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Abstract

In this paper we consider a new generalized finite mixture model formed by dependent
and identically distributed (d.i.d.) components. We then establish results for the compar-
isons of lifetimes of two such generalized finite mixture models in two different cases:
(i) when the two mixture models are formed from two random vectors X and Y but with
the same weights, and (ii) when the two mixture models are formed with the same ran-
dom vectors but with different weights. Because the lifetimes of k-out-of-n systems and
coherent systems are special cases of the mixture model considered, we use the estab-
lished results to compare the lifetimes of k-out-of-n systems and coherent systems with
respect to the reversed hazard rate and hazard rate orderings.
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1. Introduction

Let X = (X1, . . . , Xn) be a vector of non-negative dependent and identically distributed
(d.i.d.) random variables with an absolutely continuous distribution F, survival function
F = 1 − F, and density function f . The joint distribution function of X is given by

FX(x) = P(X1 ≤ x1, . . . , Xn ≤ xn) =C(F(x1), . . . , F(xn)),

where x = (x1, . . . , xn) and C is the multivariate distribution copula on [0, 1]n with uniformly
distributed marginals on [0,1]. The joint survival (or reliability) function of X has the form

FX(x) = P(X1 > x1, . . . , Xn > xn) = Ĉ(F(x1), . . . , F(xn)),

where F is the survival function; it is also referred to as a reliability copula (see Nelsen [19]).
Now let Ki(F(x)) = Ĉ(F(x)1i, 1n−i) denote the survival function of the series system X1:i =
min (X1, . . . , Xi), where the entries of both 1i and 1n−i are all ones, with K1(F(x)) = F(x) and
Kn(F(x)) = Ĉ(F(x), . . . , F(x)).
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Stochastic properties of generalized finite mixture models with dependent components 795

We now define the survival function of a generalized finite mixture model (wherein the
mixing proportions may be negative) from these i-dimensional marginals of Ĉ as follows:

HX,a(F(x)) =
n∑

i=1

aiKi(F(x)), (1)

where a = (a1, . . . , an) are some real numbers (weights) such that
∑n

i=1 ai = 1. Note that if
all the weights are positive, then the mixture model in (1) becomes a pure mixture model. If
some of the weights are negative, then the mixture in (1) becomes a generalized mixture model.
Suppose u = F(x) for all u ∈ [0, 1]; then (1) can be rewritten as

Ha(u) =
n∑

i=1

aiKi(u),

where Ha(u) is a proper survival function from [0,1] to [0,1] with Ha(0) = 0 and Ha(1) = 1.
Moreover, the distribution function corresponding to the generalized mixture model in (1) is
given by

HX,a(F(x)) =
n∑

i=1

aiKi(F(x)),

where HX,a(F(x)) = 1 − HX,a(F(x)) and Ki(F(x)) = 1 −Ki(F(x)).
The aim of this paper is to compare two statistical models having distributions of the above

form, according to the hazard rate and reversed hazard rate orders. Many statistical models
discussed in the literature are indeed special cases of the model in (1). Here are some examples.

• k-out-of-n systems. A k-out-of-n system with n components works if at least k compo-
nents work or equivalently at most n − k components have failed. Thus its lifetime is
simply the (n − k + 1)th order statistic among the lifetimes of n components. Evidently
series and parallel systems are n-out-of-n and 1-out-of-n systems, respectively. In
Section 3 it will be shown that the lifetime distribution of a k-out-of-n system with
dependent components is a special case of the generalized mixture model in (1)
(e.g. (3)).

• Coherent systems. A system is said to be coherent if it has no irrelevant components and
the structure function of the system is monotone in each argument (i.e. an improvement
of a component cannot lead to a deterioration in the system performance). In Section 3.2
it will be shown that the survival function of a coherent system with d.i.d. components
can be written as in (1) with the vector of weights a = (a1, . . . , an), so it is also a special
case of the generalized mixture model.

Stochastic comparisons of two lifetimes of such systems from various aspects (such as two
systems having i.i.d. components or d.i.d. components, two systems having the same vector
of signature or different vectors of signature, two systems having the same components or
different components, and so on) have been extensively studied and discussed in the literature.
For more details, the reader is referred to the recent works of Navarro et al. [15,16] and the
references therein. Motivated by these comparison results in the present work, we introduce a
flexible model to compare lifetimes of systems under quite general conditions.

We specifically establish some general results for the comparison of two generalized
mixture models in (1) in the sense of hazard rate and reversed hazard rate orders.
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796 E. AMINI-SERESHT AND N. BALAKRISHNAN

We first briefly review some notions of stochastic orderings and ageing properties that
are used in the subsequent sections of this paper. Let R= ( − ∞,+∞) and R+ = [0,+∞).
Throughout this paper we use increasing to mean non-decreasing and decreasing to mean
non-increasing.

Definition 1. Let X and Y be two non-negative random variables with density functions f and
g, distribution functions F and G, survival functions F = 1 − F and G = 1 − G, hazard rate
functions rX = f /F and rY = g/G, and reversed hazard rate functions r̃X = f /F and r̃Y = g/G,
respectively. Then:

• X is said to be smaller than Y in the likelihood ratio order (denoted by X ≤lr Y) if
g(x)/f (x) is increasing in x,

• X is said to be smaller than Y in the hazard rate order (denoted by X ≤hr Y) if G(x)/F(x)
is increasing in x or equivalently rX(x) ≥ rY (x) for all x,

• X is said to be smaller than Y in the reversed hazard rate order (denoted by X ≤rh Y) if
G(x)/F(x) is increasing in x or equivalently r̃X(x) ≤ r̃Y (x) for all x,

• X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y) if
F(x) ≤ G(x) for all x ∈R+ or equivalently E[φ(X)] ≤ [ ≥ ]E[φ(Y)] for any increasing
[decreasing] function φ:R→R for which the involved expectations exist.

It is well known that

X ≤lr Y =⇒ X ≤hr[rh] Y =⇒ X ≤st Y,

but neither reversed hazard rate order nor hazard rate order implies the other. For more detailed
discussions of the above stochastic orderings, one may refer to the books by Shaked and
Shanthikumar [22] and Müller and Stoyan [14].

Let X and Y be two independent vectors of d.i.d. random variables in which the Xi and Yi

have distribution functions F and G, respectively, and let HX,a and HY,a denote the general-
ized finite mixture models having the distribution functions as in (1) corresponding to vectors
X and Y, respectively. Several authors have studied stochastic comparisons of mixture mod-
els; see Amini-Seresht and Khaledi [1], Khaledi and Shaked [9], Belzunce et al. [4], Gupta
et al. [7], Gupta and Gupta [6], Li and Da [11], Li and Zhao [12], and Misra et al. [13].
Recently, Hernandez [8] and Navarro et al. [18] obtained some stochastic comparison results
for generalized mixtures involving only two independent components. Navarro [15] consid-
ered generalized mixture models with independent components and obtained some conditions
for comparing the lifetime distributions of generalized mixtures in the sense of hazard rate,
reversed hazard rate, and likelihood ratio orders. Some results for comparing two finite mix-
ture models, which generalize the results of Navarro [15], have been presented recently by
Amini-Seresht and Zhang [2]. But comparison of two generalized mixture models with depen-
dent components has not been discussed so far in the literature, to the best of our knowledge.
Motivated by this, we will first consider two statistical models HX,a and HY,a having different
components and the same weights, and establish some ordering results between them in the
sense of hazard rate and reversed hazard rate orders. Next we consider HX,a and HX,b hav-
ing the same components with different weights, and establish results with respect to different
stochastic orders. Finally we apply these results to compare the lifetimes of k-out-of-n systems
and coherent systems.
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2. Main results

In this section we obtain some general results for the comparison of general mixture models
in (1) in the following two cases: two mixture models formed from two sets of random vectors,
X and Y, with the same weights, and two mixture models formed from one random vector of
components, X, with different weights.

2.1. Stochastic comparisons of mixture models with two different random vectors

Theorem 1. Let HX,a and HY,a be two generalized finite mixture models with d.i.d. components
X and Y, respectively, and having the same copula function. If

(i)
uH

′
a(u)

Ha(u)
is decreasing in u for all u ∈ (0, 1), and

(ii) X1 ≤hr Y1,

then HX,a ≤hr HY,a.

Proof. To obtain the desired result, it is enough to show that

�1(x) = HY,a(G(x))

HX,a(F(x))

is increasing in x ∈R+. With the derivative of �1, denoted by � ′
1, it can be found that

� ′
1(x)

sgn= rX(x)
F(x)H

′
X,a(F(x))

HX,a(F(x))
− rY (x)

G(x)H
′
Y,a(G(x))

HY,a(G(x))

≥ rY (x)
[uH

′
a(u)

Ha(u)
− vH

′
a(v)

Ha(v)

]
≥ 0,

where u = F(x) for all x ∈R+ and v = G(x) for all x ∈R+. The first inequality follows from
the assumption that X1 ≤hr Y1, while the second inequality follows from assumption (i) and
the fact that u ≤ v. This completes the proof of the theorem. �
Theorem 2. Let HX,a and HY,a be two generalized finite mixture models with d.i.d. components
X and Y, respectively, and having the same copula function. If

(i)
(1 − u)H

′
a(u)

1 − Ha(u)
is increasing in u for all u ∈ (0, 1), and

(ii) X1 ≤rh Y1,

then HX,a ≤rh HY,a.

Proof. Using the same arguments as in the proof of Theorem 1, it is enough to show that

�2(x) = 1 − HY,a(G(x))

1 − HX,a(F(x))
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is increasing in x ∈R+. With the derivative of �2, denoted by � ′
2, it can be found that

� ′
2(x)

sgn= r̃Y (x)
(1 − G(x))H

′
Y,a(G(x))

1 − HY,a(G(x))
− r̃X(x)

(1 − F(x))H
′
X,a(F(x))

1 − HX,a(F(x))

≥ r̃X(x)
[ (1 − v)H

′
a(v)

1 − Ha(v)
− (1 − u)H

′
a(u)

1 − Ha(u)

]
≥ 0,

where u = F(x) for all x ∈R+ and v = G(x) for all x ∈R+. The first inequality follows from
the assumption that X1 ≤rh Y1 while the second inequality follows from assumption (i) and the
fact that u ≤ v. This completes the proof of the theorem. �

2.2. Stochastic comparisons of mixture models with the same random vector

We now consider two mixture models, HX,a and HX,b, having the same d.i.d. components
but with different vectors of weights, a and b, respectively. We then establish some suffi-
cient conditions for the comparison of the two mixture models with respect to hazard rate
and reversed hazard rate orderings.

Theorem 3. Let HX,a and HX,b be two generalized finite mixture models with d.i.d. components
X and vectors of weights a and b, respectively. If

(i)
uK

′
j(u)

Kj(u)
is increasing in j for all 1 ≤ j ≤ n, and

(ii) aibj ≤ ajbi for all 1 ≤ i ≤ j ≤ n.

then HX,a ≤hr HX,b,

Proof. To obtain the desired result, it is enough to show that

�3(x) =
∑n

j=1 bjKj(F(x))∑n
i=1 aiKi(F(x))

is increasing in x ∈R+. Taking the derivative of �3 with respect to x, we obtain

� ′
3(x)

sgn=
n∑

i=1

n∑
j=1

[
aibji f (x)K

′
i(F(x))Kj(F(x)) − aibjj f (x)K

′
j(F(x))Ki(F(x))

]

= rX(x)
n∑

i=1

n∑
j=1

aibj

[
i
F(x)K

′
i(F(x))

Ki(F(x))
− j

F(x)K
′
j(F(x))

Kj(F(x))

]
Ki(F(x))Kj(F(x))

= rX(x)
n∑

i=1

n∑
j=i

aibj

[
i
F(x)K

′
i(F(x))

Ki(F(x))
− j

F(x)K
′
j(F(x))

Kj(F(x))

]
Ki(F(x))Kj(F(x))

+ rX(x)
n∑

i=1

n∑
j=i

ajbi

[
j
F(x)K

′
j(F(x))

Kj(F(x))
− i

F(x)K
′
i(F(x))

Ki(F(x))

]
Kj(F(x))Ki(F(x))

= rX(x)
n∑

i=1

n∑
j=i

[ajbi − aibj].

[
j
F(x)K

′
j(F(x))

Kj(F(x))
− i

F(x)K
′
i(F(x))

Ki(F(x))

]

×Kj(F(x))Ki(F(x)) :=�.
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Thus it is now enough to show that � is non-negative. Setting F(x) = u, � can be
expressed as

�= rX(x)
n∑

i=1

n∑
j=i

[ajbi − aibj]

[
j
uK

′
j(u)

Kj(u)
− i

uK
′
i(u)

Ki(u)

]
×Kj(u)Ki(u)

≥ rX(x)
n∑

i=1

n∑
j=i

[ajbi − aibj]i

[
uK

′
j(u)

Kj(u)
− uK

′
i(u)

Ki(u)

]
×Kj(u)Ki(u)

≥ 0,

where the first inequality follows from the fact that 1 ≤ i ≤ j ≤ n, while the second inequality
follows from assumptions (i) and (ii) and that 1 ≤ i ≤ j ≤ n. �
Theorem 4. Let HX,a and HX,b be two generalized finite mixture models with d.i.d. components
X and vectors of weights a and b, respectively. If

(i)
(1 − u)K′

j(u)

1 −Kj(u)
is increasing in j for all 1 ≤ j ≤ n, and

(ii) aibj ≤ ajbi for all 1 ≤ i ≤ j ≤ n.

then HX,a ≤rh HX,b,

Proof. As in the proof of Theorem 3, it is enough to show that

�3(x) =
∑n

j=1 bjKj(F(x))∑n
i=1 aiKi(F(x))

is increasing in x ∈R+. Taking the derivative of �3 with respect to x, we obtain

� ′
3(x)

sgn=
n∑

i=1

n∑
j=1

[
aibji f (x)K

′
i(F(x))Kj(F(x)) − aibjj f (x)K

′
j(F(x))Ki(F(x))

]

= r̃X(x)
n∑

i=1

n∑
j=1

aibj

[
i
F(x)K′

i(F(x))

Ki(F(x))
− j

F(x)K′
j(F(x))

Kj(F(x))

]
Ki(F(x))Kj(F(x))

= r̃X(x)
n∑

i=1

n∑
j=i

aibj

[
i
F(x)K′

i(F(x))

Ki(F(x))
− j

F(x)K′
j(F(x))

Kj(F(x))

]
Ki(F(x))Kj(F(x))

+ r̃X(x)
n∑

i=1

n∑
j=i

ajbi

[
j
F(x)K′

j(F(x))

Kj(F(x))
− i

F(x)K′
i(F(x))

Ki(F(x))

]
Kj(F(x))Ki(F(x))

= r̃X(x)
n∑

i=1

n∑
j=i

[ajbi − aibj]

[
j
F(x)K′

j(F(x))

Kj(F(x))
− i

F(x)K′
i(F(x))

Ki(F(x))

]

×Kj(F(x))Ki(F(x)) :=��.
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Therefore it is now enough to show that �� is non-negative. Setting u = F(x), �� can be
expressed as

�� = r̃X(x)
n∑

i=1

n∑
j=i

[ajbi − aibj]

[
j
(1 − u)K′

j(u)

1 −Kj(u)
− i

(1 − u)K′
i(u)

1 −Ki(u)

]
×Kj(u)Ki(u)

≥ r̃X(x)
n∑

i=1

n∑
j=i

[ajbi − aibj]i

[ (1 − u)K′
j(u)

1 −Kj(u)
− (1 − u)K′

i(u)

1 −Ki(u)

]
×Kj(u)Ki(u)

≥ 0,

where the first inequality follows from the fact that 1 ≤ i ≤ j ≤ n while the second inequality
follows from assumptions (i) and (ii) and that 1 ≤ i ≤ j ≤ n. �

3. Applications

In this section we use the results in the last section to compare the lifetimes of two k-out-of-n
and two coherent systems.

3.1. Comparison of k-out-of-n systems

The k-out-of-n systems are well-known reliability structures that have been studied exten-
sively in reliability theory. Kuo and Zuo [10] have provided a comprehensive discussion of
k-out-of-n systems. In this subsection we show that the distribution function and survival func-
tion of a k-out-of-n system with d.i.d. components can be written as in (1) with the vector of
weights a = (0, 0, . . . , ak, . . . , an).

Let X1:n ≤ · · · ≤ Xn:n denote the order statistics of the random variables X1, . . . , Xn. Further,
let TX

k|n denote the lifetime of a k-out-of-n system. Its survival function can be written as (see
Gupta [5, p. 839])

FTX
k|n

(x) = P(Xn−k+1:n> x) =
n∑

i=k

( − 1)i−k
(

i − 1

k − 1

)(
n

i

)
F1:i(x), (2)

where F1:j(x) is the survival function of order statistic X1:j.
As the system has d.i.d. components, (2) can be rewritten as

FTX
k|n

(x) =
n∑

i=k

( − 1)i−k
(

i − 1

k − 1

)(
n

i

)
Ĉ(F(x)1i, 1n−i)

=
n∑

i=1

aiKi(F(x))

:= Hk|n,a(F(x)), (3)

where

ai = ( − 1)i−k
(

i − 1

k − 1

)(
n

i

)
and a = (0, 0, . . . , ak, . . . , an).

In particular, if k = n, then Tn|n = X1:n and

Hn|n,a(F(x)) = Ĉ(F(x), . . . , F(x)).
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Note that the vector of weights for such a system is a = (0, 0, . . . , 0, 1, 0, . . . , 0). For example,
in the case of k = 4, for the parallel system T1:4 = X4:4 we have

H1|4,a4 (F(x)) =
4∑

i=1

aiKi(F(x)),

where the vector of weights is a = (4,−6, 4,−1).
We now present some results comparing the lifetimes of k-out-of-n systems with respect to

hazard rate and reversed hazard rate orders.

Proposition 1. Let TX
k|n and TY

k|n be the lifetimes of two k-out-of-n systems with d.i.d.
components X and Y, respectively. If

(i)
uH

′
k|n,a(u)

Hk|n,a(u)
is decreasing in u for all u ∈ (0, 1), and

(ii) X1 ≤hr Y1,

then TX
k|n ≤hr TY

k|n.

Proposition 2. Let TX
k|n and TY

k|n be two generalized finite mixture models with d.i.d. compo-
nents X and Y, respectively. If

(i)
(1 − u)H′

k|n,a(u)

1 − Hk|n,a(u)
is increasing in u for all u ∈ (0, 1), and

(ii) X1 ≤rh Y1,

then TX
k|n ≤rh TY

k|n.

Example 1. Let us consider the comparison in hazard rate order of two k-out-of-3 systems.
Suppose that component lifetimes X = (X1, X2, X3) and Y = (Y1, Y2, Y3) in the two systems
are d.i.d. with common distributions F and G, respectively, such that X1 ≤hr Y1. Further, let the
random vectors X and Y have the same joint distribution with Farlie–Gumbel–Morgenstern
(FGM) survival copula given by

C(u1, . . . , un) =�n
i=1ui[1 + θ�n

i=1(1 − ui)], −1 ≤ θ ≤ 1.

Let us now compare the two k-out-of-3 systems under this dependence model when θ = 0.2.
First, let us consider the 2-out-of-3 system with lifetime TX

2|3 = X2:3. It is then easy to see that

H2|3,a(F(x)) =
3∑

i=1

aiKi(F(x)) = 3F
2
(x) − 2F

3
(x)(1 + 0.2(1 − F(x))3),

where a = (0, 3,−2). Similarly, for k = 3, it is easy to see that the vector of weights is
(3,−3, 1), and thus we have

H3|3,a(F(x)) =
3∑

i=1

aiKi(F(x)) = 3F(x) − 3F
2
(x) + F

3
(x)(1 + 0.2(1 − F(x))3).

For all u ∈ (0, 1), let us define

�k(u) = uH
′
k|3,a(u)

Hk|3,a(u)
, k = 2, 3.
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FIGURE 1. Plot of �k(u), k = 2, 3 for all u ∈ (0, 1).

In Figure 1, we have plotted the ratios�k(u), k = 2, 3, from which we see that both are strictly
decreasing in u ∈ (0, 1). Hence TX

k|3 ≤hr TY
k|3, k = 2, 3.

3.2. Comparisons of coherent systems with different structures

Consider a system with n components. Suppose X = (X1, . . . , Xn) correspond to the life-
times of the n d.i.d. component lifetimes, where the Xi have a common distribution function
F. The stochastic comparisons of coherent systems with d.i.d. components have recently been
discussed by some researchers; for example, see Amini-Seresht et al. [3], Navarro et al. [16],
and Samaniego and Navarro [21].

In this subsection we show that the survival function of a coherent system with d.i.d. com-
ponents can be written as in (1) with the vector of weights a = (a1, . . . , an). Let us denote the
lifetime of a coherent system by T�(a) =�(X1, . . . , Xn), where � is the structure function.
Samaniego [20] proved that the survival functions of the system lifetime T�(a) have the form

FT�(a)(t) =
n∑

k=1

pn−k+1Fn−k+1:n(t),

where pn−k+1 = P(T�(a) = Xn−k+1:n).
From (3), the survival function of T�(a) can then be expressed as

FT�(a)(x) =
n∑

k=1

n∑
i=k

pn−k+1( − 1)i−k
(

i − 1

k − 1

)(
n

i

)
Ĉ(F(x)1i, 1n−i)

=
n∑

i=1

i∑
k=1

pn−k+1( − 1)i−k
(

i − 1

k − 1

)(
n

i

)
Ĉ(F(x)1i, 1n−i)

=
n∑

i=1

aiĈ(F(x)1i, 1n−i)

= Ha(F(x)),
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where

ai =
(

n

i

) i∑
k=1

pn−k+1( − 1)i−k
(

i − 1

k − 1

)
for i = 1, . . . , n.

Hence the survival function of a coherent system can be obtained by using this represen-
tation. For example, for a coherent system with lifetime T� = min (X1,max (X2, X3)), where
X1, X2, X3 are d.i.d. and have a joint distribution with survival copula Ĉ, its survival function
can be expressed as

FT� (x) = 2Ĉ(F(x), F(x), 1) − Ĉ(F(x), F(x), F(x))

=
3∑

i=1

aiĈ(F(x)1i, 13−i)

=
3∑

i=1

aiKi(F(x)),

where a = (0, 2,−1).

Proposition 3. Let T�1 (a) and T�2 (b) be the lifetimes of two coherent systems with the same
d.i.d. components, where �1 and �2 are the different structure functions and a and b are the
corresponding vectors of weights, respectively. Under the assumptions of Theorem 3, we then
have T�1 (a) ≤hr T�2 (b).

Proposition 4. Let T�1 (a) and T�2 (b) be the lifetimes of two coherent systems with the same
d.i.d. components, where �1 and �2 are the different structure functions and a and b are the
vectors of weights, respectively. Under the assumptions of Theorem 4, we then have T�1 (a) ≤rh

T�2 (bn).

Example 2. Let us consider the comparison in hazard rate order of two coherent systems with
lifetimes T�1 (a3) = min (X1,max (X2, X3)) and T�2 (b3) = TX

2|3, where X = (X1, X2, X3) have
the joint distribution with survival copula given in Example 1 with θ = 0.2, and the vectors of
weights are a3 = (0, 2,−1) and b3 = (0, 3,−2), respectively. It is easy to check that aibj ≤ ajbi

for all 1 ≤ i ≤ i ≤ 3. Thus condition (ii) of Theorem 3 is satisfied. Hence it is enough to check
condition (i) of Theorem 3. It can be seen that

uK
′
1(u)

K1(u)
= 1,

uK
′
2(u)

K2(u)
= 2

and
uK

′
3(u)

K3(u)
= 3 − 0.6

u(1 − u)2

1 + 0.2(1 − u)3 = 3 −ψ(u).

Note that ψ(0) =ψ(1) = 0 and maxu∈(0,1) ψ(u) =ψ(0.353) = 0.0841056, which implies 0 ≤
ψ(u) ≤ 0.0841056 for all u ∈ [0, 1]. So, from these observations, it follows that uK

′
j(u)/Kj(u)

is increasing in j for all 1 ≤ j ≤ 3. Therefore, from Proposition 3, we have T�1 (a3) ≤hr T�2 (b3).
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