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Concrete computing machines, either sequential or concurrent, rely on an intimate

relationship between computation and time. We recall the general characteristic properties

of physical time and of present realisations of computing systems. We emphasise the role of

computing interferences, that is, the necessity of avoiding them in order to give a causal

implementation to logical operations. We compare synchronous and asynchronous systems,

and give a brief survey of some methods used to deal with computing interferences. Using a

graphic representation, we show that synchronous and asynchronous circuits reflect the same

opposition as the Newtonian and relativistic causal structures for physical space-time.

1. Introduction

Are concurrent computing machines equivalent to Turing machines? This question, which

amounts to confronting the two fundamental notions of time and computation, may be

treated in a purely mathematical framework. Practical consequences, however, cannot

be independent of concrete realisations, that is concrete machines performing actual

computations in physical time.

This remark may seem strange, if one aims to show theorems, which cannot depend

on the physical properties of time or machines. But, even in a mathematical treatment

of concurrent computation, one needs a representation of time. Usually, time is modelled

as a real parameter, shared by all parts of the computation. Unfortunately, such a

representation does not correspond to the observable time that can be obtained from

physical systems like clocks, nor to the reference time that is defined by metrology, nor

to the operational time that occurs in practical realisations of logic circuits. Without

questioning the validity of proved theorems, difficulties may emerge when trying to find

practical applications.

The distinction just made between abstract and concrete machines raises some related

questions. When a machine M can be simulated by a program P running on another

machine, how can one identify the concrete machine M and the program P? And if a

machine cannot be simulated on another one, indicating some greater expressive power, is

the latter due to a computational or a fundamental physical property? Before addressing
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such questions, we must first consider the sequential machines that are currently realised.

These machines, which we get from a constructor, are made of matter, and transform

electric energy into heat, and which we communicate with through a keyboard and a

screen, why do we need them? We may observe that all the features that make them

concrete are inconveniences: we would prefer them lighter, smaller, less power consuming

and less dissipating. Ideally, all these parameters would be equal to zero. In fact, we

need these machines for their logical function – their ability to compute. But then, since

this function is mathematically known, modelled and even simulated, why do we need a

concrete machine, whose features are mainly inconveniences? The natural answer is that

these machines compute faster than humans can, with just a pencil and paper. And yet,

pencil and paper are already rudimentary elements of a concrete machine, using physical

objects to remember different steps of computations. The interest in concrete machines

comes from their intimate relation with physical time.

If computing machines go faster than humans, one must be confident in their action,

as in most cases one is unable to check their output. Indeed, in very specific cases, one

can verify the correctness of a result in much less time than is needed to obtain it. This is

the case for instance of the prime factorisation of integers. But few concrete applications

have this property. In most cases, one cannot check the result in much less time than the

computation itself. If the result is important, and there is no other way to obtain it, we

must have confidence in the machine.

What can give support for such confidence? Necessarily, the answer is reasoning,

founded on the correct functioning of the machine at a given time on some particular

computations, generalised to other times and other computations. A computing machine

cannot be tested for all the computations it can do, at any time. Even for a finite machine,

the number of possible computations increases exponentially with the memory size, and

a memory of one hundred bits already allows a number of configurations that cannot be

tested in less time than the age of the universe. To establish a reasoning scheme leading

to confidence, one must:

— check that each elementary component effectively realises the function it has been

designed for (physical validation).

— prove in a deductive way that the particular composition of these elementary com-

ponents building the machine effectively leads to the global function used (logical

validation).

The first condition is ensured by choices in implementation design and by tests made

by the constructor. The second condition is obtained from a mathematical representation

of the machine and from the logics of computation. These two steps of validation require

good representations of all components at the physical level, and of the global machine

at the logical level. If the confidence one can put in a machine relies on good models

of both its physical and logical functioning, how could such a machine perform more

than it has been designed for, more than our present theories can model? Even if the

existence of a new type of calculus, still unknown today, can be envisaged, with machines

performing this new type of calculus, how could one build such machines without having
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good models for them? In such a case, one could not ensure the two validation steps, and

one could not say that these machines operate correctly, nor be confident in their ouput.

One consequence is that realistic models are necessary, both of the computational

structure and of the physical implementation of logical operators. Modelling is made

easier when logical and physical constraints can be separated. This is the reason for

developing sequential machines or synchronous concurrent machines. In that case, the

logical validation of the machine can be made, whilst ignoring the implementation

characteristics of its components. The latter will finally and mainly limit the performance

of the machine through the value of the clock frequency. The machine can, equivalently, be

simulated on another concrete machine with identical clock frequency, at the expense of

slower performances. However, in the case of asynchronous concurrent machines, logical

and physical constraints are more involved. Although machines built with asynchronous

circuits are less widely used, much effort has been devoted to their understanding and

modelling (Seitz 1980; Sutherland 1989; Martin 1990a; Ebergen 1991; Davis and Nowick

1995; Mallon et al. 1999). In fact, they may even appear as an unavoidable evolution of

computing machines. On the one hand, clock-timed circuits are reaching limits where clock

signal distribution consumes too many resources and progress in performance approaches

saturation point. On the other hand, asynchronous circuits constitute the most general

class of circuits, and thus allow one to express in the most general way the questions

raised by the implementation of computation on physical systems, and the solutions that

may be brought.

In this article, we shall be concerned with the relation of concrete computing machines

with physical time. After recalling the general characteristic properties of physical time

and of computing machines that are presently realised, we shall compare the solutions

provided by synchronous and asynchronous systems to the implementation of logical

operations. We shall show that they give different implementations of causal relations,

reflecting in that way different causal structures for space-time.

2. Physical time

The notion of time may be seen to follow from two necessities. From a logical point of

view, time can be considered as the concept that allows one to make a distinction between

two different types of propositions: general and universal propositions (like mathematical

ones) that are eternal, and particular propositions that are related to changing reality

(like those describing physical systems). Moreover, time is also rendered necessary by the

formulation of physics: time is the concept that allows one to give a formal expression to

movement, and hence to the laws of physics.

The properties of time are in fact imposed by the functions that this notion must fulfill.

From the logical side, time allows one to conceive of the same object by characterising it

by its different states, these states being asssociated with the object at different times. A

time parameter can then be used not only to index the different states characterising the

same object, but also to organise the states of different objects into classes of simultaneity.

The relation of order that can be introduced on the time parameter allows one to define

a relation of logical causality between the state transitions affecting different objects.
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However, in order to be realised physically, for instance on real machines, the causal

relation between states cannot be independent of the real motions affecting physical

systems. In particular, the simultaneity classes defined with the help of the time parameter

must coincide with those that are associated with real events occurring in physical space,

hence with the physical time.

The notion of physical time is intimately related to the laws of physics. After observing

that pendulum oscillations are isochronous, Galileo Galilei was able to give a mathematical

representation of motion induced by free fall, by relating the distance travelled to the

elapsed time, the latter being understood as a universal reference for all motions. The

existence of such a reference is made possible by the existence of physical laws governing

all movements, and, in particular, by the existence of regular movements such as inertial

motions.

This introduction of time leaves an important conventional part in the definition of

a time reference, even if a natural choice is provided by motions that appear as most

regular, like the Earth motion around the Sun. This leads us, in fact, to distinguish two

types of time. Thus, Leibniz (Russell 1900), relying on logical arguments, could consider

that space and time are mere relations between objects or events, which are fixed by an

observer in a conventional way, thus building subjective space and time. Still, one is also

bound to admit the existence of objective space and time, as the only way to understand

how physical laws governing displacements of objects and time ordering of events can be

formulated in a universal way, independently of the observer.

The formulation of the universal law of gravitation led Newton (Newton 1687) to

fix the role played by time in physical laws, and to endow it with the mathematical

representation that we still use nowadays: that of a real parameter that all physical

quantities depend on. In fact, Newton introduced two different notions of time, which he

distinguished both in their conception and in their usage. The first one, which he called

‘absolute and mathematical’, allowed him to write mathematical equations for the laws

of mechanics and gravitation. The second notion, which he called ‘common and sensible’,

allowed him to relate the motions of different physical systems, including clocks. Even if

Newton emphasised the first notion, which he considered as representing absolute space

and time, seeing clocks as systems to be improved in order to make them as close as

possible to ideal space and time, he nevertheless made two distinct uses of these notions.

The first, which he identified with the curvilinear coordinate on the planet’s trajectory, he

used as a mathematical tool to deal with infinitesimals of different orders. The second,

which is the physical time as can be defined by Kepler’s area law, he used as a measure

of inertial motions, with which he compared planetary motions.

The theory of relativity (Einstein 1905) has led us to question the a priori and absolute

character of physical space and time. According to relativity, the notion of time relies

on clocks, the date of an event being defined by coincidence of this event with a tick

delivered by a clock located at the same place. But in order to be defined throughout

space, the notion of time also relies on the exchange of light signals, which are necessary

to compare and synchronise the times shown by remote clocks. The universal and finite

velocity of light propagation then leads to a definition of time simultaneity that depends

on the observer’s motion. In other words, time simultaneity is not given a priori but
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results from a construction, or clock synchronisation. By exchanging light signals, on

which time references provided by clocks are encoded, one can compare these references

and synchronise clocks. Then, time allows one to construct space. By comparing the

light signals received from several remote clocks, one can, by quadrangulation, determine

positions both in time and space. This relativistic definition of time and space is rendered

necessary as soon as a high precision must be attained. This is the case, for instance, when

corrections linked to the finite velocity of light, or relativistic effects, must be taken into

account (Landau and Lifschitz 1970; Wrinkler 1991). Hence, this relativistic definition is

the one used in physics for high precision space-time measurements (Vessot 1991), and in

metrology to define time and space standards (Quinn 1991) and to construct the space-

time reference systems required by physics (Petit and Wolf 1994; Wolf and Petit 1995). It

is also the one used in modern practical positioning systems at the surface of the Earth,

such as GPS (Lewandowski and Thomas 1991; Leschiutta 1991). Finally, as will appear

in the following, it is also the notion of time that is implicitly used by asynchronous

communicating and computing systems (Lamport 1978).

The consequences of the theory of relativity on our conception of space and time have

been remarkably discussed at the logical level by Russell (Russell 1925; Russell 1927). Our

representation in terms of permanent material structures located in space and evolving

according to a unique external time, must be replaced by one in terms of events that

are located both in space and time. This conception of space-time not only affects the

formulation of modern theories in a fundamental way (Jaekel and Reynaud 1998), but

also underlies present applications in physics and metrology (Guinot 1997).

When refering to physical time, simultaneity classes can no longer be defined a priori,

and we must rely on a physical implementation by means of propagating light signals. This

constructive character of time has important consequences on the functioning of devices

that rely on the physical exchange of information. Causal relations between events cannot

be derived by simple comparison with an external, a priori given, parameter. For systems

that are unlocalised in space, such as communicating processors, this means that the

time-order relation of occurring events, even if it can be defined unambiguously at the

local level of each processor, nevertheless requires a more complete representation to be

defined over the whole system in a consistent way (Seitz 1980; Sutherland 1989). In the

following, we shall analyse how the functioning of actual devices depends on the causal

structure of physical space-time.

3. Logical devices

To discuss the intimate relation between time and computation, one must first recall some

general principles that underlie the physical implementation of computing systems, and

are applied in concrete machines realised with present technologies.

3.1. Implementation of logical operations

In CMOS (Complementary MOS) technology, logical gates are implemented using two

electrical networks Nu and Nd, as represented in Figure 1. The xi describe input channels,
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Output
Nu

xi

Inputs z

Nd

(logical true)
Positive voltage source

Negative voltage source
(logical false)

xi

Fig. 1. A logic gate

and z the output channel. Nu and Nd are built with electrical switches, which are combined

in series/parallel networks, thus allowing the implementation of the logics of propositions

(Shannon 1938).

Each switch is implemented using a transistor. A function implemented by N will be

said to be true, for a particular set of values of xi, if and only if there is a path that

connects the extreme connections of N. For instance, for the network represented by

Figure 1:

— when Nu is true, output z is forced to value true.

— when Nd is true, output z is forced to value false.

The possibility that (Nu = Nd = true) for some values of xi must be excluded, otherwise

current could flow through both Nu and Nd, resulting in a short circuit between voltage

sources. In the following, we shall always require that (¬Nu ∨ ¬Nd) is verified for all

configurations of variables xi (¬, ∨ and ∧ define, as usual, negation, logical disjunction

and logical conjunction).

Two cases must be considered:

1 Nu and Nd are always opposite, for all values of variables xi, (Nu = ¬Nd). This case

implements propositions of classical logic (Complementary MOS). The simple example

of the nand gate is represented in Figure 2 (a bubble represents negation):

z = Nu = ¬x1 ∨ ¬x2
(1)

Nd = ¬Nu = x1 ∧ x2.

2 Nu and Nd can be simultaneously false, that is, (¬Nu ∧ ¬Nd) can be true. In such

configurations, the output z is not connected to any voltage source. Then, because
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Fig. 2. Nand gate

zx

e

Data output

Enable

L

Data input

Fig. 3. Transparent latch

of electrical capacitance, z remembers its previous value. This allows us to implement

memories, like the latch represented in Figure 3:

Nu = x ∧ e
(2)

Nd = ¬x ∧ e.

In practice, in order to ensure the value is stored for long enough, and quite generally for

all memories, one must ensure memory stability by using some feed-back, by means of a

looped amplifier. This feed-back can be permanent (static) or recurrent (dynamic logic).

One possibility of electrical feed-back is shown in Figure 4, where two looped amplifiers

have been added on output z, one of them being weak, in the sense that it cannot create

any serious short circuit when it conflicts with any of the two networks Nu and Nd.

Another way to implement a stable memory is to create static feed-back on a logical

gate corresponding to the first case. Then, our latch can be realised using a looped

multiplexer (mux), as shown in Figure 5:

z = Nu = (x ∧ e) ∨ (z ∧ ¬e)
(3)

Nd = ¬Nu.

This exhibits a very general difficulty that is characteristic of looped systems: variable

z appears on both sides of its defining equation (3). This equation does not mean that
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1
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0

weak

xi

z

Fig. 4. Electrical feed-back

z
x

e

Mux

Fig. 5. Transparent latch with multiplexer

an equality must be realised, for instance with electric voltages, but that the following

assignment must be realised:

z ← (x ∧ e) ∨ (z ∧ ¬e) (4)

za = (x ∧ e) ∨ (zb ∧ ¬e) . (5)

In other words, we must distinguish two values of the variable z, which correspond to

successive times: za (after) and zb (before) are linked by equation (5). It is required that

the two values za and zb do not interfere, and that variable z changes from zb to za. The

assignment represented by equation (4) expresses a causality requirement that must be

implemented in order to realise computations.

In the particular case of the latch just described, the operation can only cause a problem

when e is falling. Indeed, in the other cases:

— when e is low, z is stored

— when e is high, z copies x

— when e rises, z begins to copy x.

Thus, the circuit operates correctly in these three cases. However, if e falls while x changes,

z will hesitate between two values of x. The whole circuit may enter a metastable state,
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which is invalid (the voltage will stay in metastable equilibrium at an intermediate level)

and may last for an unbounded time. It may leave this state for any of the two possible

values of z, and do this non-deterministically, which may not be acceptable for the type

of computation envisaged. Let us note that the circuit of Figure 4 shows the same defects,

since it involves a feed-back, although this may be less apparent when treated at the

electrical level.

Although chosen here as an example, the latch shows properties that are encoun-

tered quite generally in looped devices. This brief discussion shows that the correct

operation of a circuit cannot be analysed without taking its environment into account,

in particular, the time ordering relations of input and output signals. This is entailed

by the existence of loops and must be dealt with quite generally, since computing

machines are naturally looped systems. In all cases, time constraints must be implemented

in order to ensure the causality relations that are necessary for computation. These

constraints will take very different forms, according to the type of implementation chosen,

whether by means of synchronous or asynchronous systems. Before discussing separately

these two classes of systems, we shall first recall one important property, the property

of modularity, that they share since it is required for the implementation of complex

computations.

3.2. Modularity

There are many various ways to organise electronic components into logic circuits, in

order to realise machines performing computations. Usually, and quite generally, one

defines complex circuits as hierarchies built with elementary circuits called primitives.

This method, imposed by practical considerations, indeed hints at a logical necessity: one

must be able to design and realise with the same rigour circuits of increasing complexity.

More precisely, one must insure that circuits implementing logical functions of high

complexity level behave as they should, and one must obtain this confidence in a rather

short time. Because of the exponential increase in the number of configurations to check,

this requirement implies that a direct physical test of the circuit’s behaviour soon becomes

impossible when the complexity of the logical function increases. This end can then only

be attained with the help of modular implementations, by taking advantage both of

their composite logical structure, and of the logical simplicity of the chosen primitives

(Matherat and Jaekel 1996). Proofs relying on known properties of the composition of

primitives may be developed, which allow one to deduce the correct functioning of a

whole modular complex from that of its constituent primitives. Then, a test of the whole

complex reduces to that of some of its constituents, which are logically simple. Although

efficient, such a strategy may not reveal itself so straightforwardly. According to the

type of physical implementation chosen for the primitives, problems may appear that

prevent the systematic development of complex circuits operating correctly, and that do

not occur when the choice of primitives is modified, or when peculiar constraints are put

on their composition. Then, it follows that the logical and physical aspects of modular

implementations must be analysed concurrently.
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4. Synchronous and asynchronous circuits

Time appears in computing systems very early, it is already there in the definition of

the electronic circuits that implement logical functions. Most circuits that are known

and used in practice are synchronous. Synchronous circuits may be defined as automata

whose transitions between successive states are triggered by pulses delivered by a global

clock. Asynchronous circuits provide an alternative class of circuits. In this section, we

introduce the strategies followed by these two main classes of circuits for making the

implementation of computation effective, and, in particular, for dealing with problems of

computation interferences.

4.1. Synchronous circuits

VLSI circuits that are produced nowadays are highly concurrent devices (a microprocessor

can contain up to 107 transistors, that is, 106 logical gates), and yet most of them can be

modelled as a non-concurrent device and can be considered as a single finite automaton.

This property comes from their synchronous character, which means that all operations

on internal memories are simultaneously activated by a single pulse of a global clock

shared by the whole circuit.

Synchronous implementations use a global clock to avoid the stability problem that

we discussed in the previous section. More precisely, with the same notation, all latches

are systematically operated in such a way as to ensure that logical variables x are stable

when variables e are falling. There exist many different types of memories, but all present

the same problem, reflecting the time character of logical assignment. For simplicity, we

shall only discuss the case of the latch considered earlier, which can be regarded as a

generic example. A synchronous device using two items of this latch for each register

bit (a master-slave flip-flop) is sketched in Figure 6. The enabling signals e1 and e2 are

mutually excluded in time, and are derived systematically from a common clock. The

output is fed back under the form of input variables Qi into a combinatorial operator.

If the clock period is larger than the feedback time, the variables Q′i are always stable

when e1 is falling and the latches act as required, that is, they make the iteration of the

combinatorial function effective.

The global state Q is encoded by the state of all memory bits, and can only change

at the arrival of a clock pulse. In terms of their specification and design, synchronous

circuits may be considered as modular composites, where primitives, and other modules

as well, are finite automata of the type described by Figure 6. The register encodes the

state of the circuit, while the combinatorial operator represents the implementation of

its transition function. All registers are activated by a single clock pulse. By connecting

several automata of this type, one obtains another automaton of the same type, but with

a larger memory and a more complex combinatorial function. In such a representation,

and from a logical point of view, neither time nor space are involved. One only needs to

consider the successive logical steps associated with successive clock periods. The logical

time of a computation reduces to a mere integer, which one only relates to physical time

by multiplying it by the mean clock period. In other words, time is discretised.
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i-th bit of register

Clock

Q

Inputs

Q′

e2

Register

e1

Combinatorial
function

Outputs

e2

e1

time

One clock period

QiQ′i
L L

e1 e2

Fig. 6. Synchronous circuit

The only physical constraint one must impose is that the clock frequency must be

smaller than the limit value necessary for all internal propagations to be performed in

less time than the clock period. Space plays no role in the logical function. The whole

circuit may be considered as local, that is, propagation times need only be taken into

account when circuits are connected over large distances, that is, when propagation times

are large compared to the clock period, as is the case when computers are connected.

Implementation on a silicon chip must take into account and control all propagation

times within a circuit, in order to ensure that all inputs become stable before the end of

each clock period. The clock signal must be implemented so that it arrives simultaneously

at all latches, that is, with negligible delays when compared to the clock period. Clearly,

such properties can only be checked once the whole circuit has been specified. Such a
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D1

Env.

D2

D3

Fig. 7. Asynchronous circuit

circuit cannot be implemented incrementally, that is, by implementing a part without any

knowledge of its connections with other parts or of the clock frequency of the whole

circuit. In other words, all parts must be local at every scale, from primitives to the whole

circuit.

The synchronous approach is, however, being questioned in present VLSI designs. This

arises mainly because of difficulties encountered when distributing simultaneously the

same clock signal to millions of latches, over several cm2, and at a frequency of the order

of a Gigahertz. Clock distribution uses a significant proportion of the chip surface and

contributes an important part to the overall dissipation.

4.2. Asynchronous circuits

Asynchronous circuits may be defined in opposition to synchronous circuits, by the re-

quirement that they do not use a global clock. However, rather than being complementary,

as a class they include synchronous circuits.

Models usually represent asynchronous circuits as general devices that are distributed

and communicate along connecting channels, as shown in Figure 7. The activity of such

circuits is not ruled by the pulses of a global clock, but proceeds through communications

distributed between many concurrent parts. These devices can be simple logical gates (a

few transistors) or, at the opposite extreme, complex processors. Communications can

be realised through a single wire or through a complex network. Clearly, concurrency

can no longer be ignored. Indeed, one can no longer define a logical state that would be

associated with the global circuit at a definite time. This is because each device can change

its state following a communication, without being synchronised with most other devices.

The notion of a computing step itself must be revised, as it relies on a total ordering of

all logical events.

Problems of computation interference may then arise at two different levels. At the

lowest level, the correct functioning of a single component may be endangered by

computing interferences within the component itself, due to internal loops and instabilities

of internal variables. At the highest level, the composition of asynchronous circuits

may induce computation interferences due to exchanges between one module and its

environment, the latter sending signals that conflict with the module operation.

We will discuss the second case only, and assume that primitives may be defined that

are free from internal computing interferences (see, for instance, Molnar et al. (1985)
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z
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weak
x1

x2

Fig. 8. Simplified C-element

and Furber (1995)). First, we will briefly describe those that are most frequently used

in asynchronous circuits. In some examples, logical functions are defined in a way that

does not distinguish between rising and falling edges. These undistinguished transitions

are called events, and the logical function operates on these events. But the events are

still transitions between different levels (or Boolean variables), so each primitive can be

considered in both ways: either as an operation on Boolean variables or as (another)

operation on events.

A very frequently used primitive is the join element, or Muller’s C-element. It has two

inputs x1 and x2 and one output z, and its logical function can be described as follows:

— if x1 = x2, then z = x1 = x2

— if inputs become different from one another, z keeps its previous value.

Then, ouput z only changes after both inputs x1 and x2 have changed. This allows a

rendezvous to be realised between levels (wait until two inputs acquire the same value) or

between events (wait until two inputs have received the same number of rising or falling

edges, after proper initialisation).

The primitive C-element can be realised using electrical feed-back analogous to that of

Figure 4. A common realisation following these lines is represented in Figure 8.

Another primitive is the toggle, represented in Figure 9, which has one input x and two

ouputs z1 and z2. Successive events on the input are alternately sent to outputs z1 and z2.

The first event after initialisation is sent to the marked output z1.

The or operation between events, also called merge, can be realised using a classical

exclusive or gate (xor between levels). The sequencer, represented in Figure 9, possesses

three inputs x1, x2 and x3 and two outputs z1 and z2. Its role is to grant a given resource

to one of two different processes, which can make requests on inputs x1 and x2. When

an event is received on x3, a granting event is produced either on z1 or z2 according

to an existing request on x1 or x2, respectively. When two requests are present, the

sequencer arbitrates between the two, and thus introduces a component of indeterminism.

The sequencer may take an unbounded time to arbitrate, but it is required to realise the

mutual exclusion of the two grant signals.
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Fig. 9. Some asynchronous primitives

5. Composition of circuits and time ordering

In this section, we discuss the composition of asynchronous circuits, and some solutions

that have been brought to the problem of computing interferences.

Compositions of asynchronous circuits correspond to distributed systems, where differ-

ent parts communicate in a way that is not regulated by a global clock. Then various and

arbitrary time delays affect successive transitions at the input of a module. Inputs may

then conflict with the correct operation of the module itself. The approaches followed in

circuit design to deal with computing interferences fall into two main classes. One practical

approach to timing problems consists of working directly on the physical implementation,

by keeping track of all the delays occurring in the logical circuit, together with all the

constraints that must be satisfied by these delays in order to make the whole circuit operate

correctly. Then, programs are developed to find and optimise solutions systematically

(Chakraborty et al. 1988; Stevens et al. 1999). Although practically very efficient, this

strategy rapidly attains such a complexity that it becomes very difficult to distinguish

fundamental issues from practical choices. In the other class of approaches, one attempts

to separate as much as possible the logical issues related to timing from their physical

manifestations, which arise mainly from the values of time delays. This has led to different

studies, focussing either on the determination of the best choice of logical primitives,

satisfying criteria such as speed-insensitivity or delay-insensitivity (Martin 1990a), or on a

more restrictive definition of modular composition, such as delay-insensitive compositions

(Udding 1986; Ebergen 1991). In the following, we shall only briefly discuss approaches

related to delay-insensitivity, and focus on the fundamental relation they tend to exhibit
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between the occurence of computing interferences and the causal structure of physical

space-time.

In order to make the analysis easier to follow, we shall introduce a graphical represent-

ation of the communications occurring between modules of a composition (see Figure 11).

These graphs are analogous to those that can be used in relativistic physics to represent

the space-time evolution of localised physical systems, together with the light signals they

exchange. As discussed in a previous section, an essential feature is the absence of an a

priori given global and common time. Only a local time ordering can be made between

the successive events occurring on each module, reflecting the causal relations that can

be made locally. Although time is represented as the vertical axis, this only indicates the

direction for increasing time on each module. Different modules are displayed on the

horizontal axis, which roughly corresponds to space. Each module is then represented

by a vertical line, indicating the causal succession of the local events occurring at its

inputs or outputs. Communications are then represented by inclined arrows leaving a

module (output) and arriving at another module (input). Although they may vary, the

slopes of these arrows must always be greater than a strictly positive lower bound, which

corresponds to the velocity of light. Varying slopes indicate that varying speed and delays

affect communications between modules.

In the following, we shall call each arrow corresponding to a communication an ‘event’,

and the intersection of this event with the time evolution of a module a ‘point’ (thus

following the notation introduced by Russell in his discussion of the causal structure

of relativistic space-time (Russell 1927)). The logical specification of each module is

translated into causal relations between the points that represent the occurrence of events

on the module. These local constraints may be given a precise expression using a formal

language that is well suited to representing time-ordered event structures (Martin 1990a;

Ebergen 1991; Winskel 1989). As propagation delays play an essential part, ordering

constraints will be most conveniently visualised using graphical representations, which

allow the analysis of global causal relations within distributed systems.

5.1. Delay-insensitivity

In order to discuss the role of delays in computation interferences, we will first analyse

the example of the Q-element (Martin 1990a; Martin 1990b), which is represented in

Figure 10. The formal expression describing the logical function of the Q-element can be

written in a language derived from CSP (Communicating Sequential Processes) (Hoare

1978):

∗ [[xi]; yo ↑; [yi]; u ↑; [u]; yo ↓; [¬yi]; xo ↑; [¬xi]; u ↓; [¬u]; xo ↓] . (6)

Each variable between brackets, which precedes a transition, represents a logical variable

that must be true before the circuit can execute the transition that follows (; denotes time

succession, and ∗ arbitrary repetition of the expresssion in brackets). Thus, the circuit

waits for xi to be true, then emits a rising edge on output yo, and so on.

This logical function can be implemented as a composition of a C-element with two

and gates, as represented in Figure 10. Output u of the C-element is followed by a fork,
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Fig. 10. Q-element

which relates u to one input of each of the and gates. Two other forks also dispatch the

event produced by the environment xi (respectively, yi) on two inputs denoted by x1 and

x2 (respectively, y1 and y2).

The logical operation of the circuit may be represented using a space-time graph,

as in Figure 11. The left and right parts of the circuit environment are represented

as X and Y , respectively. The series of points corresponding to the definition of the

logical function of each module can be followed on each vertical line. Situations that

correspond to rendezvous, that is, intervals where a primitive is waiting for the arrival

of two events in any order, have been represented by a thick line. This is systematically

the case for the C-element, but also for the and gates, when they are waiting for their

two inputs to be true. Pairs of points that cannot occur in reverse order without ruining

the computation, have been shown by dashed lines. The two cases involve the internal

variable u and one event, y1 ↑ or x1 ↓ produced by the environment (Y or X). Event

y1 ↑ must reach the and gate B before event u ↑, recalling that the latter has been

produced by the arrival of event y2 ↑ on the C-element. Then, the fork that dispatches

both events y1 ↑ and y2 ↑ plays a crucial role in determining the order of points on the and

gate B.

A few remarks are in order. Concurrent computing is well illustrated by Figure 11.

Different computations proceed along paths involving vertical and propagation lines, each

representing a causally ordered series of operations. Causal order only makes sense either

within each vertical line, where it is associated with the logical function of the module,

or within propagating lines, where it connects the output of one module to the input of

another module. But no a priori total order exists between all points of the graph. This

is illustrated by the independence of computation on the order of some pairs of points.

For instance, two events belonging to different branches of the fork on variable u at the

output of the C-element may have arbitrary relative order.

Imposing a total ordering would amount to implementing a global time, by means of

clock distribution for instance, which would allow one to draw horizontal lines on the

graph of Figure 11. But such a condition is too restrictive, as computation only relies on

causal relations imposed by vertical and propagation lines. The remaining freedom in the

ordering of events, such as the one related to the fork at the output of the C-element,
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Fig. 11. Space-time graph of the Q-element

is necessary for optimising the circuit performance. For a definite implementation, event

ordering will depend on the relative spatial position of modules, so the remaining freedom

may be used to find an optimal arrangement of modules on the chip.

The property of delay-insensitivity (Molnar et al. 1985) is easily seen on the graph. It

corresponds to the independence of causal ordering of computation on delays occurring

in responses of modules or in propagations of signals, that is, on the vertical or horizontal

displacements of the modules. Such a property is made possible by using primitives that

wait for the arrival of events at their input before producing other events at their output.

But this condition appears to be insufficient. In this respect, it is instructive to compare

the two kinds of forks used by the previous composition implementing the Q-element. No

constraint affects the events produced by the fork at the output of the C-element (thick

lines in Figure 11). However, forks dispatching the events produced by the environment

must be implemented in such a way as to respect the causal order of the events that they

generate and that finally arrive at the same and gate (dashed lines in Figure 11). Such
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forks, which are called isochronic forks (Martin 1990a; Martin 1990b), must be isolated

and given a special treatment at the implementation level, in order to satisfy the delay

constraints that are necessary for preserving causal ordering.

The property of delay-insensitivity (DI) has been introduced and much developed as

a simple condition one can impose on primitives and logical circuits, with the aim of

designing asynchronous circuits of arbitrary complexity systematically, without having

to take time scales into account. One approach consists of defining DI circuits as

compositions of stable primitives devoid of internal loops (except for electrical loops

used as memory) (Martin 1986). A primitive is defined to be stable, by requiring that

an input that changes the output cannot change before the output has been established.

It can then be shown that only compositions of C-elements can be DI according to this

definition.

But, it can also be shown that compositions using C-elements (and generalised C-

elements with more inputs) exclusively, strongly limit the type of allowed computations,

and exclude most circuits of interest (Martin 1990b). The isochronic fork may then be

advocated as a weakest compromise to delay insensitivity. Adding the isochronic fork

and using this extended class of elements, which are called quasi delay-insensitive (QDI),

complex and efficient asynchronous circuits have been realised (Martin et al. 1997).

However, as illustrated by the example of the Q-element, isochronic forks need to be

identified at the logical level and their implementation must be given a special treatment,

which may become intricate for very complex circuits.

5.2. Delay insensitive composition

Another approach to avoiding computation interferences (Molnar et al. 1985; Udding

1986; Ebergen 1991) consists of defining a less restrictive set of DI primitives, together

with a notion of DI composition of these primitives. Circuits are represented in a formal

language, called trace theory, similar to the one used in equation (6), with further syntax

rules on logical operations. Computing interferences are avoided by imposing structural

constraints under the form of simple rules. Let us first recall some definitions and

properties of trace structures (Ebergen 1991; Mazurkiewicz 1989).

Definition 1. Trace structures are defined as triples R =< iR, oR, tR >, where iR and oR

are finite sets of symbols (the input and output alphabets, respectively), and tR is the set

of traces, which is a subset of (iR ∪ oR)∗, the set of all finite-length sequences of symbols

taken in the union set iR ∪ oR.

Trace structures are traditionally denoted by capital letters, while lower case letters a,

b, c denote symbols and s, t traces. The following abbreviations are also frequently used:

a? ≡< {a},�, {a} >
(7)

b! ≡< �, {b}, {b}>.

Operations of concatenation, union, repetition, prefix-closure, projection and weaving

are defined on trace structures.
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Definition 2.

R; S ≡< iR ∪ iS, oR ∪ oS, (tR)(tS) >

R|S ≡< iR ∪ iS, oR ∪ oS, tR ∪ tS >

∗[R] ≡< iR, oR, (tR)∗ >

prefR ≡< iR, oR, {t0|∃t1 : t0t1 ∈ tR} > (8)

R ↓ A ≡< iR ∩ A, oR ∩ A, {t ↓ A|t ∈ tR} >
R||S ≡< iR ∪ iS, oR ∪ oS,

{t ∈ (aR ∪ aS)∗|t ↓ aR ∈ tR ∧ t ↓ aS ∈ tS} >

where, for convenience, the notation aR ≡ iR ∪ oR has been introduced for the total

alphabet of R, where t ↓ A denotes the projection of trace t on alphabet A and (tR)∗ is

the set of all finite-length concatenations of traces in tR (symbols ∃, ∀, ∈, ∩ and ∪ denote,

as usual, existence, universality, set membership, set intersection and set union). The pref

operator constructs prefix-closed structures, while the projection operator hides internal

symbols; finally, the weave operator expresses instantaneous synchronisation. A circuit is

specified by a prefix-closed, non-empty, trace structure R with iR ∩ oR = �. The trace

structure representing the environment of a circuit with trace structure R is the reflection

of the latter, and may also be given a compact notation:

R̄ =< oR, iR, tR>. (9)

A trace structure R may be implemented physically by letting each symbol a in the

alphabets iR and oR correspond to a channel, and each occurence of this symbol in a

trace of tR correspond to an event, that is, a high or low transition, on the corresponding

channel. Symbols in iR or oR describe communication actions that are produced by the

environment or (exclusive or) the circuit, respectively.

In order that we can ignore transmission delays while avoiding transmission and

computing interferences, the following rules may be imposed (Udding 1986):

R0 ∀s ∈ tR, a ∈ aR saa �∈ tR

R1 ∀s, t ∈ tR, (a, b ∈ iR) ∨ (a, b ∈ oR)

sabt ∈ tR ⇔ sbat ∈ tR (10)

R2 ∀s, t ∈ tR, (a ∈ iR ∧ b ∈ oR) ∨ (a ∈ oR ∧ b ∈ iR)

(sab ∈ tR ∧ sba ∈ tR) ⇒ (sabt ∈ tR ⇔ sbat ∈ tR).

Rule R0 excludes two consecutive transitions on the same wire, and hence the transmission

interferences that may result. Rule R1 expresses independence of computation on the order

of signals travelling in the same direction, as this order may depend on any delays suffered.

The C-element is easily seen to satisfy this rule. However, the and gate only complies with

the rule when it is waiting for a rising edge on its two inputs, and in all other cases does

not. Thus the and gate, and the or gate, are excluded by this rule, although the toggle, the

merge and the sequencer are compatible. Rule R2 expresses the same property for signals
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Fig. 12. Space-time graph for rule R′2

travelling in opposite directions, when their order does not change the result locally. Note

that due to the necessarily symmetric treatment of a circuit and its environment, all rules

are symmetric in the exchange of input and output symbols.

One must exclude the possibility that a symbol of one type might disable a symbol of

another type (symbol a is said to disable symbol b in trace structure R if there is a trace

s with sa ∈ tR ∧ sb ∈ tR ∧ sab �∈ tR). This exclusion is necessary to prevent an admissible

input symbol being disabled by an output signal, depending on the delay the former has

suffered on its way to the circuit (by symmetry the same property must also hold for the

environment and output signals). Depending on the level of exclusion, this property leads

us to define three classes, with rules R′3, R′′3 and R′′′3 :

R′3 ∀s, a �= b ∈ aR
(11)

(sa ∈ tR ∧ sb ∈ tR) ⇒ sab ∈ tR

R′′3 ∀s, a �= b ∈ aR a �∈ iR ∨ b �∈ iR
(12)

(sa ∈ tR ∧ sb ∈ tR) ⇒ sab ∈ tR

R′′′3 ∀s, (a ∈ iR ∧ b ∈ oR) ∨ (a ∈ oR ∧ b ∈ iR)
(13)

(sa ∈ tR ∧ sb ∈ tR) ⇒ sab ∈ tR.

These rules allow successively for greater decision possibilities. Rule R′3 does not permit

data transmission and is called a synchronisation class (an example is provided by the

C-element). Rule R′′3 allows for two inputs to disable each other and is called a data

communication class. With rule R′′′3 , a circuit may choose between two output symbols

and belongs to the arbitration class.

Finally, rule R2 appears to be too restrictive in specific examples (Udding 1986). An

alternative and more generally efficient rule is provided by:

R′2 ∀s, t ∈ tR, (a, c ∈ iR ∧ b ∈ oR) ∨ (a, c ∈ oR ∧ b ∈ iR)
(14)

(sabtc ∈ tR ∧ sbat ∈ tR) ⇒ sbatc ∈ tR.

This rule, which is conveniently expressed on a space-time graph, as shown in Figure 12,

concerns three events a, b, c connecting one module M and its environment E. It stipulates

https://doi.org/10.1017/S0960129503004067 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503004067


Concurrent computing machines and physical space-time 791

Table 1. DI primitive components.

CIRCUIT Specification

WIRE pref ∗ [a?; b!]

IWIRE pref ∗ [b!; a?]

FORK pref ∗ [a?; b!||c!]

C-ELEMENT pref ∗ [a?||b?; c!]

TOGGLE pref ∗ [a?; b!; a?; c!]

MERGE pref ∗ [(a?|b?); c!]

SEQUENCER pref ∗ [a?; p!]

||pref ∗ [b?; q!]

||pref ∗ [n?; (p!|q!)]

that, if two time orders are allowed for the occurences of two events of different types

(that is, one input and one output) a and b, if the event c, of the same type as a, is a

consequence of the order ‘a then b’, it should also be a consequence of the other order ‘b

then a’. This rule imposes the condition that if, because of propagation time delays, an

order on events is seen differently by a module and its environment, this order should

have no consequence on the logical behaviour of the module. As illustrated by Figure 12,

this rule only affects the case on the left part of the figure, that is, only the case when

propagation can change the order of events.

The set of DI components is given by trace structures, defined according to Definitions

1 and 2, that satisfy the weakest form of the rules, that is, R0, R1, R
′
2 and R′′′3 (Udding

1986).

In this way, a set of DI primitive components for asynchronous circuits can be obtained

with the following list of specifications in terms of trace structures (see Table 1).

The wire corresponds to a component that waits for an event to occur on its input,

then sends an event on its output, and repeats this sequence indefinitely. The inverted

wire (iwire) behaves similarly, but begins by sending an event on its output. The fork

duplicates one input. As can be seen from definitions (8), weaving not only consists of

putting in parallel, but also in synchronising common output symbols. In the particular

case of two wires with a common output, weaving leads to the C-element. The other

components correspond to the primitive circuits that have been previously introduced

(see Figure 9).

The objective is to realise circuits corresponding to given complex specifications by

combining simple DI primitive circuits. This aim may be attained by making use of

operations such as decomposition and substitution, together with two theorems setting

the conditions for performing these operations.
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Definition 3. A component R0 is said to be decomposed into components Ri, 1 � i < n

(for n > 1) if the following conditions are satisfied. Letting S0 = R̄0, Si = Ri for 1 �
i < n, and T = ||0�i<n(Si)

(i) ∪0�i<n(oSi) = ∪0�i<n(iSi)

(ii) oSi ∩ oSj = �, for 0 � i, j < n and i �= j

(iii) ∀t, x, i (0 � i < n)

t ∈ tT ∧ x ∈ oSi ∧ tx ↓ aSi ∈ tSi ⇒ tx ∈ tT

(iv) tT ↓ aS0 = tS0 (15)

The conditions in (15) describe:

(i) a closed network (each input is connected to an output, and conversely),

(ii) the absence of output interferences (two outputs cannot be connected),

(iii) the absence of computing interferences (any event produced by a component is

compatible with the behaviour of the component that receives it)

(iv) the correct behaviour at the circuit boundary (network behaves as prescribed).

Decomposition will be denoted by R0 → (Ri)1�i<n.

Let us now state two useful theorems (proofs may be obtained in Ebergen (1987)).

Theorem 1 (Substitution Theorem). For components R0, R1, R2, R3 and S

R0 → (R1, S) ∧ S → (R2, R3)

⇒ R0 → (R1, R2, R3)

holds if

(aR0 ∪ aR1) ∩ (aR2 ∪ aR3) = aS. (16)

The latter condition stipulates that internal symbols of S , that is, symbols in (aR2 ∪ aR3)\S ,

where \ means set deletion, should not appear in (aR0 ∪ aR1). It can be realised by an

appropriate renaming of the internal symbols of S .

Theorem 2 (Separation Theorem). For components Ri and Si (0 � i < n),

R0 → (Ri)1�i<n ∧ S0 → (Si)1�i<n

⇒ R0||S0 → (Ri||Si)1�i<n

holds if

(∪1�i<n(aRi)\aR0) ∩ (∪1�i<n(aSi)\aS0) = �
(17)

and, for 1 � i �= j < n

(oRi ∪ oSi) ∩ (oRj ∪ oSj) = �
(18)

(oRi ∪ oSi) ∩ (oR̄0 ∪ oS̄0) = �.

Condition (17) stipulates that the internal symbols of the decompositions of R0 and S0

are disjoint (this condition may be satisfied by renaming some of these symbols), and
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conditions (18) stipulate that the outputs of any two components Ri||Si and Rj ||Sj are

also disjoint when the components are different (these conditions may also be satisfied by

reordering the components).

With the help of these two theorems, the previously defined DI primitives may be

combined to give modular compositions that are delay insensitive, hence circuits where

computing interferences cannot be introduced by delay modifications only. We briefly

describe an example of a circuit that can be obtained with such a composition of DI

primitives, the token-ring interface (Ebergen 1991). The token-ring interface is a device

allowing us to connect several machines, which must share a common resource (like a

memory, or a bus). One item Alloci of this device will be associated with each machine

Mi, all items being identical and realising the same function, as shown by Figure 13. Item

Alloci of this device is connected to two environments, the machine Mi on top of the

figure, and, at bottom, the ring R where a token circulates. The arrival of the token at

Alloci corresponds to an event on b, its departure to an event on q. The machine Mi can

make a request in the form of an event on a1. Alloci grants the resource to the machine

Mi by an event on p1. The machine Mi signals the end of its use of the resource by an

event on a0, which is acknowledged by Alloci in the form of an event on p0.

Initially, the token-ring interface is specified by the following trace structure:

pref ∗ [a1?; p1!; a0?; p0!]
(19)

||pref ∗ [b?; (q!|p1!; a0?; q!)]

This specification results from weaving two trace structures that describe the communic-

ations of the token-ring interface with the machine Mi and with the ring R, respectively.

The two trace stuctures interact through their common dependence on two events p1 and
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a0. Each trace structure may be decomposed into primitive elements. The substitution

and separation theorems may be applied, leading finally to a possible decomposition, as

shown graphically by Figure 13:

→ ( pref ∗ [a1?; p1!]

||pref ∗ [rq1?; q1!]

||pref ∗ [b?; (q1!|p1!)],

pref ∗ [rq1!; q1?], (20)

pref ∗ [a0?; p0!],

pref ∗ [a0?; q0!],

pref ∗ [(q1?|q0?); q!)] )

The first component is a sequencer (see Table 1), which is necessary for synchronising

the output p1 shared by the two trace structures defining the token-ring. The sequencer

also arbitrates between corresponding inputs. Other components describe an iwire, two

wires and a merge. Although they do not appear explicitly in decomposition (20), two

forks appear in Figure 13, as a consequence of double occurences of a0? and q1?

in (20).

The DI property of this implementation can be seen graphically on a space-time graph,

as in Figure 14. Two cases are shown in Figure 14. In the first case, the request a1 made

by the machine i is not granted, the token being sent back to the ring. When the token

arrives a second time, the resource is granted to the machine Mi, which was waiting.

This illustrates the non-deterministic behaviour of the module Alloc, which depends on

arbitration performed by the sequencer B. The figure also shows that the two forks, that

on q1 (output of B) and that defined by D, cannot create computation interferences, so

that no particular constraints are necessary. This results from the function of the sequencer

B, which is not perturbed whatever the order of the events on its inputs. The sequencer

B waits for an event on b to make a decision, and then arbitrates between the different

requests it has received.

As shown by the example of the token-ring interface, DI primitives and DI decompos-

ition may be used to generate modular compositions that are delay insensitive, and, as

shown with the help of space-time graphs, remain free of computing interferences. Delay-

insensitivity appears as a simple criterion for escaping problems raised by computing

interferences in a purely logically way, that is, without recourse to a detailed analysis of the

physical implementation of a circuit. The DI criterion allows one to treat asynchronous

circuits efficiently, as in the case of synchronous circuits, by allowing us to represent

them formally (in terms of trace structures). Although revealing a genuinely different

underlying structure, the causal constraints on asynchronous circuits, as exhibited by

space-time graphs, can, nonetheless, be embedded in a simple set of formal rules that limit

the definition and composition of DI circuits. In general, these rules allow DI circuits to

be decomposed into a number of DI primitive components that increases linearly with

the length of the circuit specification (Ebergen 1987).
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Fig. 14. Space-time graph of the token-ring interface

6. Conclusion

Without giving definite answers to the problems raised in the introduction, we have,

nevertheless, tried to provide some hints as to the essential role played by physical time

in computation. The necessary reference to physical time in physical implementations

of logical circuits forces one to give an explicit treatment of computation interferences.

These arise as obstructions when trying to make the causality of underlying logic circuits

coincide with the physical causality of their implementations. For synchronous circuits,

these may be avoided by ruling the whole circuit with a single clock, which thus provides

a global reference to a Newtonian time. In general, however, circuits must be considered

as asynchronous and physical space-time as relativistic. In the latter, not all points are

causally related, but only those for which one point falls within the light cone issuing

from the other. In this respect, asynchronous circuits and relativistic space-time share the

same founding point of view. Points derive from events and not the converse, propagating
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events being treated as primary entities and not as successions of points. The distinction

between two classes of points can also be seen in a simple way: two points are causally

related if and only if there exists a path between them using vertical or propagation

lines (in different spatial directions, but in the same time direction); on the other hand,

points defined on two different events originating from the same point are not causally

related (Russell 1927). Similarly, for a concurrent computation, each computing path

connects points that are causally related. Avoiding computing interferences corresponds

to requiring that different computing paths respect the same time ordering, but only for

pairs of causally related points.

Remedies for computing interferences in asynchronous circuits consist of recognising

paths that may conflict with a module specification, and in possibly delaying these paths

so that they respect a prescribed time ordering. This can be done either physically,

at the implementation level by introducing explicit time delays, or at the logical level,

by imposing specification rules that prevent the occurence of such conflicts. The latter

solution, by imposing delay insensitivity both on circuit specification and decomposition

in a consistent way, has the advantage of providing a purely logical characterisation of

the causal constraints. DI circuits then build a class that may be seen as intermediate

between synchronous circuits and general asynchronous circuits. They share with the

former the possibility of being completely characterised by formal expressions and rules.

But they rely on the same causal structure as the latter. Synchronous circuits rely on

time simultaneity classes, and thus on a causal structure that is typical of Newtonian

space-time. Asynchronous circuits, on another hand, rely on a consistent treatment of

propagation delays and time ordering, and hence on a causal structure that characterises

relativistic space-time.

Delay-insensitivity provides an interesting transition between local properties, such

as those defining sequential processors, and global ones, such as those exhibited by

distributed systems. But DI circuits hardly exhaust the computation possibilities brought

by the introduction of asynchronous circuits. The critical consequences of delay sensitivity

suggest we consider a further alternative when attempting to classify the different types

of computations, that is, those performed by synchronous, by DI asynchronous and by

DS (delay-sensitive) asynchronous circuits. Similarly, in the same way as asynchronous

computing machines may not always allow simulation by synchronous computing ma-

chines, one may infer that physical processes and physical laws, which intrinsically obey

relativistic causality, may be simulated by synchronous machines in particular cases only.

This hints at another advantage of computations based on asynchronous circuits, that is,

the ability to simulate real physical processes in a universal way.
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