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HOMOTOPY MODEL THEORY

BRICE HALIMI

Abstract. Drawing on the analogy between any unary first-order quantifier and a “face operator,”
this paper establishes several connections between model theory and homotopy theory. The concept of
simplicial set is brought into play to describe the formulae of any first-order language L, the definable
subsets of any L-structure, as well as the type spaces of any theory expressed in L. An adjunction result
is then proved between the category of o-minimal structures and a subcategory of the category of linearly
ordered simplicial sets with distinguished vertices.

§1. Simplicial ideas.

1.1. Formulae as chains. Homotopy theory dramatically entered the scene of
logic through the connections that have been made between Martin-Löf type theory
and model categories, since Hofmann and Streicher’s seminal paper.1 This paper
aims at focusing on another connection of homotopy theory with logic, based on
the following remark: any structure for a first-order language can be turned into
a simplicial set. Hence, whereas “Homotopy Type Theory” connects logic with
homotopy theory through type theory, “Homotopy Model Theory” is the proposal
to connect logic with homotopy theory through model theory. This is the task taken
up here.2

An intuitive motivation of such perspective is that the notion of boundary can
easily be transposed to the context of first-order logic, formulae being conceived of
as chains (in the sense of a formal sum of faces). The boundary of a given formula
φ(v0, ... , vn) with exactly v0, ... , vn as free variables can be defined as follows:

∂φ :=
n–1∧
i=0

¬i∀xφ(v0, ... , vi–1, x, vi+1, ... , vn–1),

where ‘¬i ’ indicates i consecutive occurrences of the negation symbol. The boundary
operator ∂ is not stable under variable renaming, however. To avoid any problem of
that kind, we will consider, throughout this paper, a single fixed first-order language
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L with equality, containing the existential quantifier as a primitive, whose free
variable symbols are exactly ‘vi ’, i ≥ 0, and whose bound variable symbols are
exactly ‘x’, ‘y’, ‘z’, and so on. Each L-formula will be taken up to bound variable
renaming, but not up to free variable renaming.

Definition 1.1. An L-formula φ is called a well-formed L-formula iff the indices
of all the free variables occurring in φ, regardless of the order of the occurrences of
those variables, make up an initial segment of N. From now on, “L-formula” will
always refer to a well-formed L-formula only.

Starting with an L-formulaφ(v0, v1, v2), one finds that ∂(∂φ) ≡ ⊥ (since universal
quantification commutes with conjunction). This prompts a comparison of ∂ with
a genuine boundary operator, in a sense pointing to homotopy theory. To that end,
a few explanatory remarks are in order about the concept of simplicial set, given the
role that it will play in what follows. CW complexes were introduced in algebraic
topology in order to analyze nonpathological topological spaces as reconstructible
by glueing elementary “cells” along other cells of smaller dimension: the building
pattern of CW complexes can be used to compute the homology groups and
homotopy groups of that space. Designed to formalize this kind of decomposition
of a topological space into cells of increasing dimension, glued together along
a common face, a simplicial set X is a sequence (Xn)n∈N of sets, together with
maps di : Xn → Xn–1 (0 ≤ i ≤ n) and sj : Xn → Xn+1 (0 ≤ j ≤ n), for each n ∈ N,
satisfying the following simplicial identities:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

didj = dj–1di if i < j,
di sj = sj–1di if i < j,
djsj = dj+1sj = id,
di sj = sjdi–1 if i > j + 1,
si sj = sj+1si if i ≤ j.

The elements of each set Xn, called n-simplices, represent the n-cells involved
in the construction of the topological space to be built, each map di the projection of
an n-cell onto one of its faces, and each dj the upgrading of an n-cell as a degenerate
(n + 1)-cell, while the simplicial identities encode the purely combinatorial proper-
ties of the building pattern of the space.

Despite being deprived of any topology, simplicial sets are sufficient to capture
most features relevant to homotopy theory, since the homotopy category of the
category of simplicial sets is a model of homotopy types. As will be seen presently,
simplicial sets also supply an interesting connection between the combinatorial
aspect of logical syntax and the use of topological methods in model theory.

Definition 1.2. Let Fn be the set of L-formulae with exactly v0, ... , vn as free
variables. (F–1 may be defined as the set of all L-sentences.) For each n ∈ N, two
systems of maps, ∃i : Fn → Fn–1 (0 ≤ i ≤ n) and Ej : Fn → Fn+1 (0 ≤ j ≤ n) are,
respectively:

∃i(φ(v0, ... , vn)) = ∃xφ(v0, ... , vi–1, x, vi , ... , vn–1),

Ej(φ(v0, ... , vn)) = ((vj = vj+1) → φ(v0, ... , vj–1, vj+1, ... , vn+1)).
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Logical equivalence between L-formulae is considered here as an equivalence
relation always restricted to some Fn, in other words as a graded logical equivalence.
On this condition only, the operators ∃i , Ej and ∂ can be defined up to logical
equivalence.3 Then, up to graded logical equivalence, the maps ∃i and Ej satisfy the
above simplicial identities.

Definition 1.3. To ensure that these simplicial identities be genuine equalities,
every L-formula will henceforth be considered up to graded logical equivalence.

Theorem 1.4. F∗ = 〈Fn, (∃i)0≤i≤n, (Ej)0≤j≤n〉n∈N is a simplicial set.

In this perspective, the existential quantifier can be likened to a “face operator,”
while the maps Ej are the corresponding “degeneracy operators.” In fact, if any
L-formula in Fn is seen as the presentation of some n-dimensional subset, ∃i is
exactly a projection, and Ej the converse operation of cylindrification.

Remark 1.5. In the definition of ∃i , the existential quantifier can be replaced
with any first-order unary quantifier Q satisfyingQyQxφ(y, x, �u) ≡ QxQyφ(x, y, �u)
and Qx((x = y) → φ[x/y]) ≡ φ(y), for every L-formula φ. The associated face
operators are written dQi and the ensuing simplicial set is written F Q∗ (so ∃i = d∃i
and F∗ = F ∃

∗ ).

Given two simplicial sets X and Y, a simplicial map f : X → Y consists of a
system of maps fn : Xn → Yn (n ∈ N) such that both diagrams below

Xn
fn ��

dXi
��

Yn

dYi
��

Xn–1
fn–1

�� Yn–1

Xn
fn ��

sXj
��

Yn

sYj
��

Xn+1
fn+1

�� Yn+1

commute for every i and every j. The category sSets of simplicial sets is the category
whose objects are all simplicial sets and whose arrows are all simplicial maps. Within
that category, certain simplicial sets stand out: the fibrant ones. Given two n-simplices
x, y ∈ Xn of a simplicial set X, a shared face is an (n – 1)-simplex of X which is a
common face of x and y. An n-horn in X is a system of n distinct (n – 1)-simplices
of X with a maximal number of n(n – 1)/2 shared faces. For instance, a 2-horn in X
can be represented as a pair of two edges with a shared vertex, in other words as a
triangle with one side removed; a 3-horn in X, as a triple of full triangles making up
the surface of a tetrahedron with one face removed. A simplicial set X is said to be
fibrant if, for every n ≥ 1, any n-horn in X can be extended into an n-simplex of X.
This amounts to saying, in combinatorial terms, that if x0, ... , x̂k, ... , xn is an n-tuple
of (n – 1)-simplices of X (‘x̂k ’ meaning that xk is omitted) such that dixj = dj–1xi

3For example, the two logically equivalent L-formulae �(v0) := (P(v0) ∨ ¬P(v0)) and �(v0, v1) :=
((P(v0) ∨ ¬P(v0)) ∧ (P(v1) ∨ ¬P(v1))) give rise to L-formulae ∂� and ∂� which are not logically
equivalent. But � ∈ F0, whereas � ∈ F1, so that � and � cannot be said to be logically equivalent in the
sense meant here.
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for any i, j �= k with i < j, then there is an n-simplex x of X such that dix = xi for
any i �= k.

Proposition 1.6. F∗ is fibrant.

Proof. The proof derives as a special case from the proof of Theorem 2.10. 

1.2. Syntactic extensions. Following on from this first comparison, it is quite
natural to ask about connectives. It turns out that ∧ is characterized, among
all symmetric binary connectives, by the condition that ∀x(φx ∧ �x) ≡ (∀xφx ∧
∀x�x), and ∨ in an analogous way. Because binary connectives are at stake,
two-dimensional simplicial sets need to be introduced, which is straightforward
as soon as it is noticed that a simplicial set can be equivalently defined as a functor
X : Δop → Sets, where Δ is the category whose objects are all the finite ordinals
and whose morphisms are all order-preserving maps, and where Sets is the category
of sets and maps between sets. Following this alternative view, one can define a
bisimplicial set as a functor from Δop × Δop to Sets.

The usual unary and binary connectives can then be described in simplicial and
bisimplicial terms. Indeed, the commutative diagram

Fm × Fp

〈dQi , d
Q′
i 〉

��

c �� Fn

d
Q′′
i

��
Fm–1 × Fp–1

c′
�� Fn–1

is a way to express that Q′′x(φc�) ≡ (Qviφ)c′(Q′vi�) for any L-formulae φ ∈
Fm, � ∈ Fp (here n = max(m,p)). One has that ¬, ∧ and ∨ are characterized,
respectively, by the commutativity of the three following diagrams:

Fn

d∀i
��

¬ �� Fn

∃i
��

Fn–1 ¬
�� Fn–1

Fm × Fp

〈d∀i , d
∀
i 〉

��

∧ �� Fn

d∀i
��

Fm–1 × Fp–1 ∧
�� Fn–1

Fm × Fp
〈∃i ,∃i 〉

��

∨ �� Fn

∃i
��

Fm–1 × Fp–1 ∨
�� Fn–1 .

There might seem to be a small problem with conjunction of L-formulae that
share the same variables. For instance, how to regiment the L-formula (R(v0, v1) ∧
S(v0, v2))? The L-formula has in fact to forego some transformation, but within its
logical equivalence class (although not in the graded sense):

(R(v0, v1) ∧ S(v0, v2))

≡ (R(v0, v1) ∧ S(v2, v3) ∧ (v0 = v2))

≡ ((R(v0, v1) ∧ (v0 = v2)) ∧ ((v0 = v2) ∧ (v1 = v1) ∧ S(v2, v3))).

Besides bisimplicial sets, the definition of a simplicial set as a functor X :
Δop → Sets lends itself to another kind of generalization: a simplicial object in an
Abelian category C is a functor X : Δop → C. A simplicial object in the category
of Abelian groups is called a simplicial group. Any simplicial object X in any
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Abelian category gives rise, in a canonical way, to an associated chain complex:4

... Xn+1
dn+1

�� Xn
dn �� Xn–1 ... , where dn :=

∑n
i=0(– 1)i di and dn ◦ dn+1 = 0.

Each F∗ turns out to be a simplicial Boolean algebra, with sum and product
corresponding to disjunction and conjunction. The category of Boolean algebras,
however, is not an Abelian category. An option is to consider each Fn as naturally
equipped with a group structure, namely 〈Fn,�,⊥〉, where ⊥ is any antilogy in
Fn and (φ � �) := ((φ ∧ ¬�) ∨ (� ∧ ¬φ)). However, F∗’s being a simplicial group
requires more than all the Fn’s being groups: it also requires all the ∃i ’s and Ej ’s
being morphisms of Abelian groups.

Another, natural option is thus to introduce the free Abelian group ZFn generated
by the n-simplices, up to the identification (φ + φ) = φ. The operators ∃i : ZFn →
ZFn–1 are given by linear extension. The elements of ZFn can be seen as sequents
between L-formulae with n + 1 free variables, up to the equivalences provided by
the structural rules of the sequent calculus for first-order classical logic. Indeed, any
element of ZFn can be written as follows:

n∑
k=1

nkφk(v0, ... , vn) =
∑
nk<0

nkφk �
∑
nl>0

nlφl

= φk1 , ... , φkp � φl1 , ... , φlq .
Any sequent of the form φ(v0, ... , vn) � φ(v0, ... , vn) represents the identity element
0 of ZFn.

Definition 1.7. Given

∃̃i(φ1, ... , φp � �1, ... , �q) := ∃i(φ1), ... ,∃i(φp) � ∃i(�1), ... ,∃i(�q),

the n -th boundary map associated to ∃ is: ∂∃n =
∑n
i=0(– 1)i ∃̃i : ZFn → ZFn–1.

Proposition 1.8. The sequence 〈ZFn, ∂n〉n∈N defines a chain complex:

∂∃n–1 ◦ ∂∃n = 0 for all n ≥ 1.

Proof. Let S be:

φ1(v0, ... , vn), ... , φp(v0, ... , vn) � �1(v0, ... , vn), ... , �q(v0, ... , vn).

Writing φ for
∑

1≤k≤p φk and � for
∑

1≤l≤q �l , one has, for n even:

∂∃n (S)

= (∃xφ(x, v0, ... , vn–1) � ∃x�(x, v0, ... , vn–1))

– (∃xφ(v0, x, v1, ... , vn–1) � ∃x�(v0, x, v1, ... , vn–1)) + ···
··· + (∃xφ(v0, ... , vn–1, x) � ∃x�(v0, ... , vn–1, x))

= (∃xφ(x, v0, ... , vn–1),∃x�(v0, x, v1, ... , vn–1),∃xφ(v0, v1, x, ... , vn–1),

4This is the “Dold–Kan correspondence.” See [12], pp. 265–266 and pp. 270–271.
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... ,∃xφ(v0, ... , vn–1, x)) � (∃x�(x, v0, ... , vn–1),∃xφ(v0, x, v1, ... , vn–1),

∃x�(v0, v1, x, ... , vn–1), ... ,∃x�(v0, ... , vn–1, x)).

Then, writing ‘φ01x2....n’ as a shorthand for ∃xφ(v0, v1, x, v2, ... , vn), one can see
that each ∃̃i , for 0 ≤ i ≤ n – 1, will produce, if i is even (resp. odd), φx0...i–1yi...n–2,
�0x1...i–1yi...n–2, ..., φ0...i–1yi...x on the left side (resp. right side) of the sequent and
�x0...i–1yi...n–2, �0x1...i–1yi...n–2, ..., �0...i–1yi...x on the right side (resp. left side). So ∃̃i
and ∃̃i+1, put together, will produce the same sequent. Since n is supposed to be
even, the n indices i between 0 and n – 1 can all be considered pairwise, and so in
the end the right and left sides of ∂∃n–1(∂∃n (S)) match up. The proof in case n is odd is
analogous. 

Definition 1.9. For each n ∈ N, Zn(∃) := Ker ∂∃n is the set of all n -cycles
and Bn(∃) := Im ∂∃n+1 is the set of all n -boundaries associated to ∃. The quotient
Hn(∃) := Zn(∃)/Bn(∃) is the n -th homology group associated to ∃.

The homology groups (Hn(∃))n∈N represent the simplicial homology of first-order
logic.

§2. Simplicial sets and structures.

2.1. Elementary extensions.

Definition 2.1. For any L-structure M,

FM∗ := 〈Dn(M ), (∃Mi )0≤i≤n, (EMj )0≤j≤n〉n∈N, where:

• Dn(M ) is the set of all definable subsets of |M |n+1 with parameters;
• ∃Mi : Dn(M ) → Dn–1(M )), A = {�a ∈ |M |n+1 :M � φ(v0, ... , vn)[�a]} �→
{ �a′ ∈ |M |n :M � ∃xφ(v0, ... , vi–1, x, vi , ... , vn–1)[ �a′]};

• EMj : Dn(M ) → Dn+1(M ), A �→ {( �x, y) : �x ∈ A and y = xj}.

Proposition 2.2. For any L-structure M, FM∗ is a simplicial set.

Proof. The simplicial identities between the operators ∃Mi and EMj are the
semantic counterpart of the simplicial identities which turn F∗ into a simplicial
set. 

Definition 2.3. A simplicial set with distinguished vertices is a simplicial set X
equipped with a selection X ′

0 ⊆ X0 of vertices, called distinguished vertices.
A morphism f : (X,X ′

0) → (Y,Y ′
0) between simplicial sets with distinguished

vertices, or simplicial morphism for short, is a simplicial map f : X → Y such that
f–1(Y ′

0) = X ′
0.

Definition 2.4. Given any L-structure M, FM∗ is canonically equipped with a set
M ′

0 of distinguished vertices, namely the set of all nonempty definable subsets of |M |
without parameters. The corresponding simplicial set with distinguished vertices is
writtenM∗.
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Theorem 2.5. Let M be a substructure of an L-structure N. The restriction rn,
for each n ∈ N, being the map which sends φN to φN ∩ |M |n+1, for each L-formula
φ ∈ Fn, M is an elementary substructure of N iff the family (rn)n∈N of restriction maps
induces a simplicial morphism r∗ : N∗ →M∗.

Proof. Let N be an extension of M. Then rn : Dn(N ) → NMn , whereNMn is the set
of allφ(N,M ) := {�a ∈ |M |n+1 : N � φ(v0, ... , vn)[�a]} forφ ∈ Fn. Furthermore, the
sequence (NMn )n∈N can be endowed with a simplicial structureNM∗ , with ∃NMi : {�b ∈
|M |n+1 : N � φ(�v)[�b]} �→ { �b′ ∈ |M |n : N � ∃i(φ)[ �b′]} andEN

M

j : {�b ∈ |M |n : N �
φ(�v)[�b]} �→ {(�b, bj) ∈ |M |n+1 : N � φ(�v)[�b]}, for each φ ∈ Fn.

Now, suppose that r∗ is a simplicial morphism:

Dn(N )
rn ��

∃Ni
��

NMn

∃N
M

i
��

Dn–1(N )
rn–1

�� NMn–1

Then it turns out thatNM∗ is in factM∗. This point is proved by induction onφ. Since
M is a substructure of N, φ(N,M ) = φM for each negatomic L-formula φ ∈ Fn.
It is straightforward, by induction, that (φ ∧ �)(N,M ) = (φ(N,M ) ∧ �(N,M )) =
(φM ∧ �M ) = (φ ∧ �)M . Finally:

(∃xφ(v0, ... , vi–1, x, vi , ... , vn))(N,M ) = rn(∃Ni (φ(v0, ... , vn+1)))

= ∃NMi (rn+1(φ(v0, ... , vn+1))).

By induction hypothesis, rn+1(φ) ∈ Dn+1(M ), so ∃NMi (rn+1(φ)) = (∃xφ)(N,M )
is in Dn(M ). Now, the fact that the restriction maps rn make up a simplicial
morphism from N∗ to M∗ is the direct expression that the Tarski–Vaught test
is met. Indeed, suppose N � ∃xφ(x, a1, ... , an). Then (φ(v0, a1, ... , an))N ∈ N ′

0,
so r0(φ(v0, a1, ... , an)N ) = φ(v0, a1, ... , an)(N,M ) ∈M ′

0 is nonempty, which means
that there is some a ∈ |M | such that N � φ(v0, a1, ... , an)[a]. As a result, M is an
elementary substructure of N.

Conversely, suppose that M is an elementary substructure of N. Then, it is routine
verification to check that r∗ is a simplicial map, with codomain M∗, and thus a
simplicial morphism r : N∗ →M∗. The elementwise commutativity of the diagram
involving rn and rn–1 follows from the Tarski–Vaught test. Indeed, let us consider
φ ∈ Fn and let us suppose that (a1, ... , an) ∈ |M |n. Then:
N � ∃xφ(a1, ... , ai , x, ai+1, ... , an)
iff there exists a ∈ |M | such that N � φ(a1, ... , ai , v0, ai+1, ... , an)[a]
iff there exists a ∈ |M | such that (a1, ... , ai , a, ai+1, ... , an) ∈ φN ∩ |M |n+1

iff (a1, ... , an) ∈ ∃i(φN ∩ |M |n+1).
Thus ∃i(φN ) ∩ |M |n = ∃i(φN ∩ |M |n+1) for every L-formula φ ∈ Fn. 

Corollary 2.6. The mapping (–)∗ defines a contravariant functor from the
category of L-structures and elementary embeddings, to the category of simplicial
sets with distinguished vertices and simplicial morphisms.
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Proof. Any elementary embedding f :M → N gives rise to a simplicial
morphismf∗ : N∗ →M∗, in a functorial way, withfn : φN �→ {�a ∈ |M |n+1 : N � φ
[f(�a)]} = φM . 

Note that any two elementary equivalent L-structures M and N have isomorphic
hierarchies of definable subsets without parameters, but that the corresponding
isomorphism φM �→ φN betweenM∗ andN∗ is not induced in general by any actual
map between M and N.

Let M be an elementary substructure of an L-structure N, and let us suppose that
|M | is definable in N, by an L-formulaM (v0). For any φ ∈ Fn, the L-formula φM is
defined as (M (v0) ∧ ··· ∧M (vn) ∧ φ(M )), where φ(M ) is the quantifier relativization
of φ to M . This relativization allows one to define, for each n ∈ N, an extension
map en : φM ∈ Dn(M ) �→ (φM )N ∈ Dn(N ), the existence of which, as will be seen
presently, has a natural simplicial counterpart, if one moves toM∗ and N∗. Given
two simplicial sets X and Y (resp. two simplicial sets X and Y with distinguished
vertices), a retraction of Y over X consists of a pair 〈f, g〉 of simplicial maps (resp.
of simplicial morphisms) f : X → Y and g : Y → X , such that g ◦ f = idX .

Theorem 2.7. Let M be an elementary substructure of an L-structure N. Then the
domain |M | of M is definable in N iff the family (en)n∈N of extension maps induces a
simplicial morphism e∗ :M∗ → N∗ and 〈e∗, r∗〉 is a retraction of N∗ overM∗.

Proof. Suppose |M | is definable in N by some L-formulaM (v0). SinceN � φ[�b]
iff �b ∈ |M |n+1 andM � φ[�b], for any φ ∈ Fn, the diagram

φM ∈ Dn(M ) � en ��
�

∃Mi
��

(φM )N�

∃Ni
��

{ �a′ ∈ |M |n :M � ∃i(φ)[ �a′]} �
en–1

�� { �b′ ∈ |N |n : N � (∃i(φ))M [ �b′]}
commutes. Indeed, using the Tarski–Vaught test, one has:

N � ∃i(φM )[ �b′] iff N � φM [b′0, ... , b
′
i–1, ci , b

′
i , ... , b

′
n–1] for some ci ∈ |N |

iff N � φM [b′0, ... , b
′
i–1, di , b

′
i , ... , b

′
n–1] for some di ∈ |M |

iff N � ∃vi (M (vi) ∧ φM )[ �b′]
iff N � (∃i(φ))M [ �b′].

That is to say, the collection of maps (en : Dn(M ) → Dn(N ))n∈N defines a simplicial
map. Now, one easily checks that (enrn)(φN ) = φM and that (rnen)(φM ) = φM for
every φ ∈ Fn:

(enrn)(φN ) = en({�a ∈ |M |n+1 : N � φ[�a]}) = en(φM ) = (φM )N

= {�b ∈ |N |n+1 : N � φM [�b]} = {�a ∈ |M |n+1 : N � φM [�a]} = φM ,

(rnen)(φM ) = rn((φM )N ) = {�a ∈ |M |n+1 : N � φM [�a]} = φM .

Consequently, r∗ : N∗ →M∗ defines a retraction of N∗ over M∗. Conversely, the
very condition r∗e∗ = idM∗ supposes that e∗ is well defined, and thus that M is a
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definable elementary substructure of N. As a matter of fact, there must be some
L-formula �(v0) such that e0(|M |) = e0((v0 = v0)M ) = �(v0)N . 

The existence of a retraction r∗ : N∗ →M∗ implies in particular that M∗ and
N∗ are homotopy equivalent.5 The emerging analogy is thus between elementary
equivalence and homotopy equivalence: as two L-structures are elementary equiv-
alent iff they have isomorphic ultrapowers, two topological spaces are homotopy
equivalent iff they are deformation retracts of a single (up to isomorphism) larger
space, namely the “mapping cylinder” of their homotopy.

2.2. Types. Another application of the simplicial framework deserves attention,
namely types. Given a complete theory T in L, an n-type is a complete theory in
L ∪ {v0, ... , vn–1} which is consistent with T and whose sentences are considered up
to graded logical equivalence. The set of all n-types is written Sn–1(T ). If T is the
theory of some L-structure M and A ⊆ |M |, the set of all n-types over A (n-types in
the language L(A)) is written Sn(A).

Definition 2.8. The natural extensions of the maps ∃i : Fn → Fn–1 and Ej :
Fn → Fn+1 to types as sets of L-formulae are also written ∃i : Sn(T ) → Sn–1(T ) and
Ej : Sn(T ) → Sn+1(T ).

Proposition 2.9. The structure S∗(T ) = 〈Sn(T ), (∃i)0≤i≤n, (Ej)0≤j≤n〉n∈N is a
simplicial set.

Proof. Given any type q ∈ Sn(T ), there is a type p ∈ Sn+1(T ) such that p ⊇
{Ei(�) : � ∈ q}. Indeed, since every finite subset of q is consistent and realized
in some model of T, this is obviously the case of {Ei(�) : � ∈ q} too. But then
∃ip ⊇ {(∃iEi)(�) : � ∈ q} = q. Since q is supposed to be complete, it follows that
∃ip = q. (However, all the L-formulae in q are not in an existentially quantified form:
they are only so up to graded logical equivalence —see Definition 1.3.) As to the
simplicial identities, they are verified by straightforward extension from L-formulae
to types. 

Theorem 2.10. S∗(T ) is fibrant.

Proof. In combinatorial terms, one has to show, given n simplices p0, ..., p̂k , ...,
pn ∈ Sn–1(T ) such that ∃ipj = ∃j–1pi for all i, j �= k with i < j, the existence of p ∈
Sn(T ) such that ∃ip = pi for all i �= k. But the complete (n + 1)-type p generated by
the family {(vj = vj ∧ φj(v0, ... , vj–1, vj+1, ... , vn)) : φj ∈ pj, j �= k}matches that
condition. A preliminary remark is in order: the hypothesis ∃ipj = ∃j–1pi (for i < j
and i, j �= k) means that, for any L-formula φj(v0, ... , vn–1) ∈ pj , there exists an L-
formula �iφ(v0, ... , vn–1) ∈ pi such that ∃xφj(v0, ... , vi–1, x, vi , ... , vn–2) is logically
equivalent (in the graded sense) with ∃x�iφ(v0, ... , vj–2, x, vj–1, ... , vn–2). Renaming
‘vj–1’, ..., ‘vn–2’ is immaterial, so actually, for any variable symbols ‘u1’, ..., ‘un–1’:

5Two simplicial sets X and Y are said to be homotopy equivalent if there are simplicial mapsf : X → Y
and g : Y → X which are homotopy inverse to each other, in the sense defined in Section 3.2.
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∃xφj(u1, ... , ui , x, ui+1, ... , uj–1, ... , un–1)

= ∃x�iφ(u1, ... , uj–1, x, uj, ... , un–1).

In the same way, for any L-formula φi ∈ pi , there exists an L-formula �jφ ∈ pj
such that:

∃xφi(u1, ... , uj–1, x, uj, ... , un–1)

= ∃x�jφ(u1, ... , ui , x, ui+1, ... , uj–1, ... , un–1).

As a consequence, for any φj ∈ pj with j > 0 and j �= k:

∃0((vj = vj ∧ φj(v0, ... , vj–1, vj+1, ... , vn)))

= (vj–1 = vj–1 ∧ ∃xφj(x, v0, ... , vj–2, vj , ... , vn–1))

= (vj–1 = vj–1 ∧ (∃xφj)[vj/vj–1, ... , vn–1/vn–2])

= (vj–1 = vj–1 ∧ (∃x�0
φ)[vj/vj–1, ... , vn–1/vn–2])

= (vj–1 = vj–1 ∧ ∃x�0
φ(v0, ... , vj–2, x, vj , ... , vn–1)).

But the latter L-formula is obviously a member ofp0. As to the case j = 0 (supposing
k �= 0), ∃0((v0 = v0 ∧ φ0(v1, ... , vn))) = φ0(v0, ... , vn–1) ∈ p0. Gathering both cases
(j > 0 and j = 0), one has that ∃0p = p0 (for k �= 0).

Let us prove now that ∃np = pn (for k �= n). As above, for any φi ∈ pi with i < n
and i �= k:

∃n((vi = vi ∧ φi(v0, ... , vi–1, vi+1, ... , vn)))

= (vi = vi ∧ ∃xφi(v0, ... , vi–1, vi+1, ... , vn–1, x))

= (vi = vi ∧ (∃n–1φ
i)[vi+1/vi , ... , vn–1/vn–2])

= (vi = vi ∧ (∃i�nφ)[vi+1/vi , ... , vn–1/vn–2])

= (vi = vi ∧ ∃x�nφ(v0, ... , vi–1, x, vi+1, ... , vn–1)) ∈ pn.

As to the case i = n, again ∃n((vn = vn ∧ φn(v0, ... , vn–1))) = φn(v0, ... , vn–1) ∈ pn.
So ∃np = pn (for k �= n). The proof of the other identities ∃jp = pj , for all j such
that 0 < j < n and j �= k, is analogous. 

Given a simplicial set X and x, y ∈ X0, x is said to be homotopic to y, written
x ∼ y, iff there exists a one-simplex z ∈ X1 such that d1z = x and d0z = y. The
one-simplex is said to be a path from x to y.

Corollary 2.11. (See [6], Lemmas 3.4.2, 3.4.3 and 3.6.3) The homotopy relation
between 1-types inS0(T ) is an equivalence relation. The quotientS0(T )/ ∼ is the set of
path components of S∗(T ). For p ∈ S0(T ), the higher homotopy groups �n(S∗(T ), p)
can be defined as well.6

6See [3] (pp. 25–27) and [6] (Lemma 3.4.5, p. 85) for the definition of simplicial homotopy groups
and the proof of their being groups.
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Up to now, a simplicial set has been associated to a whole space of types
〈Sn(T ) : n ∈ N〉. A single type, however, also induces a simplicial set, provided
it has the following property: given some L-structure M and A ⊆ |M |, p ∈ Sn(A)
is definable iff, for each L-formula φ(v0, ... , vn, vn+1, ... , vn+m), there is an L(A)-
formula (�pφ)(v0, ... , vm–1) such that, for any tuple (a0, ... , am–1) of elements of |M |,
φ(v0, ... , vn, a0, ... , am–1) ∈ p iffM � (�pφ)(v0, ... , vm–1)[a0, ... , am–1]. The operator
�p is called the definition of p.

Proposition 2.12. Given an L-structure M, any definable type p ∈ S0(M ) induces
a fibrant simplicial set.

Proof. Let p ∈ S0(M ) be definable: for each L-formula φ(v0, ... , vn),
there is an L-formula dp,ni (φ)(v0, ... , vn–1), possibly with parameters in M,
such that, for any (a0, ... , an–1) ∈ |M |n, φ(a0, ... , ai–1, v0, ai , ... , an–1) ∈ p iff
M � dp,ni (φ)[a0, ... , an–1]. One has: dp,ni (¬φ) = ¬dp,ni (φ) and dp,ni (φ ∧ �) =
dp,ni (φ) ∧ dp,ni (�). Besides, each set Fn can be turned into a group, with � as
the binary law, so each dp,ni is actually a group homomorphism. Hence F p∗ :=
〈〈Fn,�,⊥〉, (dp,ni )0≤i≤n, (snj )0≤j≤n〉n∈N is a simplicial group. Since, according to
Moore’s theorem,7 the underlying simplicial set of a simplicial group is fibrant, one
concludes that F p∗ is fibrant. 

Proposition 2.13. Any definable type p ∈ S0(M ) induces a chain complex.

Proof. From ∂p,n(φ) := (((dp,n0 (φ) � dp,n1 (φ)) � ··· ) � dp,nn (φ)) (for each n ∈
N and each φ ∈ Fn), one gets a differentiation operator ∂p,∗: ∂p,n+1 ◦ ∂p,n ≡ ⊥ for
every n ∈ N. In other words, 〈F p∗ , ∂p,∗〉 is a chain complex. 

2.3. Another functorial correspondence. Let L = {R(n)
k : n, k ∈ N} ∪ {<} be a

fixed countable first-order language, whose signature contains a distinguished binary
relation ‘<’. As above, “definability” will mean, unless otherwise stated, definability
with parameters. Moreover, all types in Sn(M ), for each n ∈ N, will be allowed
to consist of L(M )-formulae. The simplicial FM∗ associated to any L-structure M
(Definition 2.1) does not encode enough of M. In order to improve the functorial
correspondence between L-structures and simplicial sets, the simplicial counterpart
of the definable subsets of M should be able to mention which of the latter are
nonempty. Hence the next definition.

Definition 2.14. A simplicial set with distinguished simplices, or d-simplicial set
for short, is a simplicial set X with a subset X ′

n ⊆ Xn of distinguished n-simplices
for each n ∈ N.

A d-simplicial map f : X → Y is a simplicial map f : X → Y such that, for each
n ∈ N, fn preserves distinguished n-simplices, i.e., fn(X ′

n) ⊆ Y ′
n.

Lemma 2.15. Any L-structure M induces a d-simplicial setM ∗.

7See [3], Lemma I. 3. 4, p. 12.
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Proof. Let us define a complex of M as a finite collection C of definable subsets of
M (i.e., of definable subsets of Cartesian powers of |M |) which is closed under the
face operator: for any definable subset (φ(v0, ... , vn, a1, ... , al ))M ∈ Dn(M ) (with
parameters a1, ... , al ), φM ∈ C implies both

• ∃Mi (φM ) = (∃xφ(v0, ... , vi–1, x, vi , ... , vn–1, a1, ... , al ))M ∈ C and
• (∃yφ(v0, ... , vn, a1, ... , aj–1, y, aj+1, ... , al ))M ∈ C ,

for any i with 0 ≤ i ≤ n and any j with 1 ≤ j ≤ l . A complex C of M is of dimension
n if n is the largest integer k such that Dk(M ) ∩ C �= ∅. Given a collection Γ of
definable subsets of M, the complex generated by Γ, written Γc , is the intersection
of all complexes of M containing all members of Γ. A complex generated by a
single definable subset is called a principal complex. For each n ∈ N, the set of
n-simplices ofM ∗ is defined as the set K(M )n of all complexes of M of dimension
n. The maps ∃Mi : Dn(M ) → Dn–1(M ) and EMj : Dn(M ) → Dn+1(M ), as defined
earlier, are simply extended to collections of parametrically definable subsets.
(Note that, given any definable subset φM of M, ∃i({φM}c) = {∃i(φM )}c and
Ej({φM}c) = {Ej(φM )}c , so that FM∗ can be identified with a simplicial subset
of M ∗.) The distinguished n-simplices of M ∗ are the principal complexes of M
generated by a nonempty subset of |M |n+1 defined by an atomic formula without
parameters. Their set is written K(M )′n. 

Definition 2.16. Let M and N be two L-structures. For any homomorphism
f :M → N , nf : Dn(M ) → Dn(N ), for each n ∈ N, is the map sending each

(φ(v0, ... , vn, a1, ... , ak))M

to

(φ(v0, ... , vn, f(a1), ... , f(ak)))N .

The extension C ∈ K(M )n �→ {nf(φM ) : φM ∈ C} ∈ K(N )n of nf shall also be
written nf.

In case f :M → N is an elementary embedding, it is clear that each nf :
Dn(M ) → Dn(N ) will be injective. Now a simplicial mapf : X → Y is a cofibration
iff fn : Xn → Yn is an injection for all n ∈ N. Hence the next lemma.

Lemma 2.17. Let M and N be two L-structures and f :M
≺ �� N an elementary

embedding. The family (nf : K(M )n → K(N )n)n∈N defines a d-simplicial map f! :
M ∗ → N ∗ which, as a simplicial map, is a cofibration.

Corollary 2.18. The mappingM �→M ∗, f �→ f! defines a functor F0 from the
category L-Strs of L-structures and elementary embeddings, to the category d-sSets
of d-simplicial sets and d-simplicial maps which are cofibrations.

Definition 2.19. Let M and N be two L-structures and f :M
≺ �� N an

elementary embedding. For each n ∈ N, the restriction morphism nf : Dn(N ) →
Dn(M ) is defined as follows: given any L-formula

φ(v0, ... , vn, f(a1), ... , f(ak), b1, ... , bl )
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in Fn with parameters in N, where b1, ... , bl are parameters of φ (if any) not in the
range of f, nf sends

(φ(v0, ... , vn, f(a1), ... , f(ak), b1, ... , bl ))N

to

(∃x1 ... ∃xlφ(v0, ... , vn, a1, ... , ak, x1, ... , xl ))M.

The extension C ∈ K(N )n �→ {nf(φN ) : φN ∈ C} ∈ K(M )n of nf shall also be
written nf.

In case f :M → N is an elementary embedding, the family (nf)n∈N contravari-
antly associated to f will be something like the opposite of a cofibration. The
right notion here is that of “trivial fibration.” A trivial fibration is a simplicial map
p : X → Y such that: (i) p0 : X0 → Y0 is surjective; (ii) for every n ≥ 1, given any
(n + 1)-tuple x0, ... , xn of (n – 1)-simplices of X such that dixj = dj–1xi (for all i, j
with 0 ≤ i < j ≤ n) and any n-simplex y of Y such that diy = pn–1(xi) (for all i
with 0 ≤ i ≤ n), there exists an n-simplex x of X such that dix = xi (for all i with
0 ≤ i ≤ n) and pn(x) = y.

Lemma 2.20. Let M and N be two L-structures and f :M
≺ �� N an elementary

embedding. The family (nf : K(N )n → K(M )n)n∈N defines a d-simplicial map f∗ :
N ∗ →M ∗ which, as a simplicial map, is a trivial fibration.

Proof. Since f is an elementary embedding,f∗ obviously satisfies 0f(K0(N )) ⊆
K0(M ), so it only remains to prove the second condition (ii) in the definition
above. For the sake of simplicity, let us consider only the case n = 1 and let us
suppose that the given simplices are principal complexes. The treatment of the
general case is analogous, only more complicated. So, using ‘α’, ‘	 ’ and ‘
’ to
indicate arbitrary sequences of parameters, let x0 = {(φ0(v0, f(aα), bα))N}c , x1 =
{(φ1(v0, f(a	), b	))N}c and y = {(�(v0, v1, c
))M}c be such that:

• M � ∃xφ0(x,f(aα), bα) ↔ ∃xφ1(x,f(a	), b	),
• M � ∃y�(y, v0, c
) ↔ ∃xαφ0(v0, aα, xα),
• M � ∃z�(v0, z, c
) ↔ ∃x	φ1(v0, a	 , x	).

Let x be {(�(v0, v1, f(c
)))N , (φ0(v1, f(aα), bα))N , (φ1(v0, f(a	), b	))N}c . One
has:

• pn(x) = {(�(v0, v1, c
))M, (∃xαφ0(v1, aα, xα))M, (∃x	φ1(v0, a	 , x	))M}c =
{(�(v0, v1, c
))M, (∃y�(y, v1, c
))M, (∃z�(v0, z, c
))M}c = y

• ∃0x = {(∃x�(x, v0, f(c
)))N , (φ0(v0, f(aα), bα))N , (∃xφ1(x,f(a	 ), b	))N}c =

{(∃xαφ0(v0, aα, xα))N , (φ0(v0, f(aα), bα))N , (∃xφ0(x,f(aα), bα))N}c = x0
• ∃1x = x1 in the same way as just above. 

Corollary 2.21. The mapping (–)∗ defines a contravariant functor F from the
category L-Strs of L-structures and elementary embeddings, to the category d-sSets
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of simplicial sets with distinguished simplices and d-simplicial maps which are, as
simplicial maps, trivial fibrations.

§3. O-minimal structures as simplicial sets. Given the existence of the functor F,
two natural questions are whether a functor can be defined in the other direction
(even if it means restricting the two categories L-Strs and d-sSets to subcategories
thereof) and, if so, whether the resulting pair of functors induces an adjunction.
The purpose of the rest of this paper is to give a positive answer to both questions
(Theorems 3.15 and 3.19).

3.1. O-minimality. It appears that the right restriction of L-Strs is to o-minimal
L-structures. An L-structure M is said to be o-minimal iff <M is a dense linear
order and every definable subset of 〈M,<M 〉 is a finite union of singletons and open
<M -intervals (with endpoints in |M | ∪ {– ∞,+∞}). The full subcategory of L-Strs
composed of all o-minimal L-structures is written oL-Strs.

Lemma 3.1. Suppose X is a simplicial set. Then any linear order on the set X0 of
its vertices induces on each Xn (n ∈ N) a linear order.

Proof. The linear ordering of every Xn is defined by induction. Let us suppose
that a linear order <n has been defined on Xn. For each E ∈ Xn+1, let s(E) be the
sequence (di(E))0≤i≤n+1. An order<n+1 is then defined onXn+1 as follows:E <n+1

E ′ iff s(E) <ln s(E
′), where <ln is the lexicographic order induced by <n. Since the

lexicographical order on a family of linearly ordered sets is a linear extension of
their product order, by induction each <n is a linear order. 

Definition 3.2. A dense inductively linearly ordered simplicial set with countably
many distinguished simplices, or dilo-simplicial set for short, is a d-simplicial set X
such that: (i) its set X0 of vertices is a dense linear order; (ii) for each n ≥ 1, Xn is
endowed with the linear order induced by that on X0 as above; and (iii) for each
n ∈ N, the subset X ′

n ⊆ Xn of distinguished n-simplices is countable.
A morphism f : X → Y between dilo-simplicial sets, or dilo-simplicial map for

short, is a d-simplicial map f : X → Y such that, for each n ∈ N, fn|X ′
n

is an order
isomorphism from X ′

n to Y ′
n.

Lemma 3.3. For any o-minimal L-structure M,M ∗ is a dilo-simplicial set.

Proof. SinceM ∗ is a d-simplicial set, it is only necessary to define a dense linear
ordering of D0(M ). Each definable subset A of |M | can be written

⋃nA
i=0 ]ai , ai+1[

for some nA ∈ N, with ai ≤M ai+1 and the convention:

]ai , ai+1[ =

{
]ai , ai+1[ if ai <M ai+1,

{ai} if ai = ai+1.

The sequence (ai)0≤i≤nA is called the sequence associated to A and written �(A).
Then D0(M ) is ordered as follows: A <0 A′ iff �(A) <l �(A′), where <l is the
lexicographic order induced by<M . FinallyK(M )0 is ordered as follows:C <0 C

′ iff
C0 <

∗ C ′
0, whereC0 = C ∩D0(M ),C ′

0 = C ′ ∩D0(M ) and<∗ is the lexicographic
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order induced by <0 on ℘f(D0(M )). The resulting ordering <0 is a dense linear
order. 

A standard result about trivial fibrations8 is that any trivial fibration p : X → Y
has the right lifting property w.r.t. all cofibrations, which means that, given any
cofibration i : U → V , any commutative solid arrow diagram

U
f ��

i

��

X

p

��
V

g ��

h

���
�

�
�

Y

admits of a lifting h : V → X satisfying h ◦ i = f and p ◦ h = g. In particular, the
lifting problem

∅ ��

��

X

p

��
Y

s

���
�

�
�

Y

has a solution s. Hence any trivial fibration p : X → Y has a section: put differently,
there exists a simplicial map s : Y → X such that 〈s, p〉 constitutes a retraction pair.

Definition 3.4. Let dilo-sSets be the category —a subcategory of d-sSets—
whose objects are all dilo-simplicial sets and whose morphisms are all dilo-simplicial
maps which, as simplicial maps, are trivial fibrations with a unique section.
So each morphism p in dilo-sSets actually consists of a specific retraction pair
〈ip : Y → X,p : X → Y 〉.

Lemma 3.5. Let M and N be two L-structures. For any elementary embedding

f :M
≺ �� N , 〈f!, f

∗〉 is a retraction pair and f! is the unique simplicial map g
such that 〈g, f∗〉 is a retraction pair.

Proof. For each n ∈ N, the equality nf ◦ nf = idDn(M ) and thus the equality
nf ◦ nf = idK(M )n follow directly from the definitions of nf and nf. The uniqueness
of f! follows from the hypothesis that f is an elementary embedding. 

Corollary 3.6. The restriction F̃ of F to oL-Strsop induces a functor F ′ from
oL-Strsop to dilo-sSets.

One is now interested in a functor going in the opposite direction. But, given any
dilo-simplicial set X, there is an L-structure X̂ naturally associated to it. Indeed,
any simplicial set X gives rise, in a canonical way, to a topological space ||X ||,
called its geometric realization. Actually, from the beginning X is just a recipe for
joining polyhedra together so as to obtain ||X ||, of which X can be conceived of as
a triangulation. The idea is to realize each n-simplex of X as the n-cell (“standard

8See [3], Lemma II.1.1, pp. 67–68.
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n-simplex”) ||Δn|| = {(t0, ... , tn) ∈ R
n+1 : ti ≥ 0,

∑n
i=0 ti = 1}, and to keep track of

the incidences between n-simplices:

||X || := lim−→
Δn→X

||Δn|| =

(∐
n∈N

Xn × ||Δn||
)
/∼,

where ∼ expresses the identification of parts that are glued together.9 Specifically,
define �i : ||Δn–1|| → ||Δn|| and �j : ||Δn+1|| → ||Δn|| by:
�i(t0, ... , tn–1) = (t0, ... , ti–1, 0, ti , ... , tn–1)
�j(t0, ... , tn+1) = (t0, ... , ti–1, ti + ti+1, ti+2, tn–1).
Then ∼ is the equivalence relation generated by (dix, u) ∼ (x, �iu) and (sjx, v) ∼

(x, �jv), for all x ∈ Xn, u ∈ ||Δn|| and v ∈ ||Δn+1||. Thus, an element of ||X || is of
the form (x, u) with x ∈ Xn and u = (t0, ... , tn). Note that, by construction, the
topological space ||X || is a CW complex. On the other hand, any simplicial map
g : X → Y induces a continuous map ||g|| : ||X || → ||Y ||, given by: ||g||((x, u)) =
(gn(x), u). This makes geometric realization functorial.

Definition 3.7. Let X be a dilo-simplicial set and Xkn the k-th distinguished
n-simplex of X, i.e., the k-th member ofX ′

n. The image of Xkn in ||X ||, written ||X ||kn ,
is the image of the composite map:

{Xkn } × ||Δn|| �
� �� ∐

n∈N
Xn × ||Δn|| �� �� ||X || .

This definition generalizes to any set Y of n-simplices of X : the image ||Y || of Y
is the union of the images of all the elements of Y.

Definition 3.8. Any dilo-simplicial set X gives rise to an L-structure X̂ defined
as follows:

• |X̂ | is ||X ||, the geometric realization of X ;
• (R(0)

k
)X̂ is the image of the k-th distinguished vertex in X0;

• (R(n)
k

)X̂ , for n ≥ 1, is (||X ||kn)n.

Example 3.9. Let XS2 be the canonical simplicial set whose realization is the
two-dimensional sphere S2. Since S2 is obtained by glueing the boundary of a copy
of ||Δ2|| into a single point, XS2 has a single non-degenerate 0-simplex (vertex ∗),
a single non-degenerate 2-simplex, and no other non-degenerate simplices. Hence
|X̂S2 | is S2 and, for all k ∈ N, (R(0)

k )X̂S2 is ∗, (R(1)
k )X̂S2 is {∗} and (R(2)

k )X̂S2 is
S2 × S2.

Definition 3.10. Let 〈ip : Y → X,p : X → Y 〉 be a morphism in dilo-sSets. One
then defines p̂ := ||ip|| : ||Y || → ||X ||.

As a result of the definition of a trivial fibration p : X → Y , ||p|| has the right
lifting property w.r.t. all cellular inclusions, i.e., all inclusions A � � �� C where A

9The usual notations for the geometric realization of X are ‘|Δn |’ and ‘|X |’. The notations ‘||Δn ||’ and
‘||X ||’ chosen in this paper are motivated by the wish not to confuse the domain of an L-structure and
the geometric realization of a simplicial set—precisely owing to the connection to be established between
both notions (see Definition 3.8 below).
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is a subcomplex of some CW complex C.10 This result will be of use in the proof of
the Lemma below.

Lemma 3.11. For any morphism p : X → Y in dilo-sSets, p̂ : ||Y || → ||X || defines
an elementary embedding p̂ : Ŷ → X̂ .

Proof. Suppose (y1, ... , yn) ∈ (R(n)
k )Ŷ = (||Y ||kn)n. Each yi is of the form

(	i , ui) with 	i = Ykn . By definition of a dilo-simplicial map, pn ◦ (ip)n = idYn
and thus p̂(yi) = (αi , ui) with αi = (ip)n(	i) = p–1

n (	i) = Xkn , so p̂(yi) ∈ ||X ||kn ,
and so (p̂(y1), ... , p̂(yn)) ∈ (R(n)

k )X̂ . Suppose now that ||Y || ⊆ ||X || and
that X̂ � φ(v0, y1, ... , yn)[x] with x ∈ ||X || and y1, ... , yn ∈ ||Y ||. Let C be
(φ(v0, y1, ... , yn))X̂ , so that x ∈ C , and let p′ be the restriction of ||p|| to C.
Since p′ ◦ x is a cellular inclusion and p is a trivial fibration, ||p|| has the right lifting
property w.r.t. p′ ◦ x, so there exists a lifting h in the following diagram:

∗ x ��

p′◦x ���
��

��
��

� C
� � i ��

p′

��

|X̂ |

||p||
��

||Y ||

h

���
�

�
�

|Ŷ |

The map h satisfies h ◦ p′ ◦ x = i ◦ x and ||p|| ◦ h = id||Y ||. The first condition
ensures that there exists y ∈ |Ŷ | such that h(y) ∈ C and, by the uniqueness of
the section of p, the second ensures that h(y) = y. This leads to the existence of
y ∈ |Ŷ | such that X̂ � φ(v0, y1, ... , yn)[y]. As a result, the Tarski–Vaught test is
verified. 

Corollary 3.12. The mapping (̂–) defines a functor G from dilo-sSetsop to L-Strs.

As an extension of the simplicial setup presented here, a connection can be made
with the “independence property” in stability theory. An L-formula φ( �x, �y) does not
have the independence property in some L-structure M if, for any denumerable set
{ �ai : i ∈ N}, there is no family { �bJ : J ⊆ N} such that, for all i ∈ N and all J ⊆ N,
M � φ( �ai , �bJ ) iff i ∈ J . A standard result is that an L-formula φ( �x, �y) has the
independence property in M if and only if, for any indiscernible sequence ( �ai)i∈I and
any tuple �b in M, there is some cofinal subset I0 ⊆ I such that eitherM � φ( �ai , �b)
orM � ¬φ( �ai , �b) holds for every i ∈ I0. (Given a linearly ordered set I, a sequence
(ai)i∈I of tuples in M is indiscernible if for every n ∈ N, whenever i1 < ··· < in and
j1 < ··· < jn are two increasing n-subsequences of I, the two n-tuples (ai1 , ... , ain )
and (aj1 , ... , ajn ) have the same type.)

10See [6], pp. 49–58. A cellular inclusion A � � �� C is a particular case of map in I ′-cell (Lemma
2.4.5), and I ′-cell ⊆ I ′-cof (Lemma 2.1.10), so any cellular inclusion is a cofibration in the category Top
of topological spaces, as defined in Definition 2.4.3. But, for every trivial fibration p in sSets, ||p|| is a
trivial Serre fibration in Top (Corollary 2.4.20), so it has the right lifting property w.r.t. all maps in J,
and thus w.r.t. all cofibrations, since (J-cof)-inj = J-inj.
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Proposition 3.13. Given any dilo-simplicial set X, no L-formula has the indepen-
dence property in X̂ .

Proof. The combination of Lemma 12.16 and Theorem 12.18 in [10] shows
that the proof can be confined to L-formulae φ( �x, �y) where | �x| = |�y| = 1. Now,
an indiscernible sequence of elements in X̂ is any sequence of elements of some
||Xkn || \

⋃
0≤i≤n ||di(Xkn )||. So an element b ∈ |X̂ | can make a difference within an

indiscernible sequence (ai)i∈I only if b = ai0 for some i0 ∈ I , so I0 can be taken to
be {i ∈ I : i > i0}. 

This result, as no L-formula has the independence property in any o-minimal
structure (see [11], ch. 5.), is actually strenghtened by the following Lemma.

Lemma 3.14. For any dilo-simplicial set X, X̂ is an o-minimal L-structure.

Proof. The set {(n, x, u) : n ∈ N, x ∈ Xn, u ∈ ||Δn||} can be naturally equipped
with a linear order: for n, n′ ∈ N, x ∈ Xn, x′ ∈ Xn′ , u = (t0, ... , tn) ∈ ||Δn|| and
u′ = {(t′0, ... , t

′
n′) ∈ ||Δn′ ||, one states:

(n, x, u) ≺ (n′, x′, u′) iff

⎧⎪⎨⎪⎩
n < n′,

or n = n′ and x < x′ in Xn,
or n = n′, x = x′ and u < u′ in ||Δn||,

||Δn|| being endowed with the lexicographical order.
Then, given [x, u] := inf≺({(n0, x0, u0) : x0 ∈ Xn0 and (x0, u0) ∈ (x, u)}), |X̂ | =

||X || is simply ordered by:

(x, u) <X (x′, u′) iff [x, u] ≺ [x′, u′].

One checks that <X is a dense linear order which turns X̂ into an o-minimal
structure. Indeed, because the interpretation (R(1)

k )X̂ of each predicate is a convex

set, the structure 〈X̂ , <X , (R(1)
k )X̂ 〉 is weakly o-minimal, by a result given in [1], and

actually o-minimal, by construction of <X . Moreover, the n-ary relations for n ≥ 2
are interpreted by trivial convex subsets (products), so instantiating a variable in an
L-formula or quantifying over it simply shifts to another convex subset, and actually
to a finite union of singletons and intervals. The same is true about connectives,
so any L-formula in F0 is interpreted in X̂ by a finite union of singletons and
intervals. 

Theorem 3.15. There are two functors F ′ : oL-Strsop → dilo-sSets and G ′ :
dilo-sSets → oL-Strsop such that both diagrams below commute:

oL-Strsop F ′
��

F̃

��dilo-sSets �
� �� d-sSets,

dilo-sSets G ′
��

Gop

��oL-Strsop � � �� L-Strsop.
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Remark 3.16. The L-structure X̂ is o-minimal over ||X ||, but any dilo-simplicial
set also induces an o-minimal structureXR over R, defined by |XR| = R, (R(n)

k )XR =
|Xkn |. If p : X → Y is a trivial fibration, then pR := idR is by construction an
elementary embedding of YR into XR. The correspondence (–)R defines a functor,
distinct from G ′, from dilo-sSets to oL-Strsop.11

3.2. Adjunction. The last task ahead is to establish that the functors F ′ and G ′

are adjoint functors. To that end, two preliminary results, one model-theoretic, the
other homotopy-theoretic, are needed. First, an L-structure P is prime over A ⊆ |P|
if, for everyN � Th(P,α)α∈A, there is an elementary embedding f : P → N over A
(that is, which is the identity over A). Pillay and Steinhorn12 proved that, given any
o-minimal L-structure M and A ⊆ |M |, Th(M ) has a prime model over A, unique
up to A-isomorphism.

Secondly, the simplicial set Δ1 is the simplicial set X with only three nondegenerate
simplices: two vertices 0 and 1, and one 1-simplex whose faces are the two vertices 0
and 1. Its realization ||Δ1|| = {(t0, t1) ∈ R

2 : t0, t1 ≥ 0, t0 + t1 = 1} is a line segment.

Given two simplicial mapsf, g : X → Y , a homotopy H : f � �� g is a simplicial

map H : X × Δ1 → Y whose restrictions to X × {0} and to X × {1} are f and g,
respectively.13 If there is such an homotopy, the maps f and g are said to be homotopic,
which is writtenf � g. Two mapsf : X → Y andf′ : Y → X are homotopy inverse
to each other if f′ ◦ f � idX and f ◦ f′ � idY . Now, as noted above,14 any trivial
fibration has a section. It turns out that any section s : Y → X of a trivial fibration
p : X → is homotopy inverse to it. Indeed, by hypothesis the lifting problem15

X × ∂Δ1
� �

��

(idX ,s◦p) �� X

p

��
X × Δ1 p◦pr1 ��

H

���������
Y

has a solution H, which amounts to a homotopy idX � s ◦ p. In particular, for any

elementary embedding f :M
≺ �� N, f! is homotopy inverse to f∗.

Lemma 3.17. Let X be a dilo-simplicial set. Then there exists a trivial fibration
ε : (X̂ )∗ → X .

Proof. For any vertex x of X, let us consider its realization {||x||} := {(x, 0)} =
{x} × ||Δ0|| ⊆ ||X ||, so that the set X0 of the vertices of X corresponds to a subset

11The introduction of that functor would be motivated, in the context of focusing on o-minimal
structures over the real line, by the natural comparison of a definable subset of XR with a simplicial
subcomplex of ||X || (see [11], ch. 8).

12See [9], Theorem 5.1, p. 583.
13About X × Δ1: the Cartesian product X × Y of two simplicial sets X and Y is simply defined by:

(X × Y )n := Xn × Yn (n ∈ N).
14See the remark following Lemma 3.3.
15The simplicial set ∂Δ1, called the boundary of Δ1, is the smallest simplicial subset of Δ1 containing

all the 0-simplices (vertices) of the latter, namely 0 and 1.
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of ||X ||. In the same way, each 1-simplex x ∈ X1 corresponds to an ordered pair
of vertices, and thus X1 to a binary relation on ||X ||. More generally, each x ∈ Xn
corresponds to an (n + 1)-uple (x0, ... , xn) of vertices (some of which possibly
identical), hence to an (n + 1)-uple (||x0||, ... , ||xn||) in ||X ||. The substructure Y =
〈||X0||, (R(n)

k )X̂ ∩ ||X0||n〉k,n∈N of X̂ defined by restriction to ||X0|| = {||x|| : x ∈ X0}
is actually an elementary substructure r : Y

≺ �� X̂ of X̂ because, by continuity,
every L-formula (with parameters in Y) satisfiable in X̂ is satisfied by a tuple of
vertices. Every definable subset B ∈ Dn(Y ) consists of a set of (n + 1)-tuples of
vertices. For C ∈ K(Y )n, let �n(C ) be x ∈ Xn if, for each B ∈ C ∩Dn(Y ) and
for each (e0, e1, ... , en) ∈ B , the barycenter of the convex hull of {e0, e1, ... , en}
belongs to ||x||, and x is the least n-simplex of X with that property; else some
fixed n-simplex x� of X. Since both the operations of taking the convex hull and the
barycenter commute with the face operators, the maps �n : K(Y )n → Xn (n ∈ N)
make up a simplicial map � : Y ∗ → X , which is easily seen to be a trivial fibration.
The map ε : (X̂ )∗ → X is then defined as � ◦ r∗. Since trivial fibrations are stable
under composition, ε is a trivial fibration too. 

Let X be a fibrant simplicial set and x ∈ X0. The set �1(X, x) is defined as the set
of all homotopy equivalence classes of maps α : Δ1 → X satisfying d0α = d1α = x,
where homotopy equivalence between α : Δ1 → X and 	 : Δ1 → X consists in the
existence of 
 : Δ2 → X such that d0
 = s0d0α = s0d0	 , d1
 = α and d2
 = 	 . The
set �1(X, x) can be endowed with a canonical composition law which turns it into a
group, called the first homotopy group of X at x.

Lemma 3.18. Let M be an L-structure andC ∈ K(M )0. Then �1(M ∗, C ) is trivial
only if C is principal.

Proof. Let C ∈ K(M )0 be nonprincipal. Without loss of generality one may
assume that C = {(φ1(v0))M, (φ2(v0))M}c with (φ1(v0))M �= ∅, (φ2(v0))M �= ∅
and (φ1(v0))M �= (φ2(v0))M . Let α := {E0((φ1(v0))M ), E1((φ2(v0))M )}c and 	 :=
{(φ1(v0) ∧ φ2(v1))M, (φ1(v1) ∧ φ2(v0))M}c . One has: ∃0α = ∃0	 = ∃1α = ∃1	 =
C . Let us now suppose that there exists 
 ∈ K(M )2 such that ∃1
 = α and ∃2
 = 	 :
then {(φ1(v0))M, (φ2(v0))M}c = {(φ1(v0) ∧ ∃xφ2(x))M, (∃xφ1(x) ∧ φ1(v0))M}c =
∃1	 = ∃1∃2
 = ∃1∃1
 = ∃1α = {(φ1(v0))M}c , in contradiction with the hypothesis
about (φ1(v0))M and (φ2(v0))M . 

Theorem 3.19. The functors F ′ and G ′ are part of an adjunction

F ′ : oL-Strsop �� dilo-sSets : G ′		

up to homotopy.

Proof. The more specific statement of the theorem is that, for any objects
M of oL-Strs and X of dilo-sSets, there is a map ΦM,X : HomoL–Strs(X̂ ,M ) →
Homdilo–sSets(M ∗, X ) with a homotopy inverse ΨM,X satisfying not only Φ ◦ Ψ �
idHom(M∗,X ) and Ψ ◦ Φ � idHom(X̂ ,M ), but even Ψ ◦ Φ = idHom(X̂ ,M ). Letf : X̂ →M
be a given elementary embedding in oL-Strs. Then pf :M ∗ → X is defined as
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ε ◦ f∗, where ε is the trivial fibration of Lemma 3.17. Since f∗ is a trivial fibration,
so is pf too. And since ε clearly preserves distinguished simplices and respects the
ordering of n-simplices for each n ∈ N, as well as f∗, so does pf too. Also, pf is a

retraction with a unique sectionf! ◦ r! ◦ s , where r : Y
≺ �� X̂ is the retraction of

the previous lemma and sn : Xn → K(Y )n sends eachx ∈ Xn to {(||x0||, ... , ||xn||)}c ,
x0, ... , xn being the vertices corresponding to x in Lemma 3.17. Conversely, any
trivial fibration p :M ∗ → X in dilo-sSets gives rise, for each x ∈ |X̂ |, to a lifting
diagram:

∗ Cx ��

{x}c

��

M ∗

p

��
(X̂ )∗

h



	
	

	
	

ε
�� X

where ∗ is (the simplicial set whose realization is) the point and {x}c represents
{(v0 = x)X̂ }c ∈ K(X̂ )0. Indeed, sincep0 is surjective, there existsCx ∈ K(M )0 such
that p0(Cx) = ε0({x}c). One has: h0({x}c) = Cx = ip ◦ ε ◦ {x}c . Because p and ε
are trivial fibrations, and thus weak equivalences, h is a weak equivalence too, i.e.,
a map between fibrant simplicial sets which induces isomorphisms on all homotopy
groups.16 In particular, h1 : �1((X̂ )∗, {x}c) � �1(M ∗, Cx). As a consequence, by
Lemma 3.18, Cx = {(φx(v0))M}c for some L-formula φx . For a ∈ (φx(v0))M , one
has that (M,a) � Th(X̂ , x), a theory which (owing to Pillay and Steinhorn’s result)
has a unique prime model (P,α). Let eM : (P,α) → (M,a) and eX̂ : (P,α) → (X̂ , x)
two corresponding elementary embeddings. Even though eM and eX̂ are not unique
themselves, eM (α) = a and eX̂ (α) = x are ensured to hold. So a (and thus Cx)
is uniquely determined. Stating fp(x) := a, one defines fp : X̂ →M . This is an
elementary embedding: indeed,fp(|X̂ |) ⊆ |M | and types of elements are preserved,
since the definition of each is preserved by the corresponding h, which can taken to
be ip ◦ � for each x ∈ |X̂ |.

The functoriality of p �→ fp and f �→ pf is clear, so it only remains to check
that pfp � p and that fpf = f. Let p :M ∗ → X be a given trivial fibration.
Then fp : X̂ →M is defined by {fp(x)}c = (ip ◦ �)0({x}c), and pfp as the
composite ε ◦ (fp)∗. By construction of fp, h = (fp)!, so pfp = ε ◦ (fp)∗ =
p ◦ (fp)! ◦ (fp)∗. And since (fp)! ◦ (fp)∗ � idM∗ , one gets: pfp � p. Actu-

ally, as (pfp )0({(v0 = fp(x))M}c) = (ε0 ◦ 0(fp))({(v0 = fp(x))M}c) = ε0({(v0 =

x)X̂ }c) = (p0 ◦ h0)({(v0 = x)X̂ }c) = p0({(v0 = fp(x))M}c), p andpfp coincide on
h0(K(X̂ )0) (X̂ and M being o-minimal). The resulting stronger result is written:
pfp � p (rel h0(K(X̂ )0)). On the other hand, let f : X̂ →M be a given elementary
embedding, and x ∈ ||X ||. By definition, fpf (x) is the element b of |M | such that
h0({x}c) = {b}c , where h is the lift of ε along pf . Besides, a := f(x) is such that
0f({a}c) = {x}c , so (pf)0({a}c) = ε0({x}c) = (pf)0(h0({x}c)) = (pf)0({b}c).

16See [3] (p. 32 and p. 39, respectively) for the definition of a weak equivalence and the proof of the
“two-out-of-three” property of weak equivalences. See [3] again (pp. 42–45) for the proof that a trivial
fibration, as the notion has been defined in this paper, is a weak equivalence.
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As a consequence, 0f({a}c) = 0f({f(x)}c) = 0f({b}c). Hence b = a, and this
holds for each x ∈ ||X ||, so fpf = f. 

Theorem 3.19 provides a systematic tool to transpose homotopy theoretic notions
to model theory.17 In particular, a natural avenue to pursue consists in harnessing
the internal homotopy theory carried by the category of simplicial sets. Indeed, since
any model of a given theory T is associated with a simplicial set in a functorial way,
the category of models of T can be conceived of as a subcategory of the category of
simplicial sets. Since the latter is a fundamental example of model category, a natural
question is: are there theories whose categories of models are model categories?
Another, related question is: is it possible to endow oL-Strs with a model category
structure, so that the adjunction up to homotopy between F ′ and G ′ becomes a
Quillen adjunction?18 Regardless of those open questions, the simplicial viewpoint
embraced in this paper leads naturally, to conclude, to looking at first-order theories
as simplicial presheaves.

Proposition 3.20. To any L-theory T corresponds a simplicial presheaf FT :
L-Strsop → sSets on L-Strs.

Proof. For each φ ∈ Fn and each L-structure M, let [φM ]T = {�M : T �
φ ↔ �}. It is straightforward to check that [φM ]T �→ [(∃iφ)M ]T and [φM ]T �→
[Ej(φM )]T are well defined and satisfy the simplicial identities, so that (FT (M ))n :=
{[φM ]T : φ ∈ Fn} (n ∈ N) defines a simplicial set FT (M ). In particular, FT (M ) =
M∗ iffM � T . For any elementary embeddingf :M → N , the definition of FT (f)
is directly adapted from that of f∗. 
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