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The paper is devoted to the development of the theory of self-adjoint operators in
Krein spaces (J-self-adjoint operators) involving some additional properties arising
from the existence of C-symmetries. We mainly focus on the recent notion of stable
C-symmetry for J-self-adjoint extensions of a symmetric operator S. The general
results involve boundary value techniques and reproducing kernel space methods, and
they include an explicit functional model for the class of stable C-symmetries. Some
of the results are specialized further by studying the case where S has defect numbers
〈2, 2〉 in detail.

1. Introduction

Let H be a Hilbert space with inner product (·, ·) and let J be a non-trivial fun-
damental symmetry, i.e. J = J∗, J2 = I, and J �= ±I. The space H equipped
with the indefinite inner product (indefinite metric) [x, y]J := (Jx, y), x, y ∈ H, is
called a Krein space (H, [·, ·]J). An operator A acting in H is called J-self-adjoint if
A∗J = JA i.e. if A is self-adjoint with respect to the indefinite metric [·, ·]J .

The development of PT -symmetric quantum mechanics (PTQM) during the last
decade (see [6,32,35] and the references therein) has given rise to many new math-
ematical problems in the theory of J-self-adjoint operators. For instance, one of
the key aspects of PTQM is the description of a hidden symmetry C for a given
pseudo-Hermitian Hamiltonian A in the domain of exact PT -symmetry [6]. By
analogy with [6], the definition of C-symmetry in Krein spaces can be formalized
as follows.

Definition 1.1. An operator A in a Krein space (H, [·, ·]J) has the property of
C-symmetry if there exists a bounded linear operator C in H such that

(i) C2 = I,

(ii) JC > 0,

(iii) AC = CA.
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Conditions (i) and (ii) are equivalent to the presentation C = JeY , where Y is
a bounded self-adjoint operator that anti-commutes with J . The properties of C
are nearly identical to those of the charge conjugation operator in quantum field
theory and C determines a new definite inner product (·, ·)C = [C·, ·]J = (eY ·, ·),
being equivalent to the initial one (·, ·).

If a J-self-adjoint operator A possesses the property of C-symmetry, then A turns
out to be self-adjoint with respect to (·, ·)C and the dynamics generated by A is
governed by a unitary time evolution. However, the operator C depends on the
choice of A and finding it is a non-trivial problem.

There have been many attempts to calculate the operator C [7–10,22,30] or the
metric operator Θ = eY = JC [26, 27, 31, 32] for various PT -symmetric models of
interest. Due to the complexity of the problem, it is unsurprising that the majority
of the available formulae are still approximative, usually expressed as leading terms
of perturbation series.

We investigate C-symmetries of J-self-adjoint extensions of a densely defined
symmetric operator S that commutes with J , i.e. SJ = JS. (This means that S is
simultaneously symmetric and J-symmetric.)

Definition 1.2. A J-self-adjoint extension A of S has the property of stable C-
symmetry if A and S have the property of C-symmetry realized by the same oper-
ator C.

Self-adjoint extensions of S that commute with J are trivial examples of J-self-
adjoint extensions with stable C-symmetry. In that case, C = J .

The set Σst
J of all J-self-adjoint extensions of S with stable symmetry can be

considered as an analogue of the domain of exact PT -symmetry [6] in the extension
theory framework.

If S has defect numbers 〈2, 2〉, then the non-triviality1 of Σst
J is equivalent to the

existence of J-self-adjoint extensions of S with empty resolvent set [28]. In that case
S commutes with a complex Clifford algebra CL2(J, R), where R is an additional
fundamental symmetry with JR = −RJ and all stable C-symmetries are expressed
in terms of CL2(J, R) [2, 18,28].

We shall propose a general method for the description of all possible stable
C-symmetries by applying a boundary value technique and a reproducing kernel
Hilbert space model associated with the Weyl function of S (see [5]); this method
relies on theorems 3.11, 3.15 and 3.18, below. In some sense this solves the prob-
lem of construction of stable C-symmetries for J-self-adjoint extensions of a simple
symmetric operator S with arbitrary defect numbers 〈n, n〉.

J-self-adjoint operators with stable C-symmetries admit detailed spectral analy-
sis [2] and the set Σst

J may be used for the explanation of exceptional points phe-
nomenon in PTQM, which arises at the boundary of the domain of exact PT -
symmetry (see [6,19,32] and the references therein). Our contribution to this promis-
ing and self-consistent topic has an introductory character and it consists in the
‘phase transition simulation at the boundary’ by means of various fundamental
decompositions of the Krein space (H, [·, ·]J) (see § 2.3).

This paper is organized as follows. Section 2, with the exception of § 2.3, contains
preliminary results related to Krein space theory and the boundary triplets method

1That is, Σst
J contains not only trivial self-adjoint extensions.
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in the extension theory. We have tried to emphasize the usefulness of the Krein space
ideology for the description of self-adjoint extensions of a symmetric operator.

In § 3, J-self-adjoint extensions of a symmetric operator S with stable C-symm-
etry are investigated. Let U = {Cα} be the collection of operators C (parametrized
by a set of indexes α ∈ D) which realize the property of C-symmetry for S (see
definition 1.1). The set ΥU of J-self-adjoint extensions A ⊃ S that commutes with
any Cα plays a principal role in our considerations. The descriptions for ΥU in
theorem 3.5 are analogous to the descriptions of self-adjoint extensions A ⊃ S
that commute with a family of unitary operators {Uα} satisfying the additional
condition U ∈ {Uα} ⇐⇒ U∗ ∈ {Uα} (see [20,23]).

If ΥU is non-empty,2 then there exists a boundary triplet (H, Γ0, Γ1) of S which
provides the images {Cα} of U = {Cα} in H with the preservation of all principal
properties of Cα (lemmas 3.7 and 3.10). This enables us to describe the elements of
Σst

J in terms of stable J -unitary operators of the Krein space (H, [·, ·]J ), where J
is the image of J (theorems 3.11 and 3.18). An ‘external’ description of the family
{Cα} (theorem 3.15) is obtained using a reproducing kernel Hilbert space model
associated with the Weyl function of S, including a functional analytic model for
the family U = {Cα} itself (see corollary 3.16). This leads to a characterization
of the resolvents of operators from Σst

J (theorem 3.20), which is essential for their
spectral analysis.

The description of {Cα} in theorem 3.15 gives a simple method for the construc-
tion of stable C-symmetries in the case of a symmetric operator S with arbitrary
defect numbers 〈n, n〉 (see remark 3.17). In the ‘exactly solvable’ case of defect
numbers 〈2, 2〉, the set U of stable C-symmetries is described explicitly in terms
of the Clifford algebra CL2(J, R) (see [28]). In § 4 we use this fact for the detailed
spectral analysis of operators from Σst

J . Together with example 4.6 we outline a
general scheme of possible applications (§ 4.3) that is particularly useful for the
study of differential operators with singular potentials and PT -symmetric bound-
ary conditions [1, 25,34].

Notation. D(A) denotes the domain of a linear operator A and A � D denotes
the restriction of A to a set D. The symbols [A, B] := AB − BA and {A, B} :=
AB + BA stand for the commutator and anti-commutator of the operators A and
B, respectively. The symbols σ(A) and ρ(A) denote the spectrum and the resolvent
set of A.

2. Preliminaries

2.1. Elements of the Krein space theory

Let (H, [·, ·]J) be a Krein space with a fundamental symmetry J . For the basic
theory of Krein spaces and operators acting therein we refer the interested reader
to [4].

The operator J determines the fundamental decomposition of H:

H = H+ ⊕ H−, H− = 1
2 (I − J)H, H+ = 1

2 (I + J)H. (2.1)

2The case ΥU = ∅ was considered in [29].
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A subspace L of H is called hypermaximal neutral if

L = L
[⊥] = {x ∈ H : [x, y]J = 0, ∀y ∈ L}.

A subspace L ⊂ H is called uniformly positive (respectively, uniformly negative) if
[x, x]J � a2‖x‖2 (respectively, −[x, x]J � a2‖x‖2) a ∈ R, a �= 0 for all x ∈ L. The
subspaces H± in (2.1) are examples of uniformly positive and uniformly negative
subspaces and, moreover, they are maximal, i.e. H+ (respectively, H−) is not a
proper subspace of a uniformly positive (respectively, negative) subspace.

Let L+(�= H+) be a maximal uniformly positive subspace. Then its J-orthogonal
complement L− = L

[⊥]
+ is a maximal uniformly negative subspace and the direct

J-orthogonal sum
H = L+[+̇]L− (2.2)

gives a fundamental decomposition of H. The subspaces L± in (2.2) can be described
as L+ = (I + X)H+ and L− = (I + X∗)H−, where X : H+ → H− is a strict
contraction and X∗ : H− → H+ is the adjoint of X.

The operator
T = XP+ + X∗P−

acting in H is called a transition operator from the decomposition (2.1) to the
decomposition (2.2). Obviously, T is self-adjoint and a strict contraction, which
anti-commutes with J and satisfies L+ = (I + T )H+,L− = (I + T )H−.

The projections PL± : H → L± onto L± with respect to the decomposition (2.2)
are determined by the formulae

PL− = (I − T )−1(P− − TP+), PL+ = (I − T )−1(P+ − TP−).

The bounded operator

C = PL+ − PL− = J(I − T )(I + T )−1 (2.3)

also describes the subspaces L± in (2.2):

L+ = 1
2 (I + C)H, L− = 1

2 (I − C)H (2.4)

and satisfies the conditions C2 = I, JC > 0, which are equivalent to the following
representation of C (see, for example, [17, lemma 2.8]):

C = JeY , {J, Y } = 0, (2.5)

where Y is a bounded self-adjoint operator.
Comparing (2.3) and (2.5) we obtain

T = (I − eY )(I + eY )−1 = 1
2 (e−Y/2 − eY/2)( 1

2 (e−Y/2 + eY/2))−1 = − tanh 1
2Y.

The decomposition H = JL+[+̇]JL− is dual to (2.2). Its transition operator
coincides with −T and the subspaces JL± of the dual decomposition are described
by (2.4) with the adjoint operator C∗ instead of C.

Let A be an operator in (H, [·, ·]J) with the property of C-symmetry (see defini-
tion 1.1). In view of (2.3) and (2.4), the operator A can be decomposed with respect
to (2.2):

A = A+ +̇ A−, A+ = A � L+, A− = A � L−. (2.6)
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In particular, if A is J-self-adjoint (see the definition in § 1), then its components
A± in (2.6) are self-adjoint operators in the Hilbert spaces L+ and L− with the
inner products [·, ·]J and −[·, ·]J , respectively. This simple observation leads to
the following statement, which is a direct consequence of the Phillips theorem [4,
chapter 2, corollary 5.20].

Proposition 2.1. A J-self-adjoint operator A has the property of C-symmetry if
and only if A is similar to a self-adjoint operator in H. If a J-self-adjoint operator
A has C-symmetry, then the adjoint operator A∗ has the C∗-symmetry.

2.2. Boundary triplets technique

Let S be a closed symmetric (densely defined) operator with equal defect numbers
in a Hilbert space H. A triplet (H, Γ0, Γ1), where H is an auxiliary Hilbert space
and Γ0, Γ1 are linear mappings from D(S∗) into H, is called a boundary triplet of
S∗ if the abstract Green identity

(S∗x, y) − (x, S∗y) = (Γ1x, Γ0y)H − (Γ0x, Γ1y)H, x, y ∈ D(S∗) (2.7)

holds and the map (Γ0, Γ1) : D(S∗) → H ⊕ H is surjective (see [12,13,16]).
Fix a boundary triplet (H, Γ0, Γ1) for S∗ and consider the linear operators

Ω+ =
1√
2
(Γ1 + iΓ0), Ω− =

1√
2
(Γ1 − iΓ0) (2.8)

acting from D(S∗) into H. It follows from (2.7) and (2.8) that

(S∗x, y) − (x, S∗y) = i[(Ω+x, Ω+y)H − (Ω−x, Ω−y)H]. (2.9)

The formula (2.9) can be rewritten as

(S∗x, y) − (x, S∗y) = i[Ψx, Ψy]Z , (2.10)

where

Ψ =
(

Ω+

Ω−

)
: D(S∗) → H =

(
H
H

)
, (2.11)

maps D(S∗) into the Krein space (H, [·, ·]Z) with the indefinite metric

[x , y ]Z = (x0, y0) − (x1, y1), x =
(

x0

x1

)
, y =

(
y0

y1

)
∈ H, (2.12)

and the fundamental symmetry Z = diag(I,−I).
An arbitrary closed extension A of S is completely determined by a subspace

L = ΨD(A) of H. In particular, due to (2.10), ΨD(A∗) = L[⊥], where [⊥] means the
orthogonal complement in the Krein space (H, [·, ·]Z). This leads to the following
statement.

Lemma 2.2. Self-adjoint extensions of S are in one-to-one correspondence with
hypermaximal neutral subspaces of the Krein space (H, [·, ·]Z).
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The Weyl function M(·) and the characteristic function Θ(·) of S associated with
(H, Γ0, Γ1) are defined as follows (see [12,24]):

M(µ)Γ0fµ = Γ1fµ, ∀fµ ∈ ker(S∗ − µI), ∀µ ∈ C− ∪ C+,

Θ(µ)Ω+fµ = Ω−fµ, Θ(µ̄)Ω−fµ̄ = Ω+fµ̄, ∀µ ∈ C+.

}
(2.13)

Note that Θ(µ) and M(µ) are connected via the Cayley transform

Θ(µ) = (M(µ) − iI)(M(µ) + iI)−1, µ ∈ C+. (2.14)

2.3. Fundamental decompositions depending on parameters

In what follows, the decomposition (2.2) is allowed to depend on parameters

H = L
α
+[+̇]Lα

−, α ∈ D ⊂ R
m. (2.15)

Observe that the subspaces Lα
± are determined uniquely by the family of transition

operators {Tα}α∈D.
We illustrate what may happen with the decomposition (2.15) when α tends to

a certain point α0 lying on the boundary ∂D of D. More precisely, assume that
Tα tends (in the strong sense) to a unitary operator Q in H when α → α0. Then
Q is a unitary and self-adjoint operator such that {J, Q} = 0. In that case, the
elements x+ + Tαx+, x+ ∈ H+, of Lα

+ converge to the elements of the subspace
L = {x+ + Qx+ : x+ ∈ H+}.

On the other hand, the elements x− + Tαx−, x− ∈ H−, of Lα
− converge to the

elements x− + Qx− of the same subspace L (since x− + Qx− = x+ + Qx+ for
x− = Qx+). This means that the ‘pointwise limit’ of Lα

± (as α → α0) coincides
with the hypermaximal neutral subspace

L = (I + Q)H+ = (I + Q)H− = (I + Q)H

of the Krein space (H, [·, ·]J).
Simultaneously, the subspaces JLα

± of the dual decomposition

H = JL
α
+[+̇]JL

α
− (2.16)

‘tend’ to the dual hypermaximal neutral subspace

L
� = JL = (I − Q)H+ = (I − Q)H− = (I − Q)H as α → α0

Therefore, the limits α → α0 of the decompositions (2.15) and (2.16) give rise to a
new decomposition

H = L[+̇]L�, (2.17)

which turns out to be fundamental in the new Krein space (H, [·, ·]Q) with the
fundamental symmetry Q. The original J and the new Q fundamental symmetries
are generators of the Clifford algebra CL2.

The following examples illustrate the phenomenon described above.

Example 2.3. Let R be a unitary and self-adjoint operator in H which anti-
commutes with J , i.e. {J, R} = 0. Then the operator

Rω = ReiωJ = R[cos ω + i(sinω)J ], ω ∈ [0, 2π), (2.18)

is also unitary and self-adjoint in H and, furthermore, {J, Rω} = 0.
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The operators

Cχ,ω = JeχRω = J [(cosh χ)I + (sinhχ)Rω], χ ∈ R, (2.19)

satisfy the conditions C2
χ,ω = I and JCχ,ω > 0 and they are also defined by (2.3)

with
Tχ,ω = −(tanh 1

2χRω) = −(tanh 1
2χ)Rω, χ ∈ R.

The operators Cχ,ω (or Tχ,ω) determine the subspaces

L
χ,ω
± = 1

2 (I ± Cχ,ω)H = (I + Tχ,ω)H±, α = (χ, ω) ∈ D = R × [0, 2π).

If χ → ∞, then Tχ,ω tends to a unitary operator Q = −Rω. The corresponding
subspaces L

χ,ω
± converge pointwise to the hypermaximal neutral subspace L =

(I − Rω)H of the Krein space (H, [·, ·]J).
Similarly, when χ → −∞, the subspaces of the dual decomposition JL

χ,ω
± =

(I − Tχ,ω)H± tend to the dual hypermaximal neutral subspace L� = (I + Rω)H.
The ‘limiting’ subspaces L and L� give rise to the fundamental decomposition of
the Krein space (H, [·, ·]Q) with Q = −Rω.

Example 2.4. Let (H, Γ0, Γ1) be a boundary triplet of a symmetric operator S and
let (H, [·, ·]Z) be the corresponding Krein space defined by (2.2). The fundamental
decomposition of (H, [·, ·]Z) has the form

H =
(

H
0

)
⊕

(
0
H

)
, H+ =

(
H
0

)
, H− =

(
0
H

)
. (2.20)

According to (2.10), the subspaces

Lµ
+ = Ψ ker(S∗ − µI), Lµ

− = Ψ ker(S∗ − µ̄I), µ ∈ C+, (2.21)

are, respectively, uniformly positive and uniformly negative in the Krein space
(H, [·, ·]Z) and they form a Z-orthogonal decomposition (see (2.15))

H = Lµ
+[+]Lµ

−, µ ∈ D = C+, (2.22)

The corresponding family of transition operators {Tµ}µ∈C+ from the fundamental
decomposition (2.20) to (2.22) has the operator-matrix form (with respect to (2.20))

Tµ =
(

0 Θ(µ̄)
Θ(µ) 0

)
, µ ∈ C+, Θ(µ̄) = Θ∗(µ), (2.23)

where Θ(µ) is the characteristic function of S associated with the boundary triplet
(H, Γ0, Γ1).

Remark 2.5. The decomposition (2.22) depends on the choice of the boundary
triplet (H, Γ0, Γ1) which is determined by the mapping Ψ (see (2.11))(

Γ0x

Γ1x

)
= BΨx, x ∈ D(S∗), B =

1√
2

(
−iI iI
I I

)
. (2.24)
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Let U be an arbitrary Z-unitary operator in the Krein space (H, [·, ·]Z) and
let ΨU = UΨ . Taking (2.24) into account, we conclude that U determines a new
boundary triplet (H, ΓU

0 , ΓU
1 ) of S∗, where(
ΓU

0 x

ΓU
1 x

)
= BΨUx, x ∈ D(S∗).

In that case, H = ULµ
+[+]ULµ

−, where Lµ
± are defined by (2.21). The family of tran-

sition operators {TU
µ }µ∈C+ is determined in the same manner as (2.23) by the

characteristic function ΘU (µ) of S in (H, ΓU
0 , ΓU

1 ) and ΘU (µ) can be expressed via
the Krein–Shmul’yan transformation (see [15])

ΘU (µ) = (U10 + U11Θ(µ))(U00 + U01Θ(µ))−1,

where the bounded operators Uij ∈ B[H] originate from the decomposition U =
(Uij)1i,j=0 with respect to (2.20).

Let r be a real point of regular type of S. Then the operator

Ar = S∗ � D(Ar), D(Ar) = D(S) +̇ ker(S∗ − rI) (2.25)

is a self-adjoint extension of S and Lr = ΨD(Ar) is a hypermaximal neutral subspace
in (H, [·, ·]Z). Therefore, Lr = (I + Xr)H+, where Xr is a unitary mapping of H+
onto H−. It follows from the results of [24,33] that

Xr = Θ(r) = s − lim
µ→r

Θ(µ),

X−1
r = X∗

r = Θ−1(r) = s − lim
µ̄→r

Θ(µ̄),

where µ ∈ C+. This means that the transition operators {Tµ}µ∈C+ determined by
(2.23) converge (in the strong sense) to

Qr =
(

0 Θ−1(r)
Θ(r) 0

)
.

The operator Qr is self-adjoint and unitary in the Hilbert space H with the inner
product (·, ·) = [Z·, ·]Z and, moreover, {Z, Qr} = 0.

Thus, if µ ∈ C+ tends to a real point of regular type r of S, then the subspaces
Lµ

+ and Lµ
− in (2.22) converge to the hypermaximal neutral subspace

Lr = (I + Θ(r))H+ = (I + Θ−1(r))H− = (I + Qr)H.

Furthermore, the dual subspaces ZLµ
± tend to the dual hypermaximal neutral

subspace

L�
r = ZLr = (I − Θ(r))H+ = (I − Θ−1(r))H− = (I − Qr)H

of the Krein space (H, [·, ·]Z). The subspaces Lr and L�
r give rise to a decomposition

H = Lr[+̇]L�
r, which is fundamental in the new Krein space (H, [·, ·]Qr ).
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3. J-self-adjoint operators with stable C-symmetry

3.1. Definition of stable C-symmetry

Let S be a closed densely defined symmetric operator in the Hilbert space H with
equal defect numbers. In what follows, we suppose that S commutes with J , i.e.

[S, J ] = 0. (3.1)

Denote by U = {Cα}α∈D the collection of all possible operators C (parametrized
by a set of indices α ∈ D) which realize the property of C-symmetry for S (in the
sense of definition 1.1).

Lemma 3.1 (Kuzhel and Trunk [28]). The set U is non-empty (since J ∈ U) and
C ∈ U if and only if C∗ ∈ U.

It follows from lemma 3.1 that

[S, C] = [S, C∗] = [S∗, C] = [S∗, C∗] = 0, ∀C ∈ U. (3.2)

Denote by ΣJ the set of all J-self-adjoint extensions of S, i.e.

A ∈ ΣJ ⇐⇒ A ⊃ S and A∗J = JA.

It follows from (3.1) that A ∈ ΣJ ⇐⇒ A∗ ∈ ΣJ .

Definition 3.2. We will say that an operator A ∈ ΣJ belongs to the set Σst
J of

stable C-symmetry if A has the property of C-symmetry realized by an operator
C ∈ U.

Obviously, this definition is equivalent to the definition 1.2 in § 1, i.e. the condition
A ∈ Σst

J means that the C-symmetry property of the operators A and S is realized
by the same operator C.

Lemma 3.3. The following relation holds: A ∈ Σst
J ⇐⇒ A∗ ∈ Σst

J .

Proof. Let A ∈ Σst
J . Then there exists an operator C ∈ U commuting with S and

A. By (3.2), [S, C∗] = 0. On the other hand, [A∗, C∗] = 0 due to proposition 2.1.
Therefore, S and A∗ have the same C∗-symmetry. Lemma 3.3 is proved.

Remark 3.4. An arbitrary operator Cα from U = {Cα}α∈D determines a new
definite inner product

(·, ·)α = [Cα·, ·]J = (JCα·, ·) (3.3)

on the Krein space (H, [·, ·]J), which is equivalent to the initial inner product (·, ·) =
[J ·, ·]J . The operator S remains symmetric for any choice of α ∈ D and an arbitrary
A ∈ Σst

J is, in fact, a self-adjoint extension of S with respect to a certain choice of
α ∈ D.

3.2. The set ΥU

Denote by ΥU the set of all J-self-adjoint extensions A ∈ ΣJ which commute with
every operator C ∈ U, i.e.

A ∈ ΥU ⇐⇒ A ∈ ΣJ and [A, C] = 0, ∀C ∈ U.
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Obviously, ΥU ⊂ Σst
J ⊂ ΣJ . It follows from remark 3.4 that an operator A ∈ ΥU

is a self-adjoint extension of S for any choice of inner product (·, ·)α. In particular,
A is a self-adjoint extension of S (since (·, ·)α = (·, ·) for Cα = J).

Theorem 3.5. The following statements are true:

(i) if r is a real point of regular type of S, then the operator Ar defined by (2.25)
belongs to ΥU;

(ii) if A ∈ ΥU, then among all self-adjoint extensions A′ ⊃ S transversal to A,
there exist at least one belonging to ΥU;

(iii) if S is non-negative, then its Friedrichs and Krein–von Neumann extensions
belong to ΥU.

Proof. (i) By virtue of (3.2), [S∗, C] = 0 for any C ∈ U. This implies that

C(ker(S∗ − µI)) = ker(S∗ − µI), ∀µ ∈ C (3.4)

(since C2 = I). Using the definition (2.25) of Ar and (3.4) for µ = r, we get
[Ar, C] = 0. Hence, Ar ∈ ΥU.

(ii) According to the classical von Neumann formulae, an arbitrary self-adjoint
extension A of S is uniquely determined by a unitary mapping V : ker(S∗ + iI) →
ker(S∗ − iI) such that

D(A) = D(S) +̇{x−i + V x−i : ∀x−i ∈ ker(S∗ + iI)}. (3.5)

Let A ∈ ΥU. Then A is self-adjoint and the corresponding unitary mapping V
commutes with any C ∈ U (due to (3.4)). Considering the self-adjoint extension
A′ ⊃ S determined by the unitary mapping V ′ = −V in (3.5), we obtain that
A′ ∈ ΥU and D(A) ∩ D(A′) = D(S), D(A) ∪ D(A′) = D(S∗). Therefore, A and A′

are transversal extensions of S.

(iii) The Friedrichs extension AF and the Krein–von Neumann extension AN of S
can be characterized as follows (see [3] for the densely defined case and [21] for the
general case).

If {f, f ′} ∈ S∗, then {f, f ′} ∈ AF if and only if

inf{‖f − h‖2 + (f ′ − h′, f − h) : {h, h′} ∈ S} = 0. (3.6)

If {f, f ′} ∈ S∗, then {f, f ′} ∈ AN if and only if

inf{‖f ′ − h′‖2 + (f ′ − h′, f − h) : {h, h′} ∈ S} = 0. (3.7)

Since [S∗, C] = [S, C] = 0 for any C ∈ U, formulae (3.6) and (3.7) imply that
AF and AN are decomposed with respect to the decomposition (2.2) (with the
subspaces L± determined by C):

AF = AF+ +̇ AF−, AN = AN+ +̇ AN−,

where AF± and AN± are the Friedrichs extension and the Krein–von Neumann
extension of the symmetric operators S � L± in the Hilbert spaces L±, respectively.
These decompositions immediately yield the relations [AF, C] = [AN, C] = 0. The-
orem 3.5 is proved.

https://doi.org/10.1017/S0308210511001387 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511001387


On J-self-adjoint operators with stable C-symmetries 151

Remark 3.6. It may happen that the set ΥU is empty. For instance, let S1 and
S2 be symmetric operators with defect numbers 〈0, 1〉 and 〈1, 0〉 acting in Hilbert
spaces H1 and H2, respectively. Then S = S1 ⊕ S2 is a symmetric operator in the
Hilbert space H = H1 ⊕ H2 with defect numbers 〈1, 1〉. The operator S commutes
with the fundamental symmetry J = I ⊕ −I in H.

Assume that A ∈ ΥU. Then A is a self-adjoint extension of S and [A, J ] = 0.
Therefore, A � H1 is a self-adjoint extension of S1. However, this is impossible.
Thus, ΥU = ∅.

3.3. Description of Σst
J

The description of Σst
J requires an appropriate boundary triplet (H, Γ0, Γ1), in

which the images of U = {Cα}α∈D exist in the parameter space H.

Lemma 3.7. For each A ∈ ΥU, there exists a boundary triplet (H, Γ0, Γ1) for S∗

such that D(A) = kerΓ0 and the formulae

CαΓ0f = Γ0Cαf, CαΓ1f = Γ1Cαf, ∀α ∈ D, ∀f ∈ D(S∗) (3.8)

correctly define the operator family {Cα}α∈D in H. If S is a simple symmetric
operator, then the correspondence Cα → Cα established by (3.8) is injective.

Proof. Let A ∈ ΥU. Then the corresponding unitary mapping V : ker(S∗ + iI) →
ker(S∗ − iI) in (3.5) commutes with the family U = {Cα}. Now introduce the
boundary triplet (H, Γ0, Γ1), where H = ker(S∗ − iI) and

Γ0x = xi − V x−i, Γ1x = ixi + iV x−i, x = u + x−i + xi ∈ D(S∗),

with x±i ∈ ker(S∗ ∓ iI).
Since CαV = V Cα, the restriction Cα = Cα � ker(S∗ − iI) is an operator in H

and it satisfies the relations in (3.8). By construction, D(A) = kerΓ0 (see (3.5)).
Let us assume that (3.8) gives the same image C for two different C-symmetries

Cα1 and Cα2 of S. Then (Cα1 − Cα2)D(S∗) ⊂ D(S). Combining this relation with
(3.4), we conclude that Cα1fµ = Cα2fµ for every fµ ∈ ker(S∗ − µI) and µ ∈ C \ R.
Since the symmetric operator S is simple, this implies that Cα1 = Cα2 . Lemma 3.7
is proved.

Remark 3.8. If a boundary triplet (H, Γ0, Γ1) of S∗ satisfies (3.8), then the asso-
ciated transversal extensions A0 = S∗ � ker Γ0 and A1 = S∗ � ker Γ1 belong to ΥU.
This means that boundary triplets (H, Γ0, Γ1) with the properties (3.8) exist if and
only if the set ΥU is non-empty.

The existence of a boundary triplet (H, Γ0, Γ1) for S∗, which satisfies the prop-
erties in (3.8), will guarantee a couple of useful properties for the operators Cα

and also some important relations between the extensions of S and the parameters
corresponding to them in H.

Lemma 3.9. Let (H, Γ0, Γ1) be a boundary triplet for S∗ with the properties (3.8).
Then the associated γ-field γ(·) and Weyl function M(·) satisfy the relations

γ(λ)Cα = Cαγ(λ) and [Cα, M(λ)] = 0 (3.9)

for all λ ∈ C+ ∪ C− and α ∈ D.
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Proof. Since Cα(ker(S∗ − λ)) = ker(S∗ − λ) (see (3.4)), each of the identities in
(3.9) follows easily from (3.8) by applying the formula γ(λ) = (Γ0 � ker(S∗ − λ))−1

and the definition of M(λ) in (2.13).

The next lemma concerns the class of operators {Cα}α∈D appearing in lemma 3.7.
When Cα = J , the special notation J is used for the corresponding intertwining
operator Cα in (3.8), i.e. J Γ0 = Γ0J and J Γ1 = Γ1J .

Lemma 3.10. Let (H, Γ0, Γ1) be a boundary triplet of S∗ with properties (3.8). Then
the intertwining operators Cα satisfy the relations C2

α = I, J Cα > 0, and the oper-
ator J is a fundamental symmetry in the auxiliary Hilbert space H.

Proof. The identity C2
α = I immediately follows from (3.8) and the corresponding

identity C2
α = I. Furthermore, [S∗, J ] = 0 due to (3.1). Taking this relation into

account and considering (2.9) with Jx and Jy instead of x and y, it follows that J
is unitary in H. This, together with the identity J 2 = I, leads to the fact that J
is a self-adjoint operator. Hence, J is a fundamental symmetry in H.

Since [S∗, Cα] = 0 for every α ∈ D, one can rewrite (2.9) by substituting JCαx
instead of x as follows:

(S∗x, y)α − (x, S∗y)α = i[(J CαΩ+x, Ω+y)H − (J CαΩ−x, Ω−y)H], (3.10)

where (·, ·)α = (JCα·, ·). Now, by putting x = y = fµ ∈ ker(S∗ − µI), µ ∈ C+,
in (3.10) and recalling the definition (2.13) of the characteristic function Θ(µ), we
obtain

2(Im µ)(fµ, fµ)α = (J Cαh, h)H − (J CαΘ(µ)h, Θ(µ)h)H, (3.11)

where h = Ω+fµ is an arbitrary element of H (since Ω+ maps ker(S∗ − µI) onto
H). Due to (2.13) and (3.8), [Θ(µ), Cα] = 0 for all µ ∈ C±. Hence, (3.11) implies
that

(J Cα(I − Θ∗(µ)Θ(µ))h, h)H = (J CαFh, Fh)H > 0,

where F = (I − Θ∗(µ)Θ(µ))1/2 is an invertible operator in H (since ‖Θ(µ)‖ =
‖Θ∗(µ)‖ < 1) such that [F, Cα] = 0. Therefore, J Cα > 0. Lemma 3.10 is proved.

Theorem 3.11. Let (H, Γ0, Γ1) be a boundary triplet of S∗ with the properties
(3.8). Then an arbitrary A ∈ Σst

J admits the presentation

A = S∗ � {f ∈ D(S∗) : KΩ+f = Ω−f}, (3.12)

where Ω± are defined by (2.8) and K is a stable J -unitary operator in the Krein
space (H, [·, ·]J ).

Proof. It follows from (2.5) and lemma 3.10 that Cα = J eYα , where Yα is a bounded
self-adjoint operator in H and {J ,Yα} = 0.

Since the operator S∗ is still adjoint for the symmetric operator S with respect
to (·, ·)α, the formulae (2.8), (2.9) and (3.10) imply that (H, eYα/2Γ0, eYα/2Γ1) is a
boundary triplet for S∗ acting in the Hilbert space H with the inner product (·, ·)α.

Let A ∈ Σst
J . Then [A, Cα] = 0 for a certain choice of α ∈ D and A is a self-adjoint

extension of S with respect to (·, ·)α. Hence (see [16]),

A = S∗ � {f ∈ D(S∗) : WeYα/2Ω+f = eYα/2Ω−f},
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where W is a unitary operator in the Hilbert space H. The obtained description of
A leads to (3.12) with

K = e−Yα/2WeYα/2. (3.13)

Since the adjoint3 operator A∗ is determined by (3.12) with (K∗)−1 (see [16]),
the relation A∗J = JA means that (K∗)−1J = J K. Therefore, K is a J -unitary
operator in the Krein space (H, [·, ·]J ).

It follows from (3.13) that ‖Kn‖ < const., for all n ∈ Z. Hence, K is a stable
J -unitary operator (see, for example, [4]). Theorem 3.11 is proved.

Proposition 3.12. Formula (3.12) determines an operator A ∈ Σst
J , A ∈ ΥU, if

and only if the corresponding J -unitary operator K has the property of C-symmetry
realized by some operator Cα from {Cα}α∈D (respectively, by every operator Cα from
{Cα}α∈D).

Proof. If A ∈ Σst
J , then [A, Cα] = 0 for a certain choice of α ∈ D. This means that

Cα : D(A) → D(A). By (2.8) and (3.8), CαΩ± = Ω±Cα. Combining this with (3.12)
and taking into account that C2

α = I, we obtain [K, Cα] = 0.
Conversely, if A is determined by (3.12) and [K, Cα] = 0 for a certain operator

Cα ∈ {Cα}α∈D, then, for its ‘preimage’ Cα (see (3.8)), the relation Cα : D(A) →
D(A) holds. This means that [A, Cα] = 0 (since [S∗, Cα] = 0). Hence, A ∈ Σst

J .

Remark 3.13. Formula (3.12) establishes a bijection between the elements of Σst
J

and some subset of the set of stable J -unitary operators K in (H, [·, ·]J ). This subset
is uniquely determined by the additional assumption that K has the property of C-
symmetry realized by an operator from the image {Cα}α∈D of the set {Cα}α∈D (see
lemma 3.7). However, it is not easy to apply this sort of definition. A more appro-
priate external description for {Cα}α∈D is established in the next subsection using
reproducing kernel Hilbert space models associated with Nevanlinna functions.

3.4. Reproducing kernel Hilbert space models

Let M(·) be a Weyl function of the symmetric operator S associated with the
boundary triplet (H, Γ0, Γ1). The corresponding Nevanlinna kernel NM (ξ, µ) on
(C+ ∪ C−) × (C+ ∪ C−) is defined as

NM (ξ, µ) :=
M(µ) − M(ξ̄)

µ − ξ̄
, µ, ξ ∈ C+ ∪ C−, ξ �= µ̄. (3.14)

The kernel NM (ξ, µ) is Hermitian, holomorphic and non-negative. The correspond-
ing reproducing kernel Hilbert space will be denoted by HM . The space HM consists
of H-valued holomorphic vector functions on C+ ∪C− obtained as the closed linear
span of functions µ → NM (ξ, µ)f , ξ ∈ C+ ∪ C−, f ∈ H, which is provided with the
scalar product determined by

≺NM (ξ, ·)f,NM (λ, ·)g� := (NM (ξ, λ)f, g)H, f, g ∈ H, ξ, λ ∈ C±.

The functions φ(·) ∈ HM satisfy the reproducing kernel property

≺φ(·),NM (λ, ·)g� = (φ(λ), g)H, g ∈ H, λ ∈ C±. (3.15)
3A∗ denotes the adjoint with respect to the initial scalar product (·, ·) of H.
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The reproducing kernel Hilbert space HM gives rise to a useful model representa-
tion of the symmetric operator S and the associated boundary mappings. The next
statement contains a lot of relevant results (see [5] for a proof and further details).

Proposition 3.14. Let M(·) be a Weyl function of a simple symmetric operator
S. Then

(i) the linear relation SM = {{φ, ψ} ∈ H2
M : ψ(λ) = λφ(λ)} is a symmetric

operator in HM which is unitarily equivalent to S,

(ii) the linear relation

T = {{φ, ψ} ∈ H
2
M : ψ(λ) − λφ(λ) = c1 + M(λ)c2, c1, c2 ∈ H}

determines the adjoint S∗
M of SM in HM ,

(iii) the operators

ΓM
0 {φ, ψ} = c2, ΓM

1 {φ, ψ} = −c1, {φ, ψ} ∈ T

form a boundary triplet (H, ΓM
0 , ΓM

1 ) for S∗
M ,

(iv) the Weyl function of SM associated with (H, ΓM
0 , ΓM

1 ) coincides with M(·).

Proposition 3.14 yields an explicit description for the set {Cα}α∈D.

Theorem 3.15. Let S be a simple symmetric operator, let (H, Γ0, Γ1) be a boundary
triplet for S∗ with the properties (3.8), and let M(·) be the associated Weyl function.
Then a bounded operator C in H belongs to the set {Cα}α∈D if and only if

C2 = I, (3.16 a)
J C > 0, (3.16 b)

[C, M(λ)] = 0, ∀λ ∈ C±. (3.16 c)

Proof. If C ∈ {Cα}α∈D, then (3.16) holds by lemma 3.9 and lemma 3.10.
Now the converse will be proved. If C satisfies (3.16), then its adjoint C∗ also

satisfies (3.16). Hence, it follows from (3.14) and (3.16 c) that the operators C and
C ′,

C [NM (λ, ·)f ] := NM (λ, ·)Cf,

C ′[NM (λ, ·)f ] := NM (λ, ·)C∗f,

are well-defined on the linear span of functions {NM (λ, ·)f}, λ ∈ C+ ∪ C−, f ∈ H.
Moreover, (3.15) together with (3.14) and (3.16 c) implies that

‖NM (λ, ·)Cf‖2
HM

= (NM (λ, λ)Cf, Cf)H

� ‖C‖2
H‖(NM (λ, λ)f, f)H

= ‖C‖2
H‖NM (λ, ·)f‖2

HM
.
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Thus, C and, similarly, C ′ is continuous. Hence, C and C ′ can be extended by
continuity onto the whole space HM . Using (3.15) twice gives

≺φ(·),NM (λ, ·)C∗f� = (φ(λ), C∗f)H

= (Cφ(λ), f)H

and

≺φ(·),NM (λ, ·)C∗f� = ≺φ(·),C ′[NM (λ, ·)f ]�
= ≺C ′∗[φ(·)],NM (λ, ·)f�
= ((C ′∗[φ(·)])(λ), f)H.

Comparing the right-hand sides, we obtain (C ′∗[φ(·)])(λ) = Cφ(λ) for all λ ∈ C+ ∪
C−. This means that C ′∗ = C and that the action of C on an arbitrary H-valued
function φ(·) ∈ HM is realized via the action of C on the vectors φ(λ) ∈ H, i.e.

(C [φ(·)])(λ) ≡ Cφ(λ), ∀λ ∈ C±. (3.17)

Therefore, C 2 = I (since C2 = I) and it is clear from part (i) of proposition 3.14
that C commutes with SM .

Repeating the arguments above for the case where C = J , we obtain a funda-
mental symmetry J in HM defined by the formula

(J[φ(·)])(λ) ≡ J φ(λ). (3.18)

Furthermore, the condition JC > 0 is satisfied. To see this, observe that (3.14)–
(3.16) imply that

≺(JC )NM (λ, ·)f,NM (λ, ·)f� = (NM (λ, λ)J Cf, f)H

= (J CNM (λ, λ)1/2f,NM (λ, λ)1/2f)H

� γ(NM (λ, λ)1/2f,NM (λ, λ)1/2f)H

= γ≺NM (λ, ·)f,NM (λ, ·)f�

for all λ ∈ C+ ∪ C− and f ∈ H, and for some γ > 0, since J C > 0 in H. This
implies that JC � γI, since JC is continuous in HM .

Thus, starting with an operator C satisfying (3.16), one can construct the operator
C , which realizes the property of C-symmetry for the symmetric operator SM in
the Krein space (HM , [·, ·]J).

By proposition 3.14, SM and S have the same Weyl function M(·) associated with
the boundary triplets (H, ΓM

0 , ΓM
1 ) and (H, Γ0, Γ1), respectively. Therefore, there

exists a unitary mapping U : HM
onto−−−→ H such that SM = U−1SU and ΓM

j = ΓjU ,
j = 0, 1 (see [14, theorem 3.9]).

Let us show that U can be chosen in such a way that

J = U−1JU, (3.19)

where J is defined by (3.18). Indeed, it follows from (3.1) and (3.8) that M(·) =
M+(·)⊕M−(·), where the decomposition is with respect to the fundamental decom-
position H = H+ ⊕ H− of the Krein space (H, [·, ·]J ). Furthermore, M±(·) are the
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Weyl functions of the symmetric operators S± = S � H± acting in subspaces H± of
the fundamental decomposition (2.1) of the Krein space (H, [·, ·]J).

Let HM± be the reproducing kernel Hilbert spaces constructed by M±(·). In view
of (3.18), HM = HM+ ⊕ HM− is the fundamental decomposition of the Krein space
(HM , [·, ·]J) and one has SM = SM+ ⊕ SM− with respect to this decomposition.
The pairs of operators SM+ , S+ and SM− , S− have the Weyl functions M+(·)
and M−(·), respectively. These functions M±(·) are associated with the boundary
triplets (H±, Γ

M±
0 , Γ

M±
1 ) and (H±, Γ±

0 , Γ±
1 ) of S∗

M±
and S∗

±, respectively. Here
Γ

M±
j are defined according to statement (iii) of proposition 3.14 and Γ±

j are the
restrictions of Γj onto D(S∗

±). Without loss of generality, one can choose unitary
mappings U± : HM±

onto−−−→ H± such that SM± = U−1
± S±U± and Γ

M±
j = Γ±

j U±. In
that case the operator U = U+ ⊕ U− satisfies (3.19).

It follows from (3.19) that the set U = {U−1CαU}α∈D contains all possible C-
symmetries of SM in the Krein space (HM , [·, ·]J). Therefore, the operator C defined
by (3.20) belongs to U and C = U−1CαU for a certain choice of α ∈ D. In that
case, taking (3.8) into account, we obtain

ΓM
j C = ΓM

j U−1CαU = ΓjCαU = CαΓjU = CαΓM
j , j = 0, 1.

On the other hand, in view of (3.17) and statements (ii) and (iii) of proposi-
tion 3.14, we have ΓM

j C = CΓM
j . Consequently, C = Cα. Theorem 3.15 is proved.

Note that (3.16 c) in theorem 3.15 implies the description (3.17) in HM and the
fact that the boundary triplet (H, ΓM

0 , ΓM
1 ) for S∗

M in proposition 3.14 admits the
properties in (3.8). In fact, the proof of theorem 3.15 gives a functional model for
the family U in HM .

Corollary 3.16. Let HM be the reproducing kernel space associated with the Weyl
function M(·) acting in H, and let SM be as in proposition 3.14. Then the family
U = {Cα} of all C-symmetries for SM in HM consists of operators

(Cα[φ(·)])(λ) ≡ Cαφ(λ), φ(·) ∈ HM , λ ∈ C±, (3.20)

where Cα is a bounded operator in H satisfying the properties (3.16).

Remark 3.17. In the case of a simple symmetric operator S, theorem 3.15 gives a
method for the description of the family U = {Cα} of stable C-symmetries. First,
we determine the collection of all C in H that satisfy (3.17) and then construct
the family U = {Cα} of stable C-symmetries for S using some boundary triplet
(H, Γ0, Γ1) for S∗ with the properties (3.8) (for example, in HM such a boundary
triplet is given by part (iii) of proposition 3.14). Note that this family U = {Cα} is
unitarily equivalent to the family U = {Cα} in corollary 3.16.

3.5. Resolvent formula for J-self-adjoint extensions with stable
C-symmetry

Combining theorem 3.15 with proposition 3.12, we immediately obtain the fol-
lowing complete description of Σst

J .
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Theorem 3.18. Let (H, Γ0, Γ1) be a boundary triplet of S∗ with the properties
(3.8) and let M(·) be the Weyl function of S. Then A ∈ Σst

J if and only if A is
defined by (3.12) and the corresponding J -unitary operator K has the C-symmetry
in (H, [·, ·]J ) such that [C, M(·)] = 0.

Another characterization of the class Σst
J can be obtained by describing the resol-

vents of A ∈ Σst
J . Recall from remark 3.4 that if A ∈ Σst

J , then A is self-adjoint in
the Hilbert space (H, (·, ·)α), where the inner product is defined by (3.3). Therefore,
the resolvent set of the J-self-adjoint operator A ∈ Σst

J is automatically non-empty,
since C± ⊂ ρ(A). To establish such a characterization, the following definition is
needed.

Definition 3.19. Let B be a (closed linear) relation in a Hilbert space H and let
C be a bounded operator in H. Then C is said to commute with B if the following
formula holds:

B = {{Cf, Cf ′} : {f, f ′} ∈ B}. (3.21)

In this case we can write [C,B] = 0.

Observe that if B is an operator, then {f, f ′} ∈ B means that f ′ = Bf . Thus, in
this case, (3.21) can be rewritten as BCf = CBf for all f ∈ D(B), i.e. definition 3.19
reduces to the usual definition of commutativity when B is an operator.

In the next statement, γ(·) stands for the γ-field corresponding to the boundary
triplet (H, Γ0, Γ1) in theorem 3.18 and A0 = S∗ � ker Γ0.

Theorem 3.20. Let the assumptions be as in theorem 3.18. Then A ∈ Σst
J if and

only if

(A − µI)−1 = (A0 − µI)−1 − γ(µ)(M(µ) − B)−1γ∗(µ̄), µ ∈ ρ(A) ∩ ρ(A0), (3.22)

where B is a J -self-adjoint relation,4 which has the C-symmetry in (H, [·, ·]J ) such
that [C, M(·)] = 0.

Furthermore, A is disjoint with A0 (i.e. D(A) ∩ D(A0) = D(S)) if and only
if B is an operator with the indicated C-symmetry, and A is transversal with A0
(i.e. D(A) +̇ D(A0) = D(S∗)) if and only if B is a bounded operator with the indi-
cated C-symmetry.

Proof. First assume that A ∈ Σst
J . Then there exists Cα ∈ U = {Cα}α∈D such that

[A, Cα] = 0. Moreover, [A0, Cα] = 0 (since A0 ∈ ΥU, see remark 3.8). This means
that A and A0 are self-adjoint extensions of the symmetric operator S with respect
to the scalar product (·, ·)α (remark 3.4), hence, in particular, C± ⊂ ρ(A) ∩ ρ(A0).

Now, rewrite (3.12) as follows:

A = S∗ � {f ∈ D(S∗) : i(I + K)Γ0f = (I − K)Γ1f}. (3.23)

Since K is J -unitary, this means that A corresponds to the J -self-adjoint rela-
tion B = i(I + K)(I − K)−1 in H, i.e. {Γ0, Γ1}D(A) = B. By theorem 3.18, K
has C-symmetry in (H, [·, ·]J ) realized by an operator C ∈ {Cα}α∈D such that

4We refer the interested reader to [11] for the basic definitions of linear relation theory in the
Krein space setting.
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[C, M(·)] = 0. Since {h, k} = {Γ0f, Γ1f} ∈ B if and only if i(I+K)Γ0f = (I−K)Γ1f
(see (3.23)) and [C,K] = 0, it is clear that (3.21) is satisfied, so that [C,B] = 0. This
means that B has the C-symmetry in (H, [·, ·]J ).

Finally, since B corresponds to A ({Γ0, Γ1}D(A) = B) and C± ⊂ ρ(A), [12, § 2,
proposition 1] shows that 0 ∈ ρ(M(µ) − B) for all µ ∈ C± and, moreover, the
resolvent formula (3.22) is obtained from [12, § 2, proposition 2] (note that the two
propositions in [12] are formulated for an arbitrary closed linear relation B in H).

To prove the converse statement, assume that A is given by (3.22) for some J -self-
adjoint relation B that has the C-symmetry in (H, [·, ·]J ) such that [C, M(·)] = 0.
Then [C,B] = 0 and this is equivalent to [C, (B − M(µ))−1] = 0, µ ∈ C±, since
[C, M(·)] = 0. To see this, observe that {f, f ′} ∈ B is equivalent to

{f ′ − M(µ)f, f} ∈ (B − M(µ))−1

and that {Cf, Cf ′} ∈ B is equivalent to

{Cf ′ − M(µ)Cf, Cf} = {C(f ′ − M(µ)f), Cf} ∈ (B − M(µ))−1,

since [C, M(·)] = 0. Here (B − M(µ))−1 is an operator for µ ∈ C±. Hence, we
conclude that [C,B] = 0 if and only if C commutes with (B−M(µ))−1. Now it follows
from lemma 3.9 that the ‘preimage’ Cα of C = Cα, α ∈ D (see (3.8)), commutes with
both of the summands on the right-hand side of (3.22). Thus, [Cα, (A−µI)−1] = 0,
and this is equivalent to [Cα, A] = 0. Furthermore, since J ∈ {Cα}α∈D it is clear
from (3.22) that A is a J-self-adjoint extension of S. Thus, A ∈ Σst

J .
The last statement is an immediate consequence of [13, proposition 1.4]. This

completes the proof.

Theorem 3.20 can be used for studying the spectral properties of the operators
A ∈ Σst

J . Recall that if S is simple and µ ∈ ρ(A0), then it follows from (3.22) that,
for the components of the spectrum of A = AB, we have (see [12, § 2, proposition 1]).

µ ∈ σi(A) ⇔ 0 ∈ σi(M(µ) − B), i = p, c, r. (3.24)

4. The case of defect numbers 〈2, 2〉

Let S be a closed densely defined simple symmetric operator in H with defect
numbers 〈2, 2〉. We recall that S commutes with J and ΣJ denotes the collection
of all J-self-adjoint extensions of S.

4.1. The descriptions of Σst
J

According to [28], two quite different arrangements for the sets ΥU and Σst
J can

occur.

1. Every member of ΣJ has a non-empty resolvent set. Then the set U = {Cα} of
all C-symmetries of S consists of the operator J only and ΥU = Σst

J (see [28,
theorem 4.1]). Therefore, operators A ∈ Σst

J are just self-adjoint extensions
of S, which commute with J .

2. There are members of ΣJ with empty resolvent set. In that case, there exists
an additional (‘hidden’) fundamental symmetry R in H such that [S, R] = 0
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and {J, R} = 0. This means that S commutes with the elements of the Clifford
algebra CL2(J, R) (see [28, theorem 4.3]).

Proposition 4.1. If ΣJ contains operators with empty resolvent set and if the
Weyl function M(·) of S is not constant on C+, then all operators Cα ∈ U are
expressed in terms of the Clifford algebra CL2(J, R) and

U = {Cα = JeχRω}, ∀α = (χ, ω) ∈ D = R × [0, 2π),

where Cχ,ω := JeχRω are defined by (2.18) and (2.19).

Proof. If M(·) �≡ const., then the characteristic function Θ(·) of S is not a constant
on C+ (see (2.14)). By the definition of the Straus characteristic function Sh(·)
(see [33] or [28, § 2.2]), we conclude that Sh �≡ 0. According to [28, theorem 4.6],
this means that U = {Cχ,ω}χ∈R,ω∈[0,2π).

Otherwise, if M(·) is constant on C+, then the set U increases considerably and
it cannot be expressed in terms of CL2(J, R). This fact leads to the relation ΥU = ∅
(since hypothetical operators A ∈ ΥU have to satisfy the commutation relation
[A, Cα] = 0 for all Cα ∈ U) and, simultaneously, it gives a ‘maximal possible’ set of
stable C-symmetry Σst

J in the sense of the next statement.

Proposition 4.2. If the Weyl function M(·) of S is constant on C+, then the
J-self-adjoint extension A of S belongs to Σst

J if and only if the spectrum of A is
real.

Proof. In a similar way to the previous proof, we conclude that

M(·) ≡ const. ⇐⇒ Θ(·) ≡ const. ⇐⇒ Sh ≡ 0.

This means that ΣJ contains a two-parameter family of operators with empty
resolvent set [28, corollary 3.2] and A ∈ Σst

J ⇐⇒ σ(A) ⊂ R [28, corollary 4.9].

In what follows, we will assume that S commutes with elements of the Clifford
algebra CL2(J, R) and that ΥU is non-empty (or, equivalently, that the conditions
of proposition 4.1 hold).

Since ΥU is non-empty, there exist boundary triplets for S∗ with the proper-
ties (3.8). Set one of them at (H, Γ0, Γ1). Then every A ∈ Σst

J is determined by
(3.12), where the corresponding J -unitary operator K is stable in the Krein space
(H, [·, ·]J ) (theorem 3.11). Using proposition 4.1, we can supplement the results in
§ 3 by giving explicit descriptions for the sets Σst

J and ΥU.
In what follows the notation AK is used for J-self-adjoint-operators A determined

by (3.12). Since S has defect numbers 〈2, 2〉, the dimension of H is 2. Hence, the
operator K can be presented as a 2 × 2-matrix K = (kij). Since K is a J -unitary
operator, the relation J = K∗J K holds.

Fix an orthonormal basis of H in which the matrix representations of J coincides
with the Pauli matrix

σ3 =
(

1 0
0 −1

)
.
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Then the identity J = K∗J K takes the form σ3 = (k̄ij)tσ3(kij) and a simple analy-
sis yields the following explicit formula for K:

K = K(ζ, φ, ξ, ω) = e−iξ
(

−e−iφ cosh ζ e−iω sinh ζ

−eiω sinh ζ eiφ cosh ζ

)
, (4.1)

where ζ ∈ R, φ ∈ [0, π] and ξ, ω ∈ [0, 2π).

Theorem 4.3. Assume that S commutes with the Clifford algebra CL2(J, R) and
that ΥU is non-empty. Then the following statements are true:

(i) if AK ∈ ΣJ , then its adjoint A∗
K ∈ ΣJ is given by

K′(ζ, φ, ξ, ω) = K(−ζ, φ, ξ, ω);

(ii) AK ∈ ΣJ is self-adjoint if and only if ζ = 0, i.e.

K = K(0, φ, ξ, ω) = e−iξ
(

−e−iφ 0
0 eiφ

)
; (4.2)

(iii) AK ∈ ΣJ belongs to ΥU if and only if ζ = 0 and φ = 1
2π, i.e.

K = K(0, 1
2π, ξ, ω) = e−iξ

(
i 0
0 i

)
; (4.3)

(iv) AK ∈ ΣJ belongs to Σst
J \ ΥU if and only if K = K(ζ, φ, ξ, ω), where

|tanh ζ| < |cos φ|. (4.4)

In that case the operator AK(ζ,φ,ξ,ω) has the Cχ,ω-symmetry, where the param-
eter χ is (uniquely) determined by the equation

cos φ tanhχ = − tanh ζ. (4.5)

Proof. (i) This follows from (4.1) by means of the identities A∗
K = A(K∗)−1 and

(K−1)∗ = J KJ , where J is identified with σ3.

(ii) This follows immediately from (i).

(iv) It follows from proposition 4.1 that A ∈ Σst
J if and only if [A, Cχ,ω] = 0 for at

least one Cχ,ω = JeχRω , χ ∈ R, ω ∈ [0, 2π). Using (2.18), we obtain

Cχ,ω = (cosh χ)J + (sinhχ)(cos ω)JR − i(sinhχ)(sinω)R. (4.6)

Since the boundary triplet (H, Γ0, Γ1) of S∗ has the properties (3.8), lemma 3.7
implies that the operators Cχ,ω have images Cχ,ω in H determined by the formula
Cχ,ωΓj = ΓjCχ,ω, j = 0, 1, where Cχ,ω have the form (4.6). Considering this formula
for ω = 1

2π and taking the relation J Γj = ΓjJ into account, we conclude that
RΓj = ΓjR, where R is a bounded operator in H. Therefore,

Cχ,ω = (cosh χ)J + (sinhχ)(cos ω)J R − i(sinhχ)(sinω)R (4.7)

and C2
χ,ω = I, J Cχ,ω > 0 in H (see lemma 3.10).
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Applying lemma 3.10 to R, instead of J , it can be seen that R is a fundamental
symmetry in H. Moreover, {J ,R} = 0 due to {J, R} = 0. Thus, J and R are
anti-commuting fundamental symmetries in H and the operators Cχ,ω = J eχRω

are expressed in terms of the Clifford algebra CL2(J ,R).
Without loss of generality, we may assume that the matrix representation of R

coincides with the Pauli matrix

σ1 =
(

0 1
1 0

)

(recall that we have supposed that J coincides with σ3). Then the matrix repre-
sentation of iRJ coincides with

σ2 = iσ1σ3 =
(

0 −i
i 0

)

and

Cχ,ω = (cosh χ)σ3 + i(sinhχ)(cos ω)σ2 − i(sinhχ)(sinω)σ1

=
(

cosh χ (sinhχ)e−iω

−(sinhχ)eiω − cosh χ

)
. (4.8)

Since A = AK is defined by (3.12) (see theorem 3.11) and [A, Cχ,ω] = 0, the
corresponding operator K satisfies the relation [K, Cχ,ω] = 0 for certain χ ∈ R and
ω ∈ [0, 2π). A routine analysis of the last equality using (4.1) and (4.8) leads to the
conclusion that AK has the C-symmetry (C ∈ {Cχ,ω}) if and only if either ζ = 0,
φ = 1

2π (this case corresponds to the set ΥU (see (iii)), or |tanh ζ| < |cos φ|. In the
latter case the operator C can be chosen as Cχ,ω, where the parameter χ is uniquely
determined by equation (4.5). Hence, (iv) is proved.

(iii) By proposition 4.1 and the definition of ΥU, we have

A ∈ ΥU ⇐⇒ [A, Cχ,ω] = 0, ∀χ ∈ R, ω ∈ [0, 2π).

The last relation is equivalent to [K,J ] = [K,R] = 0 due to (4.7). The first condition
[K,J ] = 0 imposed on the J -unitary operator K means that K is unitary. Hence,
AK is self-adjoint, and thus ζ = 0 and K is defined by (4.2) (see (ii)). Now, the
second condition [K,R] = 0 can be rewritten as [K(0, φ, ξ, ω), σ1] = 0 (since R is
identified with σ1). Hence, −e−iξe−iφ = e−iξeiφ and this equality holds if and only
if φ = 1

2π, φ ∈ [0, π]. Theorem 4.3 is proved.

Remark 4.4. The classical von Neumann formulae were used in [2, theorem 3.2,
proposition 3.3] for a similar description of Σst

J in terms of unitary matrices.

4.2. Spectral analysis of A ∈ Σst
J

Let (H, Γ0, Γ1) be a boundary triplet for S∗ with the properties (3.8) and let M(·)
be the corresponding Weyl function. Combining the definition (2.13) of M(·) with
the definitions J Γj := ΓjJ , RΓj := ΓjR, j = 0, 1 of the fundamental symmetries J
and R in H, we conclude that [J , M(·)] = [R, M(·)] = 0 (see lemma 3.9). Passing
to the matrix representation M(·) = (mij(·)) of M(·) and using the identification
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of J and R with σ3 and σ1, respectively, we get [σ3,M(·)] = [σ1,M(·)] = 0. This
leads to

M(·) = m(·)I, (4.9)

where m(·) is a scalar function defined on ρ(A0) (A0 = S∗ � ker Γ0).
Now consider an arbitrary C ∈ {Cχ,ω} and the corresponding decomposition

H = L
χ,ω
+ [+̇]Lχ,ω

− , L
χ,ω
± = 1

2 (I ± Cχ,ω)H. (4.10)

Since S and S∗ commute with Cχ,ω they are decomposed with respect to (4.10):

S = S+(χ, ω) +̇ S−(χ, ω), S∗ = S∗
+(χ, ω) +̇ S∗

−(χ, ω), (4.11)

where S±(χ, ω) = S � L
χ,ω
± and S∗

±(χ, ω) are the adjoints of the symmetric operators
S±(χ, ω) acting in the spaces5 L

χ,ω
± .

Let A ∈ Σst
J . Then A = AK is determined by (4.1) and AK has the Cχ,ω-symmetry

for a certain choice of χ and ω (proposition 4.1). Therefore, AK is decomposed with
respect to (4.10):

AK = A+
K +̇ A−

K, (4.12)

where S±(χ, ω) ⊂ A±
K ⊂ S∗

±(χ, ω). In this case, the J -unitary operator K is decom-
posed, K = K+ +̇ K−, with respect to the decomposition

H = Hχ,ω
+ [+]Hχ,ω

− , Hχ,ω
± = 1

2 (I ± Cχ,ω)H (4.13)

of the Krein space (H, [·, ·]J ) (see (4.10)). Since dim H = 2, the subspaces Hχ,ω
± are

one dimensional. Therefore, K± = k±I and the eigenvalues k± of K should satisfy
the relations (K − k±I)(I ± Cχ,ω) = 0.

A direct solution of the characteristic equation det(K − kI) = 0 gives

k± = e−iξ[±
√

1 − sin2 φ cosh2 ζ + i sinφ cosh ζ]. (4.14)

If, in particular, (4.4) is satisfied, a simple calculation using (4.5) leads to

k+ = −e−iξe−it, k− = e−iξeit, eit :=
cos φ + i sinφ cosh χ

|cos φ + i sinφ cosh χ| . (4.15)

In this case, the value of χ in (4.15) is uniquely determined by ζ and φ (see (4.5))
and, hence, t can be considered as a function of ζ and φ, i.e. t = t(ζ, φ)(∈ [0, 2π)).

On the other hand, if ζ = 0 and φ = 1
2π, then, in (4.14), k± = ie−iξ (see (4.3)).

In this case, (4.15) holds with t = 1
2π.

Theorem 4.5. Let the conditions of proposition 4.1 be satisfied and assume that
AK ∈ Σst

J . Then the spectrum of AK = AK(ζ, φ, ξ, ω) (see (4.1)) is real and, more-
over, r ∈ ρ(A0) belongs to the discrete spectrum of AK(ζ, φ, ξ, ω) if and only if

[tan 1
2 (ξ + t) + m(r)] · [cot 1

2 (ξ − t) − m(r)] = 0, (4.16)

where m(·) is given by (4.9).
5The spaces L

χ,ω
± are considered here with the original inner product (·, ·) on H.
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If, in particular, AK ∈ Σst
J \ ΥU, then t = t(ζ, φ) is determined by (4.5) and

(4.15). Furthermore, if AK = AK(0,π/2,ξ,ω) ∈ ΥU and ξ �= 1
2π, then r ∈ ρ(A0) belongs

to the discrete spectrum of AK if and only if

tan 1
2 (ξ + 1

2π) + m(r) = 0. (4.17)

In this case AK coincides with self-adjoint operator Ar defined by (2.25).

Proof. The reality of σ(AK) is a general property of all J-self-adjoint operators
with a C-symmetry (see, for example, proposition 2.1).

Let AK ∈ Σst
J . Then AK admits the decomposition (4.12) for certain χ and ω.

In view of (3.12) and (4.11), the corresponding operators A±
K are the restrictions of

S∗
±(χ, ω) onto (see (3.23))

D(A±
K) = {f ∈ D(S∗

±(χ, ω)) | k±(Γ1 + iΓ0)f = (Γ1 − iΓ0)f}. (4.18)

Rewriting the right-hand side of (4.18) as i(1 + k±)/(1 − k±)Γ0f± = Γ1f± and
taking into account that

i
1 + k+

1 − k+
= i

1 − e−iξe−it

1 + e−iξe−it = − tan 1
2 (ξ + t), i

1 + k−
1 − k−

= cot 1
2 (ξ − t),

where t is given by (4.15), we obtain

D(A+
K) = {f ∈ D(S∗

+(χ, ω)) | − tan 1
2 (ξ + t)Γ0f = Γ1f},

D(A−
K) = {f ∈ D(S∗

−(χ, ω)) | cot 1
2 (ξ − t)Γ0f = Γ1f}.

⎫⎬
⎭ (4.19)

Using (4.10), (4.13) and recalling that Cχ,ωΓj = ΓjCχ,ω, it can easily be seen
that the restrictions of the original boundary triplet (H, Γ0, Γ1) onto the domains
D(S∗

±(χ, ω)) give rise to the boundary triplets (Hχ,ω
± , Γ0, Γ1) of S∗

±(χ, ω) in L
χ,ω
± .

Moreover, due to (4.9), m(·) is the Weyl function of S±(χ, ω) associated with the
boundary triplets (Hχ,ω

± , Γ0, Γ1). However, by theorem 3.20, the formulae in (4.19)
imply that r ∈ ρ(A0) is an eigenvalue of A+

K (A−
K) if and only if tan 1

2 (ξ+t)+m(r) =
0 (cot 1

2 (ξ − t) − m(r) = 0) (see (3.24)). Now (4.16) follows from the decomposition
(4.12).

The statement for AK ∈ Σst
J \ΥU is clear. Assume that AK ∈ ΥU. Then, according

to (4.3) and (4.14), the eigenvalues k± of the operator K coincide and k± = ie−iξ.
In particular, k± �= 1 precisely when ξ �= 1

2π. Since φ = 1
2π and t = 1

2π in (4.15),
we have − tan 1

2 (ξ + 1
2π) = cot 1

2 (ξ − 1
2π). Therefore, (4.16) reduces to (4.17). In

this case, the (algebraic) multiplicity of the eigenvalue r is 2 and, hence, AK = Ar.
Theorem 4.5 is proved.

4.3. Example

We start by describing a general procedure which allows us to construct vari-
ous examples illustrating the results above. The basic ingredients are a symmetric
operator S+ with defect numbers 〈1, 1〉 in a Hilbert space H+, a boundary triplet
(C, Γ+

0 , Γ+
1 ) for S∗

+, and the Weyl function m(·) of S+ associated with (C, Γ+
0 , Γ+

1 ).
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Let H− be a Hilbert space and let W be a unitary map of H− onto H+. In the
space H = H+ ⊕ H−, consider the operators

J =
(

I 0
0 −I

)
, R =

(
0 W

W−1 0

)
, S =

(
S+ 0
0 W−1S+W

)
. (4.20)

Clearly, J and R are anti-commuting fundamental symmetries in H and the sym-
metric operator S has defect numbers 〈2, 2〉 in H and it commutes with the Clifford
algebra CL2(J, R).

Let S+ have real points of regular type. Then the operator S also has real points
of regular type. Hence, the set ΥU is non-empty (theorem 3.5) and U = {Cχ,ω}
(proposition 4.1). It follows from (4.6) and (4.7) that a boundary triplet (H, Γ0, Γ1)
of S∗ has the properties (3.8) if and only if the relations

J Γj = ΓjJ, RΓj = ΓjR (4.21)

determine fundamental symmetries J and R in H.
Now introduce the mappings Γ−

j := Γ+
j W , j = 0, 1. Then (C, Γ−

0 , Γ−
1 ) is a bound-

ary triplet for S∗
− = W−1S∗

+W and the mappings Γj = Γ+
j ⊕ Γ−

j , j = 0, 1, define a
boundary triplet (C2, Γ0, Γ1) for S∗ which satisfies (4.21) with

J =
(

1 0
0 −1

)
= σ3, R =

(
0 1
1 0

)
= σ1. (4.22)

Therefore, the boundary triplet (C2, Γ0, Γ1) satisfies (3.8). Furthermore, the Weyl
function M(·) of S associated with (H, Γ0, Γ1) is determined by (4.9), where m(·)
is the Weyl function of S+ associated with (H+, Γ+

0 , Γ+
1 ).

With these preparations, the spectral analysis of J-self-adjoint operators with
stable C-symmetries can be carried out by a somewhat routine application of the-
orem 4.5. The corresponding spectral properties depend on the choice of the initial
symmetric operator S+ (or, equivalently, on the choice of the Weyl function m(·)
of S+).

The above considerations are illustrated by the following example.

Example 4.6. Let H+ = Leven
2 (R) be the subspace of even functions of L2(R) and

define

S+ = − d2

dx2 , D(S+) = [
0

W 2
2 (R−)⊕

0
W 2

2 (R+)] ∩ Leven
2 (R).

The adjoint S∗
+ = −d2/dx2 has the domain D(S∗

+) = W 2
2 (R \ {0}) ∩ Leven

2 (R)
and (C, Γ+

0 , Γ+
1 ) with

Γ+
0 u(·) = u(0), Γ+

1 u(·) = u′(+0) − u′(−0) = 2u′(+0)

defines a boundary triplet for S∗
+. With µ ∈ C\R, the defect subspace ker(S∗

+ −µI)
coincides with the linear span of

fµ =

{
eiτx, x > 0,

e−iτx, x < 0,
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where τ =
√

µ and Im τ > 0. Since m(µ)Γ+
0 fµ = Γ+

1 fµ, the Weyl function of S+
associated with (C, Γ+

0 , Γ+
1 ) is given by

m(µ) = 2i
√

µ. (4.23)

Let H− = Lodd
2 (R) be the subspace of odd functions of L2(R). According to (4.20),

the fundamental symmetry J coincides with the space parity operator Pu(x) =
u(−x) in H = L2(R) = Leven

2 (R) ⊕ Lodd
2 (R). Choosing the unitary map

W : Lodd
2 (R) → Leven

2 (R) as Wu = sgn(x)u(x),

we conclude that the fundamental symmetry R coincides with the multiplication
by sgn(x) in L2(R). Now, the operator S = −d2/dx2,

D(S) =
0

W 2
2 (R−)⊕

0
W 2

2 (R+)

is symmetric in L2(R) and its adjoint S∗ = −d2/dx2 has the domain D(S∗) =
W 2

2 (R \ {0}).
The boundary triplet (C2, Γ0, Γ1) for S∗, which is determined by

Γ0f = Γ0(u + v) =
(

u(0)
v(+0)

)
, Γ1f = 2

(
u′(+0)
v′(0)

)
,

where u and v are, respectively, even and odd parts of f , satisfies (4.21) with (4.22).
Moreover, all P-self-adjoint operators AK ∈ Σst

P are characterized by parts (iii) and
(iv) of theorem 4.3.

The self-adjoint operator A0 = S∗ � ker Γ0 coincides with the Friedrichs extension
of S:

A0 = − d2

dx2 , D(A) = {f(·) ∈ W 2
2 (R \ {0}) : f(+0) = 0, f(−0) = 0}.

Applying theorem 4.5 and taking the relations σ(A0) = [0,∞) and (4.23) into
account, we conclude that an arbitrary AK(ζ, φ, ξ, ω) ∈ Σst

P \ ΥU has the essential
spectrum on [0,∞) and a negative number r belongs to the discrete spectrum of AK
if and only if

[tan 1
2 (ξ + t) − 2

√
|r|] · [cot 1

2 (ξ − t) + 2
√

|r|] = 0,

where t = t(ζ, φ) is determined by (4.5) and (4.15). The algebraic and the geometric
multiplicities of r are equal.
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