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We explore the initial perturbations that form on a liquid free surface as a result of the
submersion of a circular cylinder beneath the surface, a scenario that arises in a number
of diverse applications. The behaviour of the free surface is determined by transforming
the equations of motion of the system via the Wehausen scheme, to variables for the free
surface. A small-time series expansion is utilized to construct a recursive scheme that
can be implemented numerically, and the time frame over which this approximation is
valid is analysed. The resulting numerical model allows one to extend the results in the
literature to study arbitrary cylinder sizes, including those where the cylinder is close to
the free surface, and arbitrary cylinder motions. Of particular interest in this study was
identifying the conditions under which strong jets would appear, and those were the free
surface exhibited gravity waves. The formation of a central jet is found to be related to the
growth of secondary, nonlinear waves, which rapidly merge as the obstacle is submerged.
Classification maps are presented as a function of obstacle size and submersion speed, to
identify the conditions which lead to jetting. Furthermore, the acceleration profile of the
cylinder is shown to significantly affect the conditions under which jets form, which we
argue is due to the rate at which energy is injected into the system.

Key words: nonlinear instability, surface gravity waves, jets

1. Introduction

Surface disturbances can be beneficial, for example in wave energy devices and offshore
structures (Siddorn & Eatock Taylor 2008; McCauley et al. 2018; Orszaghova et al. 2019),
or harmful, such as for imploding liquid liners as encountered in magnetized target fusion
(Huneault, Plant & Higgins 2019) or for waves effects on ship motion (Tuck 1965). Initial
conditions are particularly influential on the evolution of surface disturbances for systems
where the characteristic time scale of the surface motion is comparable to the growth rate
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of the disturbance; an accurate description of these initial surface disturbances is therefore
critical.

Often these initial disturbances are created by the interaction between submerged
structures and the surface. As a useful initial study, and because of its intrinsic interest, we
consider the simplified problem of initial disturbances on the free-surface of a fluid due to
the submersion of a circular cylinder. Research on surface disturbances due to submerged
obstacles can be traced back to Lamb (1913), who studied a stream past a stationary
cylinder located beneath the surface. For small disturbances, a combination of a dipole
singularity at the centre of the cylinder, an image reversed dipole above the free surface,
and a trail of doublets to the rear of this image were found to satisfy the resulting linearized
free-surface condition. By alternating the application of the image method on the cylinder
boundary and the free surface, Havelock (1927, 1936) extended the work of Lamb (1913)
and constructed a complete formal solution to the linear problem on the surface. This
problem was also considered by Wehausen & Laitone (1960, p. 574), who constructed
a recursive scheme based on the alternating application of the Milne-Thomson operator
and the Kochin operator (see Tuck (1965) for a detailed description of these operators
and the Wehausen scheme) on the free stream potential F' = Uz to obtain a sequence that
converges for large depths of cylinder submersion and satisfies the linearized free-surface
condition.

These successive approaches to solve the linear problem are, in general, less important
than the contribution of surface nonlinearities, which were not considered in the analysis
of Havelock (1927, 1936) and Wehausen & Laitone (1960), but addressed by Tuck (1965).
Tuck considered the perturbation height as a series of terms of diminishing order in r,
where 7 is defined as the ratio of the radius of the cylinder and its initial depth. Under this
assumption, the pressure distribution on the free surface due to the first n — 1 perturbation
orders act as a forcing agent for the nth perturbation order. Tuck then used the Wehausen
scheme to compute these high-order pressure contributions, and hence developed a method
to treat systematically the full nonlinear problem for the case where r < 1.

These surface nonlinearities have been described experimentally by Greenhow & Lin
(1983), who investigate the displacement of a free surface that is crossed by different
bodies, with particular attention to the point of intersection between the surface and the
moving body. This intersection would result in singularities on the analytical description
of the surface height and velocity that are avoided in the real fluid by the formation of jets.

Studies on the full initial/boundary value problem for the forced motion of a submerged
cylinder and its interaction with the free surface, include the works by Telste (1986),
Greenhow (1988), Teles da Silva & Peregrine (1990), Terent'ev (1991) and Guerber
et al. (2012). However, these studies rely solely on numerical simulations and do not
give accurate predictions of the nonlinear mechanisms of hydrodynamic instabilities
that develop at the early stages of the flow, which are essential for computing initial
perturbations and understanding the process of jet formation.

The particular problem of perturbations at small times was addressed by Tyvand &
Miloh (1995), who used a conformal mapping to bipolar coordinates to obtain a Taylor
time series expansion of the full nonlinear initial/boundary value problem. They analysed
the specific motions of constant velocity and constant acceleration, and obtained Fourier
series involving all powers of the non-dimensional radius r. Therefore, in contrast to
previous analytical approaches, their results apply to cylinders with large non-dimensional
radius 7. The analytical expressions obtained are only valid to the fourth order in the
time series for constant acceleration, and to the third order for constant velocity. These
expressions were later verified numerically by Greenhow & Moyo (1997), who were able
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to specify the time domain of applicability of the small-time method by Tyvand & Miloh
(1995) and to describe the surface behaviour beyond these times, but faced numerical
instabilities on the solution for low-speed motions due to small-scale waves emerging on
the surface. An expansion of the method by Tyvand & Miloh (1995) to larger orders, or
to motion profiles different from constant acceleration and constant velocity, is not easily
attainable.

More recently, Makarenko (2003) used an alternative method for computing the
short-time triggering of nonlinear effects. This method, initially suggested by Ovsyannikov
et al. (1985) and based on the Wehausen scheme, transforms the problem to a boundary
integro-differential system of equations defined only on the free surface. Kostikov &
Makarenko (2018) obtained analytical expressions for the temporal development of
free-surface perturbations valid to the fourth order in space, relative to the radius of the
submerging cylinder.

A limitation of the expressions obtained by Makarenko (2003) and Tyvand & Miloh
(1995) is that they are only valid for constant acceleration or constant velocity motions
of the cylinder. The method by Makarenko (2003), however, can be extended to general
submersion motions and general cylinder sizes by numerical computation of the involved
integral equations. In this study, we build upon this body of work and develop a numerical
model to compute the initial perturbation of the surface for cylinders of arbitrary size under
general submersion motions. The numerical method discussed here allows for computation
of higher orders in the time series than those obtained by Makarenko (2003) and Tyvand
& Miloh (1995) which, as will be shown, permits us to extend the time of simulation of
the perturbations and visualize new nonlinear features that develop in the surface at latter
times. We also develop a framework that would allow one to predict the deformation of
the free surface for an arbitrary acceleration profile of the submerging body.

Of particular interest for the analysis of initial disturbances is predicting whether or
not jetting will onset on the surface. Classification of the perturbations that result from
body-surface interaction in jets or gravity waves has been addressed previously through
empirical observation (see, for example, Rein 1996; Zhao, Brunsvold & Munkejord 2011).
The model proposed in this work does not include surface tension (see, for example,
the study of Moreira & Peregrine (2010) who analyse surface tension effects on the free
surface and the nonlinear features that emerge as a result, in particular the appearance of
capillary-gravity waves) or viscosity effects on the perturbations, which is required for a
complete description of the shape and evolution of jetting. Nevertheless the initial stages
of the disturbance, on which the classification jet/gravity wave must be carried out, can be
described without these terms. Therefore, the model proposed here, aimed at describing
the initial perturbations, fits perfectly with the task of classifying the disturbances.
Moreover, if jetting is expected to occur, studying nonlinear features observed on the
surface provides a physical foundation to the process of jet formation, and serves as initial
conditions for more complete analytical and numerical models found in the literature (see,
for example, the works of Eggers & Dupont (1994), Eggers & Villermaux (2008) and
Howell (2015)).

2. Basic equations

Consider the disturbances on the free surface of a fluid as a circular cylinder submerges
underneath, as shown in figure 1. A Cartesian coordinate system is fixed with the X-axis
along the unperturbed surface and the Y-axis passing through the centre of the circle,
directed vertically upwards. The fluid is assumed to be inviscid, incompressible and
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Z=X+iY

(1)

02,(f)

Figure 1. Definition sketch with dimensional variables of the system. Transparent dashed lines indicate the
initial state of the system. Solid lines indicate a later time 7.

initially at rest. The extension of the fluid is considered infinite in depth (negative Y
direction) and lateral extent (both X directions). Also, surface tension effects are neglected.

To non-dimensionalize all the variables, lengths have been scaled by the initial depth
of the cylinder Hyp, velocities by a characteristic motion speed Uy, time by Hy/Uy and
pressures by pU%, where p is the density of the fluid. Dimensional variables are denoted
with upper-case letters, while their non-dimensional counterparts are lower-case. The
non-dimensional radius r = R/Hj is the size of the cylinder relative to its initial depth.
With this in mind, references to the size of a cylinder made throughout will be referring to
the r-value of the cylinder. Hence, one cylinder can be bigger than another while having
a smaller radius Ry if its initial depth Hyp is small enough to make its value of r larger
than the corresponding » of the second cylinder. In essence, the size of the cylinder is
representative of the distance to the free surface, with a larger cylinder being closer to the
free surface than a smaller one.

The assumptions ensure the existence of a potential flow in the time-dependent fluid
region £2(¢). The motion of the cylinder, whose boundary is d§2¢, is prescribed through
the time functions (x.(), y.(¢)) that describe the position of the centre of the cylinder,
with initial conditions x.(ft = 0) = O and y.(t = 0) = —1. The location of the free surface,
denoted as 0§2r : y = n(x, t), must be computed as part of the solution. Under this
formulation, the initial/boundary-value problem for the flow velocity u(x,y, ) and the
pressure p(x, y, t) is given by the following equations:

u+ (u-Viyu+Vp =Jde 1in £2(1), 2.1)
V.u=0, Vxu=0 in (), (2.2)
n+u®n=u?, p=0 ondRr(), (2.3)
(u—u;)-n=0 ondf2c(1), 2.4)

n— 0 forx — ooondf2p(t), (2.5
u— 0 for,/x2+y? — ocoin 2(1), (2.6)
n=0 fort=00n0dR2p(t=0), 2.7
u=0 fort=0in2( =0). (2.8)
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Here e = [0, —1] is the unit vector in the direction of the gravity acceleration. The square
of the inverse Froude number A = gH /U(z) indicates the balance between gravitational
and inertial forces. Alternatively, it describes how fast/slow the cylinder moves relative
to the gravity-induced waves on the surface. The subscripts x, y and ¢ denote partial
differentiation with respect to those variables. The Cartesian projections of the flow
velocity are u = (u™,u?)). The velocity of the centre of the cylinder is u.(f) =
((x¢)t5 (¥¢)r). The unit vector n = (n™, n)Y is normal to the cross-section of the cylinder
and directed into the fluid.

To compute the surface profile n(x, 7), one needs to reduce all the equations to variables
defined only on the free surface. We start by introducing the tangential and normal
velocities at the free surface, as follows: 0 §2¢ ()

u= (u(x) + nxu(y)>‘ v = <—nxu(x) + u(y)>‘ i (2.9a,b)

y=n y=n

The surface equations in terms of these variables are obtained from the method by
Kostikov & Makarenko (2018), which will be employed and expanded upon. Appendix A
presents the derivation by Kostikov & Makarenko (2018) of the system of differential
equations

19 u?—2nuv —v?

=, —— Aney =0, 2.10a,b
ne=v, Ut oo T+ + An, (2.10a,b)
and of the real-valued integral equation
oo oo
mv(x) + p.v. / A(x, s)v(s)ds = p.V./ B(x, s)u(s) ds + vg(x), (2.11)
—00 —00

where the Cauchy principal values (p.v.) of the integrals are taken, to account for the
discontinuity jumps in the A(x, s) and B(x, s). The kernels A(x, s) and B(x, s) in (2.11) are
defined by the decomposition equations

A=Ap+r*Ac, B=Br+rBc, (2.12a,b)
where the components

(1
AF(x, )+ iBi(x,5) = —— o () @13)
x —s+1(nx) —n(s))
correspond to the problem of waves on the free surface d$2r without the existence of any
submerged obstacle, and the components

! i
Ac(x, s) +iBc(x, s) = i ( | ] )
s+ins) —ze() — r x+in() —z(0) ),

s+1in(s) — z0(1)
(2.14)

account for the influence of the cylinder boundary £2¢. Here z.(¢) = x.(¢) + iy.(t), referred
to as the motion profile, denotes the prescribed position of the cylinder centre in the
complex plane. The term v,, defined by

2mir?
vg = Re {L(ch’} (2.15)
(z—zc)
represents the waves induced at the free surface by a dipole located at the cylinder centre.
926 Al-5
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Equations (2.10a,b) and (2.11) completely define the problem of surface waves due to
the motion of the cylinder in terms of the problem unknowns u(x, t), v(x, t) and n(x, t) for
every time ¢. They can be solved for initial times using a recursive scheme derived from
expanding the involved variables into small-time series. We express the surface variables
u(x, ), v(x, r) and n(x, ) as well as the motion profile z.(¢) in terms of a Taylor series in
the variable ¢,

(u, v, 1, 20) = (0, v0, 10, 26,0) + 1 (w1, 1. 11, 2e1) + 1 (U2, v2, M2, 22) + ..., (2.16)

where the coefficients u,, v, and 7, are functions of x only, and the coefficients z. , are
constants. Substituting series (2.16) into (2.10a,b) and grouping terms of equal order n, we
obtain the following set of recursive relations between terms 7, u, and v,:

S Q2.17)
NMn+1 = n+ 1 .
and
1 9 n n—1
Uptl = — o~ ZMJ””—/ 2 Z njuv; — Zvjvn_J+2/lnn . (2.18)
2(n+1) ox —
Jj= JHk+I=0 j=0

The functions A(x, s), B(x, s) and vy (x) (2.12a,b) to (2.15) depend on the variables x, t both
directly and through the surface unknowns u(x, ), v(x, f), n(x, ) and the motion profile
z.(t). We can, therefore, obtain the time series coefficients A, (x, s), B, (x, s) and vy ,(x) of

their small-time series

(A, B, vg) = (Ao, Bo, va0) + 1 (A1, B1,va1) + 1 (A2, By, va2) + ..., (2.19)

by combining the time expansions (2.16) with the definitions (2.12a,b) to (2.15), then
continuously deriving the resulting expressions with respect to ¢ and evaluating at t = 0.
The nth coefficient A, (x, s) of A(x,s) is computed as follows. We introduce the series
(2.16) into (2.13) and (2.14) for the Ay and Ag; components (2.12a,b). The nth term is
therefore found through

1 3 J=00 J=00 J=00 J=00
An, ) = — DA | X Somth Y wth Y it Y gt | (2.20)
=0 =0 =0 j=0 ) ,._g

Analogue computations can be made to obtain the series terms B, (x, s) and vy , for each n.
Replacing the variables in (2.11) by their respective time expansions, the following
integral equations are obtained:

n=00 00 N=00

T Z v, ()" + p.V./ Z Ay (x, $)1" Z v; (s)tj ds
n=0

o0 N=00

= p.v./ Z Ba(x, )" Z uj(s)t! ds + i Va0 (). 2.21)

- n=0

By collecting terms of equal time powers, one obtains the expression

o0

v, (x) + p.v. / Ao(x, s)v,(x) ds = @, (x) (2.22)

—0o0
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for each order n of the expansion, with the inhomogeneous term ¢, (x) defined as
n 00 n 00
Pn(x) = van(®) + Y / Bj(x, $)un—j(s)ds — ) / Aj(x, $)va—j(s)ds.  (2.23)
i=0 " =% j=177%

Equation (2.22) is a Fredholm integral equation of the second kind for the variable v, (x).
The discretized form of this equation is solved iteratively using its convergent Neumann
series

() = Y (=1 F (Ao (x), (2.24)

J=0

where the operator Ay is defined by the expression Aqf (s) = f fooo Ao(x, $)f (s) ds and the
term {4}/, (x) means that the operator has been applied j times,

{AoY on(x) = (Ao (Ag - - - (Aogn(x)))) - (2.25)

2.1. Numerical implementation of a recursive scheme of solution

A recursive procedure can be implemented to solve series (2.16) for n(x) to whatever
maximum order N is required by using the relations derived before.

(i) We have ug(x) =0 and ng(x) = 0 from initial conditions (2.7) and (2.8). Set
initial-order counter n = 0.
(i) Compute A, (x, s), B,(x, s) and vy ,(x) using the procedure explained for equation
(2.20) with the definitions (2.13) to (2.15).
(iii)) Compute inhomogeneity term ¢, (x) with (2.23).
(iv) Solve the Fredholm integral equation (2.22) for v, (x).
(v) Solve 1n,+1(x) and u,+1(x) in terms of previously computed terms vy, ..., vy,
ug, ..., Uy and no, ..., N, using (2.17) and (2.18).
(vi) Finish if n 4 1 equals the desired order of precision N. Otherwise, increase counter
n and repeat from step (ii).

The recursive scheme was implemented in a MATLAB script to solve n(x, t), with
inputs r, A, y.(¢) and the maximum order of the series N. The second step in the above
procedure requires derivation of increasingly complicated functions, which can be done
automatically with the symbolic toolbox offered by MATLAB. To solve the Fredholm
integral equation (2.22) in step (iv), we have used an iterative algorithm developed by
Atkinson & Shampine (2008), which solves this equation on an interval [a, b] to a specified
accuracy, taking into account the singularity present in the kernel Ag(x, s) at x = 5. The
limits a and b of this interval were taken at x = £20, where the perturbation height
n(x, t) is negligible up to machine precision for all the values of r, 4 and z.(¢) and for
all times studied in this paper. Each function v, (x), u,(x) and 1,(x) is approximated as an
interpolating spline between the values computed numerically at the discretization points.
The approximation will therefore have a greater accuracy for smaller discretization Ax, at
the expense of higher computational cost. For each numerical experiment, a parametric
study of the change of 7,(x) with the discretization Ax was conducted to guarantee
convergence in the solution to a relative global accuracy of 1% between all the values
of n(x). In this way, the optimal values for Ax for accuracy and computational cost ranged
between Ax = 0.001 for the cases with » = 0.1 to Ax = 0.01 for the cases with r = 0.9.
So far, the derivation and implementation of the proposed model has been independent of
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the direction of motion of the submerged cylinder. From the following section onwards we
will focus on pure vertical submersion motions, with the motion profile being restricted to
functions of the form z.(¢) = iy.(¢), with (y.); < 0. Under these restrictions, prescribing
the submersion profile y.(¢) suffices to completely describe the motion of the cylinder.
The influence of the direction of motion on the surface perturbations can be readily found
elsewhere in the works by Tyvand & Miloh (1995) and by Kostikov & Makarenko (2018).

2.2. Constant acceleration: model validation against analytical results

To validate the numerical implementation we analyse the submersion of a cylinder under
constant acceleration. This case has been explored previously by several authors (see
Tyvand & Miloh 1995; Makarenko 2003; Kostikov & Makarenko 2018) and therefore
provides a good testing ground for verifying the results of the present numerical model.
In these works it is demonstrated that the odd-numbered orders (11, 13, . ..) are zero for
submersions under constant acceleration, which reduces the computational cost compared
with other submersion profiles.

Approximate analytical expressions have been obtained by Kostikov & Makarenko
(2018). The equations for the two non-zero leading perturbation orders in the case of an
obstacle under motion of constant acceleration are (Kostikov & Makarenko 2018)

nx) =0,
2
mx) = 212 <1 - rz) (q/(x) sin® — p’(x) cos 9) + 0(r6),

n3(x) =0,

2 Pl Pl
na(x) = r? (1 — rz) (p”(x) [cos 20 + 3 sin9:| +4"(x) [8 cosf — sinZG]) ’

4 4

7
% (p""(x) cos 20 — ¢"" (x) sin 260) + % <p”(x) - Zq/ (x))

(p/(x) |:sin 20 — %cos 9} + [g sin @ + cos 2(9] c/(x)) + 039,

+
4

+I"
4

(2.26)

with functions p(x) = 1/(1 + x%) and qgx) =x/(1+ x%), and 6 being the anticlockwise
angle of the initial velocity relative to the horizontal axis. In a different work, Tyvand &
Miloh (1995) solved the second- and fourth-order contributions for constant acceleration.
The corresponding expressions ((10.8) and (10.13) of Tyvand & Miloh (1995)) do not
contain any limitation regarding the size of the cylinder.

Figure 2 shows the second and fourth perturbation orders predicted by the present model
(solid lines), as well as those from (2.26) (dashed lines). Differences between the two
models increase for greater values of r. This is to be expected, since (2.26) are only valid
to the sixth order in » and therefore are limited to the analysis of small obstacles, roughly
r < 0.5. For r = 0.8 (green line in figure 2) the difference between the two models reach
around 10 % for 71, and 50 % for n4 at x = 0, i.e. immediately above the centre of the
cylinder. The current model is thus better suited for the analysis of cylinders over a wider
range of sizes, corresponding to cylinders being initially located closer to the surface.
Additionally, the current model enables the computation of higher orders, which extends
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Figure 2. Comparison between the analytical model (2.26) by Kostikov & Makarenko (2018) and the
numerical model developed in this paper. Perturbation orders (a) 2 and (b) n4 have been plotted for several
cylinder sizes. The results shown correspond to constant acceleration with A = 5.

the time for which the perturbations can be analysed, as will be discussed in the following
section.

3. Range of validity of the small-time series
The proposed model approximates the total perturbation height given by the infinite series

N, =y mr" 3.1

n=0

with the corresponding truncated series

N
e, 0~ Y n (" (3.2)

n=0

up to the maximum order N, selected beforehand. Before making use of the model we
must know within what time interval this approximation is valid. Instead of seeking for
the exact interval of convergence of infinite series (3.1), which would require knowing
all perturbation orders 7, for n =0...00, one could ask up to what order N does
the truncated series (3.2) need to be computed to obtain an accurate prediction of the
free-surface disturbances at a given time ¢. Intuitively, smaller times will require fewer
perturbation orders for obtaining a preset accuracy.

To analyse the time range of validity of the series, we compare the perturbation height
at the surface point above the centre of the cylinder,

no(H) =nx=0,1), (3.3)

for submersions under different velocities (different values of 1) and for simulations up to
N = 2,4, 6 and 8 orders. The results for the » = 0.8 case are shown in figure 3. We focus
our high-order analysis on a large sized obstacle, which is not possible using analytical
methods found in the literature (Kostikov & Makarenko 2018) and thus provide a novel
insight into the problem.

Firstly we note in figure 3 that for all four submersion speeds (all 1), computations of
N = 4 order would not reveal local minima in the ng curves. These minima are only seen
for N > 6 and represent the free surface changing velocity directions from downwards
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Ny

1.0 — 21=0.1 -+ -+ Up to order 2 Y
— 1=50 --=-- Upto order 4 bR
— 4=15.0 ~=== Up to order 6 s S
-l4r —— 21=25.0 —— Upto order 8 N

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 3. Time dependence of 1 for constant acceleration submersion of a cylinder of r = 0.8 for different
submersion speeds constant A (shown with different colours). Approximation of several orders in the series
(3.2) are shown with different line styles. Deviations of more than 5% in 5y are marked with O for
second—eighth, [J for fourth—eighth, and O for sixth—eighth.

to upwards at x = 0. We call this moment the turnaround point of the surface and it
corresponds to when the surface stops receding with the submerging obstacle and changes
its overall direction of motion. Therefore, if one were interested in knowing the height
and time of the surface turnaround, one would have to utilize computations to the N = 6
order. Increasing the order of the simulation to N = 8 further improves these predictions,
which are deduced from the turnaround occurring at slightly earlier times for the N = 8
simulations compared with N = 6.

Using figure 3 one can determine the time at which the solution of one order deviates
from the highest order computed, e.g. that time at which the no values for the second and
eighth order deviate. To do so, a threshold needs to be applied for the deviation. In figure 3,
the time at which the solution of a lower-order deviates by 5 % from that of the highest
order computed (N = 8) is indicated (O for second—eighth, [] for fourth-eighth and ©
for sixth—eighth). This approach provides a time of validity for each submersion speed
to which the results obtained with each order are accurate, again within the prescribed
threshold.

The same analysis can be conducted for a range of obstacle sizes, i.e. for each obstacle
size, the time at which the second-order solution is valid for a particular A can be found.
The corresponding contour plots are shown in figure 4, where the contour levels indicate
the time of validity for a particular order of the simulation. For example, if one considers
a cylinder with a radius of » = 0.7 and a submersion speed of 4 = 5, then a second-order
solution (figure 4a) is valid up to a time of 0.20. If a fourth-order solution is used
(figure 4b), this time is increased to roughly 0.50, whereas a sixth-order solution (figure 4c¢)
is valid up to 0.60. In general, increasing the order of the solution increases the time over
which the solution is valid. This increment in time of validity between different orders of
accuracy is smaller for higher orders, which suggests that the successive times of validity
are bounded by the maximum convergence time of the infinite series (3.1).

The above analysis was undertaken using the eighth order (N = 8 for the series (3.2)) as
the most accurate approximation of the surface disturbance. Also, 19 was selected as the
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Figure 4. Contour plots of the time of validity of a given computation as a function of cylinder size r and
velocity parameter A. Contours corresponding to computations of (a) second, (b) fourth and (c) sixth orders
have been plotted.

parameter to be compared between different approximations and 5 % was the percentage of
deviation for the comparisons. Of course, the definition given here for the time of validity
of the numerical model depends on all of these choices. For example, if a threshold of 1 %
is used the times of validity decrease, however, the general trends observed for r and 4
still hold. Here we attempt to show what methodology should be used to determine, in a
practical way, what order of precision needs to be computed for each input parameter and
how this would change for different parameters.

4. Surface profile behaviour

The particular implementation of the proposed method requires the calculation of different
perturbation orders of series (2.16). A useful interpretation of the relation between
the different perturbation orders is that given by Tuck (1965). In physical terms, the
fourth-order perturbation 14 (x) is a result of the forcing exerted by the pressure distribution
of the first-order wave system created by the leading-order perturbation 7, (x). In the same
way, 1e(x) is the result of the forcing generated by the fourth-order system by n72(x)
and n4(x), and so on. This composition of the different perturbation orders results in
the evolution of nonlinear features on the surface at initial times, which give way to the
formation of jets or gravity waves at latter times. The model developed here can be used
to study these features and how they behave as the inputs of the model are changed. In this
section we study what these nonlinear features are, how they develop for different values
of A and r, and how this knowledge can be used to describe the process of jets or gravity
waves formation on the surface. We leave the analysis of different submersion profiles

Ve(D) 0 §5.

4.1. Nonlinear features

As mentioned in § 1, early studies on surface perturbations due to a submerged obstacle
considered linear conditions on the free surface (see Lamb 1913; Havelock 1927) which
physically equate to assuming small deviations from the unperturbed state across the
surface domain. Such an assumption allows one to obtain an analytical description of
the surface, and is only applicable for the particular case of a small cylinder (» < 0.5) in
horizontal motion (8 = 0), on which a steady flow can be obtained in the reference frame
fixed to the cylinder. Lamb obtained this linear solution by replacing the cylinder with a
dipole singularity located at its centre.

For the case of the vertical motion of a cylinder, the flow is non-stationary and the
linear approximation does not hold since the surface quickly breaks the small perturbation
assumption. Yet, one can study the successive appearance of different nonlinear features on
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the surface by comparing the leading-order solution obtained through Lamb’s conjecture

of the dipole with higher-order solutions obtained using the method developed here.
Lamb’s conjecture is reached when we assume that r is small, so that

72

KL zc forallz € d82¢. 4.1)
- Zc

Under this hypothesis, we make the substitution z, = z. in the complex velocity described
by the Cauchy integral formula (A12) to obtain

r27.(1) 1 r? W(E, 1) q 1 W(E, 1)

Ve = o T s 2mi e, -2 © 2w Lo, B

de.

4.2)
The first term of the right-hand side of (4.2) corresponds to Lamb’s dipole of strength
rzz’c () located at z = z.. The second term is a self-induced dipole whose strength depends
on the shape and velocity of the free surface. The last term is analytic everywhere in the
region of the flow. Collecting only the leading-order terms of (2.10a,b) and combining
real and imaginary parts of (4.2) (in the same way as for equation (2.11) for the general
problem) we obtain the following simplified equations under Lamb’s conjecture:

n=v, u+An =0,
o0

r?Ag(x, s)v(s) ds = p.v. /_ N Bo(x, s)u(s) ds + va(x)|y=o 43)

v
+7 (—d> :
o /=0

where the same notation of § 2 has been used. The leading-order solution of this simplified

system corresponds to collecting the terms proportional to 72 in (2.27). The corresponding
analytical expression for the 2 term is

o0

Tv(x) + p.v. /

—0o0

20 (1 — x?)sin(9) + 2xcos(f)
(14 x%)2

where 0 is the angle between the direction of motion of the cylinder and the x direction.
This solution has been obtained by Tyvand & Miloh (1995) and Makarenko (2003)
using methods of conformal mapping through bipolar coordinates and integro-differential
equations, respectively.

Figure 5 shows the evolution of the surface for the leading-order solution derived
from Lamb’s conjecture (4.4), which coincides with using N = 2 in series (3.2) and for
higher-order solutions with N = 4, 6 and 8. All the graphs correspond to the submersion
of a cylinder with r = 0.8, with constant acceleration and velocity parameter 4 = 5. As
discussed in § 3, higher orders N will also increase the time of validity of the resulting
solution. Each stacked curve describes a different time stamp, and the latest time stamp
shown on each figure corresponds to the highest time of validity for the corresponding
maximum order N. A large value of r, corresponding to the free surface being close to the
surface of the cylinder, has been intentionally selected to highlight features which can be
only be observed by increasing the order N.

With the leading-order solution (figure 5a) a central depression develops on the surface
up to ¢ = 0.4. Then, for times that can only be observed for N > 4, the slope of the surface
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Figure 5. Evolution of the free surface for an obstacle of r = 0.8 submerging under constant acceleration
with A = 5. Each surface is computed as n(x, 1) = ZZZII\/ N, (x)¢", for different orders N. Each stacked curve
represents a different time stamp of the surface with the ordinate axis indicating the corresponding time ¢. The
vertical exaggeration of all the curves is 3.5. Nonlinear features that emerge on top of the central depression
have been highlighted in red: () cusps, (c) small-scale waves, (d) jetting.

shows discontinuities (cusps highlighted in red in figure 5b) near x = —1 and x = 1. The
cusps evolve into wave-like perturbations on top of the main dip at ¢ = 0.8, which can
be observed only for N > 6 (highlighted in red in figure 5c). At latter times a central
column that evolves into a strong central jet is observed as the result of the collision of
the small-scale waves. This is only seen near ¢t = 1 which can be reached with N = 8§
(highlighted in red in figure 5d). This motion of small-scale waves may explain the forming
mechanism of Worthington jets (see for example Eggers & Villermaux 2008).

Figure 6 shows the first four non-zero perturbation orders 1>, 14, ¢ and ng of the total
perturbation (series (3.2)) for the same cylinder size and submersion velocity used for
figure 5. The balance between these terms of different order has a direct effect on the
behaviour of the free surface discussed in the previous paragraph for figure 5.

From series (3.2), it can be concluded that lower-order terms have an impact at earlier
times on the total surface perturbation than higher-order terms do. The shapes of the
surface profiles shown in figure 5(a) are all proportional to 1y for small times; this is
the only term of relevance in the evolution of the surface at the beginning of the motion up
to t = 0.4. The next relevant order, 74, exerts its influence at later times. Since the signs of
1> and 14 are opposed for most of the x domain (compare 72 and n4 in figure 6), n4 will
shape the free surface with a cancelling effect relative to 77, observed in the form of cusps
on the surface near t = 0.6 (see figure 6b).
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Figure 6. First four non-zero perturbation orders for an obstacle of r = 0.8 submerging with constant
acceleration for 4 = 5. Lighter shade lines and more spaced dashes indicate a higher order in series (2.16):
solid line for 7, long dash for 14, medium dash for ¢, short dash for g.

When we look at even higher orders, 16 opposes in sign to 74, and ng opposes in sign to
ne for most of the x domain (compare each pair of terms in figure 6). When each of these
higher-order terms is triggered, the cancelling effect with the previous order manifests with
velocity reversals on the surface, resulting in the nonlinear small-scale waves superposed
on the main depression caused by 7., which are highlighted in figure 5(c). Note that
this cancelling effect between consecutive orders does not exist in a region close to
x = 0, where all perturbation orders are positive except for the leading-order 7,, which
is negative. There, all higher orders counteract the influence of the leading order 77 in a
region above the obstacle, in an effort to restore the surface to its initial position. The result
in this case is the strong jet observed at latter times, highlighted in figure 5(d).

4.2. Different submersion speeds and cylinder sizes

The technique of comparing perturbation orders used in § 4.1 also allows one to understand
how the size of the cylinder r and the velocity parameter A affect the perturbation profile
of the surface. Figure 7 shows the evolution of the free surface for cylinders of size r = 0.8
submerging with different speeds (different values of 1). The cases of a fast submersion
(1 =1, figure 7a) and a slow submersion (1 = 15, figure 7b) will be compared with the
case of a submersion with intermediate velocity (4 = 5, figure 5d) already discussed in
§ 4.1. To characterize the behaviour of the surface under different submersion speeds, we
analyse the perturbation orders of series (3.2) for the same parameters A = 1 (figure 8a)
and A = 15 (figure 8b) and compare them with the previously studied perturbation orders
for 1 = 5 (figure 6).

Like for the case of 1 =5 (see §4.1), we observe that the surface profiles for 1 =1
and 15 closely follow the shape of n, at earlier times (see figure 8a,b). We can also see
a cancelling effect between consecutive orders for most of the x domain. The exception
occurs in the region around x = 0, where all the higher orders (N > 4) oppose in sign the
leading order N = 2. In §4.1 it was shown how this balance between successive orders
is responsible for nonlinear complexities observed on the surface. In the case of a fast
submersion these complexities appear in the form of cusps (highlighted in red in figure 7a)
on top of the strong dip resulting from the effect of 1. The limited time of validity of this
case prevents the observation of further developments, but the appearance of a central jet
is expected since an obstacle with the same size r = 0.8 but with slower submersion speed
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Figure 7. Different time stamps of the system for a cylinder of » = 0.8 submerging with constant acceleration
for (a) fast submersion A = 1, (b) slow submersion A = 15. Nonlinear features that emerge on top of the central
depression have been highlighted in red.
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Figure 8. First four non-zero perturbation orders for an obstacle of r = 0.8 submerging with constant
acceleration for (a) fast submersion A = 1, (b) slow submersion A = 15. Lighter shade lines and more spaced
dashes indicate a higher order in the series (2.16): solid line for 7,, long dash for 14, medium dash for ¢, short
dash for ng.

A = 5 already showed the onset of jetting (figure 5d). The slow submersion case (1 = 15,
figure 7b) presents quite a different picture: a surface reversal is observed near ¢ = 0.4
which develops into a central column at x = 0. This central column, however, is unlikely
to develop into a thin central jet (as seen in figure 5d, for example) but rather into shallow
gravity waves. This is also deduced from the fact that the surface height for the 4 = 15 case
is noticeably lower than for the 4 = 1 and A = 5 cases across the entire x domain, and that
for slower motions the free surface has sufficient time to respond to the restoring influence
of gravity. For the faster submersions cases of 4 =1 and 5, gravity exerts a minor effect
and strong dips followed by jets are observed instead.

If we analyse the time behaviour of the surfaces, it can be noticed that the surface
reversal occurs earlier for A = 15 (figure 7b) as compared with the faster motions of 1 = 5
(figure 5d) and A = 1 (figure 7a). This occurs because the magnitude of n4 grows while
1> remains constant as A is increased, (compare the curves of 1, and n4 across different
speeds in figure 8a,b, and with figure 6), thus intensifying the cancelling effect between
the two orders and producing an earlier reversal.

In §3 the time validity of the simulations were observed to be smaller for slower
motions (see, for example, figure 4). Inspecting the balance between perturbation orders
in figures 8(a) and 8(b), we can now explain this behaviour. For 4 = 1 (figure 8a) the
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Figure 9. Different time stamps of the system for a constant acceleration submersion with 4 =5 for (a) a
small cylinder of r = 0.3, (b) a medium-sized cylinder of » = 0.5. Nonlinear features that emerge on top of the
central depression have been highlighted in red.
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Figure 10. First four non-zero perturbation orders for submersions of constant acceleration with 4 =5 of:
(a) a small cylinder of r = 0.3, (b) a medium-sized cylinder of » = 0.5. Lighter shade lines and more spaced
dashes indicate a higher order in the series (2.16): solid line for 72, long dash for n4, medium dash for e, short
dash for ng.

perturbation orders are of decreasing magnitude for increasing N. This trend is reversed
as A grows: for A = 15 (figure 8b), the higher orders grow in magnitude. Therefore, for
the faster motion of A = 1 a convergence time of the series (3.1) will be bigger than for
the slower motion of A = 15, and the same trend is expected for the validity times of the
corresponding simulations.

We now turn our attention to how the size of the cylinder r affects the perturbation
profile of the surface. Figure 9 shows the free-surface profile for a series of time stamps, for
the case of small cylinders (r = 0.1 and 0.5), which will be compared with the submersion
of a bigger cylinder (r = 0.8, figure 5d) previously analysed in § 4.1. In all these cases the
velocity parameter is kept constant at 4 = 5. To explain the behaviour of the surface on
each case, we analyse the perturbation orders of series (3.2), which have been plotted in
figure 10(a,b) for the sizes r = 0.1 and 0.5, respectively, and we compare them with the
perturbation orders for r = 0.8 (figure 8).

For all cylinder sizes we observe that at early times there is a surface region near x = 0
that closely follows the submerging obstacles, forming a central depression. At these times
n2 is the only relevant order that shapes the total perturbation. It can be seen that 7,
approaches —1 in a region near x = 0 as the cylinder size is increased (compare 7, for
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r=0.1, 0.5 and 0.8 in figures 10a, 10 and 6d, respectively), which means that the surface
near x = 0 follows the obstacle with a velocity that becomes closer to the velocity of the
cylinder as the size increases.

The case of r = 0.3 (figure 9a) creates a very small perturbation, in relative terms. The
surface recedes in the region immediately above the cylinder and then reverses its motion
around ¢t = 0.8 (highlighted in red), but is lacking the cusps and small-scale waves which
were observed for other cases, resulting in a smoother surface (here and throughout this
work, a surface is referred to as being smoother than another when the slope of one is
smaller, across the entire x domain at a given time, than the other). The wide central
column that forms above the obstacle is not likely to transform into a thin jet. For r = 0.5
(figure 9b), cusps are observed at x = %1 near r = 0.8, which develop into two small-scale
waves at t = 1.0. The formation of a central column is being observed for » = 0.5 by the
end of the time validity of the simulation. The » = 0.3 and 0.5 cases are in stark contrast to
the r = 0.8 case, shown in figure 5(d), where small-scale waves are observed, eventually
creating a strong central jet. A key difference between the r = 0.5 and 0.8 cases, however,
is that the speed at which the small-scale waves approached each other is faster for the
r = 0.8 case, on which the full jet formation can be observed within the validity time of
the simulation.

These differences in smoothness observed in the surfaces can be explained when one
analyses the involved perturbation orders. Consecutive orders are of opposed sign for all
x in the case of r = 0.3 (figure 10a), which means strong cancelling effects between their
influences in the total surface. In comparison, we observed in § 4.1 that these cancelling
effects do not exist near x = 0 for higher orders (N > 4) in the case of r = 0.8 (see figure 6)
and we also note that it does not exist between orders six and eight for » = 0.5 (figure 100).
Since the regions where perturbation orders cancel each other tend to be smoother, we
conclude that larger cylinders moving under the same speed as smaller ones are more
prone to creating steeper surfaces and jets, as observed when figures 9(a), 9(b) and 5(d)
are compared.

4.3. Jetting onset

We have observed that for all cylinder sizes and velocities, the submersion of an obstacle
creates a depression on the free surface followed by the formation of a central column
at x = 0. For latter times, the central column evolves either into a narrow jet (see, for
example, figure 5d) or else the perturbation energy is dissipated through gravity waves
(see, for example, figure 7b). An accurate description of these phenomena requires the
study of viscous and surface tension forces, which are not included in the model presented
here. Yet, the model can be used to describe the initial stages of the jetting process, on
which these forces are still negligible. It can also be used to estimate the transition region
between the two regimes (jetting and gravity waves) as the variables of the problem (r, A
and submersion profile) are changed.

Previous studies (see, for example, Rein 1996) typically use visual observation of
a central jet as a decision criterion for classifying the surface into one of the two
regimes. Yet, in some of the surface snapshots presented here, it cannot be determined
by observation alone if jetting will occur, as is the case of figures 7(b) and 9, due to the
limited time of validity of the simulation. One could increase the time of validity of the
solution by incorporating higher-order terms in the series (3.2) but, as discussed in § 3,
this increment will come at a high computational cost and the simulation time will always
be bounded by the time of convergence of the infinite series (3.1). An alternative approach
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is to analyse how similar the central column is compared with what we could expect from
a thin jet or from a shallow gravity wave.

To quantify the similitude between shapes of central columns one can compute the
slenderness of the column, defined as the ratio between the vertical position of its centre
of mass and half its height (see insert in figure 11a for a graphical description of these
values). At one extreme, a value closer to zero would be characteristic of shallow gravity
waves. At the other extreme, a value closes to unity is representative of a narrow jet. Real
fluid columns will have slenderness values in the range (0, 1) (e.g. 2/7 corresponds to a
sinusoidal wave), thus permitting a classification of the column behaviour in terms of its
similitude to gravity waves formation or else jetting onset.

Figure 11(a) shows the evolution of the slenderness of the central column that grows
at x = 0 for obstacles of different sizes r that submerge with constant acceleration with
A = 5. Each curve in figure 11(a) starts at the time when the central column emerges at
x =0 and ends at the corresponding validity time of the simulation (see § 3). Surface
evolutions for these three distinctive cases are shown in figures 11(b), 11(c) and 11(d)
with the central column highlighted in red. The central column that appears for the
submersion of a large cylinder (r = 0.8, figure 11b) evolves into a strong emerging jet
and the corresponding slenderness (green line in figure 11a) grows continuously to values
above 0.6. The submersion of a small cylinder (r = 0.3, figure 11d) produces a shallow
gravity wave and the slenderness of the column (purple line in figure 11a) remains below
0.5 at all times of the simulation. For the case of the cylinder with » = 0.6 (figure 11c¢),
the time of validity of the simulation does not allow us to determine if the central column
will develop into gravity waves or else if it will become a thin jet. The slenderness for this
case (orange line in figure 11a) starts above 0.6 and then slowly decreases to values around
0.55.

Proceeding similarly, one can relate the behaviour of the central column with the
corresponding time evolution of its slenderness for arbitrary cylinder sizes r and
submersion velocity parameters A. In particular, we take the slenderness value at the end
of the simulation to determine how it is categorized. It is observed that those cases that
lead to gravity waves, generally have a final slenderness value of less than 0.5. For jetting
cases, where a clear long central column is evident and which continues to grow in time
(within the time of validity of the simulation), we observe that slenderness values tend to
be greater than 0.6. Any cases, where the final slenderness value falls within these two
limits, are categorized as transitional.

Figure 12 shows a classification diagram that summarizes simulations with multiple
values of r and A for constant acceleration submersions and places them into one of
the three regimes discussed above: gravity waves, transition regime or jetting onset.
Each marker represents a different simulation that has been classified according to the
threshold values for final slenderness discussed in the previous paragraph. The decision
boundaries between the observed regimes has been computed using a support vector
machine algorithm with a radial basis function kernel and a regularization parameter

C = 10*. This classifier calculates decision boundaries between each pair of regime
categories so as to maximize the width of the gap between the two categories. Even if
the inherent limitations of the approach do not allow for obtaining a central column for
every set of parameters r and A, the use of figure 12 helps in placing each set of inputs into
one of the three regimes. By this, settings such as » = 0.8, 4 = 1 (figure 7), which did not
show a central column emerging at x = 0 within the time validity of the simulation, can
still be classified inside the jetting regime, based on the decision boundaries computed in
figure 12.
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Figure 11. (@) Time evolution of the central column slenderness for submersions of constant acceleration with
A =5 and cylinder sizes: r = 0.8 (green line), » = 0.6 (orange line) and r = 0.3 (purple line). An insert in
the figure shows the height and centre of mass position of a central column. The corresponding surface profile
evolution for the three cases are shown in panels (b—d).

3 Gravity waves = /'//' //'/
4 Transition !/ i H
20- @ Jetting = m m/ Jr'. ®
= 5 A | L]
i/ 2 /8
15- || | | =] | Irr J @
1 [ ] / .f" ®
10- E B E B/ I e
y’ \ tf =
a / @
5- E B E_E A 8 @
.
o BTT2%E 9%3 o o |
0.1 0.3 0.5 0.7 0.9
r

Figure 12. Decision boundaries for the regimes of jetting, gravity waves and the transition zone between them
for a diagram of A versus r, for submersions under constant acceleration. The markers represent simulations
conducted for different input parameters. The solid lines represent decision boundaries detected by the
classification algorithm of support vector machine.

Examining figure 12, we observe that the values of r, A that have been classified within
the transition regime are comparatively few in the r, A space. The transition zone and the
defining classification boundaries have a monotonically increasing shape, which physically
means that faster submersions and/or bigger obstacles result in a higher likelihood for
jetting onset on the surface, a characteristic that is also discussed in §4.2. Beyond this
global feature, figure 12 can help in a more accurate engineering of system parameters to
obtain desired surface behaviours. For example, it is observed that in the region » > 0.7 of
the parameter space, the jetting regime quickly becomes predominant for all submersion
speeds.
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5. Analysis of different submersion profiles

Thus far, we have only analysed obstacles submerging with constant acceleration. One can
expect, however, that the acceleration profile would have an effect on the free surface as
well. Tyvand & Miloh (1995) firstly computed the leading orders for a constant velocity
profile and then deduced the results for constant accelerations in terms of the leading
orders for constant velocity. One of the novelties of the method proposed in this work is
that arbitrary acceleration profiles can be investigated and the corresponding free-surface
profiles obtained, beyond those previously investigated.

When the size of the obstacle r and the velocity parameter A are defined, the surface
behaviour depends only on the submersion profile y. (7). By changing the time dependence
of the forcing exerted on the obstacle during submersion, we can change this function. A
simple analysis can be conducted by exploring how the free surface reacts to different
submersion profiles between the limiting cases of constant acceleration and constant
velocity submersions. We will analyse the surface response to the following five different
submersion functions:

constant acceleration y.(f) = —1 — tz,
close to constant acceleration y.(f) = —1 — Zt — th ,
average motion y.(f) = —1 — Et — %tz, ( (5.1)
close to constant velocity y.(f) = —1 — é_lt — th,
constant velocity y.(t) = —1 —t.

The cases of constant acceleration and constant velocity are idealized, and in practice we
can expect to find submersion profiles that are close to one of these two limiting cases. Here
we picked three intermediate profiles between them with simple analytical definitions, but
the proposed method allows us to examine general profiles, whatever they might be, which
make it more general in application.

A constant velocity submersion requires that an impulsive acceleration be transmitted
to the obstacle at = 0, which is the moment at which the cylinder is the closest to the free
surface. Therefore, for this case, most of the energy coming from the external forcing
enters the system at the beginning of the motion. Conversely, a constant acceleration
submersion requires continuous forcing, importing energy into the system throughout
the total submersion time. The other submersion motions have intermediate forcing
distributions between these two cases.

Many applications of this model will see the smoothness of the surface and the absence
of jets as a figure of merit for selecting appropriate system parameters. One can therefore
compare jetting/gravity waves classification diagrams (like the one studied in figure 12)
for different submersion profiles y.(¢) so as to determine which profile is more suitable to
obtain smooth initial surfaces. Figure 13 shows the classification diagrams corresponding
to the cases of constant velocity (figure 13a) and average motion (figure 13b) as defined in
(5.1). The same classification algorithm and hyperparameters employed in figure 12 have
been used for computing the decision boundaries in figure 13.

For all submersion profiles, we note that the transition zones are monotonically
increasing in the A, r space. The decision boundaries between the transition zone and
the other two regimes are steeper for the constant velocity case (figure 13a) than for
the intermediate submersion profile (figure 13b), and these in turn are steeper than the
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Figure 13. Decision boundaries for the regimes of jetting, gravity waves and the transition zone between them
for a diagram of A versus r, for submersions under (a) constant velocity y.(f) = —1 — t, (b) average motion

ye(t) = —1— %t - %tz. The markers represent simulations conducted for different input parameters. The solid
lines represent decision boundaries detected by the classification algorithm of support vector machine.

boundaries for the constant acceleration profile shown in the diagram of figure 12. Another
feature to be considered is that the region of the jetting regime in the phase diagram is
larger than the region of surface waves regime for the constant velocity case (figure 13a),
while the opposite is true for the constant acceleration case (figure 12). If one is therefore
primarily concerned with mitigating the onset of jetting, for example, the previous analysis
will favour a submersion under constant acceleration, as it provides a wider range of values
for r and A which leads to shallow gravity waves as opposed to thin jets.

The above analysis can be complemented with the surface turnaround time, determined
by analysing the temporal behaviour of ng(#) for different submersion profiles, in order to
determine how soon after the initiation of the submersion of the obstacle one can expect
a central jet to occur. Figure 14 presents how 7g, for a cylinder of » = 0.8 and different
submersion velocity parameters A, varies as a function of the submersion acceleration
profile. We first note that, for all values of A, the constant velocity motion has the earliest
surface turnaround time, denoted as the time on which the local minimum in 7 is reached.
As previously mentioned, for the constant velocity motion of the obstacle, most of the
energy is transmitted to the cylinder when it is closer to the free surface, thus making it
more prone to creating disturbances on it.

Although the time at which turnaround occurs is always smaller for constant velocity
submersion, the height of the maximum perturbation (the value of |59| when the minimum
is reached) varies significantly between the different submersion profiles as A is changed.
For fast submersions (1 = 0.1, figure 14a) we see that the surface is shallower at the
turnaround time for the case of constant velocity motion. The turnaround point deepens
as the motion function is changed towards the constant acceleration case. This further
strengthens the argument that the continuous energy feed of the constant acceleration
case is more likely to create a steeper free surface profile with a deeper turnaround point,
compared with the constant velocity case where most of the energy is imparted at r = 0
and gravitational forces more effectively dissipate disturbances creating a smoother free
surface. This also explains why in the low A region of the phase diagrams of figures 12
and 13 the gravity waves zone (linked to smoother surfaces) is smaller for constant velocity
than for constant acceleration profiles.

As the submersion motion becomes slower (increasing A), gravitational effects start
playing a dominant role in redistributing the perturbation energy away from the region
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Figure 14. Time dependence of perturbation height ng at x = 0 for a cylinder of r = 0.8 submerging with
different submersion velocities (different panels), under different submersion profiles: blue circle filled with
line for constant acceleration; orange square filled with line for close to constant acceleration; green diamond
filled with line for average motion; red hexagon filled with line for close to constant velocity; and purple cross
with line for constant velocity (see defining equations (5.1)). (@) A = 0.1, (b)) A = 5,(c) A = 15 and (d) 2 = 25.

near the cylinder. This results in smaller amplitudes of the free surface at the turnaround
point for all submersion motions (compare, for example, the values of |ng| at turnaround for
average motion (curves with red hexagon filled with line) for 4 = 0.1 in figure 14(a) and for
A = 151in figure 14¢). On these cases the continuous exhaust of energy provided by gravity
is not as effective at resisting the strong initial perturbation created with the impulsive
energy input of the constant velocity profile. As the submersion profiles become further
from the constant velocity profile and closer to the constant acceleration profile by adding
a continuous forcing component to the cylinder motion, the exhaust of energy coming
from gravity matches this input of energy and smoothens the surface, and does so more
effectively for different intermediate profiles at different speeds. For example, for 4 = 15
(figure 14¢) the close to constant acceleration profile (see (5.1)) produces the smallest
turnaround height between the profiles analysed, thus giving the smoothest surface. For
the slowest submersion cases (1 = 25, figure 14d) the most efficient profile at producing
shallower turnarounds and smoother surfaces is the constant acceleration profile. When
we analyse the high A zone of the diagrams in figures 12 and 13, we now observe that
the gravity waves regime is predominant for constant acceleration as compared with
constant velocity submersions. This kind of analysis can be used to select an appropriate
submersion motion when the surface smoothness is a concern and the parameters r and A
have already been selected.
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6. Summary and conclusions

Prior studies of initial perturbations on the free surface due to the motion of submerged
obstacles have been studied via the use of small-time series (Tyvand & Miloh 1995)
and reducing the equations of motion to the free surface (Kostikov & Makarenko
2018). However, these analytical results are limited to constant velocity and acceleration
submersion profiles, and to low-order approximations in time. This study expands upon
these methods to construct a general methodology for perturbation calculation of unlimited
order and arbitrary submersion profiles. The proposed methodology allows one to analyse
the growth of the perturbations over larger times, and new nonlinear features are thus
observed on the perturbed surface. One of the direct applications of these extensions is
the ability to predict whether or not jetting will onset on the surface, and how this onset
changes for different cylinder sizes, motion speeds and acceleration profiles.

The numerical model developed in this work computes two-dimensional surface
disturbances in a semi-infinite fluid caused by the submersion of a circular cylinder.
Following the method by Kostikov & Makarenko (2018) the equations defining the system
were first transformed into a set of differential and integral equations of variables defined
only in the fluid surface. The obtained system was further decomposed into different orders
in time using small-time Taylor series. A recursive scheme was designed to sequentially
solve higher orders of perturbations in time. The numerical model was implemented and
used to study how surface perturbations change as a function of the main system inputs,
namely the cylinder size r, submersion speed parameter A and submersion profile y. (7).

Firstly, an analysis of the time of validity of the simulations as a function of the
highest order N used in the series n = ZQ/:O n,t" showed that faster-submerging obstacles
and bigger obstacles allow for longer simulation times. Also, the influence of higher
perturbation orders was inspected for the particular case of a cylinder of size r = 0.8
submerging under constant acceleration with 4 = 5. The application of Lamb’s conjecture
of a dipole at the cylinder centre, which is equivalent to using N = 2, was compared with
surface perturbations of increasing overall order, up to N = 8. Features such as surface
cusps, small-scale waves on top of the central surface depression, and jetting, could be
observed as the value of N was increased, thus demonstrating the capabilities of the
proposed model for studying nonlinear effects on the surface beyond those observed in
previous works.

A parametric analysis of surface perturbations in time was conducted for different values
of r and A for a constant acceleration submersion profile. Plots of surface profiles 7 (x, 1)
and of the several perturbation orders 7, (x) were compared across the different values of
inputs. The balance between perturbation orders was linked with the observed behaviour
of the surfaces. A general conclusion is that smoother surfaces and gravity waves were
observed for smaller cylinders and/or slower motions, while bigger cylinders and/or faster
motions lead to the onset of jetting.

The proposed model does not include surface tension effects or viscous forces. Yet, for
the initial stages at which the model is aimed these effects are negligible and the model
can help in the analysis of thin jet formation. To discern if the central column that emerges
from the central depression will evolve into a thin jet or else will transition to gravity
waves, the evolution of its slenderness with time was studied for several values of r, 1 and
submersion profiles y.(¢). Using the final slenderness as a classification criterion, phase
maps and decision boundaries between the regimes of jetting, transition regime and gravity
waves were constructed for different submersion profiles. The analysis of these phase maps
was complemented with the temporal behaviour of no(#). The impulsive forcing used in a
constant velocity submersion motion consistently led to earlier surface turnarounds when
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compared with profiles closer to constant acceleration. It was also shown that for faster
submersions, the constant velocity profile is optimal in obtaining smoother surfaces, while
for slower submersions the constant acceleration profile gives the smoothest surface. The
different rates at which energy enters the system for the submersion profiles analysed was
argued to be responsible for this behaviour: the gradual feeding of energy for the constant
acceleration case allows for gravity to take away the perturbation energy more efficiently
than for the instantaneous energy input of the constant velocity case when the submersion
is slow, while the constant velocity becomes more efficient in producing smooth surfaces
for fast submersions. This observation is corroborated by the shape of the transition zone
and the decision boundaries of the phase maps for different submersion profiles.

Although we have focused our attention on the initial formation of surface perturbations
due to purely vertical submersion, it has nevertheless shown how nonlinear features are
able to grow over such a time scale, where viscous effects are negligible. The potential
to expand the proposed methodology to different scenarios are several, and in closing
we present a few directions the work could be expanded to. The rapid growth of surface
cusps, which create secondary waves on the free surface that eventually merge and create
a central column, can be used as a starting point to analyse the subsequent formation of
Worthington jets. Given the clear influence of the submersion profile of the cylinder on the
formation of these central jets, one can potentially use the methodology presented here to
find an optimal acceleration profile for a given configuration (e.g. a cylinder of a particular
size located at a given distance from the free surface) to mitigate, or encourage the onset
of these jets, depending on the desired application. Although we have not considered
the forces acting on the obstacle during its submersion, it can be readily implemented
following the method that Pyatkina (2003) utilized for the case of a sphere. Pyatkina
(2003) similarly relied on reducing the equations to that of the free surface, to solve the
leading-orders coefficients of the flow potential and the force on a submerged sphere.
A general method to compute arbitrarily higher orders in time is still missing. Finally,
while the proposed numerical model is valid for arbitrary motion directions, the analysis
of the influence of the motion direction on surface perturbations, similar to the works of
Telste (1986) and Tyvand & Miloh (1995), is left for future work.
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Appendix A. Transformation of basic equations to free surface equations

Here we utilize the method of Kostikov & Makarenko (2018) to derive the surface
equations of the problem proposed in § 2.
By combining the momentum equation (2.1) with the free-surface boundary conditions

(2.3), an evolution system for surface variables 1, u and v is obtained as follows:

2

19 u?—2nuv—v
m=v, -+ i

+ 55 T2 + An, = 0. (same as equations 2.10a,b)
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The first of these equations corresponds to the kinematic condition in (2.3). The second
equation results from combining incompressibility and irrotationality equations (2.2) and
taking into account the relation

(px + nxpy) |y:r; =0 (A1)

obtained from the condition of constant pressure on the free surface in (2.3), and the
relations

—1
(u<x), u”)) = <1 + nf) (U — 10, v + Nyt (A2)

and
u® 1+ nxu,(y) = u; — v (A3)

evaluated at the free surface 02 (¢). The nonlinear system (2.10a,b) is undetermined for
the unknowns u, v and 5. This system must be complemented with an integral equation
derived from complex analysis.

Conditions (2.2) are equivalent to the Cauchy—Riemann relations u)(cx) + uﬁy ) — 0 and
uﬁx) — u,(cy ) =0 for the velocity components #® and u(>). It follows that the complex

velocity W = u® — iu(¥) is analytical relative to the variable z = x + iy throughout the
domain £2(¢) and that the Cauchy integral formula holds:

2niW(z, 1) = / WE. 1 dé + We. 1

de forz e Q). (A4)
a2r §—2 aec §—2

Equation (A4) needs to be expressed in terms of variables defined only on the free
surface 9§2¢, which is achieved by transforming the second Cauchy integral of the
right-hand side, as follows:

W, 1 / 2 Im(W (£©), ) &' (0)) o
dé = do W (£(@9), Q) ——.
Agcs-—z 5= oo £0) -z T g, W E@ODEO G
(A3)

Here, the change of variables d§ = &'(9) d0 was introduced, where the polar angle 6 is
defined such that £(9) = z. + re'’. The bar over a function denotes its complex conjugate.
The prime denotes differentiation with respect to the argument of the function. Also, the

identity f = 2i Im{f} + f has been used for the complex function f = W&’. We now make
use of the boundary condition at the body surface (2.4), expressed in complex variables,

Im{(W(, 1) —z.(0) §'} =0, (A6)

and of the complex identity f = 2i Im{f} +f for f = z.&' to further transform equation
(AS) into

[ 2l oS- Has| wenw @
a2c §—2 302c §—z Jogc§—z a2cé —z

The first integral on the right-hand side becomes

/ 70-% —o, (A8)
I2¢ §—z
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since its integrand is analytical for all £ € 9£2.. The next two integrals on the right-hand
side of (A7) can be transformed using the Milne—-Thomson theorem on the kernels,

1 1 .-
_ (Zc ; ) (A9)
§—2 z—2\§—
where z.(f) = x.(t) + iy.(¢) is the position of the centre of the cylinder, and z,(t) = z. +
r /(z — z¢) is the inversion image of the point z relative to the circle |z — z.| = r. Using
this transformation, the singularity in the kernels is z,, which is located inside of the

cylinder. This allows one to apply the residue theorem for computing the second integral
on the right-hand side of (A7), namely

(1) — L(t - 2mirZ.(t

_/ &0 g _ 2w (zc s)dgz il AUREN
120§ —2 2= 2 Joage \§ — z (z — z:(0)

and to transform the integration contour of the third integral on the right-hand side of (A7)

without changing its value to

/ —W(E, ndé = — / ( )W(E,t)d§
agcé—z 2= 2cJ32c §— 2

r* W, 1) d§
(z—2) ooy E—z
Substituting relations (AS8), (A10) and (A1l) into the right-hand side of (A7), and then

substituting the resulting expression in the original Cauchy integral formula (A4) we
obtain the following equation with integrals over the free surface d$2r only

2 W 2.0
W, 1 r /‘ W(E, 1) de + 27ircz, ()
02r

dé + .
a2r §—2 : (z — ze(0)? & — 2« (z — ze(0)?

Equation (A12) needs to be further transformed into a real-valued integral equation
containing the unknown surface variables u(x, t), v(x, t) and n(x, 7). This is achieved by
taking the limit z — zr = x 4 in(x, ¢) (that is, approaching the interior point z € £2(¢) to
the surface point zr € d£2(¢)) and then taking the real part of the resulting equation. As an
example of how the procedure is done, we transform the first integral on the right-hand side
of (A12) by introducing the said limit z — x + in(x), the change of variable £ = s + in(s)
and taking into account that residue at the discontinuity in £ = z of this Cauchy integral is
equal toitW(z, 1),

W(E, 1) /‘X’ W(s +in(s), 1)

(A1)

2niW(z, 1) = (A12)

(1+in'(s))ds
(A13)

where p.v. denotes the Cauchy principal value of the integral. Now we introduce the
surface variables relation u —iv = (1 + in,)W(zFp, t), derived from definitions (2.9a,b),
to obtain

—dé =1ntW(z, V. -
vap E—z S =IW@DEPY | ) — n00)

ds. (A14)

W&, n . /Oo u(s) — iv(s)
dé =1ntW(z, V. -
vop E—z B =IW@DEPY | 06 = 100)

Proceeding similarly with the other terms in (A12) and taking the real part of the final
equation, we arrive at the integral equation (2.11), which together with (2.10a,b) close the
system of equations in terms of the unknown surface variables u, v and 7.
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