OF THE NOVEL GUIDANCE MODEL
3.1 Optimal re-entry guidance law with impact angle constraint

(1) Guidance law in the pitch plane of LOS
From (9), we can obtain the differential equation of the pitch motion of LOS

ϕ00� 1
r
ϕ0 =

V
2
M

r _r2
Δ0

θ =
Δ0

θ
rcos2Δθ

⋯(10)

To guarantee the attack precision, design objective of the guidance law is selected to be zero
LOS angular rate(23). Meanwhile, impact angle constraint has to be satisfied to improve the
attack performance. Thus, terminal constraints of the pitch motion are set as

ϕ′ð�rf Þ= 0
ϕð�rf Þ=ϕf

�
⋯(11)

where ϕf is the desired impact angle.
For the convenience of description, the variables ϕ −ϕf, ϕ′ and ϕ″ are respectively denoted

as x, x′ and x″, then (10) and (11) can be written as follows:

x′′� 1
r x′=

u
r

xð�rf Þ= 0
x′ð�rf Þ= 0

8<
: ⋯(12)

where u=Δ0
θ = cos2Δθ.

Rewriting (12) in state-space form, we have

X′=Að�rÞX +Bð�rÞu
Xð�rf Þ= 0

0

� �8<
: ⋯(13)

where X =
x1
x2

� �
=

x
x0

� �
; Að�rÞ= 0 1

0 1
r

� �
; Bð�rÞ= 0

1
r

� �
.

To satisfy the terminal constraints and achieve the maximum terminal velocity, cost
functional can be selected as follows:

J =XTSX
��
�r =�rf

+
ð�rf

�r0

uTVð�rÞu� �
dð�rÞ ⋯(14)

where S=
1 0
0 1

� �
;Vð�rÞ= 1½ �.

Then, the guidance law design problem is transformed to the typical linear quadratic
optimal control problem with the optimal solution in the interval [ − r0, − rf]

u�ð�rÞ=�V�1ð�rÞBTð�rÞPð�rÞXð�rÞ ⋯(15)

where P(− r) is the symmetric matrix satisfying the following inverse Riccati equation:

P′�1ð�rÞ=Að�rÞP�1ð�rÞ +P�1ð�rÞATð�rÞ�Bð�rÞV�1ð�rÞBTð�rÞ
P�1ð�rf Þ= S�1

�
⋯(16)
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Denote Q(− r) as follows:

Qð�rÞ=P�1ð�rÞ= q1 q3
q3 q2

� �

then substituting Q(− r) into (16), we have

q′1 = 2q3
q′2 = 2q2

r � 1
r2

q′3 = q3
r + q2

8<
: ⋯(17)

where q1( − rf)= 0, q2( − rf)= 0 and q3( − rf)= 0.
Analytical solution of (17) can be get that

q1 = 2c3lnr + c2ln2r + 2r + c1
q2 = c2

r2 +
1
r

q3 =� c3
r � c2

r lnr�1

8<
: ⋯(18)

Now that q1( − rf)= 0, q2( − rf)= 0 and q3( − rf)= 0, we have

c1 =�rf ½1 + ð1�lnrf Þ2�
c2 =�rf
c3 =�rf ð1�lnrf Þ

8<
: ⋯(19)

According to (18) and (19), we can obtain that

q1 =�2ð�r + rf Þ�rf f½lnr�lnrf �2 + 2½lnr�lnrf �g
q2 =��r + rf

r2

q3 =
ð�r + rf Þ + rf ½lnr�lnrf �

r

8><
>: ⋯(20)

By matrix inversion operation, we get

Pð�rÞ= p1 p3
p3 p2

� �
⋯(21)

where

p1 =
�ð�r + rf Þ

ð�r + rf Þ2�r�rf ½lnr�lnrf �2

p2 =
�2ð�r + rf Þ�rf f½lnr�lnrf �2 + 2½lnr�lnrf �g

ð�r + rf Þ2�r�rf ½lnr�lnrf �2 � r2

p3 =� �r + rf + rf ½lnr�lnrf �
ð�r + rf Þ2�r�rf ½lnr�lnrf �2 � r

8>>><
>>>:

By substituting R(–r), B(–r) and P(–r) into (15), optimal solution of (13) can be get that

u�ð�rÞ= p3 � x1�r
+ p2 � x2�r

⋯(22)

Then the guidance law of the pitch motion with respect to –r is described as

Δ0
θ = ðcos2ΔθÞ p3 �

ϕ�ϕf

�r
+ p2 � ϕ

0

�r

� 	
⋯(23)
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Furthermore, the guidance law of the pitch motion with respect to time is described as

_Δθ = ðcos2ΔθÞ p3 �
ϕ�ϕf

�r
ð�_rÞ + p2 �

_ϕ
�r

� 	
⋯(24)

(2) Guidance law in the yaw plane of LOS
From (9), we can obtain the differential equation of the yaw motion of LOS

θ00� 1
r
θ0 =

Δ0
ϕ

rcos2ΔϕcosΔθ
+
Δ0

θsinΔθsinΔϕ

rcosΔϕcos2Δθ
⋯(25)

Similarly, angular rate of LOS in the yaw plane should be confined to zero to guarantee the
attack precision(23), that is θ′( − rf)= 0. Now that θ0 = θ0cosϕ, when cosϕ( − rf)is not zero,
terminal constraint of the yaw motion can be set as

θ0ð�rf Þ= 0 ⋯(26)

The variables θ0 and θ00 are, respectively, denoted as x and x′, then (25) and (26) can be
written as follows:

x′= 1
r x +

1
r u

xð�rf Þ= 0

�
⋯(27)

where u=
Δ0

ϕ
cos2ΔϕcosΔθ

+ Δ0
θsinΔθsinΔϕ

cosΔϕcos2Δθ
.

Rewriting (27) in state-space form, we have

x′= að�rÞx + bð�rÞu
xð�rf Þ= 0

�
⋯(28)

where að�rÞ= 1
r ; bð�rÞ= 1

r .
To satisfy the terminal constraints and achieve the maximum terminal velocity, cost

functional can be selected as follows:

J = xTsx
��
�r =�rf

+
ð�rf

�r0

ðuTvð�rÞuÞdð�rÞ ⋯(29)

where s=∞, v( − r)= 1.
Then, the guidance law design problem is transformed to the typical linear quadratic

optimal control problem with the optimal solution in the interval [ − r0, − rf]

u�ð�rÞ=�v�1ð�rÞbTð�rÞpð�rÞxð�rÞ ⋯(30)

where p( − r) satisfies the following inverse Riccati equation:

p′�1ð�rÞ= 2
r p

�1ð�rÞ� 1
r2

p�1ð�rf Þ= 0

�
⋯(31)

Analytical solution of (31) is of the following form:

pð�rÞ=� r2

�r + rf
⋯(32)
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By substituting v(–r), b(–r) and p(–r) into (30), optimal solution of (28) can be get that

u�ð�rÞ= r

�r + rf
� x ⋯(33)

then the guidance law of the yaw motion with respect to –r is given as follows:

Δ0
ϕ = cos2 ΔϕcosΔθ � �r

�r + rf
� θ0cosϕ�Δ0

θsinΔθsinΔϕ

cosΔϕcos2Δθ

� �
⋯(34)

Furthermore, the guidance law of the yaw motion with respect to time is described as

_Δϕ = cos2ΔϕcosΔθ � �r

�r + rf
� _θcosϕ�

_ΔθsinΔθsinΔϕ

cosΔϕcos2Δθ

� �
⋯(35)

Remark 2. Traditional guidance model is established with respect to time, and the optimal
guidance law based on traditional guidance model is implemented with the time-to-go which
is unknown and should be estimated(1,2). Proposed guidance model in this paper is established
with respect to LOS range, and the optimal guidance law based on proposed guidance model
is implemented with the LOS range which can be obtained directly, and hence avoids the
problem of the time-to-go estimation of traditional optimal guidance laws.

3.2 Guidance law in overload form

According to the definitions of coordinate systems in Section 2, there are two manners for
transforming the re-entry coordinate system to the velocity azimuth coordinate system.

The first transformation manner is that by rotating θ and −ϕ anti-clockwise around OLZL
and OLYL in turn, the re-entry coordinate system can be transformed to the LOS coordinate
system. Further, by rotating Δθ, −Δϕ and Δγ anti-clockwise around Meθ, Meϕ and Mer in
turn, the LOS coordinate system can be transformed to the velocity azimuth coordinate
system. The rotational angular velocity of the velocity azimuth co-ordinate system with
respect to re-entry coordinate system can be described as

Ω= _Δγ� _Δϕ + _Δθ� _ϕ + _θ ⋯(36)

Define Lx(η), Ly(η) and Lz(η) as

LxðηÞ=
1 0 0

0 cosη sinη
0 �sinη cosη

2
64

3
75; LyðηÞ=

cosη 0 �sinη
0 1 0

sinη 0 cosη

2
64

3
75;

LzðηÞ=
cosη sinη 0

�sinη cosη 0

0 0 1

2
64

3
75 ⋯ð37Þ
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Then, components of the vector Ω with respect to velocity azimuth coordinate system can be
derived as

ΩxA

ΩyA

ΩzA

2
64

3
75=

_Δγ

0

0

2
64

3
75+LxðΔγÞ

0

0

� _Δϕ

2
64

3
75+LxðΔγÞLzð�ΔϕÞ

0
_Δθ� _ϕ
0

2
64

3
75

+LxðΔγÞLzð�ΔϕÞLyðΔθ�ϕÞ
0

0
_θ

2
64

3
75

=

� _θcosΔϕsinðΔθ�ϕÞ�ð _Δθ� _ϕÞsinΔϕ+ _Δγ

cosΔγ � _θsinΔϕsinðΔθ�ϕÞ+ð _Δθ� _ϕÞcosΔϕ

 �

+sinΔγ _θcosðΔθ�ϕÞ� _Δϕ

 �

�sinΔγ � _θsinΔϕsinðΔθ�ϕÞ+ð _Δθ� _ϕÞcosΔϕ

 �

+cosΔγ _θcosðΔθ�ϕÞ� _Δϕ

 �

2
64

3
75⋯ð38Þ

The second transformation manner is that by rotating θM and −ϕM anti-clockwise around
OLZL and OLYL in turn, the re-entry coordinate system can be transformed to the velocity
azimuth co-ordinate system directly. The rotational angular velocity of the velocity azimuth
coordinate system with respect to re-entry coordinate system can be described as

Ω=� _ϕM + _θM ⋯(39)

Similarly, components of the vector Ω with respect to velocity azimuth coordinate system can
be derived as

ΩxA
ΩyA
ΩzA

2
4

3
5=

0
� _ϕM

0

2
4

3
5 +Lyð�ϕMÞ

0
0
_θM

2
4

3
5=

_θMsinϕM

� _ϕM
_θMcosϕM

2
4

3
5 ⋯(40)

From (38) and (40), we can get that

� _ϕM = cosΔγ½� _θsinΔϕsinðΔθ�ϕÞ + ð _Δθ� _ϕÞcosΔϕ�
+ sinΔγ½ _θcosðΔθ�ϕÞ� _Δϕ�

_θMcosϕM =�sinΔγ½� _θsinΔϕsinðΔθ�ϕÞ + ð _Δθ� _ϕÞcosΔϕ�
+ cosΔγ½ _θcosðΔθ�ϕÞ� _Δϕ�

8>><
>>: ⋯(41)

Furthermore, according to the relation equations of Euler angles, we have

LxðΔγÞ= Lyð�ϕMÞLzðθM�θÞLyðϕ�ΔθÞLzðΔϕÞ ⋯(42)

Then, we get

sinΔγ = sinðΔθ�ϕÞsinðθ�θMÞ
cosΔγ =�sinðΔθ�ϕÞcosðθ�θMÞsinϕM + cosðΔθ�ϕÞcosϕM ⋯ð43Þ

Suppose that the gravity acceleration of the vehicle is parallel with OLZL of the re-entry co-
ordinate system and points to the earth centre, then the dynamic equations of the vehicle with
respect to the velocity azimuth coordinate system can be described as(24)

_VM
g = nXA�sinϕM
VM
g
_θMcosϕM = nYA

VM
g
_ϕM = nZA�cosϕM

8><
>: ⋯(44)

1820 THE AERONAUTICAL JOURNAL NOVEMBER 2018

https://doi.org/10.1017/aer.2018.94 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2018.94


where nXA , nYA and nZA are the components of overload of the vehicle with respect to velocity
azimuth coordinate system.

From (41) and (44), the guidance law in the form of normal overload can be given by

nYA =
VM
g f�sinΔγ½� _θsinΔϕsinðΔθ�ϕÞ + ð _Δθ� _ϕÞcosΔϕ�

+ cosΔγ½ _θcosðΔθ�ϕÞ� _Δϕ�g
nZA =� VM

g fcosΔγ½� _θsinΔϕsinðΔθ�ϕÞ + ð _Δθ� _ϕÞcosΔϕ�
+ sinΔγ½ _θcosðΔθ�ϕÞ� _Δϕ�g + cosϕM

8>>><
>>>:

⋯(45)

where _Δθ and _Δϕ are respectively given by (24) and (35). sinΔγ and cosΔγ are given by (43).
Δθ, Δϕ can be obtained as

Δθ =
�arcsin veϕ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2er + v

2
eϕ

q� 	
; ver ≥ 0

π + arcsin veϕ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2er + v

2
eϕ

q� 	
; ver < 0

8>><
>>:

Δϕ =
�arcsin veθ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2er + v

2
eθ
+ v2eϕ

q� 	
; ver ≥ 0

π + arcsin veθ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2er + v

2
eθ
+ v2eϕ

q� 	
; ver < 0

8>><
>>:

8>>>>>>>>>><
>>>>>>>>>>:

⋯(46)

where ver , veθ and veϕ are the components of the velocity vector VM with respect to LOS
coordinate system.

4.0 SIMULATION AND ANALYSIS
4.1 Simulation conditions

Simulation conditions are presented in Table 1. In addition, the vehicle-borne engine is turned
off when terminal guidance begins and the simulation stops when the vehicle reaches the
ground.

Table 1
Simulation conditions for vehicle and target

Simulation parameters Specific values

Vehicle initial position (m) [0, 0, 30,000]
Vehicle initial velocity (m/s) [1,598, 581, 0]
Vehicle mass (kg) 500
Vehicle reference area (m2) 1
Available normal overload 5
Target initial position (m) [100,000, 0, 0]
Target velocity (m/s) [0, 0, 0]
Guidance parameters rf= 0.001, ϕf= −60°
Guidance step (s) 0.015
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4.2 Simulation results

Under the conditions above, the terminal miss distance is 0.0025 m and the terminal elevation
angle of LOS is − 60°. Terminal velocity of the vehicle is 819.5597 m/s and the full time of
flight is 76.4876 s.

The ranges of heading angle, flight path angle, azimuth angle and elevation angle with
respect to LOS range are presented in Fig. 2. The ranges of LOS angular rates with respect to
LOS range are presented in Fig. 3. We can see that the initial deviation between the heading
angle and azimuth angle is 20°, and with LOS range decreasing, the deviation gradually
reduces to zero, by which the azimuth angular rate of LOS is confined to zero. The initial
deviation between the flight path angle and elevation angle is 16.7°. With LOS range
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Figure 2. Azimuths of LOS and velocity.
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decreasing, the deviation first becomes larger to guarantee the impact angle constraint, and
then gradually tends to be zero, which guarantees the elevation angular rate of LOS converges
to zero. Both the terminal flight path angle and elevation angle are −60°, demonstrating that
the impact angle constraint is satisfied.

Response of normal overloads for guidance command with respect to LOS range are
presented in Fig. 4, from which we can see that initial normal overload of the yaw motion is
relatively large and it gradually reduces with the decreasing of azimuth angular rate of LOS.
Normal overload of the pitch motion varies from the positive value to the negative value, by
which the flight path angle increases firstly and then decreases to satisfy the impact angle
constraint. What is more, the normal overloads for guidance command vary smoothly during
the whole flight, which is convenient for the implementation of attitude control system.
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Figure 4. Normal overloads for guidance command.
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Profile of 3D re-entry trajectory is presented in Fig. 5, from which we can see that with the
LOS angular rates converging to zero, the vehicle flies close to the target and ultimately
attacks the target with desired impact angle and satisfactory precision. The results shown in
simulation are consistent with the theory that the guidance law is based on, demonstrating the
correctness and validity of the novel guidance model and guidance law.

5.0 CONCLUSION
Aiming at 3D terminal guidance problem, a novel guidance model with respect to LOS range
is established, based on which optimal re-entry guidance law with impact angle constraint is
designed. Contributions of this paper are mainly twofold:

(1) A novel guidance model is established, in which LOS range is treated as independent
variable to describe the relative motion between the vehicle and the target. The guidance
model includes two differential equations that describe LOS’s pitch and yaw motions in
which the pitch motion is separately decoupled. This model avoids the inaccuracy of
simplified 2D guidance model and the complexity of 3D coupled guidance model,
which not only maintains the accuracy but also simplifies the guidance law design.

(2) Application of the novel guidance model is studied for optimal re-entry guidance pro-
blem with impact angle constraint. By transformation of the guidance model, the gui-
dance law design problem is transformed to the linear quadratic optimal control
problem. Then optimal re-entry guidance law of the pitch and yaw motion of LOS are
designed, respectively, theoretically proving that angular rate of LOS converges to zero
and elevation angle converges to the desired impact angle. Compared with the optimal
guidance laws based on traditional guidance model, the proposed one based on novel
guidance model is implemented with the LOS range instead of time-to-go, which avoids
the problem of the time-to-go estimation of traditional optimal guidance laws. Simu-
lation results show the correctness and validity of the novel guidance model and
guidance law.
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