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SUMMARY
In this paper, methods based on various spline techniques
for planning and fast modifications of a trajectory for robot
manipulators are investigated. Algebraic and trigonometric
splines, their combined use, and the use of the B-spline
technique are analyzed and compared in detail. In so doing,
we focus on the performance of sudden changes in a
predefined trajectory, e.g. obstacle avoidance in real-time
applications. Some comparative examples illustrate our
results.
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1. INTRODUCTION
The motion control of a robot manipulator is specified in
practical cases by the motion of the end-effector, which is
converted into the motion of joints by applying inverse
kinematics.1,2

In many situations, e.g. in a varying complex environ-
ment, the motion of the end-effector is specified at first as a
sequence of poses, which are calculated off-line with a
global path planner before starting the motion of the robot
manipulator.3 Then, these end-effector positions have to be
mapped into the joint space by applying inverse kinematics
and subsequently interpolated by means of suitable func-
tions in order to implement a typical motion controller in the
joint space.

In terms of interpolating functions, the algebraic (cubic)
splines are widely adopted in path planning because they
can assure the continuity of position, velocity and accelera-
tion commands for each joint.4 However, also B-splines5 and
trigonometric splines6 have been proven to be effective (see
e.g. references [7, 8]) for this task. Despite these approaches
being widely investigated, a thorough comparison, between
all of them in order to point out their pros and cons and
therefore to help the designer to choose the most suitable
one for a given application is still lacking in the literature.

Thus, the aim of this paper is to provide a detailed
comparison of algebraic and trigonometric splines as well as
cubic B-splines from the design point of view. In this
context we are especially interested in rapid modification of

the trajectory in a dynamic environment, for example in
order to avoid collision of the robot manipulator with an
obstacle, i.e. if the predefined trajectory were to be
intersected by a moving object. A new approach using
symmetrical corrections of three control points is proposed.
The advantage of the devised technique is that we can apply
it to an online collision avoidance between a robot
manipulator and obstacles independent of the complexity of
the system and its environment. The technique investigated
in this, paper was successfully applied to the redundant
large scale manipulator described in references [3, 9, 10].

This paper is organized as follows: In Section 2 the use of
three different spline techniques for the trajectory planning
problem and their potentiality to handle local path modifica-
tion is described. In Section 3 a local real-time modification
of the trajectory within the scope of the approaches
presented is investigated. In order to discuss and compare
these methods some examples are illustrated in Section 4
and discussed in Section 5. Conclusions are drawn in the
final section.

2. TRAJECTORY PLANNING USING VARIOUS
SPLINE TECHNIQUES
In the following, assume that we have a sequence
r=[r0, r1, . . . , rn] of intermediate positions that the end-
effector of the robot manipulator has to pass through at time
t=[t0, t1, . . . , tn], respectively. Now, the sequence of the
joint angles qi with r(qi )=ri can be computed by using
inverse kinematics. Consider also that the velocity at time t0

is v0 and at time tn is vn. Afterwards, we present approaches
to interpolate the function q(t) with q(ti )=qi.

A simple technique for constructing a trajectory if the
manipulator does not necessarily have to reach the desired
positions is a connection of the intermediate points with
linear functions and then an addition of parabolic blend
regions around each point. But, if the robot has to pass
precisely through the given points, interpolating cubic
splines are recommended. In this case continuity of velocity
and acceleration along the trajectory can even be guaran-
teed.

2.1. Algebraic cubic splines
Algebraic cubic splines are defined as a set of polynomial
functions

Qi (t)=ai t
3 +bi t

2 +ci t+di i=1, . . . , n, (1)

that represent the position function linking knot qi�1 and qi.
The values of the 4n coefficients can be determined by
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imposing the continuity of the velocity and acceleration
function over the whole trajectory, i.e. by considering the
following initial and final conditions

�Q1(t0)=q0 Q̇1(t0)=v0

Qn(tn)=qn Q̇n(tn)=vn

(2)

and for any intermediate point (i=1, . . . , n�1)

�Qi (ti )=qi Qi+1(ti )=qi

Q̇i (ti )=Q̇i+1(ti ) Q̈i (ti )=Q̈i+1(ti )
(3)

Note that in this framework, the initial and final accelera-
tions a0 and an cannot be fixed a priori. In order to do so, if
needed, a quintic polynomial for the first and last splines is
required, with the obvious drawback of allowing larger
overshoots in these parts of the trajectory and slightly
increasing the number of computations in the control
system. An alternative method is to add two “free” extra-
knots in the second and penultimate positions.4

2.2. Trigonometric splines
A trigonometric spline is defined as follows:6

Definition 1, An m-th order trigonometric spline function
y(t) with a total of 2m constraints in each of the n closed
arcs [ti�1, ti ] (i=1, . . . , n) is defined as

y(t)=yi (t) t�[ti�1,ti ] (4)

where yi (t) is given by

yi (t)=ai,0 +�m�1

k=1

(ai,k cos kt+bi,k sin kt)

+ai,m sin m�t� �2m�1

j=0

�i,j

2m� (5)

and �i,j are the values of t where yi (t) has a constraint
applied.

The existence and uniqueness of these functions are
guaranteed provided that, for any i and j, y i

(r)(�i,j ) is not
constrained unless y i

(r�1)(�i,j ) is also constrained
(r=1,2, . . . , m�1), where y(r) denotes the r-th order time
derivative of y. From (5) it appears that there are 2m
coefficients for each segment of the trigonometric spline, so
that 2m constraints on each segment have to be satisfied.
They can be chosen to be y(r)(ti )=y i

(r), i=0, . . . , n,
r=0, . . . , m�1. Of course, y i

(r)(ti
� )=y i

(r)(ti
+ ) must also hold

true if the trigonometric spline and its first (m�1)
derivatives have to be continuous. However, by constraining
the values of y i

(r)(ti ) rather than simply requiring continuity,
the determination of the coefficients is decoupled for each
spline segment.

In general, each trigonometric polynomial is normalized,
that is, the spline times �i := ti � ti�1 are expressed in
radians according to the following expression:

�i =
n

�

m
hi

Ttot

i=1, . . . , n, (6)

where Ttot :=�n
i=1 hi is the motion time (in seconds) of the

whole trajectory and hi is the time interval of the i-th
polynomial (in seconds). Note also that for each polynomial
we can easily impose ti�1 =0, and hence we have �i = ti.

The setting of the constraints y (r)(ti )=y i
(r),

r=0, . . . , m�1, i=0, . . . , n might not be intuitive to the
user, but a useful optimization procedure can be exploited in
order to determine the values that minimize an objective
function, such as the integral of the squared jerk function
over the whole trajectory.8 In this case the optimization
problem has a closed-form solution.

In a previous paper,11 it was stressed that for a standard
trajectory, cubic algebraic splines outperform third and
fourth order trigonometric ones, as they provide fewer
overshoots and lower values of maximum velocities and
accelerations. Actually, the use of trigonometric splines is
justified only if compared with the use of high-order
algebraic splines, as they provide less overshoot in this case.
Anyway, a combined use of cubic and trigonometric splines
can be successfully employed in order to perform an
obstacle avoidance task.

2.3. Cubic B-splines
The following is the definition of the B-spline:,

Definition 2. A cubic B-spline is defined by

C(t)=�n+1

j=�1

djNj,3(t), t�[t0,tn],

where dj are the control points and Nj,3(t) are the cubic B-
spline basis functions,

Nj,k(t)=�1 for t �j ≤ t< t�j+1,
0 otherwise

for k=0, (Nn+1,0(t�n+2) :=1), and

Nj,k(t)=
t� t�j

t�j+k � t�j
Nj,k�1(t)+

t�j+k+1 � t
t�j+k+1 � t�j+1

Nj+1,k�1(t)

for k>0, (j=�1, . . . , n+1), defined on the knot vector

t�=[t��1,t�0, . . . , t�n+5]

with t��1 = . . .= t�2 := t0, t�j+1 := tj�1, and t�n+2 = . . .= t�n+5 := tn for
j=2, . . . , n.

For generating the B-spline function q(t), which interpolates
the given intermediate positions q=[q0,q1, . . , qn], the
control points dj, j=0, . . . , n, (d�1 :=q0, dn+1 :=qn) have to
be calculated.

With the abbreviations for i=0, . . . , n�1

�ti:= ti+1 � ti, (�t�1 :=0,�tn :=0),

�i:=�ti�1 +�ti +�ti+1,

	i := (�ti )
2�i, (7)
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and for i=0, . . . , n�2


i :=�ti+1(�ti +�ti�1)�i+1 +�ti(�ti+1 +�ti+2)�i,

�i := (�ti+1 +�ti )�i�i+1, (8)

we obtain the following system of linear equations (see
reference [5]) for the set of control points di,

i=0, . . . , n:

1 0 0 . . . . . . 0 d0

	1 
0 	0 0 . . . d1

0 	2 
1 	1 0 . . . d2

� � · �
0 	n�2 
n�3 	n�3 0 dn�2

0 	n�1 
n�2 	n�2 dn�1

0 . . . . . . 0 0 1 dn

c1

q1�0

q2�1

= � .

qn�2�n�3

qn�1�n�2

c2

(9)

To fulfill the velocity conditions we have to use
c1 :=q0 +v0 · (t1 � t0) and c2 :=qn +vn · (tn�1 � tn); otherwise,
c1, c2 can be chosen arbitrarily.

3. LOCAL MODIFICATIONS OF A TRAJECTORY
IN JOINT SPACE
In the following we investigate the effect of a change in an
intermediate position qi of the trajectory, for example
because of the necessity to avoid an obstacle.3 We assume
that for qi the following is valid:

qnew
i :=qold

i +mi . (10)

3.1. Algebraic splines
In the algebraic cubic splines framework, in order to cope
with the substitution of the knot qold

i with qnew
i , preserving the

continuity of the velocity and acceleration function, the
whole trajectory has to be re-calculated by again solving the
linear system (3) with qnew

i instead of qold
i . Obviously, this

method cannot be applied if a real-time modification is
requested, i.e. if the task has been started and the robot is
following the trajectory. In case it is desired to retain the
algebraic splines framework, two spline segments of the
fifth order have to be adopted (of the fourth order if the
continuity of just the velocity function is desired) to connect
qi�1 to qnew

i and qnew
i to qi+1. This causes a large overshoot

with respect to the use of trigonometric and B-spline,
therefore increasing the risk of a collision. For these
reasons, this approach will not be considered in the
following.

3.2. Combined use of algebraic and trigonometric splines
The salient feature of trigonometric splines, i.e. the practical
feasibility of fixing the constraint values at the knots, makes
their adoption suitable for coping with local modifications
of the trajectory.11

Specifically, we assume that a trajectory has already been
planned by using cubic splines when the knot substitution
occurs. Third order trigonometric splines can be adopted
just to connect knots qi�1, q

new
i and qi+1 in order to preserve

the continuity of the acceleration function, without provid-
ing large overshoots (which would occur if algebraic splines
were used, since two polynomials of the fifth order are
needed). Thus, the risk of collisions is reduced. The use of
a fourth order trigonometric spline implies that the continu-
ity of the jerk function is guaranteed as well. Note that, in
order to give valuable results, the algorithm requires the
condition ti � ti�1 = ti+1 � ti to be valid and this condition has
to be imposed, if possible, if it is not naturally fulfilled by
the robot task.11 Further, the values of the constraints for the
trigonometric splines are selected by applying the optimiza-
tion procedure already mentioned8 (see Section 2.2). In any
case, the fact that this admits a closed-form solution and in
general only a local change in the trajectory is applied
makes the algorithm very suitable for implementation in a
real-time context.

3.3. Cubic B-splines
A fast response to moving obstacles in an environment can
be realized using B-spline techniques. The reason is that B-
spline basis functions are defined locally, i.e. changes in one
point of the control polygon affect the corresponding curve
only locally, and additionally, the region of influence of
each control point can be determined precisely.12

The change of the point qi affects at most three adjacent
control points di�1, di and di+1 of the cubic B-spline function
C(t). The trajectory remains unchanged for all parameter
values t with t�[t0,ti�2] or t�[t1+2,tn], resp., t�[t1,tn] for i=0
or t�[t0,tn�1] for i=n, because of the local supports of the B-
spline basis functions Ni,3(t).

In order to modify the tralectory with respect to the
change of point qi, the control point di can be displaced as
follows:12

d new
i =d old

i +ki · mi (11)

with (see (8))

ki :=�i�1 /
i�1 =
1

Ni,3(t�i+2)
=

1
Ni,3(ti )

.

With this displacement of di the trajectory will keep the
properties of interpolation and continuity at the point
ti, ti�{1, . . . , n�1}. For the proof see reference [13]. We
set d new

�1 :=d old
�1 +m0 for i=0, and d new

n+1 :=d old
n+1 +mn for i=n.

The property of interpolation is generally lost at the
points ti�1 and ti+1, i�{1, . . . , n�1}, since the adjacent
points of qi are located in the sphere of influence of the
changed control point di.
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Due to (11) the following is valid:

qnew
i±1 =qold

i±1 +
Ni,3(ti±1)
Ni,3(ti )

mi . (12)

The residual points qj ( j≠{i,i±1}) do not change.
To improve the properties of approximation at the points

ti±1, the following symmetrical correction with three control
points di�1, di and di+1 can be done: First, we restore the
interpolation condition at the points qi±1. For this reason we
displace the control points di±1 by the vectors �i±1 · mi with

�i±1 =�
Ni,3(ti±1)

Ni±1,3(ti±1)Ni,3(ti )
. (13)

Thus, we obtain with (12) and (13)

C new(ti±1)=qnew
i±1 ��i±1 Ni±1,3(ti±1)mi

=�qold
i±1 +

Ni,3(ti±1)
Ni,3(ti )

mi��
Ni,3(ti±1)
Ni,3(ti )

mi

=qold
i±1 =C old(ti±1) (14)

and

C new(ti)=qnew
i � (�i�1Ni�1,3(ti�1)+�i+1Ni+1,3(ti+1))mi

=qold
i +mi � (�i�1Ni�1,3(ti�1)+�i+1Ni+1,3(ti+1))mi

≠qold
i +mi (15)

Furthermore, in order to fulfill the interpolation condition
(10) we move the control point di again, this time by the
vector

�
�i�1Ni�1,3(ti�1)+�i+1Ni+1,3(ti+1)

Ni,3(ti )
· mi .

In total, by using this symmetrical correction with three
control points di�1, di and di+1 we fulfill the interpolation
condition (10) and reduce the displacements at points ti�1

and ti+1, by the following changes of control points:

d new
i±1 :=d old

i±1 �
Ni,3(ti±1)

Ni±1,3(ti±1)Ni,3(ti)
· mi

d new
i :=d old

i +
li

Ni,3(ti )
· mi (16)

with

li :=1+
Ni,3(ti�1)Ni�1,3(ti)
Ni�1,3(ti�1)Ni,3(ti )

+
Ni,3(ti+1)Ni+1,3(ti)
Ni+1,3(ti+1)Ni,3(ti )

.

In the special case of uniform parameterization, e.g. if ti := i,
an optimal displacement of control points due to the change
of qi using symmetrical corrections with five control points
is discussed in reference [12].

In that paper, starting with Definition 3 the following
Theorem 1 was proved:

Definition 3. A symmetrical correction K(5, mi) is called
optimal, if qnew

i =qold
i +mi and if the control points

qnew
i+j =qold

i+j +	j mi , j=±1, ±2, ±3, fulfill one of the following
criteria:

(a) the total amount of the displacement values
S :=�3

j=�3, j≠0 � 	j � is minimal (S-optimal),
(b) all �	j � are equal and minimal (uniformly optimal),
(c) 	max := �	j 0 � with �	j 0 �≥ �	j � for all j�{±1, ±2, ±3} is

minimal (Minmax-optimal).

Theorem 1 Let C(t) be a cubic B-spline interpolating
points qi with an underlying uniform parameteriz-
ation ti = i, i=0, . . . , n. Due to displacement qnew

i =qold
i

+mi, i�{1, . . . , n�1}, the S-optimal correction yields the
following new positions of control points:

d new
i :=d old

i +
45
26

mi ,

d new
i±1 :=d old

i±1 �
6
13

mi ,

d new
i±2 :=d old

i±2 +
3
26

mi ,

with an effect on the adjacent position points

qnew
i±3 =qold

i±3 +
1
52

mi ,

We see that to modify the trajectory due to the changes in an
environment only some displacements of control points are
necessary. Thus, the reaction of the manipulator to the
dynamic environment can be realized locally and rapidly,
making it suitable for real-time applications. The method is
easy to implement and realizes the modification of the
trajectory in a constant computation time independent of the
number n of the knots qi. It was successfully applied to the
control concept of the redundant large scale manipulator
described in references [10,12].

4. ILLUSTRATIVE EXAMPLES
As a first example, a simple trajectory is considered.
Assume the path has to connect the following intermediate
points: q=[120, 60, 80, 120, 0] (angles in degrees) at time
t=[0, 2, 5, 8, 10], respectively. Moreover, we set
v0 =v4 :=0.
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We notice no significant difference between the results
for the position (in [deg]), velocity (in [deg/s]) and
acceleration (in [deg/s2]) using algebraic (cubic), and B-
spline techniques. Now, we consider a relatively small
change that occurs in the third knot, q2 :=90. For the
trajectory determined by B-spline a replacement of only one
control point is necessary. A comparison between the B-
splines and the combined use of algebraic and trigonometric

splines is shown in Figures 1–3  for the position, velocity
and acceleration functions respectively. Note that for the
case in which the trigonometric splines are employed to
connect the cubic ones, both the third and fourth order
trigonometric splines have been evaluated. As the first and
last spline segments are cubic polynomials, they are the
same for the two cases. In case of a large change in the
trajectory, e.g. the third knot being replaced with q2 :=130

Fig. 1. Position function in case the trajectory is slightly modified due to a moving obstacle.

Fig. 2. Velocity function in case the trajectory is slightly modified due to a moving obstacle.
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degrees, regarding the B-spline approach, the correction
(16) with three control points was done. Figures 4–6 show
these results.

5. DISCUSSION
From the results presented, the main features and differ-
ences between the two approaches emerge. While, regarding
overshoots, it cannot be said that one approach is better than
the other, lower values of velocities and accelerations are

requested by using B-spline, although the maximum values
of these functions are kept at a reasonable level with the
trigonometric splines as well. On the other hand, in order to
pass precisely through the knots that are not affected by the
presence of an obstacle, the combined used of cubic and
trigonometric splines is necessary. Nonetheless, it can be
observed that for B-splines the displacements required for
the adjacent knots are small and can be arbitrarily
minimized moving some control points appropriately.

Fig. 3. Acceleration function in case the trajectory is slightly modified due to a moving obstacle.

Fig. 4. Position function in case of a large change in the trajectory.
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Furthermore, modification of the trajectory is simple to
realize and can be done in a constant time. Another
advantage of the B-spline technique is that for generating
the trajectory for n knots qi only a linear system with n+1
unknown quantities has to be solved instead of one with
4n�4 using the algebraic spline. An advantage of trigono-

metric splines is that they can assure the continuity of the
jerk function, if desired, by using a fourth order function. (It
can be seen that third and fourth order functions behave
similarly.) It has to be stressed again that in order to obtain
a good result, the same time intervals of the spline segments
that connect the new knot with the previous and the

Fig. 5. Velocity function in case of a large change in the trajectory.

Fig. 6. Acceleration function in case of a large change in the trajectory.
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following ones have to be imposed, and this fact might
prevent use of the method.

6. CONCLUSIONS
In this paper the problem of a real-time modification of a
trajectory for a robot manipulator has been addressed. Fast
changes at a joint level can be implemented either by using
B-splines or trigonometric ones. The main pros and cons of
the two approaches have been highlighted in order to permit
selection of the best one depending on the application.
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